JPH11247714A - Stirling cycle engine for driving displacer by using planetary gear - Google Patents

Stirling cycle engine for driving displacer by using planetary gear

Info

Publication number
JPH11247714A
JPH11247714A JP9058298A JP9058298A JPH11247714A JP H11247714 A JPH11247714 A JP H11247714A JP 9058298 A JP9058298 A JP 9058298A JP 9058298 A JP9058298 A JP 9058298A JP H11247714 A JPH11247714 A JP H11247714A
Authority
JP
Japan
Prior art keywords
displacer
gear
planetary gear
power piston
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9058298A
Other languages
Japanese (ja)
Inventor
Yoshihiko Haramura
嘉彦 原村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9058298A priority Critical patent/JPH11247714A/en
Publication of JPH11247714A publication Critical patent/JPH11247714A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders

Landscapes

  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the speed of a displacer near the top dead center/bottom dead center of a power piston so as to increase the regenerative calorific value by using a shaft eccentrically attached to a planetary gear when the displacer is driven, in a Stirling engine or a Stirling refrigerating machine/heat pump having a power piston and the displacer to be operated in different cylinders and promote heat exchange by repeatedly introducing operating gas in a cylinder to a heater or a cooler while oscillating the displacer at frequencies higher than the rotational speed of a power shaft in the expansion/compression stroke. SOLUTION: In a gear system in which the ratio of the number of teeth of a sum gear 4 and the number of teeth of a planetary gear 5 is 2:1 and an internal gear 3 is fixed, the sum gear 4 is rotated at the speed three times of a power shaft 7. A displacer is reciprocated by making use of a rotational motion of an eccentric shaft 2 attached to one of the planetary gears 5. At this time, the phase difference between the displacer and the power piston is taken as 90 deg., to constitute a Stirling cycle.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】スターリングエンジンは,近年漸
く実用に供する事ができるようになった新型の原動機で
あって,原理的には極めて高い熱効率が期待できるエン
ジンである.比較的低い温度の熱源を利用するのに向い
ているので,ディーゼルエンジンとの複合機関や小規模
のコ・ジェネレーションシステムに応用可能である.ス
ターリング冷凍機は主に極低温(液体ヘリウム温度程
度)を作るのに使われているが,フロン規制によって通
常の冷凍機・冷暖房装置への応用も期待されている. 【0002】 【従来の技術】現在作られているスターリングサイクル
機関は,高温部・低温部の作動ガスの体積を正弦的また
はそれに近い形で変化させるものに限られている.その
場合,スターリングサイクルの等温圧縮・等積加熱・等
温膨張・等積冷却の4つの基本行程は,明確なものとは
ならない.そのため,熱伝達が十分に行われていると仮
定しても,1サイクル当りの出力が理想値の75%程度
しか得られない. 【0003】 【発明が解決しようとする課題】スターリングサイクル
の,等温圧縮・等積加熱・等温膨張・等積冷却の4つの
基本行程が理想的に行われる場合,1サイクル当たりに
取り出せる仕事は最大になる.しかし実際の動作では,
パワーピストンとディスプレーサを滑らかに動かさねば
ならないので,理想出力よりいくぶん小さくなってしま
う.しかし,従来行われているように,正弦波状または
それに近い形で動かすのでは,得られるべき出力を必要
以上に削ってしまう.同径で別個の高温・低温シリンダ
を使用するタイプと1つのシリンダ内でパワーピストン
とディスプレーサを動かすタイプでは,等積加熱(エン
ジンの場合)以外の行程でロスが大きい.パワーピスト
ンとディスプレーサを異なる径のシリンダ内で動かすタ
イプでは,圧縮行程(エンジンの場合)以外でロスが大
きい.本発明は,4つの基本サイクルの中間的な変化を
する位相幅を極力減少させて,熱効率の向上と体積当た
りの出力の向上を狙っている. 【0004】 【課題を解決するための手段】本発明は,パワーピスト
ンとディスプレーサを異なるシリンダ内で動かすタイプ
のスターリングサイクル機関に適用可能な技術である.
ディスプレーサに作用する圧力はほぼ釣り合っていて駆
動力はさほど大きくないから,この波形を工夫してより
理想に近付けることができる.工夫すべき点は,パワー
ピストンの上死点・下死点付近でディスプレーサをすば
やく動かして等積変化での作動ガス平均温度の変化を大
きくすること,圧縮・膨張の際のディスプレーサの動き
を極力抑えることである. 【0005】駆動波形を前述のようにするために,ディ
スプレーサの駆動波形に3倍高調波を加えて,波形の山
と谷の部分を平坦にし,平均値を横切る点での勾配を急
にする.すなわち,αcosφ(ψ:位相)の波形に
3倍高調波−αcos3φを加える.α/α=1
/6 になり,山と谷では,位相ほぼ90゜にわたってディス
プレーサの動きがストロークの2%に抑えられる. 【0006】具体的には,太陽歯車の歯数と遊星歯車の
歯数の比が2:1の内歯車固定の遊星歯車を設置する.
この比の遊星歯車では,遊星歯車の周回角速度・自転の
角速度は,太陽歯車の角速度のそれぞれ1/3倍・1倍
なので,太陽歯車を動力軸(パワーピストンのクランク
軸)の3倍の角速度で回転させれば,遊星歯車の中心は
一定の半径(α)で動力軸と等しい角速度で回転する
一方,遊星歯車の自転角速度はこの3倍になる.そこ
で,1つの遊星歯車にαだけ偏心した偏心軸を取り付
けると,この軸の位置は,前述のような3倍高調波が加
わった波形で変化するので,この軸に連接棒を接続する
などしてディスプレーサを駆動する.α/α=1/
6の場合,偏心軸の軌道は,図2で示されるようにな
る.なお,回転運動を直線往復運動に変換する機構は,
上述のクランク−ピストン機構に類する機構のほか,周
知のいくつかの方法が利用可能である. 【0007】 【作用】エンジンにおける1サイクル当りの出力仕事
は,圧力−体積線図上で状態変化をつないでできた閉曲
