JPH05322338A - Complex pulse pipe type heat pump - Google Patents

Complex pulse pipe type heat pump

Info

Publication number
JPH05322338A
JPH05322338A JP12884292A JP12884292A JPH05322338A JP H05322338 A JPH05322338 A JP H05322338A JP 12884292 A JP12884292 A JP 12884292A JP 12884292 A JP12884292 A JP 12884292A JP H05322338 A JPH05322338 A JP H05322338A
Authority
JP
Japan
Prior art keywords
heat
expansion
radiator
piston
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12884292A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishizaki
崎 嘉 宏 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECTI KK
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
ECTI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, ECTI KK filed Critical Aisin Seiki Co Ltd
Priority to JP12884292A priority Critical patent/JPH05322338A/en
Publication of JPH05322338A publication Critical patent/JPH05322338A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Abstract

PURPOSE:To perform a cooling or heating operation, a freezing operation and a liquefying operation and the like by using an auxiliary driving system such as a heating system and a motor and the like by a method wherein a complex pulse pipe type heat pump is constituted under a combination of connecting a radiator, a cold heat accumulator, a heat accumulator, a heat absorber and a pulse pipe and the like between a compressed space and an expanded space. CONSTITUTION:A compressing piston 16 within a compression cylinder 17 is reciprocated by a crank shaft 14 through a connecting rod 15 so as to compress liquid within a compressing space 18. A power driving system is constructed by a radiator 19, a heat accumulator 20, a heat absorption part 21, a pulse pipe 22, a radiator 23, an expansion cylinder 25, an expansion piston 26 and an expansion space 24. A freezing generating system is constituted by a compressing space 29 defined by the compressing piston 28 reciprocated within the compression cylinder 27 through the connecting rod 15, a radiator 30, a cold heat accumulator 31, a low temperature heat absorbing part 32, a pulse pipe 33, a radiator 34, an expansion cylinder 35, an expansion piston 36 and an expansion space 37. Then, a power for a freezing generating system is supplied by the power generating system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合型パルス管式ヒー
トポンプに関し、冷凍機、冷暖房、食品や液体・固体の
冷凍,乾燥、気体の液化、水の凝縮,固化などと多目的
の熱サイクルとして利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite type pulse tube heat pump, which is used as a multipurpose heat cycle such as a refrigerator, cooling and heating, freezing and drying of food and liquid / solid, liquefaction of gas, condensation and solidification of water. Available.

【0002】[0002]

【従来の技術】本発明に係わる従来技術を図5に基づい
て説明すると、圧縮空間100内の作動流体(所要冷凍
・液化温度や出力規模、さらに火炎等により加熱される
高温加熱器の温度によって空気,ヘリウム,アルゴン,
窒素,水素,その他の気体や混合気体,一部液体、以後
これらを総称して単に流体とし、数十気圧から200気
圧で封入されている)は、ほぼ常温度の圧縮シリンダ1
01、図示しないピストン駆動機構(ガイドピストンを
もつクランクシャフト、揺動板、回転斜板、リニアモー
タ等)に連結して往復動する圧縮ピストン102と流体
の膨張空間103を構成するほぼ常温にある膨張シリン
ダ104内のピストン駆動機構に接続された膨張ピスト
ン105、流体の圧縮熱を大気や他の流体に放出する放
熱器106、無数のブロンズやステンレスの金属メッシ
ュや金属や稀土類の小球体を蓄冷材として詰められた蓄
冷器107、低温吸熱部108、ガスピストンの役目を
果たすパルス管109、配管110,111、ピストン
リング112によって構成されている。
2. Description of the Related Art A prior art relating to the present invention will be described with reference to FIG. 5, depending on the working fluid in the compression space 100 (required refrigeration / liquefaction temperature, output scale, and temperature of a high temperature heater heated by a flame or the like). Air, helium, argon,
Nitrogen, hydrogen, other gases and mixed gases, some liquids, hereinafter collectively referred to simply as fluids, sealed at several tens to 200 atmospheres) are compression cylinders 1 at almost normal temperature.
01, the compression piston 102 that reciprocates by connecting to a piston driving mechanism (not shown) (a crankshaft having a guide piston, a rocking plate, a rotary swash plate, a linear motor, etc.) and a fluid expansion space 103 are at about room temperature The expansion piston 105 connected to the piston drive mechanism in the expansion cylinder 104, the radiator 106 for releasing the compression heat of the fluid to the atmosphere and other fluids, the innumerable bronze and stainless steel metal mesh, and the small spheres of metal and rare earth. It is composed of a regenerator 107 packed as a regenerator material, a low temperature heat absorbing part 108, a pulse tube 109 serving as a gas piston, pipes 110 and 111, and a piston ring 112.

