JPH11247786A - Compressor - Google Patents

Compressor

Info

Publication number
JPH11247786A
JPH11247786A JP5176498A JP5176498A JPH11247786A JP H11247786 A JPH11247786 A JP H11247786A JP 5176498 A JP5176498 A JP 5176498A JP 5176498 A JP5176498 A JP 5176498A JP H11247786 A JPH11247786 A JP H11247786A
Authority
JP
Japan
Prior art keywords
oil
gas
compressor
chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5176498A
Other languages
Japanese (ja)
Other versions
JP4228406B2 (en
Inventor
Isamu Tsubono
勇 坪野
Tamio Fukuda
民雄 福田
Toshiyuki Terai
利行 寺井
Kazumi Tamura
和己 田村
Masato Kaneko
正人 金子
Koichi Sekiguchi
浩一 関口
Atsushi Shimada
敦 島田
Tetsuya Tadokoro
哲也 田所
Takehiro Akisawa
健裕 秋澤
Nobuo Abe
信雄 阿部
Yoshiyuki Shimada
芳之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05176498A priority Critical patent/JP4228406B2/en
Publication of JPH11247786A publication Critical patent/JPH11247786A/en
Application granted granted Critical
Publication of JP4228406B2 publication Critical patent/JP4228406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the quantity of the oil flowed into a refrigerating cycle by forming a path by way of the oil in an oil reservoir portion, in a path from a compressing operational portion to a discharge port as an outlet to the outside of a compressor. SOLUTION: When a motor 19 is rotated and a revolving scroll member 3 is revolved through a shaft 12, the gas in a suction chamber 60 formed on an outer peripheral part of an area where both scroll laps 2b, 3b are engaged, is confined in a compression chamber 6 formed between both scroll members 2, 3 to be compressed, and then discharged into a fixed back chamber 61. The oil 69 stored at a lower part of a motor chamber 62 and the fixed back chamber 61 is pressed downward by the increase of the pressure of the compressed gas, to be flowed into an oil storing chamber 80 through a lower passage port 18a, and the oil face at the oil storing chamber 80 side is risen. The gas risen to the surface of the stored oil 69 in the oil, storing chamber 80 is passed through an oil-drops removing portion formed by a porous body, and then discharged to the outside of the compressor from a discharge port formed by a discharge pipe 55.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機に係り、圧
縮機から吐出されるガス中の油含有量の低減に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor and, more particularly, to a reduction in oil content in gas discharged from the compressor.

【0002】[0002]

【従来の技術】特殊な場合を除いて、ガスを圧縮するた
めには機械的な手段を用いる。このため、機械的な手段
における各部の潤滑性やシール性を確保するために油が
用いられるが、この油がガスに混入することが多い。と
ころが、圧縮ガスの用途では、ほとんどの場合、ガス中
の油を禁止または敬遠する場合が多い。例えば、冷凍サ
イクルに用いる冷媒ガスの場合には、含有する油は熱交
換部における性能を低下させるため、冷凍サイクルの圧
縮機にはガスとともに吐出される油量を極力低減する工
夫が必要になる。
2. Description of the Related Art Except in special cases, mechanical means are used to compress a gas. For this reason, oil is used to ensure the lubricity and sealability of each part in mechanical means, but this oil often mixes with the gas. However, in most applications of compressed gas, oil in the gas is often prohibited or avoided. For example, in the case of a refrigerant gas used in a refrigeration cycle, the oil contained therein deteriorates the performance of the heat exchange unit, so that the compressor of the refrigeration cycle needs to be contrived to minimize the amount of oil discharged together with the gas. .

【0003】従来は、特開平6−346884号公報の
スクロール圧縮機に示されるように、吐出パイプの密閉
容器内側に金属製の網や多数の孔が開いた薄板を設け、
そこを通る間に圧縮ガス中の油を分離する構成を有して
いた。
Conventionally, as shown in a scroll compressor disclosed in Japanese Patent Application Laid-Open No. 6-348883, a metal net or a thin plate having a large number of holes is provided inside a closed vessel of a discharge pipe.
It had a configuration in which oil in the compressed gas was separated while passing therethrough.

【0004】[0004]

【発明が解決しようとする課題】しかし、圧縮ガスの流
路内にモータのロータ等の高速回転体を配置した構造で
あるため、油を含む圧縮ガスが高速回転体に衝突し、そ
の際個々の油滴が引き裂かれて複数の小さな油滴に分離
する結果、金属製の網や多数の孔が開いた薄板に付着す
る油量が少なくなり、圧縮機から吐出される油量を低減
できないという問題があった。その理由を以下に説明す
る。
However, because of the structure in which a high-speed rotating body such as a motor rotor is arranged in the flow path of the compressed gas, the compressed gas containing oil collides with the high-speed rotating body. Oil droplets are torn and separated into multiple small oil droplets, resulting in less oil adhering to a metal net or a thin plate with many holes, making it impossible to reduce the amount of oil discharged from the compressor There was a problem. The reason will be described below.

【0005】油滴には、質量に比例する重力と、周囲の
ガスとの相対速度と油滴の表面積の積に概略比例する粘
性力が働く。しかし、このうちの重力は、粘性力と比較
して通常の場合は小さいため、無視する。粘性力を式で
表すと以下のようになる。
[0005] An oil droplet has a gravitational force proportional to the mass and a viscous force approximately proportional to the product of the relative velocity with respect to the surrounding gas and the surface area of the oil droplet. However, gravitational force is small in normal cases compared to viscous force, and is ignored. The expression of the viscous force is as follows.

【0006】 (粘性力)≒A×(油滴の表面積)×(周囲のガスとの相対速度) (1) Aは比例定数である。ここでAの値は非常に大きい。こ
れは、油滴がガスに対して相対速度を少しでも持つと大
きな粘性力が働くということだから、油滴はガスの流れ
にほぼ乗って移動することを意味する。しかし、金属製
の網や多数の孔が開いた薄板の内部のようにガスの流れ
速度が急激に変化するところでは、油滴の慣性によっ
て、ガスの流れに乗らずそれからずれて元の速度を継続
しようとする作用が働く。この時に、ガスの流れととも
に移動する視点から見ると、この作用は慣性力と捉える
ことができる。この慣性力は、油滴の慣性である質量に
比例するため以下のような式で表現される。
(Viscous force) ≒ A × (surface area of oil droplet) × (relative velocity with surrounding gas) (1) A is a proportional constant. Here, the value of A is very large. This means that if the oil droplet has any relative velocity with respect to the gas, a large viscous force acts, so that the oil droplet moves almost on the flow of the gas. However, in places where the gas flow speed changes rapidly, such as inside a metal net or a thin plate with many holes, the inertia of the oil droplets shifts from the original speed without riding the gas flow. The action that tries to continue works. At this time, from the viewpoint of moving with the flow of gas, this action can be regarded as inertial force. Since this inertial force is proportional to the mass, which is the inertia of the oil droplet, it is expressed by the following equation.

【0007】 (慣性力)=B×(油滴の質量)×(ガスの加速度) (2) ところで、油滴は表面張力によりほぼ球形をしているた
め、 (油滴の質量)∝(油滴の直径)3 (3) (油滴の表面積)∝(油滴の直径)2 (4) という関係式が成り立つ。よって(3)、(4)の関係
式を(1)〜(2)に代入すると以下のようになる。
(Inertial force) = B × (mass of oil droplet) × (acceleration of gas) (2) Since the oil droplet has a substantially spherical shape due to surface tension, (mass of oil droplet) ∝ (oil) (Drop diameter) 3 (3) (Surface area of oil drop) ∝ (Diameter of oil drop) 2 (4) Therefore, when the relational expressions of (3) and (4) are substituted into (1) and (2), the following is obtained.

【0008】 (粘性力)∝A×(油滴の直径)2×(周囲のガスとの相対速度) (5) (慣性力)∝B×(油滴の直径)3×(ガスの加速度) (6) (6)で示すように、油滴には慣性力が作用する。
(5)、(6)の両辺同士を割ると以下の式を得る。
(Viscous force) ∝A × (Diameter of oil droplet) 2 × (Relative speed with surrounding gas) (5) (Inertial force) ∝B × (Diameter of oil droplet) 3 × (Acceleration of gas) (6) As shown in (6), an inertial force acts on the oil droplet.
By dividing both sides of (5) and (6), the following equation is obtained.

【0009】 (慣性力)/(粘性力)∝(油滴の直径)× (B×ガスの加速度)/(A×周囲のガスとの相対速度) (7 ) 周囲のガスとの相対速度を含む項は、上記したように、
Aが大きいために大きく変化しないので、油滴の大きさ
とはほぼ独立している。また、ガスの加速度は、ガス流
路の形状とガスの速度といった外部条件で決まるため、
これも油滴の大きさとはほぼ独立している。よって、
(7)より、油滴の直径が大きくなると慣性力が粘性力
に対して近づいてくるかまたは大きくなってくることが
わかる。これは、油滴が大きくなるとガスの流れが急激
に変化するところで、ガスの流れから外れやすくなるこ
とを意味している。つまり、網や多孔体の内部のように
複雑に流れが変わるところでは、油滴が大きくなると、
油滴はガスの流れから外れて、網や多孔体に接触して吸
着し易くなり、ガス内の油の含有率が低減することを示
している。すなわち、これを逆にいえば、油の粒径が小
さくなるほど、網や多孔体による油含有率の低減効果が
低下するということである。
(Inertial force) / (Viscous force) ∝ (Diameter of oil droplet) × (B × Gas acceleration) / (A × Relative velocity with surrounding gas) (7) Relative velocity with surrounding gas The containing term, as described above,
Since A is large and does not change much, it is almost independent of the size of the oil droplet. In addition, since the acceleration of the gas is determined by external conditions such as the shape of the gas flow path and the velocity of the gas,
This is also almost independent of the size of the oil droplet. Therefore,
(7) shows that as the diameter of the oil droplet increases, the inertial force approaches or increases with respect to the viscous force. This means that when the oil droplets become large, the gas flow tends to change suddenly where the gas flow suddenly changes. In other words, where the flow changes in a complicated manner, such as inside a net or porous body, the oil droplets become larger,
The oil droplets deviate from the gas flow and come into contact with the net or the porous body to be easily adsorbed, indicating that the oil content in the gas is reduced. In other words, conversely, the smaller the oil particle size, the lower the oil content reduction effect of the net or porous body.

【0010】そこで、粒径の小さい油も多量に吸着させ
るために金属製の網の目を細かくしたり薄板に開けた多
数の孔を小さくしたりして、そこを流れるガス流の変化
を一層急激にする手段が考えられるが、それらの手段に
よってガスの流路抵抗が増大し、性能が低下するという
問題が生じる。
Therefore, in order to adsorb a large amount of oil having a small particle diameter, the mesh of the metal mesh is made fine or the number of holes formed in the thin plate is made small to further change the gas flow flowing therethrough. Means for increasing the temperature are conceivable, but a problem arises in that the flow path resistance of the gas is increased by these means and the performance is reduced.

【0011】また、前記公報で示される他のスクロール
圧縮機では、前記圧縮動作口を覆うように金属製の網や
多数の孔が開いた薄板を設け、そこを通る間に圧縮ガス
に含有する油を分離する構成を有していた。しかし、油
に多量の冷媒ガスが溶解して油の表面張力が小さくなる
ような運転条件や、前記圧縮動作口における圧縮ガスの
急激な減圧でそこに含有する油に溶解したガスが爆発的
に気化する過圧縮条件のような運転条件では、上記した
例と同様に圧縮ガス内の油の粒径が小さくなるため、同
様の問題があった。
Further, in another scroll compressor disclosed in the above publication, a metal net or a thin plate having a large number of holes is provided so as to cover the compression operation port, and the compressed gas is contained in the compressed gas while passing therethrough. It had a configuration to separate oil. However, under the operating conditions where a large amount of refrigerant gas is dissolved in the oil and the surface tension of the oil is reduced, or when the compressed gas in the compression operation port is rapidly reduced in pressure, the gas dissolved in the oil contained therein explosively explodes. Under the operating condition such as the over-compression condition in which the gas evaporates, the particle size of the oil in the compressed gas becomes small similarly to the above-described example, and thus the same problem occurs.

【0012】本発明の目的は、冷凍サイクル内に流出す
る油の量を低減する圧縮機を提供することにある。
An object of the present invention is to provide a compressor that reduces the amount of oil flowing into a refrigeration cycle.

【0013】[0013]

【課題を解決するための手段】上記目的は、密閉容器内
に設けられた外部から導いたガスを圧縮する圧縮動作部
と、この容器内に設けられた油溜まり部とを備えた圧縮
機において、前記圧縮動作部からガスの圧縮機外部への
出口である吐出口へ至る経路内に、前記油溜まり部の油
内を経由する経路を備えることにより達成される。ま
た、前記油溜まり部の油内の後に多孔性体を経由する経
路を備えてもよい。
SUMMARY OF THE INVENTION The object of the present invention is to provide a compressor having a compression operation section provided in an airtight container for compressing a gas introduced from the outside and an oil reservoir provided in the container. This is achieved by providing a path from the compression operation section to a discharge port which is an outlet of the gas to the outside of the compressor, the path passing through the oil in the oil reservoir. Also, a path may be provided after the oil reservoir in the oil through the porous body.

【0014】また上記目的は、密閉容器内に設けられた
外部から導いたガスを圧縮する圧縮動作部と、この密閉
容器内に設けられた油溜まり部とを備え、この圧縮動作
部からのガスを前記密閉容器内に吐出する圧縮機におい
て、前記圧縮動作部からのガスを前記密閉容器内に吐出
する圧縮動作口に対向しこの圧縮動作口の相当直径の
0.25から2倍の距離だけ離れた位置にオイルトラッ
ププレートを配置することにより達成される。ここで、
前記した相当直径とは、前記圧縮動作口の断面積と同一
の面積を有する円の直径である。
The above object is also provided with a compression operation section provided in the closed container for compressing a gas introduced from the outside, and an oil reservoir provided in the closed container, wherein the gas from the compression operation section is provided. Is discharged into the closed container, and the gas from the compressing portion is discharged from the compressing portion into the closed container through a distance of 0.25 to 2 times the equivalent diameter of the compressing port. This is achieved by disposing the oil trap plate at a remote position. here,
The above-mentioned equivalent diameter is the diameter of a circle having the same area as the cross-sectional area of the compression operation port.

【0015】また上記目的は、密閉容器内に圧縮機構部
とこの圧縮機構部を駆動する電動機部とを備え、この圧
縮機構部から吐出された冷媒がこの密閉容器内を介して
吐出口から外部へ吐出される圧縮機において、前記電動
機部に対し吐出パイプを前記圧縮機構部の反対側に設
け、この電動機部と前記吐出パイプとの間に設けられた
補助軸受と、この補助軸受に設けられ、穴が開けられた
支え板と、この支え板と吐出口との間に遮蔽板を設ける
ことにより達成される。
[0015] The above object is also provided with a compression mechanism section and an electric motor section for driving the compression mechanism section in a closed container, and the refrigerant discharged from the compression mechanism section is externally discharged from a discharge port through the closed container. In the compressor discharged to the motor, a discharge pipe is provided on the opposite side of the compression mechanism with respect to the electric motor, an auxiliary bearing provided between the electric motor and the discharge pipe, and an auxiliary bearing provided on the auxiliary bearing. This can be achieved by providing a support plate having holes, and a shielding plate between the support plate and the discharge port.

【0016】[0016]

【発明の実施の形態】実施例を説明する前に本発明の作
用を説明する。◆まず、上記目的を達成するための第一
の手段の作用を説明する。油を含有するガスを前記貯蔵
油中に通すとき、気体と液体の比重の違いから、ガスを
前記貯蔵油の下部に吹き込む必要がある。この吹き込ん
だガスは前記貯蔵油中を気泡となって上昇する。気泡の
周囲全域は油であるため、気泡中の油滴が周囲の油と接
触する確率は非常に高くなる。さらに、前記貯蔵油中の
気泡の上昇は、油の粘性のために圧縮機内の他の箇所に
おけるガス流速と比較して非常に小さい速度となるた
め、気泡中の油滴が周囲の油と接触できる時間が長く、
気泡中の油滴が周囲の油と接触する確率は一層高くな
る。周囲の油に接触した油滴は、油の表面張力によって
表面積を小さくする作用が働く結果、小さな油滴は気泡
周囲の油に吸込まれる。つまり、油を含有するガスを前
記貯蔵油中に通すと、そこから出てくるガスの油含有率
が低減する。この油含有率低減作用は、気泡中の油滴の
大きさによらないため、粒径の大きな油滴はもちろんの
こと、従来技術で上げた網や多孔体で取り除くことが困
難であった、粒径の小さい油滴も効果的に除去できる。
ところで、運転条件によっては、ガスの気泡が前記貯蔵
油の油面に達した時に気泡が潰れて新たな油滴が発生す
る場合がある。ところが、気泡の上昇速度は非常に遅い
ため、この時に発生する油滴の粒はかなり大きい。この
ため、前記貯蔵油から出てきたガスにはほぼ大きな油滴
のみが含有するが、このガスは次に多孔性体を通過する
ようにすれば、前記した理由により、大きな油滴を高い
確率で取り除くことができる。この結果、油の含有率を
大幅に低減させたガスを圧縮機から吐出できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments, the operation of the present invention will be described. First, the operation of the first means for achieving the above object will be described. When passing a gas containing oil through the storage oil, it is necessary to blow the gas into the lower part of the storage oil due to a difference in specific gravity between the gas and the liquid. The blown gas rises as bubbles in the storage oil. Since the entire area around the bubbles is oil, the probability of the oil droplets in the bubbles coming into contact with the surrounding oil is very high. Further, the rise of bubbles in the stored oil is very small compared to the gas flow velocity in other parts of the compressor due to the viscosity of the oil, so that the oil droplets in the bubbles come into contact with the surrounding oil. The time that can be done is long,
The probability of the oil droplets in the bubbles coming into contact with the surrounding oil is higher. The oil droplets in contact with the surrounding oil have the effect of reducing the surface area by the surface tension of the oil. As a result, the small oil droplets are sucked into the oil around the bubbles. That is, when an oil-containing gas is passed through the storage oil, the oil content of the gas coming out of the oil decreases. Since this oil content reduction action does not depend on the size of oil droplets in bubbles, it was difficult to remove not only oil droplets having a large particle diameter but also nets and porous bodies raised in the prior art. Oil droplets having a small particle size can also be effectively removed.
By the way, depending on the operating conditions, when the gas bubbles reach the oil level of the storage oil, the gas bubbles may be crushed and new oil droplets may be generated. However, since the rising speed of the bubbles is very slow, the oil droplets generated at this time are quite large. For this reason, the gas coming out of the stored oil contains almost only large oil droplets. If this gas is made to pass through the porous body next, the large oil droplets have a high probability for the above-mentioned reason. Can be removed. As a result, the gas whose oil content is significantly reduced can be discharged from the compressor.