線が囲む面積で表すことができる.理想サイクル・従来
の方法・本発明による方法の相違を,熱伝達が十分に行
われた場合に対して,図3に示す.ディスプレーサを正
弦波形で駆動した場合は細実線で表され,破線で表され
た理想的なサイクルに比べ75%程度でしかない.これ
に対して本発明による方法では,α/α=1/6の
とき,太実線で表され,理想の90%程度まで出力を向
上させることができる.実際の機関の出力は,摩擦等の
損失により圧力−体積線図で示される値よりも小さくな
るが,減少の程度はディスプレーサの駆動波形にはさほ
ど影響を受けないので,実出力は30〜40%向上する
ことが見込まれる. 【0008】本発明によるディスプレーサの駆動方法で
は,動力軸回転速度の3倍の周波数でディスプレーサを
揺動させることになる.通常,シリンダ内にある作動ガ
スを加熱・冷却することは難しいが,この揺動によって
シリンダ内の作動ガスをヒータやクーラ内に送り込み,
熱交換を増進させることができる.特に,ピストン−ク
ランク機構に類する駆動方法をとる場合のように,駆動
波形が上下対称とならない場合には,圧縮時に比べて交
換熱量が多い膨張時に揺動がより大きくなるように偏心
軸の位置を調整して,より理想的なサイクルを実現する
ことができる. 【0009】 【実施例】実施例を図4に示す.遊星歯車によるディス
プレーサ駆動機構,パワーピストンの回転を3倍に増速
する機構からなる.ディスプレーサの駆動に使われる遊
星歯車とパワーピストンの位相差を90゜にとり,偏心
軸がディスプレーサの上死点・下死点で内側に振れるよ
うに遊星歯車の位相を設定する. 【0010】エンジンの場合の動作は,以下のとおりで
ある.圧縮行程の間,ディスプレーサは加熱器側に十分
寄ったところでほとんど動かず,主に低温部にある作動
ガスが圧縮される.パワーピストンが上死点付近にある
とき,ディスプレーサが加熱器側から冷却器側に大きく
動いて,作動ガスを再生器を通って高温側に送り出す.
このとき再生器に蓄えられていた熱量が作動ガスに与え
られ,作動ガスの平均温度すなわち圧力が上昇する.パ
ワーピストンが膨張行程にある間,ディスプレーサは冷
却器側に十分寄った位置でほとんど動かず,主に高温部
にある作動ガスが膨張して仕事を発生する.パワーピス
トンが下死点付近にあるとき,ディスプレーサは冷却器
側から加熱器側へ大きく動いて,作動ガスを高温部から
低温部に移動させる.このとき再生器内の蓄熱材に熱量
を蓄える.等積加熱・冷却で十分に再生・蓄熱が行われ
るためには,パワーピストンが上死点・下死点付近にあ
る時により多くの作動ガスを高温部と低温部の間で移動
させる必要がある.本発明による作動ガスの移動体積
は,図2に示すように,上死点・下死点をはさむ位相6
0゜の間で行程容積の77%である.これは,正弦波で
ディスプレーサを動かした場合の50%に比べて大幅に
改善されている. 【0011】 【発明の効果】1サイクル当たりの出力仕事が増加する
ので,摩擦等による機械損失の割合が減少して,機関体
積当りの出力や熱効率が格段に向上する.スターリング
サイクル機関は,元来,内燃機関や蒸気圧縮冷凍機に比
べて製造コストが高い欠点がある.しかし,熱効率を十
分高くできれば,エンジンにおける燃料節約や冷凍機に
おける高い動作係数(COP)のメリットがそれに勝っ
て,経済的にも十分に利用価値の高いエンジンや冷凍機
になる.特に,本発明が対象としている,パワーピスト
ンとディスプレーサを異なる径のシリンダ内で動かすタ
イプのスターリングサイクル機関では,ディスプレーサ
の行程容積をパワーピストンのそれに比べて大きくとる
ことで,パワーピストンによる圧縮・膨張の際の作動ガ
スの温度上昇・下降を低減し,等温行程をより理想的に
実現することが可能である.したがって,本発明により
等積変化が理想に近づけば,本来の高い熱効率のメリッ
トを生かしたエンジンや冷凍機が実用化されることが期
待できる.
Description: BACKGROUND OF THE INVENTION The Stirling engine is a new type of prime mover which has been gradually put into practical use in recent years, and in principle, extremely high thermal efficiency can be expected. Engine. It is suitable for using a relatively low temperature heat source, so it can be applied to a combined engine with a diesel engine or a small-scale cogeneration system. Stirling refrigerators are mainly used to make cryogenic temperatures (about the temperature of liquid helium), but their application to ordinary refrigerators and air conditioners is also expected due to the regulations for CFCs. 2. Description of the Related Art Stirling cycle engines that are currently manufactured are limited to those that change the working gas volume in a high-temperature section and a low-temperature section in a sinusoidal or nearly sinusoidal manner. In that case, the four basic steps of isothermal compression, isothermal heating, isothermal expansion, and isostatic cooling of the Stirling cycle are not clear. Therefore, even if it is assumed that heat transfer is sufficient, the output per cycle is only about 75% of the ideal value. When the four basic steps of the Stirling cycle, ie, isothermal compression, isothermal heating, isothermal expansion, and isocooling, are ideally performed, the work that can be taken out per cycle is maximum. become. However, in actual operation,
Since the power piston and displacer must move smoothly, the output will be somewhat lower than the ideal output. However, moving in a sinusoidal or near-sine-wave form, as is done in the past, reduces the output to be obtained more than necessary. Loss is large in processes other than equal-volume heating (in the case of an engine) between the type using separate high and low temperature cylinders of the same diameter and the type that moves the power piston and displacer in one cylinder. In the type that moves the power piston and displacer in cylinders of different diameters, the loss is large except for the compression stroke (in the case of an engine). The present invention aims to improve the thermal efficiency and the output per unit volume by reducing the phase width that changes in the middle of the four basic cycles as much as possible. [0004] The present invention is a technique applicable to a Stirling cycle engine of a type in which a power piston and a displacer are moved in different cylinders.