【0003】なお、配管111には、膨張ピストン10
5の膨張仕事量が大きい場合や、低温吸熱部108の温
度が高い場合には、図示しないが配管110と同様の放
熱器が膨張空間103とパルス管109との間に接続さ
れる。また、圧縮ピストン102と膨張ピストン105
が上死点にあるときは、位相角(クランク角)は0であ
る。
The pipe 111 is provided with an expansion piston 10
When the work of expansion of No. 5 is large or the temperature of the low temperature heat absorption unit 108 is high, a radiator similar to the pipe 110 is connected between the expansion space 103 and the pulse tube 109, although not shown. In addition, the compression piston 102 and the expansion piston 105
Is at the top dead center, the phase angle (crank angle) is zero.

【0004】通常は、低温吸熱部108の所要温度や圧
縮空間100の最大の掃気容積Vcと膨張空間103の
最大の掃気容積Veとの容積比Vc/Ve=Ω、配管1
10,111の長さと配管110,111内の容積、蓄
冷器107の死容積、低温吸熱部108の内容積や長
さ、などによって異なるが、膨張ピストン105は圧縮
ピストン102より0度(同位相)から60度ほど進ん
だ位相角で往復駆動され容積を可変する。
Normally, the volume ratio Vc / Ve = Ω between the required temperature of the low temperature heat absorption part 108, the maximum scavenging volume Vc of the compression space 100 and the maximum scavenging volume Ve of the expansion space 103, and the pipe 1
Although it depends on the length of 10, 111 and the volume in the pipes 110, 111, the dead volume of the regenerator 107, the internal volume and the length of the low temperature heat absorption part 108, the expansion piston 105 is 0 degree (same phase) from the compression piston 102. ), The volume is changed by reciprocating with a phase angle advanced by about 60 degrees.

【0005】80K用の冷凍機として用いる場合、Ω=
7、位相角=30度、Vc=420cc、回転数=34
0rpm、蓄冷器=ステンレス 150メッシュ800
枚+鉛球0.03cmΦ 200g、死容積40cc、
パルス管2cmΦ 25cm長さで説明する。
When used as a refrigerator for 80K, Ω =
7, phase angle = 30 degrees, Vc = 420 cc, rotation speed = 34
0 rpm, regenerator = stainless steel 150 mesh 800
Sheet + lead ball 0.03 cm Φ 200 g, dead volume 40 cc,
A pulse tube 2 cmΦ 25 cm long will be described.

【0006】圧縮空間100内の平均圧力20気圧のヘ
リウムの流体は、ピストン駆動機構で圧縮ピストン10
2が上死点に向かうとほぼ30気圧に圧縮され、配管1
10より放熱器106に入り大気に放熱してほぼ常温と
なる。次に、蓄冷器107の蓄冷材によって冷やされ、
低温吸熱部108よりパルス管109で膨張ピストン1
05が下死点に30度進んでいるため断熱膨張(実際に
はポリトロピック過程)し、配管111より膨張空間1
03に入り、膨張ピストン105を押す仕事をして約1
5気圧になる。
The helium fluid having an average pressure of 20 atm in the compression space 100 is compressed by the piston drive mechanism into the compression piston 10.
When 2 goes to top dead center, it is compressed to about 30 atm, and pipe 1
10 enters the radiator 106 to radiate heat to the atmosphere and reach almost room temperature. Next, it is cooled by the regenerator material of the regenerator 107,
Expansion piston 1 with pulse tube 109 from low temperature heat absorption unit 108
Since 05 has advanced to the bottom dead center by 30 degrees, adiabatic expansion (actually a polytropic process) occurs and the expansion space 1 is expanded from the pipe 111.
03, work to push expansion piston 105 and do about 1
It becomes 5 atm.

【0007】この過程では、パルス管109内の流体は
ほぼ常温にある膨張ピストン105の低温から常温まで
の温度勾配をもつガスピストンの役目を果たしており、
このガスピストンの常温側からみて最先端となる低温吸
熱部108内の流体温度が最低となって冷凍発生にな
る。
In this process, the fluid in the pulse tube 109 plays the role of a gas piston having a temperature gradient from the low temperature of the expansion piston 105 at almost room temperature to room temperature.
The fluid temperature in the low-temperature heat-absorbing portion 108, which is the most advanced when viewed from the room temperature side of the gas piston, becomes the lowest and freezing occurs.

【0008】更に、膨張空間103の流体は、配管11
1、パルス管109、低温吸熱部108、蓄冷器107
で温められ、配管110より圧縮空間100に戻って1
サイクルが終わる。これが連続的に行われる。このと
き、低温吸熱部108は最低温度が約26Kとなり、8
0Kでの冷凍出力は60Wで、性能指数=消費動力/冷
凍出力=25となった。この値は、冷凍サイクルの中で
も最高効率が得られるスターリング冷凍機に近い。
Further, the fluid in the expansion space 103 is the pipe 11
1, pulse tube 109, low temperature heat absorption section 108, regenerator 107
It is heated by the pipe 110 and returns to the compression space 100
The cycle ends. This is done continuously. At this time, the lowest temperature of the low temperature heat absorption part 108 becomes about 26K,
The refrigeration output at 0K was 60 W, and the figure of merit = consumed power / refrigeration output = 25. This value is close to the Stirling refrigerator, which has the highest efficiency in the refrigeration cycle.