【0017】次に、上記目的を達成するための第二の手
段の作用を説明する。圧縮動作口から出てくるガスの流
路を妨げるようにオイルトラッププレートを配置する
と、ガスの流れはそこで急に曲げられるが、ガスに含ま
れる油は慣性が大きいために、このオイルトラッププレ
ートに付着し、ガス中の油滴の含有率は低減する。しか
し、このオイルトラッププレートを前記圧縮動作口に近
づけ過ぎると、流路断面積が小さくなって流路抵抗が増
大するため、性能低下が生じる。すなわち、 (圧縮動作口の面積)≦(圧縮動作口から出た後のガスの流路の断面積) (8) が必要となる。圧縮動作口から出た後のガスの流れは、
このオイルトラッププレートで直角に曲げられると考
え、圧縮動作口から出た後のガスの流路の断面積は、圧
縮動作口の周長に圧縮動作部外側面上の前記圧縮動作口
からオイルトラッププレートまでの距離をかけた面積、
つまり、圧縮動作口を底面とするオイルトラッププレー
トまでの高さの柱状立体図形の側面の面積とみなすこと
ができる。通常、圧縮動作口は円形かそれに近い形状と
なっているため、圧縮動作口を断面積が等しい円として
も状況はほとんど変わらない。よって、以前に定義した
相当直径をD、前記圧縮動作口からオイルトラッププレ
ートまでの距離をHとすると、 (圧縮動作口の面積)=π×D2/4 (9) (圧縮動作口から出た後のガスの流路の断面積)=π×D×H (10) より、(8)の条件は、 π×D2/4≦π×D×H (11) となる。これを整理すると以下のようになる。
Next, the operation of the second means for achieving the above object will be described. If the oil trap plate is arranged so as to obstruct the flow path of the gas coming out of the compression operation port, the gas flow is sharply bent there, but the oil contained in the gas has a large inertia, so this oil trap plate It adheres and reduces the content of oil droplets in the gas. However, when the oil trap plate is too close to the compression operation port, the cross-sectional area of the flow passage is reduced and the flow passage resistance is increased, so that the performance is reduced. That is, (area of the compression operation port) ≦ (cross-sectional area of the gas flow path after exiting the compression operation port) (8) is required. The gas flow after exiting the compression port is
The oil trap plate is considered to be bent at a right angle, and the cross-sectional area of the gas flow path after exiting from the compression operation port is changed to the circumference of the compression operation port by the oil trap from the compression operation port on the outer surface of the compression operation section. Area multiplied by the distance to the plate,
That is, it can be regarded as the area of the side surface of the columnar three-dimensional figure having the height up to the oil trap plate having the compression operation port as the bottom surface. Usually, since the compression operation port has a circular shape or a shape close thereto, the situation hardly changes even if the compression operation port is a circle having the same sectional area. Thus, out of the equivalent diameter previously defined from D, the and the distance from the compression operation port until the oil trap plate and H, (area of the compression operation opening) = π × D 2/4 (9) ( compression operation port than the flow path cross-sectional area) = π × D × H ( 10) of the gas after the condition (8) is a π × D 2/4 ≦ π × D × H (11). This can be summarized as follows.

【0018】H≧D/4 (12) また、Hが大きくなりすぎると、ガスがオイルトラップ
プレートに衝突する速度が小さくなるため、ガス中の油
滴除去率が低下する。これまでの検討から、Dの2倍以
上になると、油滴除去率が急激に低下することが分かっ
ているため、以下の関係式が出る。
H ≧ D / 4 (12) On the other hand, if H is too large, the speed at which the gas collides with the oil trap plate decreases, and the rate of removing oil droplets from the gas decreases. From the previous studies, it has been found that when the value of D is twice or more, the oil droplet removal rate sharply decreases.

【0019】H≦2×D (13) これより、(12)と(13)から、オイルトラッププ
レートを圧縮動作口の相当直径の0.25から2倍の距
離だけ離れた位置に配置すれば、流路抵抗による性能低
下も起こらず、ガス中の油滴除去率も高くなる。
H ≦ 2 × D (13) From (12) and (13), if the oil trap plate is disposed at a position which is twice as long as 0.25 of the equivalent diameter of the compression operation port, In addition, the performance does not decrease due to the flow path resistance, and the removal rate of oil droplets in the gas increases.

【0020】本発明を、旋回スクロール部材の反圧縮室
側の空間に吸込圧よりも概略一定値(以下、過吸込圧値
と称する)だけ高い圧力をかけることにより旋回スクロ
ール部材を固定スクロール部材に押し付けるスクロール
圧縮機に実施した第一の実施例を、図1ないし図11に
基づいて説明する。図1は圧縮機の縦断面図、図2は固
定スクロール部材の反スクロールラップ側からの平面
図、図3は固定スクロール部材のスクロールラップ側か
らの平面図、図4はリテーナの平面図、図5は圧縮行程
の説明図、図6はバイパス弁付近の縦断面図(図1にお
けるR部の拡大図)、図7は差圧制御弁付近の縦断面図
(図1におけるP部の拡大図)、図8は差圧制御弁の背
圧室付近の縦断面図(図7におけるQ部の拡大図)、図
9は貯油室付近の縦断面図(図1におけるS部の拡大
図)、図10は油滴除去部の斜視図、図11は軸受支持
板のモータ室側からの平面図である。なお、この例は、
圧縮機の直径が、10mmから1000mm程度のもの
である。
According to the present invention, the orbiting scroll member is fixed to the fixed scroll member by applying a pressure higher than the suction pressure to the space of the orbiting scroll member on the side opposite to the compression chamber by a substantially higher value than the suction pressure. A first embodiment of the present invention applied to a pressing scroll compressor will be described with reference to FIGS. 1 is a longitudinal sectional view of the compressor, FIG. 2 is a plan view of the fixed scroll member from the scroll wrap side, FIG. 3 is a plan view of the fixed scroll member from the scroll wrap side, and FIG. 4 is a plan view of the retainer. 5 is an explanatory view of the compression stroke, FIG. 6 is a longitudinal sectional view near the bypass valve (an enlarged view of a portion R in FIG. 1), and FIG. 7 is a longitudinal sectional view near the differential pressure control valve (an enlarged view of a portion P in FIG. 1). 8 is a longitudinal sectional view of the differential pressure control valve in the vicinity of the back pressure chamber (an enlarged view of a portion Q in FIG. 7), FIG. 9 is a longitudinal sectional view of the vicinity of the oil storage chamber (an enlarged view of the S portion in FIG. 1), FIG. 10 is a perspective view of the oil droplet removing unit, and FIG. 11 is a plan view of the bearing support plate from the motor chamber side. In this example,
The diameter of the compressor is about 10 mm to 1000 mm.

【0021】まず、構造を説明する。◆旋回スクロール
部材3は、鏡板3aにインボリュートまたは代数螺線等
を基本線とするスクロールラップ3bを立設し、その背
面に旋回軸受3wを挿入した軸受保持部3sと、旋回オ
ルダム溝3g、3hを設ける。
First, the structure will be described. The orbiting scroll member 3 is provided with a scroll wrap 3b standing upright on an end plate 3a having an involute or an algebraic screw thread as a basic line, and a bearing holding portion 3s having a swivel bearing 3w inserted on the back thereof, and orbital Oldham grooves 3g and 3h. Is provided.

【0022】固定スクロール部材2は、鏡板2aにスク
ロールラップ2bを立設し、図3に示すようその外周に
スクロールラップ歯先面とほぼ同一面となる非旋回基準
面2uを設け、そこに周囲溝2cを形成する。そして、
歯底には4個のバイパス穴2eが設けられる。ここでバ
イパス穴2eを4個設けた理由は、図5に示すように、
形成される全ての圧縮室6に常にバイパス穴2eを開口
させるためである。このバイパス穴2eを覆うようにリ
ード弁板であるバイパス弁板23x(図2)およびその
弁板23xの開口度を制限するリテーナ23aをバイパ
スねじ23hで固定する(図4、図6)。また、中央近
くには圧縮動作口2dが開口している。また、歯底面の
外縁側に吸込み掘込み2q(図3)を設け、そこに背面
から吸込みパイプ54を挿入するための吸込穴2vを設
ける。この吸込穴2vに前記吸込パイプ54を挿入する
が、そのときに弁体24aと逆止弁ばね24cを入れ、
吸込み側逆止弁24を形成する。さらに、固定スクロー
ル部材2の外周にガスおよび油を流す複数個の流通溝2
rを設ける。そして、そのうちの一個にはモータ線19
nを通す。前記周囲溝2cに背面側導通路2βと弁穴2
f(図7)を開け弁シール面または弁シール線2jを設
ける。そして、この弁穴2fの側面と吸込室60と通じ
る連通溝2δをつなぐ吸込側導通路2αを設ける。図7
に示すように、この弁穴2fに板状の弁体100aと差
圧弁ばね100cを入れ、ばね位置決め突起100hに
前記差圧弁ばね100cの一端を挿入した状態で弁キャ
ップ100fを前記弁穴2fよりも直径の大きい弁キャ
ップ挿入部2kに圧入し、差圧制御弁100を形成す
る。このとき、前記差圧弁ばね100cは圧縮され、前
記弁体100aを前記弁シール面2jに押し付ける。こ
の押付力は過吸込圧値を決定するため、これを決める寸
法である前記弁穴2fの深さと前記キャップ挿入部2k
の深さと前記弁体100aの厚さと前記差圧弁ばね10
0cのばね定数及び自然長は精度良く管理しなければな
らない。特に前記差圧弁ばね100cの端部をばねの中
心軸に概略垂直な面に仕上げておくことが必要である。
そうでないと、ばね100cを圧縮したときに座屈が起
こり、過吸込圧値が異常に小さくなって、前記旋回スク
ロール部材3が前記固定スクロール部材2から離脱し正
常な運転が不可能となる。また、前記弁キャップ100
fの外径を前記弁キャップ挿入部2kの径よりも小さく
し押付力が正規の値になるところでこの弁キャップ10
0fを拡管して止める方法もある。この時の押付力は、
前記背面側導通路2βに棒を挿入して前記弁体100a
に一端を付け、その棒が受ける力を検出する方法をと
る。この方法の場合には、上記した各部の寸法やばね定
数の値を精度良く管理する必要が無くなるため量産性が
向上するという効果がある。これら二通りの方法とも組
み立て完了時には、前記弁キャップ100fの外周部と
前記弁キャップ挿入部2kの内周部の間は完全にシール
されていなければならない(差圧弁ばね100Cの反対
側は吐出空間であり、このばねがある空間の圧力よりも
高いから)。このシールを完全なものにするために、接
着や溶接を行ってもよい。ここで、前記ばね位置決め突
起100hの根元よりも先端の径を小さくしたテーパ形
状にしてもよい。この場合、前記差圧弁ばね100cの
端部が前記ばね位置決め突起100hの根元のみで固定
されるため、ばねの可動部は前記位置決め突起100h
と接触せず、ばねの自然長がばね単体時の自然長のまま
確保される。よって、過吸込圧値の設定値からの誤差を
小さく抑えることができるという特有の効果がある。
The fixed scroll member 2 has a scroll wrap 2b erected on a mirror plate 2a and a non-turn reference surface 2u which is substantially flush with the scroll wrap tooth tip surface as shown in FIG. The groove 2c is formed. And
Four bypass holes 2e are provided in the tooth bottom. Here, the reason why four bypass holes 2e are provided is as shown in FIG.
This is because the bypass holes 2e are always opened in all the compression chambers 6 to be formed. A bypass valve plate 23x (FIG. 2), which is a reed valve plate, and a retainer 23a for limiting the degree of opening of the valve plate 23x are fixed by a bypass screw 23h so as to cover the bypass hole 2e (FIGS. 4 and 6). Further, a compression operation port 2d is opened near the center. Further, a suction digging 2q (FIG. 3) is provided on the outer edge side of the tooth bottom surface, and a suction hole 2v for inserting the suction pipe 54 from the back surface is provided therein. The suction pipe 54 is inserted into the suction hole 2v. At this time, the valve element 24a and the check valve spring 24c are inserted.
The suction side check valve 24 is formed. Further, a plurality of flow grooves 2 for flowing gas and oil around the outer periphery of the fixed scroll member 2.
r is provided. One of them has a motor wire 19
Pass n. A back side conduction path 2β and a valve hole 2 are formed in the peripheral groove 2c.
Open f (FIG. 7) and provide a valve seal surface or valve seal line 2j. Then, a suction-side conduction path 2α is provided to connect a side surface of the valve hole 2f and a communication groove 2δ communicating with the suction chamber 60. FIG.
As shown in FIG. 2, a plate-shaped valve body 100a and a differential pressure valve spring 100c are inserted into the valve hole 2f, and the valve cap 100f is removed from the valve hole 2f with one end of the differential pressure valve spring 100c inserted into a spring positioning projection 100h. Is press-fitted into the valve cap insertion portion 2k having a large diameter to form the differential pressure control valve 100. At this time, the differential pressure valve spring 100c is compressed, and presses the valve body 100a against the valve seal surface 2j. Since this pressing force determines an over-suction pressure value, the depth of the valve hole 2f and the cap insertion portion 2k which are dimensions for determining the over-suction pressure value are determined.
And the thickness of the valve body 100a and the differential pressure valve spring 10
The spring constant and natural length of 0c must be managed with high precision. In particular, it is necessary to finish the end of the differential pressure valve spring 100c on a plane substantially perpendicular to the center axis of the spring.
Otherwise, buckling occurs when the spring 100c is compressed, the excessive suction pressure value becomes abnormally small, and the orbiting scroll member 3 separates from the fixed scroll member 2 and normal operation becomes impossible. In addition, the valve cap 100
f is smaller than the diameter of the valve cap insertion portion 2k, and the valve cap 10
There is also a method of expanding and stopping 0f. The pressing force at this time is
A rod is inserted into the back-side conductive path 2β and the valve body 100a
To one end and detect the force applied to the rod. In the case of this method, there is no need to precisely control the dimensions and the values of the spring constants of the above-described respective parts, so that there is an effect that the mass productivity is improved. In both of these two methods, upon completion of assembly, the space between the outer periphery of the valve cap 100f and the inner periphery of the valve cap insertion portion 2k must be completely sealed (the opposite side of the differential pressure valve spring 100C is the discharge space). And this spring is higher than the pressure in a certain space). Adhesion or welding may be performed to complete the seal. Here, the spring positioning protrusion 100h may have a tapered shape in which the diameter at the tip is smaller than the root. In this case, since the end of the differential pressure valve spring 100c is fixed only at the base of the spring positioning projection 100h, the movable portion of the spring is fixed to the positioning projection 100h.
And the natural length of the spring is maintained as it is when the spring is alone. Therefore, there is a unique effect that an error from the set value of the excessive suction pressure value can be suppressed.

【0023】フレーム4は、外周部に前記固定スクロー
ル部材2を取り付ける固定取付け面4b、その内側に旋
回はさみ込み面4dが設けられ、そのはさみ込み面4d
には一個または複数個のはさみ込み面溝4αが設けられ
る。そのさらに内側には、オルダムリング5をフレーム
4と旋回スクロール部材3の間に配置するため、フレー
ムオルダム溝4e、4f(ともに図示せず)を設ける。
また、中央部には軸シール4aと主軸受4mを設け、そ
のスクロール側にシャフトを受けるシャフトスラスト面
4cを設ける。そしてその軸シール4aと主軸受4mの
間に油保持空間4nが開口している。外周面にはガスお
よび油の流路となる複数の流通溝4hが設けられる。そ
して、そのうちの一個にはモータ線19nを通す。ま
た、前記固定取付け面4bと反対側の外周部にフレーム
オイルリング44を設ける。
The frame 4 has a fixed mounting surface 4b for mounting the fixed scroll member 2 on an outer peripheral portion thereof, and a revolving insertion surface 4d provided inside the fixed mounting surface 4b.
Is provided with one or a plurality of pinching surface grooves 4α. Further inside, in order to arrange the Oldham ring 5 between the frame 4 and the orbiting scroll member 3, frame Oldham grooves 4e, 4f (both not shown) are provided.
Further, a shaft seal 4a and a main bearing 4m are provided in the center, and a shaft thrust surface 4c for receiving the shaft is provided on the scroll side. An oil holding space 4n is opened between the shaft seal 4a and the main bearing 4m. A plurality of flow grooves 4h serving as gas and oil flow paths are provided on the outer peripheral surface. One of them passes through the motor wire 19n. Further, a frame oil ring 44 is provided on the outer peripheral portion opposite to the fixed mounting surface 4b.