Since the pressure acting on the displacer is almost balanced and the driving force is not so large, this waveform can be devised to make it closer to the ideal. The points to be devised are to quickly move the displacer near the top and bottom dead center of the power piston to increase the change in the working gas average temperature due to the change in equal volume, and to minimize the movement of the displacer during compression and expansion. It is to suppress. In order to make the drive waveform as described above, a third harmonic is added to the drive waveform of the displacer, the peaks and valleys of the waveform are flattened, and the gradient at the point crossing the average value is made steep. . That is, the third harmonic-α 3 cos 3φ is added to the waveform of α 1 cos φ (ψ: phase). α 1 / α 3 = 1
/ 6 In the peaks and valleys, the displacement of the displacer is suppressed to 2% of the stroke over almost 90 ° of phase. Specifically, a planetary gear fixed to an internal gear having a ratio of the number of teeth of the sun gear to the number of teeth of the planetary gear of 2: 1 is provided.
In a planetary gear of this ratio, the orbital angular velocity and the rotation angular velocity of the planetary gear are 1/3 and 1 times the angular velocity of the sun gear, respectively. Therefore, the angular velocity of the sun gear is three times that of the power shaft (power piston crankshaft). , The center of the planetary gear rotates at a constant radius (α 1 ) at the same angular velocity as the power shaft, while the rotation angular velocity of the planetary gear becomes three times this. Therefore, when mounting the eccentric axis eccentric by alpha 3 one planetary gear, the position of this axis, because changes in waveforms applied three times harmonic as described above, such as to connect the connecting rod to the shaft To drive the displacer. α 1 / α 3 = 1 /
In the case of 6, the eccentric shaft trajectory is as shown in FIG. The mechanism that converts the rotary motion into a linear reciprocating motion is
In addition to the mechanism similar to the crank-piston mechanism described above, several well-known methods are available. The output work per cycle in the engine can be represented by an area surrounded by a closed curve formed by connecting state changes on a pressure-volume diagram. The differences between the ideal cycle, the conventional method, and the method according to the present invention are shown in FIG. 3 when the heat transfer is sufficiently performed. When the displacer is driven with a sinusoidal waveform, it is represented by a thin solid line, which is only about 75% of the ideal cycle represented by a broken line. On the other hand, in the method according to the present invention, when α 1 / α 3 = 1 /, it is represented by a thick solid line, and the output can be improved to about 90% of the ideal. Although the actual output of the engine is smaller than the value shown in the pressure-volume diagram due to the loss of friction and the like, the actual output is 30 to 40 because the degree of the decrease is not significantly affected by the drive waveform of the displacer. % Improvement is expected. In the method for driving a displacer according to the present invention, the displacer is swung at a frequency three times the rotational speed of the power shaft. Normally, it is difficult to heat and cool the working gas in the cylinder, but this swing sends the working gas in the cylinder into the heater or cooler,