【0009】また、Ωを条件(回転数、所要冷凍・液化
温度、死容積等)によるが、1.5〜6にすると、20
0Kから270K領域での食品の冷凍、真空乾燥、空調
等における高効率の冷凍機やヒートポンプにすることが
できる。さらに、蓄冷器107内の鉛球を取り除き、低
温吸熱部108を電力で400Kに加熱したところ、冷
凍機用の消費動力が減少してほとんど無くなり、温度を
高くするにしたがい発生動力が大きくなった。さらに温
度を900K程度にすると、この構成で完全に原動機と
なることが明らかになった。
Although Ω depends on conditions (rotation speed, required freezing / liquefaction temperature, dead volume, etc.), if Ω is set to 1.5 to 6, Ω will be 20.
It can be used as a highly efficient refrigerator or heat pump for freezing food in the 0K to 270K region, vacuum drying, air conditioning, and the like. Further, when the lead balls in the regenerator 107 were removed and the low temperature heat absorption part 108 was heated to 400K with electric power, the power consumption for the refrigerator decreased and almost disappeared, and the power generated increased as the temperature increased. Further, it has become clear that when the temperature is set to about 900 K, this configuration completely becomes a prime mover.

【0010】図5に示す構成がスターリングサイクルの
構成と大きく異なる最大の特徴は、スターリングサイク
ルのような比較的長い形状で往復運動し、製作費も高
く、低温度になるディスプレーサや膨張ピストンやその
駆動機構を必要としないことである。当然、薄肉で低熱
伝導材料で製作されていた長い形状の膨張シリンダの必
要もなくなる。
The greatest feature of the structure shown in FIG. 5 is that which differs greatly from the structure of the Stirling cycle. The displacer and the expansion piston, which have a relatively long shape such as the Stirling cycle, reciprocate, the manufacturing cost is high and the temperature is low, It does not require a drive mechanism. Of course, there is no need for a long-shaped expansion cylinder, which was made of a thin, low thermal conductivity material.

【0011】従って、図5に示す構成では、低温吸熱部
108での機械振動が極度に低くなり、例えば、低温吸
熱部108の被冷却体をエレクトロニックセンサとする
と、今まで数十ミクロンもあった機械振動により発生し
ていたノイズが無くなり、計測分野にも応用できるよう
になったことである。機械振動は流体の出入りで鉛直方
向で約5ミクロンである。
Therefore, in the structure shown in FIG. 5, the mechanical vibration in the low temperature heat absorbing portion 108 becomes extremely low. For example, if the cooled object of the low temperature heat absorbing portion 108 is an electronic sensor, it has been several tens of microns until now. The noise generated by mechanical vibration is eliminated, and it can now be applied to the measurement field. Mechanical vibration is approximately 5 microns vertically in and out of fluid.

【0012】また、通常エポキシ系樹脂を含浸させたF
RPやベークライト材料で作られたディスプレーサや膨
張ピストンの使用は、機械振動発生のみならず、材料自
体やシリンダとの接触や摩擦振動によって不純ガスや塵
芥を発生させて作動流体や蓄冷器を汚しその性能劣化を
起こしたり、また、塵芥が配管やシリンダとピストンと
の間、更には、ピストンリングに詰まって冷凍機が停止
するといった低信頼性の原因にもなっていた。
Further, F which is usually impregnated with an epoxy resin is used.
The use of a displacer or expansion piston made of RP or Bakelite material not only causes mechanical vibration, but also generates impure gas and dust by contact with the material itself and the cylinder and frictional vibration to contaminate the working fluid and regenerator. Performance is deteriorated, and dust is stuck between the pipe and the cylinder and the piston, and further, the piston ring is clogged, which causes a low reliability such as stopping the refrigerator.

【0013】図5に示す構成によって、このディスプレ
ーサや膨張ピストンを必要とせず、単純構造のため、高
信頼度で低価格のマシンを提供できるようになったこと
は明らかである。
It is clear that the structure shown in FIG. 5 makes it possible to provide a highly reliable and low-priced machine without the need for the displacer and the expansion piston and the simple structure.

【0014】熱力学的なサイクルの過程は、流体のパル
ス管109内の挙動の解析が不十分ではあるが、スター
リングサイクルの場合のディスプレーサや膨張ピストン
の役目をガスピストンとして行っていると考えられる。
Although the analysis of the behavior of the fluid in the pulse tube 109 is insufficient in the process of the thermodynamic cycle, it is considered that the role of the displacer and the expansion piston in the case of the Stirling cycle is performed by the gas piston. ..