【0024】オルダムリング5は、その一面にフレーム
突起部5a、5b(ともに図示せず)が設けられ、もう
一方の面には旋回突起部5c、5dが設けられる。
The Oldham ring 5 is provided with frame projections 5a and 5b (both not shown) on one surface and revolving projections 5c and 5d on the other surface.

【0025】シャフト12は、図1に示すように、その
内部にシャフト給油孔12aと主軸受給油孔12bと軸
シール給油孔12cと副軸受給油孔12iが設けられ
る。また、その上部には径の拡大したバランス保持部1
2hがあり、そこにシャフトバランス49が圧入され
る。さらに偏心部12fが設けられる。
As shown in FIG. 1, the shaft 12 has a shaft oil supply hole 12a, a main bearing oil supply hole 12b, a shaft seal oil supply hole 12c, and an auxiliary bearing oil supply hole 12i. In addition, a balance holding part 1 having an enlarged diameter is provided on the upper part thereof.
The shaft balance 49 is press-fitted therein. Further, an eccentric portion 12f is provided.

【0026】ロータ15は、積層鋼板15aに未着磁の
永久磁石15bを内蔵し、両端にロータバランス15
c、15pを設ける。
The rotor 15 has an unmagnetized permanent magnet 15b built in a laminated steel plate 15a, and a rotor balance 15 at both ends.
c, 15p are provided.

【0027】ステータ16は、積層鋼板16aの外周部
に圧縮性ガスや油の流路となる複数のステータ溝16c
を設け、内部にコイル貫通穴16vが開いている。ここ
にコイル16wが通り、コイルの折り返し部である副軸
受側コイルエンド部16xと主軸受側コイルエンド部1
6yが前記ステータ16の両側に配される。さらに、前
記積層鋼板16bの内部で前記コイル貫通穴16vより
外周部に貫通したステータ穴16mを開ける。このステ
ータ穴16mを前記コイル貫通穴16vより内側に設け
ると、前記ロータ15と前記ステータ16間の磁束密度
が大幅に低下しモータ効率を低下させるからである。
The stator 16 has a plurality of stator grooves 16c serving as flow paths for compressible gas and oil on the outer peripheral portion of the laminated steel plate 16a.
And a coil through hole 16v is opened inside. Here, the coil 16w passes therethrough, and the sub-bearing-side coil end portion 16x and the main bearing-side coil end portion 1 which are the folded portions of the coil are provided.
6y are arranged on both sides of the stator 16. Further, a stator hole 16m penetrating from the coil through hole 16v to the outer peripheral portion is opened in the laminated steel plate 16b. This is because if the stator hole 16m is provided inside the coil through hole 16v, the magnetic flux density between the rotor 15 and the stator 16 is greatly reduced, and the motor efficiency is reduced.

【0028】これらの構成要素を以下のように組み立て
る。まず、前記フレーム4の主軸受4aに前記シャフト
バランス49が圧入または接着または焼きばめされた前
記シャフト12を挿入し、前記ロータ15を圧入または
焼きばめする。さらに、前記オルダムリング5を、前記
フレームオルダム溝4f、4eに前記オルダムリング5
のフレーム突起部5a、5b(ともに図示せず)を挿入
して、前記フレーム4に装着する。さらに、前記旋回ス
クロール部材3を、その旋回オルダム溝3g、3hに前
記オルダムリング5の旋回突起部5c、5dを挿入し、
旋回軸受3wに前記シャフト12の前記偏心部12fを
挿入しながら、旋回はさみこみ面4d上に装着する。こ
の旋回スクロール部材3に前記固定スクロール部材2を
噛み合わせ、前記シャフト12を廻しながら回転トルク
が最小になるかある基準値以下になる位置でラップ固定
ねじ53により前記フレーム4に前記固定スクロール部
材2を固定する。この方法によると、最適な位置から大
きくは外れないが、高精度に最適な位置に固定すること
は困難である。この時、前記旋回スクロール部材3の前
記鏡板3aの厚さが前記旋回はさみこみ面4dと非旋回
基準面2uの間隔よりも5〜20μm程小さくなるよう
にし、前記旋回スクロール部材3と前記固定スクロール
部材2の軸線方向における最大離間距離を規定する。そ
こで、次に示すような方法を用いて、固定スクロール部
材2を前記フレーム4に一段高い精度で取付けることも
できる。図2、3に示すように、固定スクロール部材2
の外周部に位置精度及び寸法精度の高い位置決め穴2p
を2個開け、それと対応するフレームの位置に同様に高
精度の位置決め穴(図示せず)を設ける。そのフレーム
側の穴に位置決めピンを前記固定取付け面4b側に突出
した状態で圧入する。この位置決めピンに前記位置決め
穴2pを挿入し、固定スクロール部材2を高精度に前記
フレーム4に取り付ける。これは、各部品の加工精度に
依存した組立て法であるため、部品が高精度に加工され
ていないと逆に組立て精度を低下させてしまう危険性が
ある。よって、部品を高精度に保つことができる場合の
み有効な方法である。逆に、まえに述べた組立て法は、
部品精度があまり高くない場合でも、一定のレベルの組
立て精度を確保できることから、量産性が高い方法であ
るといえる。この時に、前記旋回スクロール部材3の背
面に背面過吸込圧領域99が形成される。次に、あらか
じめ前記ステータ16を焼きばめまたは圧入または接着
するとともに中央部の中央穴18cと下部の下部流路穴
18aを有しオイルリングを溶接した軸受支持板18を
溶接または圧入した円筒ケーシング31に、上記の組立
て部を挿入し前記フレーム4または前記固定スクロール
部材2の側面にタック溶接を行なう。ここで、図11に
示すように、この下部流路口18aの最高点の高さを前
記ステータ16のロータが挿入される中央の穴の最低点
(図中のステータの内径高さ)よりも低く設定する。ま
た、タック溶接の代わりに接着を行ってもよい。この時
には、溶接による組立て部および前記円筒ケーシング3
1の変形が無くなるため性能が向上する。これにより、
前記ロータ15と前記ステータ16によってモータ19
を形成し、前記軸受支持板18と前記フレーム4の間に
モータ室62を形成する。次に前記軸受支持板18の前
記中央穴18cから出た前記シャフト12の一端が軸受
ハウジング70に装着した球面軸受72の円筒穴に挿入
されるように前記軸受ハウジング70を組み込み、前記
シャフト12の回転トルクを検出しながら軸受ハウジン
グ70の位置を調整してその回転トルクが最小になるか
ある基準値以下になる位置で前記軸受ハウジング70を
前記軸受支持板18にスポット溶接する。そして、曲が
った給油管71を溶接した給油キャップ90を前記軸受
ハウジング70に挿入したうえでシール73を挟んで前
記軸受ハウジング70にスポット溶接する。ここで、前
記シール73を挟み込まずにシールが行われるよう、シ
ール面の表面粗さ精度を上げ、このシール面の押付力を
増大させてもよい。また、接着してもよい。これらによ
り、シールが不要となり、部品点数が低減する。その
後、給油管71の先端近くに、マグネット89を設け
る。一方、複数の金網45aを積層保持部45bにより
積層して多孔性体となる油滴除去部45を形成し、これ
を取付部45fにより底ケーシング21に固定する。そ
の底ケーシング21の上部には、吐出パイプ55が溶接
されている。そして、前記円筒ケーシング31にその底
ケーシング21を溶接し、貯油室80を形成する。この
時前記油滴除去部45と前記軸受支持板18の間に隙間
が無いような位置まで前記底ケーシング21を前記円筒
ケーシング31の内部に挿入する。次に、前記円筒ケー
シング31に前記ハーメチック端子22と吸込パイプ取
付管37を上部に溶接した上ケーシング20を前記ハー
メチック端子22の内部側端子に前記モータ線19nを
装着して溶接し、前記吸込みパイプ54を前記吸込パイ
プ取付管37に挿入してその隙間をろう付けして、固定
背面室61を形成する。この状態で、前記ステータ16
に電流を流し、前記ロータ15内部の永久磁石15bを
着磁し、モータ19を形成する。その後、油を入れる。
前記固定背面室61と前記モータ室62の間を仕切る前
記フレーム4及び固定スクロール部材2のの下部には、
前記流通溝4h、2rが存在することと、前記モータ室
62と前記貯油室80の下部には、前記下部流通口18
aが存在するため、前記固定背面室61や前記モータ室
62及び前記貯油室80aの下部に貯蔵油69が溜ま
る。よって、これら3室は油貯蔵室の役割を有する。
These components are assembled as follows. First, the shaft 12 on which the shaft balance 49 is press-fitted, bonded or shrink-fitted is inserted into the main bearing 4a of the frame 4, and the rotor 15 is press-fitted or shrink-fitted. Further, the Oldham ring 5 is inserted into the frame Oldham grooves 4f and 4e.
Frame projections 5a, 5b (both not shown) are inserted and mounted on the frame 4. Further, the revolving scroll member 3 is inserted into the revolving Oldham grooves 3g, 3h with the revolving protrusions 5c, 5d of the Oldham ring 5,
The eccentric portion 12f of the shaft 12 is inserted into the slewing bearing 3w while being mounted on the slewing surface 4d. The fixed scroll member 2 is engaged with the orbiting scroll member 3, and the fixed scroll member 2 is fixed to the frame 4 by the wrap fixing screw 53 at a position where the rotating torque is minimized or becomes a certain reference value or less while rotating the shaft 12. Is fixed. According to this method, it does not deviate greatly from the optimum position, but it is difficult to fix it to the optimum position with high accuracy. At this time, the thickness of the end plate 3a of the orbiting scroll member 3 is set to be smaller than the distance between the orbiting insertion surface 4d and the non-orbiting reference surface 2u by about 5 to 20 μm, and the orbiting scroll member 3 and the fixed scroll member are set. 2 defines the maximum separation distance in the axial direction. Therefore, the fixed scroll member 2 can be attached to the frame 4 with higher accuracy by using the following method. As shown in FIGS.
Positioning hole 2p with high positional accuracy and dimensional accuracy
And two similarly high-precision positioning holes (not shown) are provided at the corresponding frame positions. A positioning pin is press-fitted into the hole on the frame side while protruding toward the fixed mounting surface 4b. The positioning holes 2p are inserted into the positioning pins, and the fixed scroll member 2 is attached to the frame 4 with high accuracy. Since this is an assembling method depending on the processing accuracy of each component, there is a risk that the assembly accuracy may be reduced if the component is not processed with high accuracy. Therefore, this is an effective method only when components can be maintained with high accuracy. Conversely, the assembly method described earlier
Even when the component accuracy is not so high, a method of high mass productivity can be said because a certain level of assembly accuracy can be ensured. At this time, a back surface excessive suction pressure region 99 is formed on the back surface of the orbiting scroll member 3. Next, a cylindrical casing in which the stator 16 is previously shrink-fitted or press-fitted or adhered, and a bearing support plate 18 having a central hole 18c at the center and a lower flow passage hole 18a at the lower portion and having an oil ring welded thereto is welded or press-fitted. At 31, the above assembly is inserted and tack welding is performed on the side surface of the frame 4 or the fixed scroll member 2. Here, as shown in FIG. 11, the height of the highest point of the lower passage opening 18a is lower than the lowest point of the central hole (the inner diameter height of the stator in the figure) of the stator 16 into which the rotor is inserted. Set. Further, bonding may be performed instead of tack welding. At this time, the assembly part by welding and the cylindrical casing 3
Since the deformation of No. 1 is eliminated, the performance is improved. This allows
A motor 19 is provided by the rotor 15 and the stator 16.
And a motor chamber 62 is formed between the bearing support plate 18 and the frame 4. Next, the bearing housing 70 is assembled so that one end of the shaft 12 protruding from the central hole 18c of the bearing support plate 18 is inserted into a cylindrical hole of the spherical bearing 72 mounted on the bearing housing 70. The position of the bearing housing 70 is adjusted while detecting the rotation torque, and the bearing housing 70 is spot-welded to the bearing support plate 18 at a position where the rotation torque is minimized or becomes equal to or less than a reference value. Then, after inserting the oil supply cap 90 to which the bent oil supply pipe 71 is welded into the bearing housing 70, spot welding is performed on the bearing housing 70 with the seal 73 interposed therebetween. Here, the surface roughness accuracy of the sealing surface may be increased and the pressing force of the sealing surface may be increased so that the sealing is performed without sandwiching the seal 73. Moreover, you may adhere | attach. Thus, no seal is required, and the number of parts is reduced. Thereafter, a magnet 89 is provided near the tip of the oil supply pipe 71. On the other hand, a plurality of wire nets 45a are laminated by the lamination holding part 45b to form the oil droplet removing part 45 which becomes a porous body, and this is fixed to the bottom casing 21 by the mounting part 45f. A discharge pipe 55 is welded to an upper portion of the bottom casing 21. Then, the bottom casing 21 is welded to the cylindrical casing 31 to form an oil storage chamber 80. At this time, the bottom casing 21 is inserted into the cylindrical casing 31 to a position where there is no gap between the oil drop removing unit 45 and the bearing support plate 18. Next, the upper casing 20 in which the hermetic terminal 22 and the suction pipe mounting pipe 37 are welded to the upper part of the cylindrical casing 31 is welded by attaching the motor wire 19n to the inner side terminal of the hermetic terminal 22, and welding the suction pipe. 54 is inserted into the suction pipe attachment pipe 37 and the gap is brazed to form a fixed rear chamber 61. In this state, the stator 16
And a permanent magnet 15b inside the rotor 15 is magnetized to form a motor 19. Then add the oil.
In the lower part of the frame 4 and the fixed scroll member 2 that partition between the fixed rear chamber 61 and the motor chamber 62,
The existence of the flow grooves 4h and 2r and the lower flow port 18 in the lower portion of the motor chamber 62 and the oil storage chamber 80
Due to the presence of a, the storage oil 69 accumulates in the lower part of the fixed rear chamber 61, the motor chamber 62, and the oil storage chamber 80a. Therefore, these three chambers have a role of an oil storage room.