Heat exchange can be enhanced. In particular, when the drive waveform is not vertically symmetrical, such as when a drive method similar to a piston-crank mechanism is used, the position of the eccentric shaft is set so that the swing becomes larger during expansion, which has a large amount of exchange heat compared to compression. Can be adjusted to achieve a more ideal cycle. FIG. 4 shows an embodiment. It consists of a displacer drive mechanism using planetary gears and a mechanism that increases the speed of the power piston three times. The phase difference between the planetary gear used to drive the displacer and the power piston is set to 90 °, and the phase of the planetary gear is set so that the eccentric shaft swings inward at the top dead center and bottom dead center of the displacer. The operation in the case of the engine is as follows. During the compression stroke, the displacer hardly moves when it is close enough to the heater side, and the working gas mainly in the low temperature part is compressed. When the power piston is near the top dead center, the displacer moves largely from the heater side to the cooler side, and sends out working gas to the high temperature side through the regenerator.
At this time, the amount of heat stored in the regenerator is given to the working gas, and the average temperature, that is, the pressure of the working gas rises. While the power piston is in the expansion stroke, the displacer hardly moves at a position sufficiently close to the cooler side, and the working gas mainly in the high temperature part expands to generate work. When the power piston is near the bottom dead center, the displacer moves largely from the cooler side to the heater side, and moves the working gas from the high temperature part to the low temperature part. At this time, heat is stored in the heat storage material in the regenerator. In order for the regeneration and heat storage to be performed sufficiently by equal volume heating and cooling, it is necessary to move more working gas between the hot and cold parts when the power piston is near the top dead center and bottom dead center. is there. As shown in FIG. 2, the moving volume of the working gas according to the present invention has a phase 6 between the top dead center and the bottom dead center.
Between 0 ° it is 77% of the stroke volume. This is a significant improvement over 50% when the displacer is moved with a sine wave. As the output work per cycle increases, the ratio of mechanical loss due to friction and the like decreases, and the output per engine volume and the thermal efficiency are remarkably improved. Originally, the Stirling cycle engine has a disadvantage that the manufacturing cost is higher than the internal combustion engine and the vapor compression refrigerator. However, if the thermal efficiency can be made sufficiently high, the advantages of fuel saving in the engine and high operating coefficient (COP) in the refrigerator will outweigh it, and the engine and the refrigerator will be economically sufficiently valuable. In particular, in a Stirling cycle engine in which the power piston and the displacer are moved in cylinders of different diameters, which is the object of the present invention, the compression / expansion by the power piston is performed by increasing the stroke volume of the displacer compared to that of the power piston. In this case, it is possible to reduce the rise and fall of the working gas temperature and to realize the isothermal process more ideally. Therefore, if the change in the equal volume approaches the ideal according to the present invention, it can be expected that an engine or a refrigerator utilizing the advantage of the inherently high thermal efficiency will be put to practical use.