【0015】実験では、圧縮空間100と膨張空間10
3でのPV測定において流体の圧力波形が正弦波に近
く、2つの等容積過程と2つの等温度過程からなるスタ
ーリングサイクルに近く、それぞれの4過程では非効率
を伴うポリトロピックサイクルであった。
In the experiment, the compression space 100 and the expansion space 10
In the PV measurement in Example 3, the pressure waveform of the fluid was close to a sine wave, and was close to a Stirling cycle consisting of two equal volume processes and two equal temperature processes, and each of the four processes was a polytropic cycle with inefficiency.

【0016】図6のTS線図において冷凍機の動作のと
きの流体は、A−Bが放熱しながら等温度で圧縮される
等温過程、B−Cが蓄冷器107で冷却されながら容積
一定で低温度になる等容過程、C−Dが温度一定で吸熱
しながら膨張する等温過程であり、この過程で冷凍が得
られ、D−Aで蓄冷器107を冷やしながら容積一定で
温度上昇する等容過程である。これは、スターリングサ
イクルの理想的なサイクル過程であるが、本基本型の実
際の過程では、非効率を伴って一点鎖線のA−b−c−
d−Aのようにポリトロピック過程になる。
In the TS diagram of FIG. 6, the fluid during operation of the refrigerator has an isothermal process in which A-B is compressed at an equal temperature while radiating heat, and B-C has a constant volume while being cooled by the regenerator 107. It is an isochoric process in which the temperature is low, and an isothermal process in which C-D expands while absorbing heat at a constant temperature. In this process, refrigeration is obtained, and the temperature rises at a constant volume while cooling the regenerator 107 at D-A. It is a process. This is an ideal cycle process of the Stirling cycle, but in the actual process of this basic type, there is inefficiency and there is inefficiency, and the chain line A-b-c-
It becomes a polytropic process like d-A.

【0017】動力発生ではサイクルの向きが逆になり、
D−Cで放熱しながらの等温過程、C−Bで流体の温度
が高くなる等容過程、B−Aの等温過程で膨張仕事をし
て動力を発生し、A−Dは等容過程で常温に戻るが、実
際にそれぞれはポリトロピックなサイクル過程になって
d−c−b−A−dとなる。
When generating power, the direction of the cycle is reversed,
In the isothermal process while radiating heat in D-C, the isovolume process in which the temperature of the fluid rises in C-B and the isothermal process in B-A, expansion work is performed to generate power, and A-D is the isovolume process. Although the temperature returns to room temperature, each actually undergoes a polytropic cycle process and becomes d-c-b-a-d.

【0018】[0018]

【発明が解決しようとする課題】ところで、上述したよ
うな構成体を具体的にどのように作動させ、利用するか
が明らかではなかった。
By the way, it was not clear how to specifically operate and utilize the above-mentioned structure.

【0019】そこで、本発明では、複合型パルス管式ヒ
ートポンプの構成を確立することを、その技術的課題と
する。
Therefore, the technical problem of the present invention is to establish the structure of the composite pulse tube heat pump.

【0020】[0020]

【発明の構成】[Constitution of the invention]

【0021】[0021]

【課題を解決するための手段】前述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、火
炎、電熱等による加熱とモータ等の補助駆動や発電機、
その他の構成よりなる冷暖房、冷凍、気体の液化等を目
的とする熱サイクルの機器構成において、少なくとも1
つの円筒型または凸型の圧縮空間部と少なくとも1つの
円筒型または凸型の膨張空間部との間に、放熱器、蓄冷
器、蓄熱器、高温吸熱器、低温吸熱器、複数のパルス管
等を接続する組み合わせを少なくとも1組用い、火炎、
電熱等による加熱とモータ等の補助駆動を用いて冷暖
房、冷凍、気体の液化等を行えるような機器構成を特徴
とするようにしたことである。
The technical means of the present invention taken to solve the above-mentioned technical problems of the present invention are: heating by flame, electric heat, etc., auxiliary driving of a motor, etc., a generator,
In the device configuration of the heat cycle for the purpose of cooling / heating, refrigeration, liquefaction of gas, and the like having other configurations, at least
Between one cylindrical or convex compression space and at least one cylindrical or convex expansion space, radiator, regenerator, regenerator, high temperature heat absorber, low temperature heat absorber, multiple pulse tubes, etc. Using at least one set of connecting
It is characterized by a device configuration capable of performing heating / cooling, freezing, gas liquefaction, etc. by using heating by electric heat or the like and auxiliary drive of a motor or the like.

【0022】[0022]

【作用】上述した本発明の技術的手段によれば、動力発
生系の構成と冷凍発生系の構成が一体的に組み込まれ
る。
According to the above-mentioned technical means of the present invention, the structure of the power generation system and the structure of the refrigeration generation system are integrated.

【0023】[0023]

【実施例】以下、本発明の技術的手段を具体化した実施
例について添付図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the technical means of the present invention will be described below with reference to the accompanying drawings.