【0029】次に動作を説明する。まず、圧縮機起動直
後の動作を説明する。◆前記モータ19を回転開始させ
ることにより、前記シャフト12が回転し前記旋回スク
ロール部材3が旋回運動を始める。ここで、この旋回ス
クロール部材3の旋回半径は、スクロールラップ形状か
ら幾何学的に決まる大きさよりも小さく設定する。これ
は、前記スクロールラップ2b、3bの形状には必ず加
工誤差があるため、小さく設定しないとラップの側面が
圧接してしまい、摩擦ロスの増大や磨耗の進行、さらに
は最悪の場合、側面がかじりを起こして凝着を起こした
り、ラップが破壊したりして、運転不能に陥ることがあ
るからである。ここで、前記オルダムリング5があるた
めに前記旋回スクロール部材3の自転が防止される。こ
の動作により、両スクロールラップ2b、3bが噛み合
う領域の外周部に形成される吸込室60内のガスが両ス
クロール部材の間に形成される前記圧縮室6に概略閉じ
込められ圧縮されて前記圧縮動作口2dから前記固定背
面室61に吐出され始める。ところで、図7で示すよう
に、前記旋回スクロール部材3の前記鏡板3aの厚さが
前記旋回はさみこみ面4dと非旋回基準面2uの間隔よ
りも5〜70μm程小さくなるようにし、前記旋回スク
ロール部材3と前記固定スクロール部材2の軸線方向に
おける最大離間距離を規定している。このため、圧縮機
起動直後は、前記旋回スクロール部材3は前記圧縮室6
内のガスによる引離し力で前記固定スクロール部材2か
ら引離され、前記フレーム4側に前記した距離だけ移動
する。よって、鏡板3aの反ラップ側と前記旋回挟み込
み面4dが摺動し、鏡板3aのラップ側と前記非旋回基
準面2uの間には前記した最大離間距離だけの隙間が形
成される。同時に、ラップの歯先と歯底間の隙間も同程
度となるため、内部漏れが大きく高効率な運転はできな
いが、5〜70μm程度の最大離間距離であれば、モー
タ回転数を起動直後に許容できる最高値程度まで上昇さ
せることにより内部漏れを抑制し、吸込圧を十分に下げ
るかまたは吐出圧を十分に上昇させることができる。前
記圧縮動作口2dから前記固定背面室61に吐出された
ガスは前記固定スクロール部材2および前記フレーム4
の外周にある流通溝2rおよび4hを通って前記モータ
室62の前記モータ19と前記フレーム4の間の空間に
も流入する。そのガスは、さらに前記ステータ溝16c
や前記ロータ15と前記ステータ16の間のギャップを
通って、前記モータ室62の前記軸受支持板18側まで
達する。ここまで広まった圧縮ガスは、行き場を失って
しまうために、溜まり始め、圧力が上昇してくる。この
圧力上昇は、前記モータ室62及び前記固定背面室61
の下部に溜まっている貯蔵油69を下向きに押す。この
結果、前記貯蔵油69が前記下部流路口18aを通って
前記貯油室80に流入し貯油室側の油面を上昇させる。
そして、前記モータ室62の油面が前記下部流路口18
aの最高点の高さまでくると、前記下部流路口18aが
流路となって前記モータ室62から前記貯油室80へガ
スが流入する。この時、ガスは貯油室内に集められた前
記貯蔵油69の下方より吹き出されその中を気泡となっ
て上昇する。ここで、前記下部流路口18aの最高点の
高さを前記ステータ16のロータが挿入される中央の穴
の最低点よりも低く設定しているために、前記モータ室
62の油面は前記ロータ15より低くなり、そこの貯蔵
油69を高速で回転する前記ロータ15がかき回して細
かい油滴を形成することが無くなり、ガスの油含有率を
低減することができる。ところで、このモータ室62側
の油面の高さを前記ロータ15がぎりぎりにかからない
高さとなるように前記下部流路口18aの設定高さを決
めると、前記ロータの回転により生じるガスの流れで油
面から油滴が発生し、ガス内の油滴の含有率はあまり低
下しない。よって、モータ室62側の油面は、少なくと
もロータの回転により生じるガス流がロータ表面速度の
半分程度まで低下する位置まで下げると良い。以上よ
り、前記モータ室62の油面を前記ロータ15へかかる
ことなく、多量の貯蔵油を小形の圧縮機内部に蓄えるこ
とが可能となるため、油切れの可能性が低く高信頼性と
なる横置き圧縮機を小形で実現できるという本実施例特
有の効果がある。この前記貯油室80の貯蔵油69の表
面まで上昇したガスは、多孔性体からなる前記油滴除去
部45を通過した後、前記吐出パイプ55で形成される
吐出口から圧縮機外部に吐出される。圧縮機起動直後の
前記背面過吸込圧領域99の圧力は、前記したように前
記フレーム4の前記挟み込み面溝4αと鏡板3aのラッ
プ側と前記非旋回基準面2uの隙間により、吸込圧に近
い圧力となっている。前記背面過吸込圧領域99の前記
圧力とほぼ吐出圧に近い前記貯油室内80との差圧等に
より前記貯油室80の油は前記給油管71から前記給油
キャップ90内にはいり、そこで毛細管現象や遠心力に
より前記球面軸受72の球面側の軸受部に供給される。
さらに、断面積が大きいために流路抵抗のほとんど無い
前記シャフト給油孔12aに入り、一部は遠心力が加わ
る事により前記副軸受給油孔12iを通って前記球面軸
受72の中心穴側の軸受部に供給され、他の一部は同様
に遠心力が加わることにより前記軸シール給油穴12c
を通って前記軸シール4aに供給され、その他の一部は
遠心力により前記主軸受給油孔12bを通って前記主軸
受4mに供給され、残りは旋回スクロール部材3の背面
中央部に達した後前記と同様の差圧と遠心力により前記
旋回軸受3wに供給される。この結果、前記旋回スクロ
ール部材3背面の中央部に吐出圧のかかる背面吐出圧領
域95を形成する。前記主軸受4m及び前記旋回軸受3
wに給油された油はそこの摩擦で温度上昇した後に前記
背面過吸込圧領域99へ入る。この時、軸受部における
油の平均圧力は前記背面過吸込圧領域99の圧力よりも
前記貯油室80側の圧力に近い高圧であるため、前記背
面過吸込圧領域99に吹き出す。この結果、軸受部の摩
擦による温度上昇と圧力の急激な低下により、油のガス
成分の溶解度が低下し、油に溶け込んでいたガス成分が
一気に気化する。この時に気化熱を周囲から奪うので、
この付近の温度レベルを低く抑えるため前記主軸受4m
や前記旋回軸受3wの信頼性が向上するという特有の効
果がある。また、このガス成分の気化により、油は細か
い油滴になるため、ガスの流れに乗って移動し易くな
る。後記するが、この後ガスは前記旋回スクロール部材
3側に向かうため、油もその向きに流れることになる。
前記主軸受4mや前記旋回軸受3wから前記旋回スクロ
ール部材3へ向かう経路の途中には前記オルダムリング
5があるため、前記オルダムリング5の摺動部に油滴が
確実に供給される。よって、オルダムリング摺動部の信
頼性が向上するという特有の効果もある。この結果、前
記背面過吸込圧領域99へ流入するガス量が圧縮機起動
直後に急激に増大する。このガスは、図7に示すよう
に、油とともに、前記挟み込み面溝4α及び鏡板3aの
ラップ側と前記非旋回基準面2uの隙間を通って前記吸
込室60に流入する。そして、この中の油は、軸方向に
若干隙間を有する圧縮室6内に流れ込み、そこのシール
性を向上させて圧縮室の内部漏れを低減し吐出圧の上昇
を促進するという効果を発揮した後、ガスとともに前記
圧縮動作口2dより前記固定背面室61に出る。また、
鏡板3aのラップ側と前記非旋回基準面2uの隙間が小
さいことと流れる流体中の油量が多く部分的にシール部
を形成するため、前記背面過吸込圧領域99へ流入する
ガス及び油量に比較して流出するガス及び油量が少な
く、前記背面過吸込圧領域99の圧力が急激に上昇す
る。この結果、吐出圧の上昇に伴う前記背面吐出圧領域
95内の圧力上昇の寄与とともに、前記旋回スクロール
部材3を前記固定スクロール部材2に押し付ける力であ
る引付力が急激に増大し、圧縮機起動のほぼ直後もしく
は非常に短時間で引付力の大きさが引離し力の大きさ以
上となり、前記旋回スクロール部材3は前記固定スクロ
ール部材2に押し付けられる。この結果、スクロールラ
ップの歯先と歯底間の隙間が小さくなるために、前記圧
縮室6の密閉性が向上して、圧縮途中のガスの内部漏れ
量が低減し、起動直後に比較して性能が飛躍的に向上
し、正規の運転状態に移行する。ところで、圧縮室6を
形成するときにシール面となる前記スクロール部材2、
3の面に、圧接して摺動すると削れるなじみ性を有する
表面皮膜を形成すると、前記両スクロール部材2、3を
押し付けた時にスクロールラップの歯先と歯底間の隙間
がほぼ無くなるため、前記圧縮室6の密閉性が一層向上
して、圧縮途中のガスの内部漏れ量が一層低減し、起動
直後に比較して性能が一層飛躍的に向上し、正規の運転
状態に移行する。このなじみ性皮膜は一方のスクロール
部材のみに設けても効果がある。
Next, the operation will be described. First, the operation immediately after starting the compressor will be described. ◆ By starting rotation of the motor 19, the shaft 12 rotates and the orbiting scroll member 3 starts to orbit. Here, the turning radius of the orbiting scroll member 3 is set to be smaller than a size geometrically determined from the scroll wrap shape. This is because the shape of the scroll wraps 2b and 3b always has a processing error, and if not set small, the side surfaces of the wrap will come into pressure contact with each other, increasing friction loss and advancing wear, and in the worst case, the side surfaces will be pressed. This is because galling may cause adhesion or the wrap may be broken, resulting in inoperability. Here, the existence of the Oldham ring 5 prevents the orbiting scroll member 3 from rotating. By this operation, the gas in the suction chamber 60 formed on the outer peripheral portion of the region where the two scroll wraps 2b and 3b mesh with each other is substantially confined and compressed in the compression chamber 6 formed between the two scroll members, and the compression operation is performed. Discharge starts from the mouth 2d into the fixed rear chamber 61. By the way, as shown in FIG. 7, the thickness of the end plate 3a of the orbiting scroll member 3 is set to be smaller than the interval between the orbital insertion surface 4d and the non-orbiting reference surface 2u by about 5 to 70 μm. 3 defines the maximum separation distance between the fixed scroll member 2 and the fixed scroll member 2 in the axial direction. For this reason, immediately after the start of the compressor, the orbiting scroll member 3 is connected to the compression chamber 6.
It is separated from the fixed scroll member 2 by the separating force by the gas inside, and moves to the frame 4 by the distance described above. Therefore, the opposite lap side of the end plate 3a slides on the turning sandwiching surface 4d, and a gap is formed between the lap side of the end plate 3a and the non-turn reference surface 2u by the maximum separation distance described above. At the same time, the gap between the tip of the lap and the root of the lap becomes almost the same, so that internal leakage is large and high-efficiency operation cannot be performed. However, if the maximum separation distance is about 5 to 70 μm, the motor rotation speed is increased immediately after startup. By increasing the pressure to about the maximum allowable value, internal leakage can be suppressed, and the suction pressure or the discharge pressure can be sufficiently increased. The gas discharged from the compression operation port 2d to the fixed rear chamber 61 is supplied to the fixed scroll member 2 and the frame 4
Flows into the space between the motor 19 and the frame 4 in the motor chamber 62 through the flow grooves 2r and 4h on the outer circumference of the motor chamber 62. The gas further flows into the stator groove 16c.
Or through the gap between the rotor 15 and the stator 16 to reach the bearing support plate 18 side of the motor chamber 62. The compressed gas that has spread so far loses its place to go, and starts to accumulate and the pressure increases. This pressure increase is caused by the motor chamber 62 and the fixed rear chamber 61.
Press the storage oil 69 accumulated in the lower part of the lower side of the lower side. As a result, the storage oil 69 flows into the oil storage chamber 80 through the lower passage opening 18a, and raises the oil level on the oil storage chamber side.
And, the oil level of the motor chamber 62 is
When it reaches the height of the highest point a, the lower flow path port 18a becomes a flow path and gas flows from the motor chamber 62 into the oil storage chamber 80. At this time, the gas is blown out from below the storage oil 69 collected in the oil storage chamber and rises as a bubble in the inside. Here, since the height of the highest point of the lower passage opening 18a is set lower than the lowest point of the central hole where the rotor of the stator 16 is inserted, the oil level of the motor chamber 62 is 15, the rotor 15 which rotates the stored oil 69 at high speed does not stir and forms fine oil droplets, so that the oil content of the gas can be reduced. By the way, if the set height of the lower passage opening 18a is determined so that the height of the oil level on the motor chamber 62 side is not so high that the rotor 15 can be barely bound, the oil flow due to the rotation of the rotor Oil droplets are generated from the surface, and the content of oil droplets in the gas does not decrease so much. Therefore, it is preferable that the oil level on the motor chamber 62 side is lowered to at least a position where the gas flow generated by the rotation of the rotor is reduced to about half of the rotor surface speed. As described above, since a large amount of stored oil can be stored in the small compressor without the oil level of the motor chamber 62 being applied to the rotor 15, the possibility of running out of oil is low and the reliability is high. There is an effect peculiar to this embodiment that a horizontal compressor can be realized in a small size. The gas that has risen to the surface of the storage oil 69 in the oil storage chamber 80 passes through the oil droplet removing unit 45 formed of a porous body, and is then discharged from the discharge port formed by the discharge pipe 55 to the outside of the compressor. You. Immediately after the compressor is started, the pressure in the rear excessive suction pressure region 99 is close to the suction pressure due to the gap between the sandwiching surface groove 4α of the frame 4 and the lap side of the end plate 3a and the non-swirl reference surface 2u as described above. Pressure. The oil in the oil storage chamber 80 enters the oil supply cap 90 from the oil supply pipe 71 due to a pressure difference between the pressure in the rear excessive suction pressure area 99 and the oil storage chamber 80 which is almost the same as the discharge pressure, where capillary action and the like occur. It is supplied to the spherical bearing portion of the spherical bearing 72 by centrifugal force.
Further, the bearing enters the shaft oil supply hole 12a, which has almost no flow path resistance because of its large cross-sectional area, and a part of the bearing is located on the center hole side of the spherical bearing 72 through the auxiliary bearing oil supply hole 12i when a centrifugal force is applied. And the other part is similarly subjected to centrifugal force to produce the shaft seal lubrication hole 12c.
And the other part is supplied to the main bearing 4m through the main bearing oil supply hole 12b by centrifugal force, and the remaining part reaches the center of the back surface of the orbiting scroll member 3. It is supplied to the slewing bearing 3w by the same differential pressure and centrifugal force as described above. As a result, a back discharge pressure region 95 for applying a discharge pressure is formed at the center of the back surface of the orbiting scroll member 3. The main bearing 4m and the slewing bearing 3
The oil supplied to w enters the rear over-suction pressure region 99 after the temperature rises due to the friction there. At this time, since the average pressure of the oil in the bearing portion is higher than the pressure in the rear over-suction pressure region 99 and closer to the pressure in the oil storage chamber 80, the oil is blown out to the back over-suction pressure region 99. As a result, the solubility of the gas component of the oil decreases due to the temperature rise and the sharp decrease in the pressure due to the friction of the bearing portion, and the gas component dissolved in the oil evaporates at a stretch. At this time, it takes away heat of vaporization from the surroundings,
The main bearing 4m
There is a specific effect that the reliability of the slewing bearing 3w is improved. Further, the vaporization of the gas component turns the oil into fine oil droplets, which makes it easy to move along with the flow of the gas. As will be described later, after this, the gas flows toward the orbiting scroll member 3, so that the oil also flows in that direction.
Since the Oldham ring 5 is located on the path from the main bearing 4m and the orbiting bearing 3w to the orbiting scroll member 3, oil droplets are reliably supplied to the sliding portion of the Oldham ring 5. Therefore, there is also a specific effect that the reliability of the Oldham ring sliding portion is improved. As a result, the amount of gas flowing into the rear over-suction pressure region 99 sharply increases immediately after the compressor is started. As shown in FIG. 7, this gas flows into the suction chamber 60 together with the oil through the sandwiching surface groove 4α and the gap between the lap side of the end plate 3a and the non-swirl reference surface 2u. Then, the oil therein flows into the compression chamber 6 having a slight gap in the axial direction, and has the effect of improving the sealing performance there, reducing the internal leakage of the compression chamber, and promoting the rise of the discharge pressure. Thereafter, the gas exits the fixed rear chamber 61 through the compression operation port 2d together with the gas. Also,
Since the gap between the lap side of the end plate 3a and the non-swirl reference surface 2u is small and the amount of oil in the flowing fluid is large and partially forms a seal portion, the amount of gas and oil flowing into the back excessive suction pressure area 99 In this case, the amount of gas and oil flowing out is small, and the pressure in the rear over-suction pressure region 99 sharply increases. As a result, together with the contribution of the pressure increase in the back discharge pressure region 95 due to the increase of the discharge pressure, the attraction force, which is the force pressing the orbiting scroll member 3 against the fixed scroll member 2, sharply increases. Almost immediately after the activation or in a very short time, the magnitude of the attracting force becomes greater than the magnitude of the separating force, and the orbiting scroll member 3 is pressed against the fixed scroll member 2. As a result, the gap between the tooth tip and the tooth bottom of the scroll wrap is reduced, so that the hermeticity of the compression chamber 6 is improved, and the amount of internal leakage of gas during compression is reduced. The performance is dramatically improved, and the vehicle shifts to the normal operating state. By the way, the scroll member 2, which becomes a sealing surface when forming the compression chamber 6,
When a surface film having conformability that can be scraped off when pressed and slid on the surface of No. 3 is formed, there is almost no gap between the tooth tip and the root of the scroll wrap when the scroll members 2 and 3 are pressed. The hermeticity of the compression chamber 6 is further improved, the amount of internal leakage of gas during compression is further reduced, the performance is dramatically improved compared to immediately after startup, and the operation shifts to a normal operation state. Even if this conformable film is provided on only one of the scroll members, it is effective.

【0030】次に、前記旋回スクロール部材3が前記固
定スクロール部材2に押し付けられた正規の運転時の動
作を説明する。
Next, the operation during normal operation in which the orbiting scroll member 3 is pressed against the fixed scroll member 2 will be described.