【図面の簡単な説明】 図1は,ディスプレーサ位置の位相による変化を例示し
たものである. 【符号の説明】 1.3倍高調波を含む波形 2.正弦波のみの波
形 図2は,偏心軸が描く軌道の例を示したものである. 【符号の説明】 1.遊星歯車の軌道 2.偏心軸の軌道 図3は,圧力対体積線図を用いて,従来の方法,本発明
による方法,理想的な場合に対し,出力仕事を比較した
ものであり,本発明による効果を示すものである. 【符号の説明】 1.本発明による改善サイクル 2.正弦波駆動によ
るサイクル 3.理想サイクル 図4は,本発明を実施した例であり,斜視図である. 【符号の説明】 1.連接棒 2.偏心軸 3.内歯歯車 4.太陽歯車 5.遊星歯車 6.増速用歯車 7.動力軸 8.加熱器 9.再生器 10.熱交換シリンダ 11.冷却器 12.ディスプレーサ 13.圧縮膨張シリン
ダ 14.パワーピストン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 exemplifies a change in phase of a displacer position. [Explanation of Signs] 1. Waveform including third harmonic 2. Fig. 2 shows an example of a trajectory drawn by an eccentric axis. [Explanation of Codes] 1. Orbit of planetary gear Track 3 of the eccentric shaft compares the output work with the conventional method, the method according to the present invention, and the ideal case using the pressure-volume diagram, and shows the effect of the present invention. is there. [Explanation of Codes] 1. Improvement cycle according to the invention 2. Cycle by sine wave drive FIG. 4 is an example of an embodiment of the present invention, and is a perspective view. [Explanation of Codes] Connecting rod 2. Eccentric shaft 3. Internal gear 4. Sun gear 5. Planetary gear 6. Gears for speed increase7. Power shaft 8. Heater 9. Regenerator 10. Heat exchange cylinder 11. Cooler 12. Displacer 13. Compression / expansion cylinder 14. Power piston