【0024】図1の第1実施例において、クランクシャ
フト(他のピストン往復動機構でもよい)14には、図
示しないモータと発電機またはいずれかを、運転始動を
スムースにしたり発電するために付けられ、コンロッド
15を介して圧縮シリンダ17内の圧縮ピストン16を
往復動させて、圧縮空間18の流体を圧縮する。放熱器
19、ステンレス等の多数枚積層されたメッシュや無数
の金属球やセラミックス球を蓄熱材として詰められた蓄
熱器20、メタンガス燃焼や電熱で高温加熱される吸熱
部21、金属製やセラミックス製のパルス管22、放熱
器23、ほぼ常温の膨張シリンダ25、膨張ピストン2
6で流体が膨張される膨張空間24から動力発生系が成
り立っている。
In the first embodiment of FIG. 1, a crankshaft (other piston reciprocating mechanism may be used) 14 is provided with a motor and / or a generator (not shown) for smooth start-up and generation of electricity. The compression piston 16 in the compression cylinder 17 is reciprocated via the connecting rod 15 to compress the fluid in the compression space 18. Radiator 19, heat accumulator 20 packed with a large number of stacked meshes such as stainless steel and innumerable metal balls or ceramic balls as a heat storage material, heat absorption part 21 heated to high temperature by methane gas combustion or electric heat, made of metal or ceramics Pulse tube 22, radiator 23, expansion cylinder 25 at almost room temperature, expansion piston 2
A power generation system is formed from the expansion space 24 in which the fluid is expanded in 6.

【0025】コンロッド15で圧縮シリンダ27内で往
復運動する圧縮ピストン28で流体が圧縮される圧縮空
間29、放熱器30、蓄冷器31、冷凍・液化をする低
温吸熱部32、パルス管33、放熱器34、ほぼ常温の
膨張シリンダ35、膨張ピストン36、膨張空間37の
機器構成から冷凍発生系が成り立っている。
A compression space 29 in which a fluid is compressed by a compression piston 28 that reciprocates in a compression cylinder 27 by a connecting rod 15, a radiator 30, a regenerator 31, a low temperature heat absorbing portion 32 for freezing and liquefying, a pulse tube 33, and heat radiation. A refrigeration generating system is constituted by the components of the container 34, the expansion cylinder 35 at almost room temperature, the expansion piston 36, and the expansion space 37.

【0026】本実施例では、以上の構成の動力発生系で
冷凍発生系の動力を賄うように構成されており、このよ
うな構成1組を1組だけでなく複数組用いて動作させる
ことができるのはもちろんである。
In the present embodiment, the power generation system having the above-described configuration is configured to cover the power of the refrigeration generation system, and it is possible to operate not only one such configuration but also a plurality of configurations. Of course you can.

【0027】尚、58,59は流体の圧力制御弁で圧縮
空間18,29と放熱器19,30との間に接続され、
60は流体を高純度に精製するフィルタ、61は流体の
供給弁、62は図示しないバッファタンクやクランクケ
ース内への接続端であり、図3,4の構成においても同
様に付加されている。
Reference numerals 58 and 59 are fluid pressure control valves connected between the compression spaces 18 and 29 and the radiators 19 and 30, respectively.
Reference numeral 60 is a filter for purifying the fluid to high purity, 61 is a fluid supply valve, and 62 is a connection end into a buffer tank or crankcase (not shown), which is also added in the configurations of FIGS.

【0028】図2のTS線図の非効率を含むポリトロピ
ックサイクルで説明すれば、動力発生系は、流体を常温
からのA−b−E−f−Aであり、冷凍発生系は、A−
b−c−d−Aである。これは、図6で述べた冷凍発生
系のA−b−c−d−Aと動力発生系のd−c−b−A
−dの2系統に対応している。
Explaining the polytropic cycle including the inefficiency of the TS diagram of FIG. 2, the power generation system is AbEfA from the normal temperature of the fluid, and the refrigeration generation system is AbEfA. −
b-cd-A. This is the A-b-c-d-A of the refrigeration generation system and the d-c-b-A of the power generation system described in FIG.
It corresponds to two lines of -d.

【0029】尚、Teは高温度に加熱される温度、Tc
は発生冷凍温度である。また、図1の放熱器23,34
は、出力が小さいときには双方、あるいはいずれかを除
く場合もあり、38はピストンリング、39はベアリン
グである。
Note that Te is the temperature at which the temperature is high, and Tc
Is the generated freezing temperature. In addition, the radiators 23 and 34 of FIG.
When the output is small, both or either may be excluded. 38 is a piston ring and 39 is a bearing.