【0031】前記背面過吸込圧領域99に流入したガス
及び油の全てが前記吸込み室60へ直接流れ込まない点
以外は、圧縮機起動直後と同様であるため、この部分の
みを図7や図8を主に用いて説明する。前記背面過吸込
圧領域99に流入したガス及び油は、前記はさみ込み面
溝4α及び前記鏡板3aの反ラップ面と前記旋回挟み込
み面4dの隙間を通って、前記鏡板3aの側面と前記フ
レーム4の間の空間である旋回側面領域67に入る。こ
のうちの一部は、前記鏡板3aのラップ側と前記非旋回
基準面2uの両摺動面を潤滑しながら前記吸込み室60
に流入する。前記旋回側面領域67と前記背面過吸込圧
領域99の間の流路抵抗は小さいため、この旋回側面領
域67の圧力は前記背面過吸込圧領域99の圧力にほぼ
等しい。図8からわかるように、前記周囲溝2cは常に
この旋回側面領域67と通じているため、この周囲溝2
c内の圧力は、前記背面過吸込圧領域99の圧力とな
り、前記背面側導通路2βを経由して前記差圧制御弁1
00の前記弁体100aのフレーム側の面には前記背面
過吸込圧領域99の圧力がかかる。前記弁体100aの
反対面側の空間は、前記吸込側導通路2αにより吸込圧
である前記吸込室60と通じているため、前記背面過吸
込圧領域99の圧力が、吸込圧よりも前記差圧弁ばね1
00cの押付力に対応した一定値である過吸込圧値より
も高くなると、前記弁体100aが前記差圧弁ばね10
0c側に動く。この結果、前記旋回側面領域67内のガ
ス及び油のうちで摺動面を経由して前記吸込み室60に
流入したもの以外は、前記背面側導通路2β、前記弁体
100cと前記弁シール面または弁シール線2jの隙
間、前記弁体100cの側面、前記弁穴2f、前記吸込
側導通路2αを順次経由して、前記吸込室60に流入す
る。そして、圧縮室6内のガスと混ざって圧縮室6のシ
ール性を向上させながらラップ中央に移送され前記圧縮
動作口2dから吐出する。この結果、前記圧縮動作口2
dより出た圧縮ガス中には、軸受に給油された油が全量
含有することになる。このようにして、前記背面過吸込
圧領域99の圧力は、吸込圧よりも前記差圧弁ばね10
0cの押付力に対応した一定値だけ高い圧力に制御され
る。つまり、前記過吸込圧領域99の圧力は以下のよう
に概略制御される。
Except that not all of the gas and oil flowing into the rear over-suction pressure region 99 do not directly flow into the suction chamber 60, the operation is the same as that immediately after the start of the compressor. This will be mainly described. The gas and oil flowing into the rear excessive suction pressure area 99 pass through the scissor surface groove 4α and the gap between the anti-lap surface of the end plate 3a and the swivel sandwiching surface 4d, and the side surface of the end plate 3a and the frame 4 Into the turning side area 67, which is the space between the two. Some of the suction chambers 60 lubricate the sliding surfaces of the lap side of the end plate 3a and the non-swirl reference surface 2u.
Flows into. Since the flow resistance between the turning side surface area 67 and the back excessive suction pressure area 99 is small, the pressure in the turning side area 67 is substantially equal to the pressure in the back excessive suction pressure area 99. As can be seen from FIG. 8, since the peripheral groove 2c always communicates with the turning side surface area 67, the peripheral groove 2c
c becomes the pressure in the back-side excessive suction pressure region 99 and passes through the back-side conduction path 2β to the differential pressure control valve 1.
The pressure of the back side excessive suction pressure region 99 is applied to the surface of the valve body 100a on the frame side of the valve body 100a. Since the space on the opposite surface side of the valve body 100a communicates with the suction chamber 60, which is the suction pressure, by the suction-side conduction path 2α, the pressure in the rear excessive suction pressure area 99 is smaller than the suction pressure by the pressure difference. Pressure valve spring 1
When the pressure becomes higher than the excessive suction pressure value which is a constant value corresponding to the pressing force of 00c, the valve body 100a
Move to 0c side. As a result, except for the gas and oil in the revolving side surface area 67 that have flowed into the suction chamber 60 via the sliding surface, the back side conduction path 2β, the valve body 100c and the valve seal surface Alternatively, the gas flows into the suction chamber 60 sequentially through the gap between the valve seal wires 2j, the side surface of the valve body 100c, the valve hole 2f, and the suction-side conduction path 2α. Then, it is transferred to the center of the wrap while being mixed with the gas in the compression chamber 6 to improve the sealing property of the compression chamber 6, and is discharged from the compression operation port 2d. As a result, the compression operation port 2
The compressed gas discharged from d contains the entire amount of oil supplied to the bearing. In this way, the pressure in the back excessive suction pressure area 99 is higher than the suction pressure in the differential pressure valve spring 10.
The pressure is controlled to be higher by a fixed value corresponding to the pressing force of 0c. That is, the pressure in the excessive suction pressure region 99 is roughly controlled as follows.

【0032】A(過吸込圧値)をある定数として、 (背面過吸込圧領域99の圧力)≒(吸込圧+A) これにより、要求される全運転範囲で旋回スクロール部
材3を固定スクロール部材2に押し付けるとともに、広
い運転条件範囲で引付力から引離し力を引いた付勢力を
小さくし、摺動損失の小さい高性能な圧縮機を実現でき
るという効果がある。ところで、この前記背面過吸込圧
領域99を経由するガスは、圧縮機の中で吐出系から圧
縮途中の前記中間圧力室68へ短絡する流れであり、ス
クロールラップにおける内部漏れと結果的には同様のも
のであるため、極力少なくすることが必要である。ここ
では前記吐出背面間流路102の絞り流路である軸受隙
間があることから、この流量は非常に小さく、圧縮機の
性能低下は生じない。
Assuming that A (excess suction pressure value) is a certain constant, (pressure of the rear excess suction pressure region 99) ≒ (suction pressure + A) Thus, the orbiting scroll member 3 is fixed to the fixed scroll member 2 in the entire required operating range. And the urging force obtained by subtracting the attraction force from the attraction force in a wide range of operating conditions is reduced, so that a high-performance compressor with small sliding loss can be realized. By the way, the gas passing through the back over-suction pressure region 99 is a flow that short-circuits from the discharge system to the intermediate pressure chamber 68 in the middle of compression in the compressor. Therefore, it is necessary to reduce as much as possible. Here, since there is a bearing gap which is a throttle channel of the discharge back-to-back channel 102, the flow rate is very small, and the performance of the compressor does not decrease.

【0033】ここで、前記圧縮動作口2dから出るガス
中には上記したように前記旋回軸受3w及び前記主軸受
4mに給油された油を全て含むため、例えば、吐出圧と
前記背面過吸込圧領域99の圧力の差が大きい運転ほ
ど、前記圧縮動作口2dから出る圧縮ガス中の油の量は
増大する。また、前記旋回スクロール部材3の回転速度
が小さい運転ほど、単位時間当たりの圧縮ガスの量が少
なくなるが、軸受給油量は同じであるため、前記圧縮動
作口2dから出るガスの油含有率が増大する。次にこの
ガスは流通溝2r、4hを通って、前記モータ室62に
入る。この時、前記フレームオイルリング44や前記主
軸受側コイルエンド部16yにより、主たる流れは前記
ロータ15側へは向かわず、前記ステータ溝16cや前
記ステータ穴16mを通る流れとなる。この流れによっ
て前記ステータ16の前記積層鋼板16aを通過したガ
スの主たる流れは、前記副軸受側コイルエンド部16x
によって、前記ロータ15側へは向かわず、前記軸受支
持板18の方へ抜ける。そして、下方の前記下部流路口
18aへ向かうが、この流れは前記オイルリング46に
よって前記ロータ15に近づかない。この前記ステータ
16をガスが通ったことにより、高温となっているステ
ータの前記コイル16w及び前記積層鋼板16aを冷却
できるため、モータ効率が向上するという特有の効果が
ある。ここでは、前記ステータ16の前記コイルエンド
部16x、16y等の多孔性体の中及び近くを通る際
に、油滴の慣性により油がコイルエンド部に衝突してそ
こに付着しこれが大きな油の固まりとなって下部の前記
貯蔵油69に落下するかまたは静止部を伝って流入し、
油の含有率が低減するという特有の効果がある。また、
前記コイルエンド部16x、16yや前記オイルリング
46により、高速で回転する前記ロータ15にガスの主
たる流れが接近しないため、前記ロータ15に接触する
油滴が非常に少なく、細かい油滴がほとんど発生しない
ため、コイルエンド部等の多孔性体によるガスからの油
分離効率が向上するという特有の効果がある。前記下部
流路口18aまで達したガスの油含有率は以上に記した
手段によりかなり低減しているが、そのガスを前記下部
流路口18aから前記貯油室80の前記貯蔵油69の下
部から吹き込むことによりさらに油の含有率が低減する
という効果がある。この吹き込んだガスは前記貯蔵油6
9中を気泡となって上昇する。気泡の周囲全域は油であ
るため、気泡中の油滴が周囲の油と接触する確率は非常
に高くなる。さらに、前記貯蔵油69中の気泡の上昇
は、油の粘性のために圧縮機内の他の箇所におけるガス
流速と比較して非常に小さい速度となるため、気泡中の
油滴が周囲の油と接触できる時間が長く、気泡中の油滴
が周囲の油と接触する確率は一層高くなる。周囲の油に
接触した油滴は、油の表面張力によって表面積を小さく
する作用が働く結果、小さな油滴は気泡周囲の油に吸込
まれる。このような作用により前記した効果が出てく
る。この油含有率低減作用は、気泡中の油滴の大きさに
よらないため、従来技術で上げた多孔性体で取り除くこ
とが困難であった、粒径の小さい油滴も効果的に除去で
きる。しかし、ガスの気泡が前記貯蔵油69の油面に達
すると、気泡が潰れる結果、新たな油滴が発生する。た
だ、気泡の上昇速度は非常に遅いため、この時に発生す
る油滴の粒はかなり大きい。このため、前記貯蔵油から
出てきたガスには大きな油滴のみが含有するが、このガ
スは多孔性体である前記油滴除去部45を通過するた
め、前記した理由により、大きな油滴を高い確率で取り
除くことができる。この結果、油の含有率を大幅に低減
させたガスを圧縮機から吐出できる効果がある。また、
前記固定スクロール部材2の鏡板2aには、4個のバイ
パス穴2eが設けられている。これら各々のバイパス穴
2eのバイパス弁シール面2λを覆う位置に弁部がくる
ように前記バイパス弁板23xを位置決めし、リテーナ
23aとともにバイパスネジ23hで固定し、前記バイ
パス弁23を形成する。これにより、これらのバイパス
弁23は、前記圧縮室6の圧力が吐出系の一部である前
記固定背面室61の圧力よりも大きくなると開くことに
なる。前記固定背面室61の圧力は吐出圧であるから、
このバイパス弁は、前記圧縮室6の圧力が吐出圧よりも
高いときに前記圧縮室6と前記吐出系を連通する作用を
有する。実際には、前記バイパス弁シール面2λにおけ
る圧力分布やそこにある油の表面張力等により、このバ
イパス弁23が開口するタイミングはわずかにずれる。
このようにして、前記旋回スクロール部材3の引付力付
加手段として、前記過吸込圧領域99を旋回背面に設
け、前記バイパス弁23を設けたため、過吸込圧値を小
さく設定でき、広い運転範囲で付勢力を小さく設定でき
る。この結果、全断熱効率や信頼性を広い運転範囲で高
くできるという特有の効果が有る。ところで、図5で示
したように、前記圧縮室6と前記固定背面室61を常に
つなぐように前記バイパス穴2eを四個設けたため、ど
のようなタイミングで液圧縮が生じようとしても圧力が
極端に上がる前に前記バイパス弁が開いて流体は前記固
定背面室61に排出される。この結果、ラップの損傷の
危険性を回避し、信頼性を向上できるという特有の効果
がある。また、極端に圧力比の小さいポンプ運転に近い
場合でも過圧縮を抑制できるため、低圧力比側の広い運
転条件範囲で全断熱効率を高くできるという効果があ
る。
Here, since the gas discharged from the compression operation port 2d contains all the oil supplied to the slewing bearing 3w and the main bearing 4m as described above, for example, the discharge pressure and the rear excessive suction pressure The greater the difference in pressure in the region 99, the greater the amount of oil in the compressed gas exiting from the compression operation port 2d. In addition, as the rotational speed of the orbiting scroll member 3 decreases, the amount of the compressed gas per unit time decreases, but the amount of oil supplied to the bearing is the same. Increase. Next, this gas enters the motor chamber 62 through the flow grooves 2r and 4h. At this time, due to the frame oil ring 44 and the main bearing side coil end portion 16y, the main flow does not go to the rotor 15 side but flows through the stator groove 16c and the stator hole 16m. By this flow, the main flow of the gas that has passed through the laminated steel plate 16a of the stator 16 is changed to the sub-bearing side coil end portion 16x
As a result, it does not go to the rotor 15 side but goes out toward the bearing support plate 18. Then, the flow goes to the lower flow passage port 18 a below, but this flow does not approach the rotor 15 by the oil ring 46. By passing the gas through the stator 16, the coil 16w and the laminated steel plate 16a of the stator, which are at a high temperature, can be cooled, so that there is a specific effect that the motor efficiency is improved. Here, when passing through and near the porous body such as the coil end portions 16x and 16y of the stator 16, oil collides with the coil end portion due to the inertia of oil droplets and adheres to the coil end portion. Agglomerate and fall into the lower storage oil 69 or flow along a stationary part,
There is a specific effect that the oil content is reduced. Also,
Since the main flow of gas does not approach the rotor 15 rotating at high speed due to the coil end portions 16x and 16y and the oil ring 46, the number of oil droplets coming into contact with the rotor 15 is extremely small, and fine oil droplets are almost generated. Therefore, there is a specific effect that the efficiency of oil separation from gas by a porous body such as a coil end portion is improved. Although the oil content of the gas reaching the lower passage opening 18a has been considerably reduced by the means described above, the gas is blown from the lower passage opening 18a from below the storage oil 69 in the oil storage chamber 80. This has the effect of further reducing the oil content. This injected gas is stored oil 6
9 rises as bubbles. Since the entire area around the bubbles is oil, the probability of the oil droplets in the bubbles coming into contact with the surrounding oil is very high. Further, the rise of the bubbles in the storage oil 69 becomes very small compared to the gas flow velocity in other parts of the compressor due to the viscosity of the oil, so that the oil droplets in the bubbles are separated from the surrounding oil. The contact time is long, and the probability that the oil droplets in the bubbles come into contact with the surrounding oil becomes higher. The oil droplets in contact with the surrounding oil have the effect of reducing the surface area by the surface tension of the oil. As a result, the small oil droplets are sucked into the oil around the bubbles. The effect described above is obtained by such an operation. This oil content reduction effect does not depend on the size of the oil droplets in the air bubbles, and therefore, it is difficult to remove with the porous body raised in the prior art. . However, when the gas bubbles reach the oil surface of the storage oil 69, the bubbles are crushed, and new oil droplets are generated. However, since the rising speed of the bubbles is very slow, the oil droplets generated at this time are quite large. For this reason, the gas coming out of the storage oil contains only large oil droplets. However, since this gas passes through the oil droplet removing unit 45 which is a porous body, large oil droplets are removed for the above-described reason. Can be removed with high probability. As a result, there is an effect that the gas whose oil content is significantly reduced can be discharged from the compressor. Also,
The end plate 2a of the fixed scroll member 2 is provided with four bypass holes 2e. The bypass valve plate 23x is positioned so that the valve portion comes to a position covering the bypass valve seal surface 2λ of each of the bypass holes 2e, and is fixed together with the retainer 23a with the bypass screw 23h to form the bypass valve 23. As a result, these bypass valves 23 are opened when the pressure in the compression chamber 6 becomes higher than the pressure in the fixed rear chamber 61 which is a part of the discharge system. Since the pressure of the fixed rear chamber 61 is the discharge pressure,
The bypass valve has an operation of communicating the compression chamber 6 with the discharge system when the pressure in the compression chamber 6 is higher than the discharge pressure. Actually, the timing at which the bypass valve 23 opens slightly shifts due to the pressure distribution on the bypass valve seal surface 2λ and the surface tension of the oil there.
In this way, the over-suction pressure region 99 is provided on the orbiting back surface and the bypass valve 23 is provided as the attraction force applying means for the orbiting scroll member 3, so that the over-suction pressure value can be set to a small value, and a wide operating range can be set. Can set the biasing force small. As a result, there is a specific effect that the total adiabatic efficiency and reliability can be increased in a wide operation range. By the way, as shown in FIG. 5, since the four bypass holes 2e are provided so as to always connect the compression chamber 6 and the fixed rear chamber 61, the pressure is extremely high regardless of the timing of the liquid compression. Before ascending, the bypass valve is opened and the fluid is discharged to the fixed rear chamber 61. As a result, there is a specific effect that the risk of damage to the wrap can be avoided and the reliability can be improved. In addition, overcompression can be suppressed even when the pump operation is extremely close to an extremely low pressure ratio, so that there is an effect that the overall adiabatic efficiency can be increased in a wide operating condition range on the low pressure ratio side.

【0034】ここで、この圧縮機の起動時に、前記吸込
パイプ54と連結する配管系や前記吐出パイプ55と連
結する配管系の両方または各一方を絞る動作を行うシス
テムを設けるか作業者に行わせれば、吸込圧の低下また
は吐出圧の上昇を一層確実に実現できる。この結果、前
記旋回スクロール部材3を前記固定スクロール部材2に
押し付ける正規の運転に一層短時間で移行できるという
効果が出てくる。
At the time of starting the compressor, a system for performing an operation of restricting both or each of the piping system connected to the suction pipe 54 and the piping system connected to the discharge pipe 55 is provided to the operator or provided to the operator. By doing so, a reduction in suction pressure or an increase in discharge pressure can be realized more reliably. As a result, there is an effect that the normal operation of pressing the orbiting scroll member 3 against the fixed scroll member 2 can be shifted in a shorter time.