Claims (1)

【特許請求の範囲】 【請求項目1】スターリングサイクル機関(エンジンな
らびに冷凍機・ヒートポンプ)でディスプレーサを駆動
する際,遊星歯車に偏心させて取り付けた軸を用いて駆
動することで,移動するときはより速く動く一方,ほぼ
静止する位相幅が広くなる波形で動かし,定積の加熱・
冷却行程での作動ガス平均温度の変化を大きくとるこ
と. 【請求項目2】膨張・圧縮行程において,ディスプレー
サを動力軸回転速度より速い振動数で揺動させること
で,シリンダ内の作動ガスをヒータやクーラに繰り返し
導き入れ,熱交換を増進させること.
Claims 1. When a displacer is driven by a Stirling cycle engine (engine and refrigerator / heat pump), when the displacer is driven by using a shaft eccentrically mounted on a planetary gear, While moving faster, it moves with a waveform that is almost stationary and has a wider phase width.
The change in the average working gas temperature during the cooling process must be large. In the expansion / compression process, the working gas in the cylinder is repeatedly introduced into a heater or a cooler by oscillating the displacer at a frequency higher than the rotational speed of the power shaft, thereby enhancing heat exchange.
JP9058298A 1998-02-28 1998-02-28 Stirling cycle engine for driving displacer by using planetary gear Pending JPH11247714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058298A JPH11247714A (en) 1998-02-28 1998-02-28 Stirling cycle engine for driving displacer by using planetary gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058298A JPH11247714A (en) 1998-02-28 1998-02-28 Stirling cycle engine for driving displacer by using planetary gear

Publications (1)

Publication Number Publication Date
JPH11247714A true JPH11247714A (en) 1999-09-14

Family

ID=14002447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058298A Pending JPH11247714A (en) 1998-02-28 1998-02-28 Stirling cycle engine for driving displacer by using planetary gear

Country Status (1)

Country Link
JP (1) JPH11247714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836691B2 (en) 2004-10-21 2010-11-23 Suction Gas Engine Mfg. Co., Ltd. Heat engine
CN104265475A (en) * 2014-09-21 2015-01-07 郭远军 Thermal energy power engine output power speed governor and speed governing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836691B2 (en) 2004-10-21 2010-11-23 Suction Gas Engine Mfg. Co., Ltd. Heat engine
CN104265475A (en) * 2014-09-21 2015-01-07 郭远军 Thermal energy power engine output power speed governor and speed governing method thereof

Similar Documents

Publication Publication Date Title
CN100339565C (en) Scroll-type expander having heating structure and scroll-type heat exchange system employing the expander
EP2406485B1 (en) Heat engine with regenerator and timed gas exchange
US8276384B2 (en) Ambient temperature thermal energy and constant pressure cryogenic engine
CA1204291A (en) Isothermal positive displacement machinery
JP2003507610A (en) High efficiency air bottoming engine
CA2586382A1 (en) Method and apparatus for converting thermal energy to mechanical energy
CN107560212B (en) A kind of economic benefits and social benefits free-piston type Stirling thermal drivers refrigeration machine/heat pump system
US3830059A (en) Heat engine
US4794752A (en) Vapor stirling heat machine
US5924305A (en) Thermodynamic system and process for producing heat, refrigeration, or work
JPH05248720A (en) Thermal-compression heat pump
JP2009270559A (en) Rotary type external combustion engine
JP2001073873A (en) Stirling cycle apparatus to drive displacer using epicyclic gear
CN1099562C (en) Gas compressor expander
JPH11247714A (en) Stirling cycle engine for driving displacer by using planetary gear
US4281517A (en) Single stage twin piston cryogenic refrigerator
US4249378A (en) Thermally actuated heat pump
US7497085B2 (en) Refrigerating machine using the stirling cycle
JPH10332215A (en) Cold heat storage type refrigerator
JP3586555B2 (en) Refrigeration system
JPH05322338A (en) Complex pulse pipe type heat pump
JP2000314347A (en) External combustion engine.heat pump with heat transfer promoted by forced flow
JPH05118685A (en) Pulse tube type stirling refrigerator
JPH0213139B2 (en)
JPS5869366A (en) Driving device for stirling refrigerator