【0030】また、それぞれの圧縮ピストン16,2
8、膨張ピストン26,36には、図示しないがガイド
ピストンが付けられる場合があり、また、動力発生系と
冷凍発生系を各1組に限らず、動力発生系を少なくとも
1組とし冷凍発生系を複数組として同じクランクシャフ
トに接続して動作させることや、動力発生系を複数組と
し冷凍発生系を少なくとも1組として同じクランクシャ
フトに接続して動作させることも可能である。また、複
数組の冷凍発生系のそれぞれの冷凍温度を変えることも
容易である。
Also, the respective compression pistons 16 and 2
8. A guide piston (not shown) may be attached to the expansion pistons 26 and 36, and the power generation system and the refrigeration generation system are not limited to one set each, but the power generation system may be at least one set. It is also possible to operate by connecting a plurality of sets to the same crankshaft or by operating a plurality of power generation systems and at least one refrigeration generation system connected to the same crankshaft. It is also easy to change the freezing temperature of each of the plurality of sets of freezing generation systems.

【0031】図3は第2実施例であり、凸型のピストン
40とシリンダ41で動力発生系の圧縮空間43と冷凍
発生系の圧縮空間42を形成し、更に、凸型の膨張ピス
トン44とシリンダ45でそれぞれの膨張空間47,4
6を形成して、この間に放熱器48、蓄熱器49、高温
加熱される吸熱部50、パルス管51、放熱兼用配管5
2と冷凍発生系の放熱器53、蓄冷器54、低温の吸熱
部55、パルス管57、放熱型配管57が設けられてい
る。
FIG. 3 shows a second embodiment, in which a convex piston 40 and a cylinder 41 form a power generation system compression space 43 and a refrigeration system compression space 42, and a convex expansion piston 44. The expansion space 47, 4 in each of the cylinders 45
6 is formed, and a radiator 48, a heat accumulator 49, a heat absorbing portion 50 that is heated to a high temperature, a pulse tube 51, and a heat radiation pipe 5 are formed therebetween.
2, a heat radiator 53 of a freezing generation system, a regenerator 54, a low temperature heat absorbing part 55, a pulse tube 57, and a heat radiation type pipe 57 are provided.

【0032】凸型のピストン,シリンダの採用は圧縮空
間と膨張空間との容積比変えることが容易であること
と、通常、動力発生系の圧縮空間と膨張空間に入出する
流体温度が高くなるが、凸型ピストンの上部を動力発生
系の圧縮および膨張空間とすれば、凸型ピストンに温度
勾配をつけて容易に対応できる。また、図1の構成と比
較して、1本の凸型ピストンで動力発生系の圧縮空間と
冷凍発生系の膨張空間を設けて構成し、ピストン数を減
らすことも容易である。また、図1の構成において、膨
張空間あるいは圧縮空間のいずれかを凸型ピストンにで
きることも勿論である。
When a convex piston or cylinder is used, it is easy to change the volume ratio between the compression space and the expansion space, and the temperature of the fluid entering and exiting the compression space and the expansion space of the power generation system usually increases. If the upper part of the convex piston is used as the compression and expansion space of the power generation system, a temperature gradient can be applied to the convex piston to easily cope with it. Further, as compared with the configuration of FIG. 1, it is also easy to reduce the number of pistons by forming the compression space of the power generation system and the expansion space of the refrigeration generation system with one convex piston. Further, in the configuration of FIG. 1, it goes without saying that either the expansion space or the compression space can be a convex piston.

【0033】尚、本実施例を冷房に使用する場合には、
放熱器19,30,23,34,48,53で大気に直
接、または間接的に放熱し、低温の吸熱部32,55で
直接屋内の空気を冷却するか、または他の流体で吸熱部
32,55の冷熱を回収して屋内に送り、ファンで屋内
空気を冷却する。暖房に使用する場合には、低温の吸熱
部32,55で直接、または他の流体を用いて屋外の大
気、または河川や地層の熱を回収し、放熱器19,3
0,23,34,48,53で屋内空気を直接、または
他の流体を使用して加熱すればヒートポンプ効果によっ
て高効率の暖房機となる。都市ガスを使用しての暖房で
は、特に大気温度が低い時には、高温度にする高温の吸
熱部21,50の廃熱を回収するようにすれば高効率に
なる。なお、これらの冷暖房の流路系については、フロ
ン系ンヒートポンプと大差がなく公知のことであるた
め、詳細な説明は省略する。
When this embodiment is used for cooling,
The radiators 19, 30, 23, 34, 48, 53 radiate heat to the atmosphere directly or indirectly, and the low temperature heat absorbing parts 32, 55 directly cool the indoor air, or the heat absorbing part 32 by another fluid. , 55 are collected and sent indoors to cool the indoor air with a fan. When used for heating, the heat of the outdoor atmosphere or the heat of the river or stratum is recovered by the low temperature heat absorbing parts 32, 55 or by using another fluid, and the radiators 19, 3 are used.
If the indoor air is heated at 0, 23, 34, 48, 53 directly or by using another fluid, it becomes a highly efficient heater due to the heat pump effect. In the heating using city gas, especially when the atmospheric temperature is low, it is highly efficient if the waste heat of the high temperature heat absorbing parts 21 and 50 to be raised is recovered. It should be noted that these cooling and heating flow passage systems are publicly known as they are the same as those of the chlorofluorocarbon heat pump, and therefore detailed description thereof will be omitted.

【0034】図4は第3実施例であり、図3の構成をさ
らに単純化し低価格化したもので、動力発生系と冷凍発
生系の圧縮空間63と膨張空間をそれぞれ1つにしたこ
とである。圧縮ピストン64、圧縮シリンダ65、放熱
器69,74,73,78、蓄熱器70、高温の吸熱部
71とパルス管72、蓄冷器75、低温の吸熱部76、
膨張ピストン67、膨張シリンダ68からなる。本実施
例では図3の構成よりも冷凍発生系と動力発生系より圧
縮空間63と膨張空間66に温度の異なる流体が入り混
合して効率が多少低下する。
FIG. 4 shows a third embodiment in which the structure of FIG. 3 is further simplified and reduced in price, and the compression space 63 and the expansion space of the power generation system and the refrigeration generation system are respectively one. is there. The compression piston 64, the compression cylinder 65, the radiators 69, 74, 73, 78, the regenerator 70, the high temperature heat absorption part 71 and the pulse tube 72, the regenerator 75, the low temperature heat absorption part 76,
It comprises an expansion piston 67 and an expansion cylinder 68. In this embodiment, fluids having different temperatures enter and mix in the compression space 63 and the expansion space 66 from the refrigeration generation system and the power generation system rather than the configuration of FIG.

【0035】尚、図1,3,4に示す各実施例の構成に
おいて、圧縮および膨張ピストンの駆動機構には、ガイ
ドピストンをもつクランクシャフト、揺動板、回転斜
板、リニアモータ等のいずれによっても本発明の機能を
満足させることが可能である。
In the structure of each of the embodiments shown in FIGS. 1, 3 and 4, the compression and expansion piston drive mechanism includes any one of a crankshaft having a guide piston, an oscillating plate, a rotary swash plate and a linear motor. It is also possible to satisfy the function of the present invention.

【0036】[0036]

【発明の効果】上述したように、少なくとも1つの圧縮
空間部と少なくとも1つの膨張空間部との間に、放熱
器、蓄冷器、蓄熱器、高温吸熱器、低温吸熱器、複数の
パルス管等を接続する組み合わせを少なくとも1組用い
て複合型パルス管式ヒートポンプの機器構成が確立し、
加熱とモータ等の補助駆動を用いて冷暖房、冷凍、気体
の液化等が行えるようになった。
As described above, a radiator, a regenerator, a heat accumulator, a high temperature heat absorber, a low temperature heat absorber, a plurality of pulse tubes, etc. are provided between at least one compression space portion and at least one expansion space portion. The device configuration of the composite type pulse tube heat pump is established by using at least one combination for connecting
Air conditioning, freezing, gas liquefaction, etc. can now be performed using heating and auxiliary drive of a motor or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例の複合型パルス管式ヒートポ
ンプの構成図を示す。
FIG. 1 shows a block diagram of a composite type pulse tube heat pump of a first embodiment of the present invention.

【図2】図1におけるTS線図を示す。FIG. 2 shows a TS diagram in FIG.

【図3】本発明第2実施例の複合型パルス管式ヒートポ
ンプの構成図を示す。
FIG. 3 is a configuration diagram of a composite pulse tube heat pump according to a second embodiment of the present invention.

【図4】本発明第3実施例の複合型パルス管式ヒートポ
ンプの構成図を示す。
FIG. 4 is a configuration diagram of a composite pulse tube heat pump according to a third embodiment of the present invention.

【図5】従来技術のパルス管式サイクルの構成図を示
す。
FIG. 5 shows a block diagram of a prior art pulse tube cycle.

【図6】図5におけるTS線図を示す。6 shows a TS diagram in FIG.

【符号の説明】[Explanation of symbols]

18,29 圧縮空間、 19,23,30,34 放熱器、 20 蓄熱器、 21 高温吸熱器、 22,33 パルス管 24,37 膨張空間、 31 蓄冷器、 32 低温吸熱器、 18, 29 compression space, 19, 23, 30, 34 radiator, 20 heat storage device, 21 high temperature heat absorber, 22, 33 pulse tube 24, 37 expansion space, 31 regenerator, 32 low temperature heat absorber,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 火炎、電熱等による加熱とモータ等の補
助駆動や発電機、その他の構成よりなる冷暖房、冷凍、
気体の液化等を目的とする熱サイクルの機器構成におい
て、 少なくとも1つの円筒型または凸型の圧縮空間部と少な
くとも1つの円筒型または凸型の膨張空間部との間に、 放熱器、蓄冷器、蓄熱器、高温吸熱器、低温吸熱器、複
数のパルス管等を接続する組み合わせを少なくとも1組
用い、 火炎、電熱等による加熱とモータ等の補助駆動を用いて
冷暖房、冷凍、気体の液化等を行えるような機器構成を
特徴とする複合型パルス管式ヒートポンプ。
1. Heating / cooling, freezing, which comprises heating by flame, electric heat, etc., auxiliary drive of a motor, etc., a generator, and other components.
In a device configuration of a heat cycle for the purpose of liquefying gas, etc., a radiator or a regenerator is provided between at least one cylindrical or convex compression space part and at least one cylindrical or convex expansion space part. , Heat accumulator, high-temperature heat absorber, low-temperature heat absorber, use at least one combination that connects multiple pulse tubes, etc., heating by flames, electric heat, etc. and auxiliary drive of motors, etc., cooling / heating, freezing, liquefaction of gas, etc. A composite pulse tube heat pump characterized by a device configuration that enables
【請求項2】 請求項1記載の火炎、電熱等による加熱
とモータ等の補助駆動や発電機、その他の機器構成より
なる冷暖房、冷凍、気体の液化等を目的とする熱サイク
ルの機器構成において、 動力発生系の圧縮空間と放熱器との間、および冷凍発生
系の圧縮空間と放熱器との間に、 クランクケース内やバッファタンクからフィルタを介し
て高純度の作動流体に導通する作動流体の圧力制御弁を
それぞれ設け、 作動流体の圧力によって出力調整をするような機器構成
を特徴とする複合型パルス管式ヒートポンプ。
2. A heat cycle apparatus configuration for heating / cooling, freezing, gas liquefaction, etc. comprising heating by flame, electric heat, etc., auxiliary drive such as motor, generator, etc. , Between the compression space of the power generation system and the radiator, and between the compression space of the refrigeration generation system and the radiator, working fluid that conducts to the high-purity working fluid in the crankcase or from the buffer tank through the filter. The composite pulse tube heat pump is characterized by a device configuration in which each pressure control valve is installed and the output is adjusted by the pressure of the working fluid.
JP12884292A 1992-05-21 1992-05-21 Complex pulse pipe type heat pump Pending JPH05322338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12884292A JPH05322338A (en) 1992-05-21 1992-05-21 Complex pulse pipe type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12884292A JPH05322338A (en) 1992-05-21 1992-05-21 Complex pulse pipe type heat pump

Publications (1)

Publication Number Publication Date
JPH05322338A true JPH05322338A (en) 1993-12-07

Family

ID=14994739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12884292A Pending JPH05322338A (en) 1992-05-21 1992-05-21 Complex pulse pipe type heat pump

Country Status (1)

Country Link
JP (1) JPH05322338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312239A3 (en) * 2009-10-05 2014-02-19 Institut Für Luft- Und Kältetechnik gGmbh Compound pulse tube cooler
CN105757041A (en) * 2016-04-14 2016-07-13 王桂林 Compression mechanism and pin shaft thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312239A3 (en) * 2009-10-05 2014-02-19 Institut Für Luft- Und Kältetechnik gGmbh Compound pulse tube cooler
CN105757041A (en) * 2016-04-14 2016-07-13 王桂林 Compression mechanism and pin shaft thereof

Similar Documents

Publication Publication Date Title
US5435136A (en) Pulse tube heat engine
US8276384B2 (en) Ambient temperature thermal energy and constant pressure cryogenic engine
EP2406485B1 (en) Heat engine with regenerator and timed gas exchange
JP2902159B2 (en) Pulse tube refrigerator
US20030192324A1 (en) Thermoacoustic device
US4794752A (en) Vapor stirling heat machine
JPH074309A (en) Stirling engine with heat exchanger
Gheith et al. Stirling engines
JPH05322338A (en) Complex pulse pipe type heat pump
US4281517A (en) Single stage twin piston cryogenic refrigerator
JP3134115B2 (en) Stirling Institution
EP0078849B1 (en) Regenerator structure for stirling-cycle, reciprocating, thermal machines
JP2947649B2 (en) Pulse tube heat engine
JP2001073873A (en) Stirling cycle apparatus to drive displacer using epicyclic gear
JP2943030B2 (en) Pulse tube type Stirling refrigerator
JP2941108B2 (en) Pulse tube refrigerator
JPH05322339A (en) Complex pulse pipe type freezer
JP2942045B2 (en) Pulse tube refrigerator
JP2941109B2 (en) Pulse tube refrigerator
Swift Simple theory of a Malone engine
Djetel-Gothe et al. Stirling machine for cooling production at intermediate temperature range
JP2941110B2 (en) Pulse tube refrigerator
JPH0518623A (en) Vuilleumier cycle device
JP3363697B2 (en) Refrigeration equipment
Kowalski et al. Efficiency and Capacity Performance of a Stirling-Cycle Water-to-Water Heat Pump