【0035】次に、第二の実施例を基づいて説明する。
軸受支持板18の下部流路口18aの最高点の位置を中
央に設定した以外は前記第一の実施例と同様であるの
で、その他の部分の構造及び動作及び効果の説明は省略
する。第一の実施例では、前記下部流路口18aの上辺
が水平であるため、前記貯蔵油69内へガスが吹き出す
可能性のある位置が上辺全体となる。このため、前記下
部流路口18a上辺の近接した複数の場所で気泡が形成
されはじめた場合、気泡の成長過程で気泡が合体する。
仮に、この合体のタイミングが各々の気泡単独ではぎり
ぎりで前記下部流路口18aの上辺から離脱できない大
きさであった場合を考える。この時に合体して形成され
た気泡の大きさは、合体せずに単独の成長による気泡で
は形成不可能な大きさになる。気泡が大きいと、気泡の
体積に対する表面積の割合が小さくなるため、気泡中の
油滴が周囲の油と接触する確率は低くなる。さらに、前
記貯蔵油69中の気泡の上昇は、気泡の浮力から重力を
引いた力で促進され、油の粘性力で抑制される。前者の
力は概略的に気泡の体積に比例し、後者の力は概略的に
気泡の表面積に比例する。気泡が大きいと、気泡の体積
に対する表面積の割合が小さくなるため、気泡の上昇速
度は大きくなり、気泡中の油滴が周囲の油と接触できる
時間が短くなる。以上の二点から、気泡が大きいと、油
の含有率の低減効果が小さくなってしまった。これに対
し、本実施例では、気泡の発生できる場所は前記下部流
路口18aの上辺の中央の一箇所と決まるため、第一の
実施例の問題が無くなる。この結果、吐出ガス中の油の
含有率を一層大幅に低減させたガスを圧縮機から吐出で
きる効果がある。また、前記第一の実施例では、前記油
滴除去部45は、図9及び図10に示すように、中央部
のみに多孔体があるので、圧縮機の取付け姿勢が圧縮機
の円筒軸を中心に回転していると、前記貯蔵油69の中
央から外れた箇所を気泡が上昇し中央から外れた油面部
で油滴が生じるため、この油滴は多孔体を通らずに前記
油滴除去部45の傍をすり抜けて吐出口に至ってしまう
可能性が高い。これに対し、本実施例では、前記貯蔵油
69の中央寄りを気泡が上昇するため、第一の実施例の
問題が無くなる。この結果、油の含有率を一層大幅に低
減させたガスを圧縮機から吐出できるという効果があ
る。
Next, a description will be given based on a second embodiment.
Except that the position of the highest point of the lower passage opening 18a of the bearing support plate 18 is set at the center, the structure is the same as that of the first embodiment, and the description of the structure, operation and effect of the other parts is omitted. In the first embodiment, since the upper side of the lower passage opening 18a is horizontal, the position where gas may blow out into the storage oil 69 is the entire upper side. For this reason, when bubbles start to form at a plurality of adjacent locations on the upper side of the lower flow path opening 18a, the bubbles coalesce during the bubble growth process.
It is assumed that the timing of the coalescence is such that the bubbles cannot be separated from the upper side of the lower flow passage opening 18a just by the bubbles alone. At this time, the size of the bubbles formed by merging becomes a size that cannot be formed by the bubbles formed by independent growth without merging. When the size of the bubbles is large, the ratio of the surface area to the volume of the bubbles is reduced, so that the probability of the oil droplets in the bubbles coming into contact with surrounding oil is reduced. Further, the rise of bubbles in the storage oil 69 is promoted by a force obtained by subtracting gravity from the buoyancy of the bubbles, and is suppressed by the viscous force of the oil. The former force is roughly proportional to the volume of the bubble, and the latter force is roughly proportional to the surface area of the bubble. When the bubbles are large, the ratio of the surface area to the volume of the bubbles decreases, so that the rising speed of the bubbles increases, and the time during which the oil droplets in the bubbles can come into contact with the surrounding oil decreases. From the above two points, when the bubbles are large, the effect of reducing the oil content is reduced. On the other hand, in the present embodiment, the location where bubbles can be generated is determined at one location in the center of the upper side of the lower flow passage opening 18a, so that the problem of the first embodiment is eliminated. As a result, there is an effect that the gas in which the content of oil in the discharge gas is further reduced can be discharged from the compressor. In the first embodiment, the oil droplet removing unit 45 has a porous body only at the center as shown in FIGS. 9 and 10, so that the mounting posture of the compressor is the same as that of the cylindrical shaft of the compressor. When the oil is rotated to the center, bubbles rise at a position deviated from the center of the storage oil 69, and an oil droplet is generated at an oil surface portion deviated from the center. Therefore, the oil droplet does not pass through the porous body and is removed. There is a high possibility that it will pass by the part 45 and reach the discharge port. On the other hand, in the present embodiment, since the bubbles rise near the center of the storage oil 69, the problem of the first embodiment is eliminated. As a result, there is an effect that the gas whose oil content is further reduced can be discharged from the compressor.

【0036】次に、第三の実施例を図13の軸受支持板
のモータ室側からの平面図に基づいて説明する。軸受支
持板18の下部流路口18aの上辺を鋸歯状にした以外
は前記第一の実施例と同様であるので、その他の部分の
構造及び動作及び効果の説明は省略する。
Next, a third embodiment will be described with reference to a plan view of the bearing support plate shown in FIG. Except that the upper side of the lower passage opening 18a of the bearing support plate 18 is formed in a saw-tooth shape, the structure is similar to that of the first embodiment, and the description of the structure, operation, and effects of other parts is omitted.

【0037】本実施例では、前記下部流路口18a上辺
の鋸歯状の山になった箇所で気泡が形成される。この結
果、第一の実施例で問題となった気泡の合体は生じなく
なるため、吐出ガス中の油の含有率を一層大幅に低減さ
せたガスを圧縮機から吐出できる効果がある。しかし、
この鋸歯の周期間隔を前記下部流路口18aの上辺で成
長できる気泡の直径よりも小さく取ると、合体が起こる
ため、少なくともそれ以上の間隔で鋸歯を形成しなけれ
ばいけない。また、気泡が前記貯蔵油69中を上昇する
時に、前記貯蔵油69の流れに影響されてまっすぐに上
昇しないことから、鋸歯の周期間隔は前記下部流路口1
8aの上辺で成長できる気泡の直径よりも前記貯蔵油6
9の流れによる左右の揺れ幅だけ大きくした方が良い。
また、両側の山を取ったので、前記貯蔵油69の中央寄
りを気泡が上昇し中央寄りの油面部で油滴が生じるた
め、この油滴は大部分が前記油滴除去部45の多孔体を
通る。この結果、油の含有率を一層大幅に低減させたガ
スを圧縮機から吐出できるという効果がある。
In the present embodiment, air bubbles are formed at the upper part of the lower flow passage opening 18a where the serration is formed. As a result, coalescence of air bubbles, which is a problem in the first embodiment, does not occur, so that there is an effect that a gas in which the content of oil in the discharge gas is further reduced can be discharged from the compressor. But,
If the periodic interval of the saw teeth is set smaller than the diameter of the bubble that can grow on the upper side of the lower flow passage opening 18a, coalescence occurs. Therefore, the saw teeth must be formed at least longer intervals. In addition, when the bubbles rise in the storage oil 69, they do not rise straight because of the flow of the storage oil 69, so that the periodic interval of the sawtooth is lower than that of the lower flow path port 1.
8a is larger than the diameter of the bubble that can grow on the upper side of the storage oil 6a.
It is better to increase the left and right swing width by the flow of 9.
In addition, since the peaks on both sides are taken, bubbles rise near the center of the storage oil 69, and oil droplets are generated on the oil surface near the center. Pass through. As a result, there is an effect that the gas whose oil content is further reduced can be discharged from the compressor.

【0038】次に、第四の実施例を図14の貯油室付近
の縦断面図(図1におけるS部の拡大図)に基づいて説
明する。油滴除去部45を傾斜させた以外は前記第一な
いし第三の実施例と同様であるので、その他の部分の構
造及び動作及び効果の説明は省略する。
Next, a fourth embodiment will be described with reference to a longitudinal sectional view of the vicinity of the oil storage chamber in FIG. 14 (an enlarged view of a portion S in FIG. 1). Since the configuration is the same as that of the first to third embodiments except that the oil droplet removing unit 45 is inclined, the description of the structure, operation, and effects of other parts is omitted.

【0039】油滴除去部45に傾斜がない例えば第一の
実施例の場合には、前記金網45aに付着した油滴はあ
る程度溜まって合体し、その一部が前記積層保持部45
bまで広がる。そして、それに吸着された油がまた溜ま
ることで合体し、その一部が前記底ケーシング21まで
広がって、重力により、前記貯蔵油69に戻る。このよ
うに、前記油滴除去部45に付着している時間が長いた
め、一旦捕獲された油滴が通過するガスの流れによって
再び、ガス中に戻る場合があった。本実施例では、前記
油滴除去部45が傾斜しているため、その金網45aで
捕獲された油滴は重力により迅速に前記底ケーシング2
1方向へ流れ、油滴除去部45の取付け部を伝って前記
底ケーシング21の表面まで流れ下る。よって、上記し
たような、一旦捕獲した油滴が再びガス中に戻ることは
無くなるため、油の含有率を大幅に低減させたガスを圧
縮機から吐出できる効果がある。本実施例では、油滴除
去部45を前記底ケーシング21側に傾斜しているが、
前記軸受支持板18側に傾斜していても良い。またこの
時に、前記油滴除去部45を前記軸受支持板18に固定
してもよい。
In the case of the first embodiment, for example, in which the oil droplet removing unit 45 has no inclination, the oil droplets adhering to the wire netting 45a accumulate to some extent and coalesce.
spread to b. Then, the oil adsorbed thereon accumulates again and coalesce, and a part of the oil spreads to the bottom casing 21 and returns to the storage oil 69 by gravity. As described above, since the time for which the oil droplets adhere to the oil droplet removing unit 45 is long, the oil droplets once captured may return to the gas again due to the flow of the gas passing therethrough. In this embodiment, since the oil droplet removing unit 45 is inclined, the oil droplets captured by the wire netting 45a are quickly moved by gravity to the bottom casing 2a.
It flows in one direction and flows down to the surface of the bottom casing 21 along the mounting portion of the oil droplet removing unit 45. Therefore, as described above, the oil droplets once captured do not return to the gas again, so that there is an effect that the gas whose oil content is greatly reduced can be discharged from the compressor. In the present embodiment, the oil droplet removing section 45 is inclined toward the bottom casing 21 side.
It may be inclined to the bearing support plate 18 side. At this time, the oil droplet removing section 45 may be fixed to the bearing support plate 18.

【0040】次に、第五の実施例を図15の貯油室付近
の縦断面図(図1におけるS部の拡大図)と図16のガ
スカバーの組立て斜視図と図17のガスカバーの貯油室
側からの平面図に基づいて説明する。軸受支持板18に
油滴除去部45を装着したガスカバー88を設けた以外
は第一ないし第四の実施例と同様であるので、その他の
部分の構造及び動作及び効果の説明は省略する。
Next, a fifth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion S in FIG. 1) near the oil storage chamber of FIG. 15, an assembled perspective view of the gas cover of FIG. 16, and an oil storage of the gas cover of FIG. Description will be given based on a plan view from the room side. Since it is the same as the first to fourth embodiments except that a gas cover 88 in which the oil droplet removing portion 45 is mounted on the bearing support plate 18 is provided, the description of the structure, operation, and effects of the other portions is omitted.

【0041】ガスカバー88は、円環カバー88dの内
部に油滴除去部45を固定したうえで、前記ベースプレ
ート88cにろう付けまたは接着または溶接し、内部に
ガス抜き通路88aを形成する。この時、固定する場所
を決めるために中央つば88gと外周つめ88fを設け
ている。この結果、前記貯油室69のガスの流路は前記
ガスカバー88内の前記ガス抜き通路88aとなるた
め、前記給油パイプ71にガスの気泡が進入する危険性
は非常に低くなる。この結果、モータ室に貯まったガス
は前記下部流通口18aから前記ガス抜き通路88aを
通った時に、その後前記油滴除去部45を通り、吐出パ
イプ55に至る。この経路により、前記実施例で記した
ように、吐出ガス中の油の含有率を大幅に低減させたガ
スを圧縮機から吐出できる効果がある。なお、この実施
例では、前記油滴除去部45を水平に設定しているが、
これを斜めにすると第四の実施例と同様の効果がある。
ここで、貯油室80に流入するガスの向きは、前記通路
開口部88bが前記ガスカバーの側面に開口しているた
め、、底ケーシング21の側面に衝突後、前記吐出パイ
プ55の方へ向かう。この結果、底ケーシング21との
衝突によりガス中の油滴の含有率が一層低下するという
特有の効果がある。
The gas cover 88 has the oil droplet removing portion 45 fixed inside the annular cover 88d, and is then brazed, adhered or welded to the base plate 88c to form a gas vent passage 88a inside. At this time, a central flange 88g and an outer peripheral nail 88f are provided to determine a fixing position. As a result, the flow path of the gas in the oil storage chamber 69 is the gas vent passage 88a in the gas cover 88, so that the risk of gas bubbles entering the oil supply pipe 71 is greatly reduced. As a result, when the gas stored in the motor chamber passes through the gas vent passage 88a from the lower flow port 18a, it then passes through the oil droplet removing unit 45 and reaches the discharge pipe 55. By this route, as described in the above embodiment, there is an effect that the gas in which the content of oil in the discharge gas is significantly reduced can be discharged from the compressor. In this embodiment, the oil droplet removing unit 45 is set to be horizontal.
If this is made oblique, the same effect as in the fourth embodiment can be obtained.
Here, the direction of the gas flowing into the oil storage chamber 80 is directed toward the discharge pipe 55 after colliding with the side surface of the bottom casing 21 because the passage opening 88b is opened on the side surface of the gas cover. . As a result, there is a specific effect that the content of the oil droplets in the gas is further reduced by the collision with the bottom casing 21.

【0042】次に、第六の実施例を図18の貯油室付近
の縦断面図(図1におけるS部の拡大図)と図19の軸
受支持板のモータ室側からの平面図に基づいて説明す
る。軸受支持板18の上部に上部流路口18bを設けた
以外は前記第四の実施例と同様であるので、その他の部
分の構造及び動作及び効果の説明は省略する。
Next, a sixth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion S in FIG. 1) near the oil storage chamber of FIG. 18 and a plan view of the bearing support plate from the motor chamber side of FIG. explain. The fourth embodiment is the same as the fourth embodiment except that the upper flow passage port 18b is provided above the bearing support plate 18, and the description of the structure, operation, and effects of the other portions is omitted.

【0043】前記上部流路口18bにより、前記モータ
室62から前記貯油室80のガス域へ抜ける流路が形成
される。この時は、この上部流路口18bの流路抵抗を
わずかに付けて、前記貯油室80の圧力を前記モータ室
62の圧力よりもわずかに低くしこの圧力差で油を前記
貯油室80に貯蔵する。この結果、非常に大流量の運転
時に、前記上部流路口18bが無い場合には油中の気泡
が油面にきて潰れる時の油の泡立ちが激しくなって前記
油滴除去部45で捕獲できない量の油が出るが、本実施
例では、油中を通るガス量が少ないため、油面での泡立
ちによる油滴の発生が大幅に少なくなり、吐出ガス中の
油の含有率を大幅に低減させたガスを圧縮機から吐出で
きる効果がある。ここで、前記上部流路口18bは、図
18で示すように、中心に一個ではなくて、二個でもま
たは三個でもよい。
The upper passage opening 18b forms a passage from the motor chamber 62 to the gas area of the oil storage chamber 80. At this time, the pressure in the oil storage chamber 80 is slightly lower than the pressure in the motor chamber 62 by slightly applying the flow path resistance of the upper flow path port 18b, and the oil is stored in the oil storage chamber 80 by this pressure difference. I do. As a result, during operation at a very large flow rate, if there is no upper passage opening 18b, the bubbles in the oil when the bubbles in the oil come to the oil surface and are crushed become so vigorous that the oil droplet removal unit 45 cannot capture the oil. In this example, the amount of oil flowing out is small, but in this example, since the amount of gas passing through the oil is small, the generation of oil droplets due to bubbling on the oil surface is significantly reduced, and the oil content in the discharged gas is significantly reduced. There is an effect that the discharged gas can be discharged from the compressor. Here, as shown in FIG. 18, the number of the upper passage openings 18b is not limited to one at the center, but may be two or three.

【0044】次に、第七の実施例を図20の貯油室付近
の縦断面図(図1におけるS部の拡大図)に基づいて説
明する。軸受支持板18の上部に上部流路口18bを設
けた以外は前記第五の実施例と同様であるので、その他
の部分の構造及び動作及び効果の説明は省略する。前記
上部流路口18bにより、前記モータ室62から前記貯
油室80のガス域へ抜ける流路が形成される。この時
は、この上部流路口18bの流路抵抗をわずかに付け
て、前記貯油室80の圧力を前記モータ室62の圧力よ
りもわずかに低くしこの圧力差で油を前記貯油室80に
貯蔵する。この結果、非常に大流量の運転時に、前記上
部流路口18bが無い場合には油中の気泡が油面にきて
潰れる時の油の泡立ちが激しくなって前記油滴除去部4
5で捕獲できない量の油が出るが、本実施例では、油中
を通るガス量が少ないため、油面での泡立ちによる油滴
の発生が大幅に少なくなり、吐出ガス中の油の含有率を
大幅に低減させたガスを圧縮機から吐出できる効果があ
る。
Next, a seventh embodiment will be described with reference to a longitudinal sectional view of the vicinity of the oil storage chamber in FIG. 20 (an enlarged view of a portion S in FIG. 1). Since it is the same as the fifth embodiment except that the upper passage opening 18b is provided above the bearing support plate 18, the description of the structure, operation and effects of the other parts is omitted. The upper passage opening 18b forms a passage that passes from the motor chamber 62 to the gas area of the oil storage chamber 80. At this time, the pressure in the oil storage chamber 80 is slightly lower than the pressure in the motor chamber 62 by slightly applying the flow path resistance of the upper flow path port 18b, and the oil is stored in the oil storage chamber 80 by this pressure difference. I do. As a result, during operation at a very large flow rate, if the upper flow path port 18b is not provided, the bubbles in the oil when the bubbles in the oil come to the oil surface and are crushed become violent, and the oil droplet removing unit 4
In this example, the amount of oil passing through the oil is small, so that the generation of oil droplets due to foaming on the oil surface is greatly reduced, and the oil content in the discharged gas is low. This has the effect of allowing the gas to be discharged from the compressor with greatly reduced pressure.

【0045】次に、第八の実施例を図21の貯油室付近
の縦断面図(図1におけるS部の拡大図)に基づいて説
明する。軸受支持板18の上部流路口18bをガスカバ
ー88内に設けるために前記ベースプレート88cの対
応する位置に短絡開口部88eを設ける以外は前記第七
の実施例と同様であるので、その他の部分の構造及び動
作及び効果の説明は省略する。前記上部流路口18bを
ガスカバーの内部に開口したために、そこを通るガスが
前記円環カバー88dに衝突する。よって、ガスは大き
な速度変化をし、そこに含まれる油滴に大きな慣性力が
働き、油は前記円環カバー88dの内壁に付着する。こ
の結果、油滴を除去されなかった前記上部流路口18b
を通ってきたガスがここで油滴を除去されるため、油の
含有率を大幅に低減させたガスを圧縮機から吐出できる
という効果がある。また、ガスが前記円環カバー88d
に衝突する箇所に多孔体である壁面多孔体88kを設け
る実施例も考えられる。この場合には、付着した油が再
離脱しにくくなり、油滴の捕捉率が向上し、ガス中の油
の含有率が一層低減するという特有の効果がある。
Next, an eighth embodiment will be described with reference to a longitudinal sectional view near the oil storage chamber in FIG. 21 (an enlarged view of a portion S in FIG. 1). Since it is the same as the seventh embodiment except that a short-circuit opening 88e is provided at a position corresponding to the base plate 88c in order to provide the upper passage opening 18b of the bearing support plate 18 in the gas cover 88, the other parts The description of the structure, operation, and effects is omitted. Since the upper passage opening 18b is opened inside the gas cover, gas passing therethrough collides with the annular cover 88d. Therefore, the gas changes greatly in velocity, and a large inertial force acts on the oil droplets contained therein, and the oil adheres to the inner wall of the annular cover 88d. As a result, the upper passage opening 18b from which the oil droplets were not removed
Since the gas that has passed through is removed from the oil droplets here, there is an effect that the gas whose oil content is greatly reduced can be discharged from the compressor. Further, the gas is supplied to the annular cover 88d.
An embodiment is also conceivable in which a porous wall body 88k, which is a porous body, is provided at a location where it collides with the surface. In this case, there is a specific effect that the adhered oil is less likely to detach again, the trapping rate of oil droplets is improved, and the content of oil in the gas is further reduced.

【0046】次に、第九の実施例を図22のガスカバー
の組立て斜視図と図23のガスカバーの貯油室側からの
平面図と図24の油滴除去部の斜視図に基づいて説明す
る。前記上部流路口18bを通ってきたガスが前記円環
カバー88dと衝突する箇所が傾斜した傾斜部88hと
なり、油滴除去部45をガス抜き通路88aでガスの流
れがほぼ垂直に上昇する位置に設け、さらに油滴除去部
45の構造を変えた以外は前記第八の実施例と同様であ
るので、その他の部分の構造及び動作及び効果の説明は
省略する。
Next, the ninth embodiment will be described with reference to the assembled perspective view of the gas cover in FIG. 22, the plan view of the gas cover from the oil storage chamber side in FIG. 23, and the perspective view of the oil droplet removing section in FIG. I do. The location where the gas that has passed through the upper passage opening 18b collides with the annular cover 88d becomes an inclined portion 88h, and the oil droplet removing portion 45 is moved to a position where the gas flow rises substantially vertically in the gas vent passage 88a. Since it is the same as the eighth embodiment except that the arrangement and the structure of the oil droplet removing unit 45 are changed, the description of the structure, operation and effect of the other parts will be omitted.

【0047】傾斜部の無い場合には、この衝突部の中心
近くに付着した油が移動する駆動力は重力しかないた
め、非常に小さく、油滴はほぼ付着したままとなる。よ
って、後に続くガスの衝突により付着していた油を逆に
再離脱させる危険性がある。本実施例では、衝突するガ
スの流れ自体が、付着した油を下部に押し流す作用をも
つため、前記円環カバー88dに付着した油はガス中に
再離脱せず、吐出ガス中の油の含有率を大幅に低減させ
たガスを圧縮機から吐出できる効果がある。また、前記
油滴除去部45のほぼ中央をガスが流れるため、前記油
滴除去部45の周囲の隙間をガスが流れることが無くな
り、油の含有率を大幅に低減させることができる。ま
た、二個所に油滴除去部が分かれたため、金網45aが
小さくなりその端からそれを形成する針金が脱落する危
険性が大きくなったが、これを回避するために、網押さ
え45cを用い、押さえつめ45dで積層保持部45b
に固定配置した。この結果、信頼性の向上した圧縮機を
提供できるという効果がある。また通路開口部88bに
多孔性体を設置してもよい。これにより、さらに一層油
の含有率を大幅に低減させたガスを圧縮機から吐出でき
るという効果がある。
In the case where there is no inclined portion, the driving force for moving the oil adhering near the center of the collision portion is only gravity, so that the driving force is very small, and the oil droplets remain almost adhered. Therefore, there is a danger that the oil adhering to the subsequent gas collision may be released again. In the present embodiment, the flow of the colliding gas itself has a function of flushing the adhering oil to the lower portion, so that the oil adhering to the annular cover 88d does not separate again into the gas, and the oil contained in the discharge gas contains the oil. There is an effect that the gas whose rate has been greatly reduced can be discharged from the compressor. Further, since the gas flows substantially at the center of the oil droplet removing unit 45, the gas does not flow through the gap around the oil droplet removing unit 45, and the oil content can be greatly reduced. In addition, since the oil droplet removing section is divided into two places, the wire mesh 45a becomes smaller, and the danger of the wire forming the wire dropping off from its end increases, but in order to avoid this, using the wire holder 45c, The holding part 45b is held by the holding claws 45d.
Fixedly arranged. As a result, there is an effect that a compressor with improved reliability can be provided. Further, a porous body may be provided in the passage opening 88b. As a result, there is an effect that the gas whose oil content is further greatly reduced can be discharged from the compressor.

【0048】次に、第十の実施例を図25の油滴除去部
の斜視図に基づいて説明する。油滴除去部45として、
金網を積層する代わりに、多数の小孔45eを設ける以
外は前記第九の実施例と同様であるので、その他の部分
の構造及び動作及び効果の説明は省略する。構造が簡単
となるために、加工コストを低減できるという効果があ
る。
Next, a tenth embodiment will be described with reference to a perspective view of an oil droplet removing unit shown in FIG. As the oil droplet removing unit 45,
Since it is the same as the ninth embodiment except that a number of small holes 45e are provided instead of laminating the wire mesh, the description of the structure, operation, and effects of the other parts is omitted. Since the structure is simple, there is an effect that the processing cost can be reduced.

【0049】次に、第十一の実施例を図26の貯油室付
近の縦断面図(図1におけるS部の拡大図)に基づいて
説明する。前記上部流路口18bを通ってきたガスも前
記油滴除去部45を通るように前記油滴除去部45を傾
斜させる以外は前記第六の実施例と同様であるので、そ
の他の部分の構造及び動作及び効果の説明は省略する。
Next, an eleventh embodiment will be described with reference to a longitudinal sectional view of the vicinity of the oil storage chamber in FIG. 26 (an enlarged view of a portion S in FIG. 1). Except that the gas that has passed through the upper flow path port 18b also inclines the oil droplet removing unit 45 so as to pass through the oil droplet removing unit 45, it is the same as the sixth embodiment, so the structure of the other parts and The description of the operation and the effect is omitted.

【0050】この前記油滴除去部45は、前記貯蔵油6
9中を上昇した気泡により油面で発生する油滴を除去す
る役目と前記上部流路口18bを通ってきたガス内の油
滴を除去する役目を兼ねているため、油の含有率を大幅
に低減させたガスを単純な構成で実現できる。
The oil droplet removing section 45 is provided with the storage oil 6
9 has a role of removing oil droplets generated on the oil surface due to bubbles rising in the inside and a role of removing oil droplets in the gas that has passed through the upper passage opening 18b. The reduced gas can be realized with a simple configuration.

【0051】次に、第十二の実施例を図27のオイルト
ラッププレートの組立て斜視図と図28のオイルトラッ
ププレートの取付け斜視図と図29のオイルトラッププ
レートの取付け部付近の縦断面図に基づいて説明する。
このオイルトラッププレート47をリテーナ23aの上
部に重ねて配置する以外は前記第一ないし第十一の実施
例と同様であるので、その他の部分の構造及び動作及び
効果の説明は省略する。オイルプレートホルダ47aの
網挿入部47eに複数の網47bを積層して挿入し、網
押さえリング47cを上部に重ねて押さえつめ47dを
曲げて固定し、前記オイルトラッププレート47を形成
する。このオイルトラッププレート47を図28に示す
ように二段ボルト23mとバイパスナット23nにより
前記リテーナ23aの上部に固定する。この結果、圧縮
動作口2dから出る油を多量に含有したガスがこのオイ
ルトラッププレート47に衝突するため、これまで説明
してきたように、油は、その慣性により、積層された網
47b内に付着するため、油の含有率を大幅に低減させ
たガスを圧縮機から吐出できるという効果がある。ここ
で、前記オイルトラッププレート47と圧縮動作口2d
の間隔Hを前記圧縮動作口2dの直径Dの0.25倍か
ら2倍の範囲内に設定する。この結果、流路抵抗が増大
せず、ガス中の油滴の除去率が高いという効果がある。
ここで、このHを設定するために、二段ボルト23mの
ナット部の厚みと前記リテーナ23aの厚みを利用す
る。この結果、Hを確保するための治具や別部品が不要
となり、低コストになるという効果がある。さらに、バ
イパス弁23のもれチェックをする時には、バイパス弁
板23xとリテーナ23aのみを固定する必要がある
が、この場合には、前記二段ボルト23mでそれらのみ
を固定することができるため、量産性が高くなるという
効果がある。ここで、前記網47bの目の細かさを底に
近い側を細かくし、表面に近い側を粗くすると油のガス
からの除去率を向上させることができる。
Next, the twelfth embodiment is shown in an assembled perspective view of the oil trap plate of FIG. 27, a perspective view of the attachment of the oil trap plate of FIG. 28, and a longitudinal sectional view of the vicinity of the attachment portion of the oil trap plate of FIG. It will be described based on the following.
Since the oil trap plate 47 is the same as the first to eleventh embodiments except that the oil trap plate 47 is arranged so as to overlap the upper part of the retainer 23a, the description of the structure, operation, and effects of the other parts is omitted. A plurality of meshes 47b are stacked and inserted into the mesh insertion portion 47e of the oil plate holder 47a, and the mesh holding ring 47c is placed on the upper portion, and the holding claws 47d are bent and fixed to form the oil trap plate 47. As shown in FIG. 28, the oil trap plate 47 is fixed to the upper portion of the retainer 23a by a two-step bolt 23m and a bypass nut 23n. As a result, the gas containing a large amount of oil coming out of the compression operation port 2d collides with the oil trap plate 47, and as described above, the oil adheres to the laminated net 47b due to its inertia. Therefore, there is an effect that the gas whose oil content is greatly reduced can be discharged from the compressor. Here, the oil trap plate 47 and the compression operation port 2d
Is set in the range of 0.25 to 2 times the diameter D of the compression operation port 2d. As a result, there is an effect that the flow path resistance does not increase and the removal rate of oil droplets in the gas is high.
Here, in order to set this H, the thickness of the nut portion of the two-step bolt 23m and the thickness of the retainer 23a are used. As a result, there is no need for a jig or another component for securing H, and there is an effect that the cost is reduced. Furthermore, when checking for leakage of the bypass valve 23, it is necessary to fix only the bypass valve plate 23x and the retainer 23a. In this case, since only the two-stage bolt 23m can fix them, This has the effect of increasing mass productivity. Here, if the mesh of the net 47b is made finer on the side near the bottom and rougher on the side near the surface, the removal rate of oil from the gas can be improved.

【0052】次に、第十三の実施例を図30のオイルト
ラッププレートの斜視図に基づいて説明する。網の積層
の代わりに凹凸部47gを設ける以外は前記第十二の実
施例と同様であるので、その他の部分の構造及び動作及
び効果の説明は省略する。この凹凸部47gにより油の
付着量が多くなるため、油のガスからの除去率を向上さ
せることができる。
Next, a thirteenth embodiment will be described with reference to a perspective view of an oil trap plate shown in FIG. Since it is the same as the twelfth embodiment except that the uneven portion 47g is provided instead of the lamination of the net, the description of the structure, operation and effect of the other portions is omitted. Since the amount of oil adhesion increases due to the uneven portion 47g, the removal rate of oil from gas can be improved.

【0053】次に、第十四の実施例を図31のオイルト
ラッププレートの斜視図に基づいて説明する。網の積層
を設けない以外は前記第十二の実施例と同様であるの
で、その他の部分の構造及び動作及び効果の説明は省略
する。このプレートにガスが衝突するため、その中の油
がその慣性によりプレートに激しく衝突し付着するた
め、ガス中の油の含有率を低減できる。これは、非常に
簡単な構造であるため、低コストの圧縮機を実現できる
という効果がある。
Next, a fourteenth embodiment will be described with reference to a perspective view of an oil trap plate shown in FIG. Since it is the same as the twelfth embodiment except that the lamination of the net is not provided, the description of the structure, operation, and effects of the other parts is omitted. Since the gas collides with the plate, the oil in the plate violently collides with and adheres to the plate due to its inertia, so that the content of the oil in the gas can be reduced. Since this is a very simple structure, there is an effect that a low-cost compressor can be realized.

【0054】次に、第十五の実施例を図32の固定スク
ロール部材のスクロールラップ側からの平面図に基づい
て説明する。前記差圧制御弁100の他にもう一個の第
二差圧制御弁200を設ける以外は前記第一ないし第十
四の実施例と同様であるので、その他の部分の構造及び
動作及び効果の説明は省略する。前記差圧制御弁100
を流れる油やガスの量が多いと、差圧設定値がずれてく
ることを回避できるという効果がある。また、第二差圧
制御弁200の差圧設定値を前記差圧制御弁100の設
定値よりも大きしてもよい。この場合、起動時や運転状
態の急激な変化時、前記背面過吸込圧領域99へ大量の
ガスや油が流入した時のそこでの圧力の異常上昇を逃が
す安全弁の役割を持たせることができる。この結果、信
頼性の高い圧縮機を提供できるという効果がある。
Next, a fifteenth embodiment will be described with reference to a plan view of the fixed scroll member from the scroll wrap side in FIG. Except that another second differential pressure control valve 200 is provided in addition to the differential pressure control valve 100, the configuration is the same as that of the first to fourteenth embodiments. Is omitted. The differential pressure control valve 100
When the amount of oil or gas flowing through the air is large, there is an effect that the set value of the differential pressure can be prevented from shifting. Further, the set value of the differential pressure of the second differential pressure control valve 200 may be larger than the set value of the differential pressure control valve 100. In this case, at the time of start-up or a sudden change in the operating state, a role of a safety valve for releasing an abnormal increase in pressure there when a large amount of gas or oil flows into the rear excessive suction pressure region 99 can be provided. As a result, there is an effect that a highly reliable compressor can be provided.

【0055】次に、第十六の実施例を図33の固定スク
ロール部材のスクロールラップ側からの中央付近の平面
図及び図34のバイパス穴の縦断面図に基づいて説明す
る。高圧側の一対のバイパス穴2eの歯底側にスクロー
ルラップ2bに沿った方向で中央向きに切欠きを設ける
以外は前記第一ないし第十二の実施例と同様であるの
で、その他の部分の構造及び動作及び効果の説明は省略
する。穴の中に残る高圧ガスによる再膨張を極力抑えて
高圧側バイパス弁23の圧縮室と通じている期間が高圧
側に拡大したため、過圧縮を一層低減でき性能が向上す
るという効果がある。
Next, a sixteenth embodiment will be described with reference to a plan view near the center of the fixed scroll member from the scroll wrap side in FIG. 33 and a longitudinal sectional view of the bypass hole in FIG. Except that a cutout is provided on the tooth bottom side of the pair of high pressure side bypass holes 2e in the direction along the scroll wrap 2b toward the center, the same as in the first to twelfth embodiments, The description of the structure, operation, and effects is omitted. Since the re-expansion due to the high-pressure gas remaining in the hole is suppressed as much as possible and the period of communication with the compression chamber of the high-pressure side bypass valve 23 is extended to the high-pressure side, overcompression can be further reduced and the performance is improved.

【0056】次に、第十七の実施例を図35の固定スク
ロール部材のスクロールラップ側からの中央付近の平面
図及び図36のバイパス穴の縦断面図に基づいて説明す
る。高圧側の一対のバイパス穴2eの歯底側にスクロー
ルラップ2bに沿った方向で外向きに切欠きを設ける以
外は前記第十三の実施例と同様であるので、その他の部
分の構造及び動作及び効果の説明は省略する。穴の中に
残る高圧ガスによる再膨張を極力抑えて高圧側バイパス
弁23の圧縮室と通じている期間が低圧側から高圧側ま
で拡大したため、低い圧力比での過圧縮を一層低減でき
性能が向上するという効果がある。
Next, a seventeenth embodiment will be described with reference to a plan view near the center of the fixed scroll member from the scroll wrap side in FIG. 35 and a longitudinal sectional view of the bypass hole in FIG. Except that a notch is provided outward in the direction along the scroll wrap 2b on the tooth bottom side of the pair of high pressure side bypass holes 2e, the structure and operation of the other parts are the same as in the thirteenth embodiment. The description of the effects is omitted. Since the re-expansion due to the high-pressure gas remaining in the hole is suppressed as much as possible and the period of communication with the compression chamber of the high-pressure side bypass valve 23 is extended from the low-pressure side to the high-pressure side, overcompression at a low pressure ratio can be further reduced, and the performance can be further reduced. There is an effect of improving.

【0057】次に、第十八の実施例を図37の固定スク
ロール部材のスクロールラップ側からの中央付近の平面
図に基づいて説明する。低圧側の一対のバイパス穴2e
の歯底側にスクロールラップ2bに沿った方向で中央向
き及び外向きに切欠きを設ける以外は前記第十四の実施
例と同様であるので、その他の部分の構造及び動作及び
効果の説明は省略する。低圧側の一対のバイパス穴2e
は、過圧縮抑制の役割ももちろんあるが、主な役割は液
圧縮回避である。低圧側バイパス弁23の圧縮室と通じ
ている期間が低圧側から高圧側まで拡大したため、液圧
縮をより一層確実に回避でき信頼性が向上するという効
果がある。
Next, an eighteenth embodiment will be described with reference to a plan view of the vicinity of the center of the fixed scroll member from the scroll wrap side in FIG. A pair of low pressure side bypass holes 2e
The fourteenth embodiment is the same as the fourteenth embodiment except that a notch is provided on the bottom side of the teeth in the direction along the scroll wrap 2b in the center and outward directions. Omitted. A pair of low pressure side bypass holes 2e
Has a role of suppressing excessive compression, but the main role is to avoid liquid compression. Since the period of communication with the compression chamber of the low-pressure side bypass valve 23 has been extended from the low-pressure side to the high-pressure side, liquid compression can be avoided more reliably and reliability is improved.

【0058】最後に、第十九の実施例を図38の差圧制
御弁付近の縦断面図(図1におけるP部の拡大図)に基
づいて説明する。自然長の長い差圧弁ばね100cとそ
れを挿入できる挿入弁キャップ100jを設けた以外は
前記第一ないし十五の実施例と同様なので、その他の部
分の構造及び動作及び効果の説明は省略する。これによ
り、ばね定数を小さく設定できるため、各部の寸法精度
を上げなくても差圧の設定を行えるため、量産性が向上
するという効果がある。ここで、前記差圧弁ばね100
cはつるまきばねになっているが、たけのこばねでもよ
い。この場合、座屈し難いので、差圧値を一層精度良く
設定できるという効果がある。
Finally, a nineteenth embodiment will be described with reference to a longitudinal sectional view (enlarged view of a portion P in FIG. 1) near the differential pressure control valve in FIG. Except that a differential pressure valve spring 100c having a long natural length and an insertion valve cap 100j into which it can be inserted are the same as those of the first to fifteenth embodiments, the description of the structure, operation, and effects of the other parts will be omitted. As a result, the spring constant can be set small, and the differential pressure can be set without increasing the dimensional accuracy of each part, which has the effect of improving mass productivity. Here, the differential pressure valve spring 100
Although c is a helical spring, it may be a bamboo shoot spring. In this case, since it is difficult to buckle, there is an effect that the differential pressure value can be set with higher accuracy.

【0059】[0059]

【発明の効果】本発明によれば、圧縮機外に吐出するガ
スの油含有率が低い圧縮機を提供できるという効果があ
る。
According to the present invention, it is possible to provide a compressor having a low oil content of gas discharged outside the compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施例の縦断面図。FIG. 1 is a longitudinal sectional view of a first embodiment.

【図2】第一の実施例の固定スクロール部材の反スクロ
ールラップ側からの平面図。
FIG. 2 is a plan view of the fixed scroll member of the first embodiment as viewed from the side opposite to the scroll wrap.

【図3】第一の実施例の固定スクロール部材のスクロー
ルラップ側からの平面図。
FIG. 3 is a plan view of the fixed scroll member according to the first embodiment as viewed from the scroll wrap side.

【図4】第一の実施例のリテーナの平面図。FIG. 4 is a plan view of the retainer of the first embodiment.

【図5】第一の実施例の圧縮行程の説明図。FIG. 5 is an explanatory diagram of a compression stroke according to the first embodiment.

【図6】第一の実施例のバイパス弁付近の縦断面図(図
1におけるR部の拡大図)。
FIG. 6 is a longitudinal sectional view of the vicinity of a bypass valve according to the first embodiment (an enlarged view of a portion R in FIG. 1).

【図7】第一の実施例の差圧制御弁付近の縦断面図(図
1におけるP部の拡大図)。
FIG. 7 is a vertical cross-sectional view of the vicinity of the differential pressure control valve according to the first embodiment (an enlarged view of a portion P in FIG. 1).

【図8】第一の実施例の差圧制御弁の旋回側面領域付近
の縦断面図(図7におけるQ部の拡大図)。
8 is a longitudinal sectional view (enlarged view of a Q portion in FIG. 7) of the vicinity of a turning side surface region of the differential pressure control valve according to the first embodiment;

【図9】第一の実施例の貯油室付近の縦断面図(図1に
おけるS部の拡大図)。
FIG. 9 is a longitudinal sectional view of the vicinity of the oil storage chamber of the first embodiment (an enlarged view of a portion S in FIG. 1).

【図10】第一の実施例の油滴除去部の斜視図。FIG. 10 is a perspective view of an oil droplet removing unit according to the first embodiment.

【図11】第一の実施例の軸受支持板のモータ室側から
の平面図。
FIG. 11 is a plan view of the bearing support plate of the first embodiment as viewed from the motor chamber side.

【図12】第二の実施例の軸受支持板のモータ室側から
の平面図。
FIG. 12 is a plan view of the bearing support plate of the second embodiment as viewed from the motor chamber side.

【図13】第三の実施例の軸受支持板のモータ室側から
の平面図。
FIG. 13 is a plan view of the bearing support plate of the third embodiment as viewed from the motor chamber side.

【図14】第四の実施例の貯油室付近の縦断面図(図1
におけるS部の拡大図)。
FIG. 14 is a longitudinal sectional view of the vicinity of an oil storage chamber according to a fourth embodiment (FIG. 1);
FIG.

【図15】第五の実施例の貯油室付近の縦断面図(図1
におけるS部の拡大図)。
FIG. 15 is a longitudinal sectional view of the vicinity of an oil storage chamber according to a fifth embodiment (FIG. 1);
FIG.

【図16】第五の実施例のガスカバーの組立て斜視図。FIG. 16 is an assembled perspective view of a gas cover according to a fifth embodiment.

【図17】第五の実施例のガスカバーの貯油室側からの
平面図。
FIG. 17 is a plan view of the gas cover of the fifth embodiment as viewed from the oil storage chamber side.

【図18】第六の実施例の貯油室付近の縦断面図(図1
におけるS部の拡大図)。
FIG. 18 is a longitudinal sectional view of the vicinity of an oil storage chamber according to a sixth embodiment (FIG. 1);
FIG.

【図19】第六の実施例の軸受支持板のモータ室側から
の平面図。
FIG. 19 is a plan view of a bearing support plate according to a sixth embodiment as viewed from the motor chamber side.

【図20】第七の実施例の貯油室付近の縦断面図(図1
におけるS部の拡大図)。
FIG. 20 is a longitudinal sectional view of the vicinity of an oil storage chamber according to a seventh embodiment (FIG. 1);
FIG.

【図21】第八の実施例の貯油室付近の縦断面図(図1
におけるS部の拡大図)。
FIG. 21 is a longitudinal sectional view showing the vicinity of an oil storage chamber according to an eighth embodiment (FIG. 1);
FIG.

【図22】第九の実施例のガスカバーの組立て斜視図。FIG. 22 is an assembled perspective view of a gas cover according to a ninth embodiment.

【図23】第九の実施例のガスカバーの貯油室側からの
平面図。
FIG. 23 is a plan view of the gas cover of the ninth embodiment as viewed from the oil storage chamber side.

【図24】第九の実施例の油滴除去部の斜視図。FIG. 24 is a perspective view of an oil droplet removing unit according to a ninth embodiment.

【図25】第十の実施例の油滴除去部の斜視図。FIG. 25 is a perspective view of an oil droplet removing unit according to a tenth embodiment.

【図26】第十一の実施例の貯油室付近の縦断面図(図
1におけるS部の拡大図)。
FIG. 26 is a longitudinal sectional view of the vicinity of the oil storage chamber of the eleventh embodiment (an enlarged view of a portion S in FIG. 1).

【図27】第十二の実施例のオイルトラッププレートの
組立て斜視図。
FIG. 27 is an assembled perspective view of an oil trap plate according to a twelfth embodiment.

【図28】第十二の実施例のオイルトラッププレートの
取付け斜視図。
FIG. 28 is an attached perspective view of an oil trap plate according to a twelfth embodiment.

【図29】第十二の実施例のオイルトラッププレートの
取付け部付近の縦断面図。
FIG. 29 is a longitudinal sectional view showing the vicinity of a mounting portion of an oil trap plate according to a twelfth embodiment.

【図30】第十三の実施例のオイルトラッププレートの
斜視図。
FIG. 30 is a perspective view of an oil trap plate according to a thirteenth embodiment.

【図31】第十四の実施例のオイルトラッププレートの
斜視図。
FIG. 31 is a perspective view of an oil trap plate according to a fourteenth embodiment.

【図32】第十五の実施例の固定スクロール部材のスク
ロールラップ側からの平面図。
FIG. 32 is a plan view of the fixed scroll member of the fifteenth embodiment as viewed from the scroll wrap side.

【図33】第十六の実施例の固定スクロール部材のスク
ロールラップ側からの中央付近の平面図。
FIG. 33 is a plan view of the vicinity of the center of the fixed scroll member from the scroll wrap side in the sixteenth embodiment.

【図34】第十六の実施例のバイパス穴の縦断面図。FIG. 34 is a longitudinal sectional view of a bypass hole according to a sixteenth embodiment.

【図35】第十七の実施例の固定スクロール部材のスク
ロールラップ側からの中央付近の平面図。
FIG. 35 is a plan view of the vicinity of the center of the fixed scroll member from the scroll wrap side in the seventeenth embodiment.

【図36】第十七の実施例のバイパス穴の縦断面図。FIG. 36 is a longitudinal sectional view of a bypass hole according to a seventeenth embodiment.

【図37】第十八の実施例の固定スクロール部材のスク
ロールラップ側からの中央付近の平面図。
FIG. 37 is a plan view of the vicinity of the center of the fixed scroll member from the scroll wrap side in the eighteenth embodiment.

【図38】第十九の実施例の差圧制御弁付近の縦断面図
(図1におけるP部の拡大図)。
FIG. 38 is a vertical cross-sectional view of the vicinity of the differential pressure control valve according to a nineteenth embodiment (an enlarged view of a portion P in FIG. 1).

【符号の説明】[Explanation of symbols]

2…固定スクロール部材(非旋回スクロ−ル部材)、2
e…バイパス穴、3…旋回スクロ−ル部材、4…フレー
ム、5…オルダムリング、6…圧縮室、12…シャフ
ト、19…モータ、44…フレームオイルリング、45
…油滴除去部、46…オイルリング、47…オイルトラ
ッププレート、47m…二段ボルト、60…吸込室、6
1…固定背面室、62…モータ室、69…貯蔵油、95
…背面吐出圧領域、96…吐出室、99…背面過吸込圧
領域、100…差圧制御弁。
2 ... fixed scroll member (non-orbiting scroll member), 2
e: bypass hole, 3 ... rotating scroll member, 4 ... frame, 5 ... Oldham ring, 6 ... compression chamber, 12 ... shaft, 19 ... motor, 44 ... frame oil ring, 45
... oil drop removing part, 46 ... oil ring, 47 ... oil trap plate, 47m ... two-stage bolt, 60 ... suction chamber, 6
1: fixed rear chamber, 62: motor chamber, 69: stored oil, 95
... rear discharge pressure area, 96 ... discharge chamber, 99 ... rear excessive suction pressure area, 100 ... differential pressure control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 和己 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 金子 正人 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 関口 浩一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 島田 敦 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 田所 哲也 栃木県下都賀郡大平町富田709番地の2 株式会社日立栃木エレクトロニクス内 (72)発明者 秋澤 健裕 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 阿部 信雄 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 島田 芳之 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazumi Tamura 800, Tomita, Odai-cho, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside the Hitachi, Ltd.Cooling Division Hitachi, Ltd.Cooling Division (72) Inventor Koichi Sekiguchi 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside (72) Inventor Atsushi Shimada 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi, Ltd. (72) Inventor Tetsuya Tadokoro 709, Tomita, Ohira-machi, Shimotsuga-gun, Tochigi 2 Inside Hitachi Tochigi Electronics Co., Ltd. (72) Takehiro Akizawa 800, Tomita, Odaira, Shimotsuga-gun, Tochigi Hitachi, Ltd. (72) Inventor Nobuo Abe Shimotsuga-gun, Tochigi 800, Tomita, Ohira-machi, Hitachi, Ltd.Cooling and Heating Division, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】密閉容器内に設けられた外部から導いたガ
スを圧縮する圧縮動作部と、この密閉容器内に設けられ
た油溜まり部とを備えた圧縮機において、前記圧縮動作
部からガスの圧縮機外部への出口である吐出口へ至る経
路内に、前記油溜まり部の油内を経由する経路を備えた
圧縮機。
1. A compressor comprising: a compression operation section provided in an airtight container for compressing a gas introduced from outside; and an oil reservoir provided in the airtight container. A compressor having a path through the oil in the oil reservoir in a path leading to a discharge port which is an outlet to the outside of the compressor.
【請求項2】請求項1において、前記油溜まり部を経由
する経路の後に多孔性体を通過する経路を備えた圧縮
機。
2. The compressor according to claim 1, further comprising a path passing through a porous body after a path passing through the oil reservoir.
【請求項3】密閉容器内に設けられた外部から導いたガ
スを圧縮する圧縮動作部と、この密閉容器内に設けられ
た油溜まり部とを備え、この圧縮動作部からのガスを前
記密閉容器内に吐出する圧縮機において、前記圧縮動作
部からのガスを前記密閉容器内に吐出する圧縮動作口に
対向しこの圧縮動作口の相当直径の0.25から2倍の
距離だけ離れた位置にオイルトラッププレートを配置し
た圧縮機。
3. A compressor provided in a closed container for compressing a gas introduced from the outside, and an oil reservoir provided in the closed container, wherein the gas from the compressing unit is sealed by the sealing unit. In the compressor which discharges into a container, the position which opposes the compression operation port which discharges the gas from the said compression operation part into the said closed container, and was away by the distance of 0.25 times the equivalent diameter of this compression operation port. A compressor with an oil trap plate arranged on the top.
【請求項4】密閉容器内に圧縮機構部とこの圧縮機構部
を駆動する電動機部とを備え、この圧縮機構部から吐出
された冷媒がこの密閉容器内を介して吐出口から外部へ
吐出される圧縮機において、前記電動機部に対し吐出パ
イプを前記圧縮機構部の反対側に設け、この電動機部と
前記吐出パイプとの間に設けられた補助軸受と、この補
助軸受に設けられ、穴が開けられた支え板と、この支え
板と吐出口との間に遮蔽板を設けた圧縮機。
4. A compression mechanism portion and an electric motor portion for driving the compression mechanism portion in the closed container, and the refrigerant discharged from the compression mechanism portion is discharged from the discharge port to the outside through the closed container. In the compressor, a discharge pipe is provided on the opposite side of the compression mechanism with respect to the electric motor unit, an auxiliary bearing provided between the electric motor unit and the discharge pipe, and a hole provided in the auxiliary bearing. A compressor having an opened support plate and a shielding plate between the support plate and the discharge port.
JP05176498A 1998-03-04 1998-03-04 Compressor Expired - Fee Related JP4228406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05176498A JP4228406B2 (en) 1998-03-04 1998-03-04 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05176498A JP4228406B2 (en) 1998-03-04 1998-03-04 Compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008035448A Division JP4730382B2 (en) 2008-02-18 2008-02-18 Compressor

Publications (2)

Publication Number Publication Date
JPH11247786A true JPH11247786A (en) 1999-09-14
JP4228406B2 JP4228406B2 (en) 2009-02-25

Family

ID=12896030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05176498A Expired - Fee Related JP4228406B2 (en) 1998-03-04 1998-03-04 Compressor

Country Status (1)

Country Link
JP (1) JP4228406B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002227A (en) * 2011-08-30 2012-01-05 Hitachi Appliances Inc Horizontal scroll compressor
JP2015206329A (en) * 2014-04-23 2015-11-19 日立アプライアンス株式会社 scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002227A (en) * 2011-08-30 2012-01-05 Hitachi Appliances Inc Horizontal scroll compressor
JP2015206329A (en) * 2014-04-23 2015-11-19 日立アプライアンス株式会社 scroll compressor

Also Published As

Publication number Publication date
JP4228406B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
KR920010733B1 (en) Scroll compressor
JP2816210B2 (en) Oil device for scroll compressor
JPH10110688A (en) Scroll compressor
JPH109160A (en) Scroll compressor
JP4126736B2 (en) Scroll compressor
JP4730382B2 (en) Compressor
JP2004270668A (en) Hermetic compressor
JP2004301092A (en) Scroll compressor
JP4728872B2 (en) Electric compressor
JP5229304B2 (en) Compressor
JPH11247786A (en) Compressor
JP6655327B2 (en) Hermetic scroll compressor and refrigeration air conditioner
US20060083649A1 (en) Compressor
WO2017183330A1 (en) Rolling cylinder-type positive displacement compressor
JP3560901B2 (en) Scroll compressor
JP3831530B2 (en) Oil return mechanism of scroll compressor
JP2785806B2 (en) Scroll gas compressor
JPH0886288A (en) Scroll type compressor
JP2746665B2 (en) Scroll compressor
WO2023157126A1 (en) Hermetic compressor
JP2693753B2 (en) Scroll compressor
JP2009127465A (en) Electric compressor
JP4262701B2 (en) Scroll compressor
JPH02181084A (en) Scroll type fluid device
JP2002213380A (en) Lubrication structure of compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees