JPH11246248A - Carbon fiber bundle, carbon fiber reinforced calcium silicate molding and its production - Google Patents

Carbon fiber bundle, carbon fiber reinforced calcium silicate molding and its production

Info

Publication number
JPH11246248A
JPH11246248A JP6958098A JP6958098A JPH11246248A JP H11246248 A JPH11246248 A JP H11246248A JP 6958098 A JP6958098 A JP 6958098A JP 6958098 A JP6958098 A JP 6958098A JP H11246248 A JPH11246248 A JP H11246248A
Authority
JP
Japan
Prior art keywords
carbon fiber
calcium silicate
carbon
fiber bundle
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6958098A
Other languages
Japanese (ja)
Other versions
JP3674898B2 (en
Inventor
Yasuhisa Nagata
康久 永田
Yuki Onishi
祐輝 大西
Tetsuo Shigei
哲郎 繁井
Takahiro Hayashi
孝浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP06958098A priority Critical patent/JP3674898B2/en
Publication of JPH11246248A publication Critical patent/JPH11246248A/en
Application granted granted Critical
Publication of JP3674898B2 publication Critical patent/JP3674898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores

Abstract

PROBLEM TO BE SOLVED: To obtain a bundle of carbon fibers excellent in dispersibility in a calcium silicate matrix and to produce a carbon fiber reinforced calcium silicate molding excellent in heat resistance and mechanical strength because of uniformly dispersed reinforcing fibers by using the bundle. SOLUTION: Carbon fibers obtd. by heat-treating polyacrylonitrile fibers as starting material and having >=90% carbon content, a peak ratio O1s/C1s (oxygen content to carbon content) of 0.01 to <0.1 measured by the electron spectroscopy for chemical analysis(ESCA) method and 1-30 mm fiber length are bundled with a glycerol bundling agent to obtain the objective bundle of carbon fibers excellent in dispersibility in a calcium silicate matrix. When the bundle is used, the objective carbon fiber reinforced calcium silicate molding excellent in heat resistance and mechanical strength is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、取り扱い性とケイ
酸カルシウムマトリックス中における分散性とに優れた
ケイ酸カルシウム成形物補強用の炭素繊維束、該炭素繊
維束を用いた耐熱性及び機械的特性に優れる炭素繊維強
化ケイ酸カルシウム成形物及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber bundle for reinforcing a calcium silicate molded article which is excellent in handleability and dispersibility in a calcium silicate matrix, heat resistance and mechanical properties using the carbon fiber bundle. The present invention relates to a carbon fiber reinforced calcium silicate molded article having excellent properties and a method for producing the same.

【0002】[0002]

【従来の技術】ケイ酸カルシウムをマトリックスとする
成形物は、その優れた耐火性、不燃性、耐熱性、耐水
性、更には高温での寸法安定性等の特性を有することか
ら、耐火構造の建築用断熱材や自動車の耐熱シール材、
金属鋳造用の型枠等の材料に広く利用されている。
2. Description of the Related Art Molded products containing calcium silicate as a matrix have properties such as excellent fire resistance, nonflammability, heat resistance, water resistance, and dimensional stability at high temperatures. Insulating materials for buildings and heat-resistant sealing materials for automobiles,
It is widely used for materials such as molds for metal casting.

【0003】ケイ酸カルシウム成形物の製造方法として
は、石灰質原料とケイ酸質原料をマトリックス材料とし
て使用し、CaOとSiO2 のモル比がほぼ等しくなる
ように調整したケイ酸カルシウム水系スラリーに高分子
凝集剤を添加することにより、スラリー中の微粒子を凝
集沈殿させ(ゲル化)、次いでこの凝集沈殿物を回収
し、加圧脱水成形して所定形状にした後、160℃以上
の温度にて加熱(高温熱処理)してケイ酸カルシウム成
形物を得る方法が一般的である。
[0003] As a method for producing a calcium silicate molded product, a calcium silicate aqueous slurry prepared by using a calcareous raw material and a siliceous raw material as a matrix material and adjusting the molar ratio of CaO to SiO 2 to be substantially equal is used. By adding a molecular coagulant, the fine particles in the slurry are coagulated and precipitated (gelled), and then the coagulated precipitate is collected, depressurized and formed into a predetermined shape, and then heated at a temperature of 160 ° C. or more. A method of obtaining a calcium silicate molded product by heating (high-temperature heat treatment) is generally used.

【0004】このようにして得られたケイ酸カルシウム
成形物においては、前記高温熱処理時に形状変化が大き
いことや、得られたケイ酸カルシウム成形物は機械的特
性が低いこと等の理由により、これを防止する目的でマ
トリックス中に炭素繊維あるいは無機質の強化繊維を含
有させ、高温熱処理時の形状変化を抑える方法が提案さ
れている(例えば、特開昭61−232256号公報、
特開昭62−187153号公報、特開昭64−382
27号公報参照、特公平8−18397号公報参
照。)。
[0004] In the calcium silicate molded product thus obtained, the shape change during the high-temperature heat treatment is large, and the obtained calcium silicate molded product has low mechanical properties. A method has been proposed in which carbon fibers or inorganic reinforcing fibers are contained in a matrix for the purpose of preventing the change in shape during high-temperature heat treatment (for example, JP-A-61-232256,
JP-A-62-187153, JP-A-64-382
See Japanese Patent Publication No. 27, JP-B 8-18397. ).

【0005】ケイ酸カルシウム成形物を補強する強化繊
維としては、当初ガラス繊維等が用いられてきたが、成
形物の寸法安定性や耐熱性の観点から、近年、炭素繊維
が広く用いられるようになってきた。例えば、ケイ酸カ
ルシウム成形物の補強用に一般の炭素繊維が使用されて
おり、10mm程度にカットされた短繊維をマトリック
スに対して0.5〜10重量%の含有率にて用いること
が一般的である。
Glass fibers and the like have been initially used as reinforcing fibers for reinforcing calcium silicate molded products. However, in view of dimensional stability and heat resistance of molded products, carbon fibers have recently been widely used. It has become. For example, a general carbon fiber is used for reinforcing a calcium silicate molded product, and a short fiber cut to about 10 mm is generally used at a content of 0.5 to 10% by weight based on a matrix. It is a target.

【0006】炭素繊維をケイ酸カルシウム成形物の補強
繊維として用いた場合、炭素構造の持つ高い耐熱性や高
強度・高弾性率のような優れた機械的性質により、ま
た、炭素繊維はケイ酸カルシウムとの接着性にも優れる
などの理由により、ケイ酸カルシウムを主成分とするマ
トリックス体には優れた補強効果及び耐熱性を発揮す
る。したがって、炭素繊維で補強されたケイ酸カルシウ
ムマトリックス成形物は、特に、耐火性の建築材料、あ
るいはアルミニウム、亜鉛、スズ、鉛等の金属の鋳造の
成型用型枠として用いられている。
When carbon fiber is used as a reinforcing fiber for a calcium silicate molded product, the carbon fiber has excellent mechanical properties such as high heat resistance, high strength and high elastic modulus. A matrix body containing calcium silicate as a main component exhibits an excellent reinforcing effect and heat resistance because of its excellent adhesion to calcium. Therefore, calcium silicate matrix molded articles reinforced with carbon fibers are used, in particular, as refractory building materials or molds for casting of metals such as aluminum, zinc, tin and lead.

【0007】強化繊維として炭素繊維を用いてケイ酸カ
ルシウムマトリックス成形物を補強する場合に望まれる
ことは、耐熱効果、補強効果を有効にするために、短繊
維状の炭素繊維束の単繊維1本1本が、絡まることな
く、ケイ酸カルシウムマトリックス中に効果的に分散し
ていることである。すなわち、炭素繊維のケイ酸カルシ
ウムマトリックス中での均一分散により、局所的加熱が
原因の熱衝撃(サーマルショック)によるクラック発生
等の劣化現象を防止し、且つ均一な補強構造体とするこ
とである。
[0007] When reinforcing a calcium silicate matrix molded article using carbon fibers as reinforcing fibers, what is desired is to improve the heat resistance effect and the reinforcing effect by using a single fiber 1 of a short fibrous carbon fiber bundle. One of them is effectively dispersed in the calcium silicate matrix without entanglement. That is, by uniformly dispersing carbon fibers in a calcium silicate matrix, it is possible to prevent a deterioration phenomenon such as crack generation due to a thermal shock caused by local heating and to form a uniform reinforcing structure. .

【0008】この点において炭素繊維のケイ酸カルシウ
ムマトリックス成形物中への含有量、分散方法、炭素繊
維の種類や集束剤などを適正化し、ケイ酸カルシウム成
形物を補強する試みが数多くなされてきた(例えば、特
開昭55−126565号公報、特開昭61−3614
7号公報)。
In this respect, many attempts have been made to reinforce the calcium silicate molded product by optimizing the content of the carbon fiber in the calcium silicate matrix molded product, the dispersion method, the type of carbon fiber and the sizing agent, and the like. (For example, JP-A-55-126565, JP-A-61-3614)
No. 7).

【0009】ところで、炭素繊維は、樹脂成形品の強化
繊維として一般的によく知られている材料である。一般
的に、炭素繊維は、その原料としてアクリロニトリル系
繊維、ピッチ繊維等の有機質繊維を焼成し得られた繊維
であり、殆どが炭素からなる。この炭素繊維は、非酸化
性雰囲気にて、1000℃以上の高温域においても熱分
解などの性状変化を起こさない他、ストランドの引っ張
り強度が200kgf/mm2 以上、引っ張り弾性率2
0tonf/mm2 以上の優れた機械的性質を示すの
で、強化繊維として広く利用されている。
By the way, carbon fiber is a material generally well known as a reinforcing fiber of a resin molded product. Generally, carbon fibers are fibers obtained by firing organic fibers such as acrylonitrile-based fibers and pitch fibers as raw materials, and are mostly made of carbon. This carbon fiber does not change its properties such as thermal decomposition even in a high temperature range of 1000 ° C. or more in a non-oxidizing atmosphere, and has a strand tensile strength of 200 kgf / mm 2 or more and a tensile elastic modulus of 2 or more.
Since it exhibits excellent mechanical properties of 0 tonf / mm 2 or more, it is widely used as a reinforcing fiber.

【0010】該性質を有する炭素繊維は、長繊維状又は
長繊維をカットしてなる短繊維状で高分子系の有機マト
リックス成形物の補強材として使用されることが多い。
長繊維状で使用される場合は、一方向に配列したシート
状、織物、不織布等の形態で使用される。また短繊維状
で使用される場合は、取り扱い性を高めるために樹脂等
で束状に集束された繊維束の形態で使用される。
The carbon fiber having the above properties is often used as a reinforcing material for a high-molecular organic matrix molded product in the form of long fibers or short fibers obtained by cutting long fibers.
When used in the form of a long fiber, it is used in the form of a sheet, woven fabric, non-woven fabric or the like arranged in one direction. When used in the form of short fibers, they are used in the form of fiber bundles bundled in a bundle with a resin or the like in order to enhance the handleability.

【0011】樹脂成形品の補強材として使用される炭素
繊維は、マトリックス樹脂との親和性を良好なものとす
るためにマトリックス樹脂との濡れ性を改善する処理が
なされている。この処理は、いわゆる、表面処理と呼ば
れ、炭素繊維表面にカルボン酸基や水酸基などの官能基
を付与するために、通常は炭素化した炭素繊維の表面を
酸化している。
Carbon fiber used as a reinforcing material for a resin molded article has been subjected to a treatment for improving the wettability with the matrix resin in order to improve the affinity with the matrix resin. This treatment is called a surface treatment, and usually oxidizes the surface of the carbonized carbon fiber in order to impart a functional group such as a carboxylic acid group or a hydroxyl group to the carbon fiber surface.

【0012】この表面処理によって繊維の表面に付与さ
れた官能基の数量の程度は、表面分析機器であるESC
A(X線光電子分光法)と呼ばれる装置を用いて、表面
付近に存在する酸素含有量と炭素含有量の比(O1s/
C1s値)を測定することにより、推定され評価されて
いる。
The degree of the number of functional groups imparted to the surface of the fiber by this surface treatment is determined by ESC which is a surface analyzer.
Using a device called A (X-ray photoelectron spectroscopy), the ratio of the oxygen content to the carbon content existing near the surface (O1s /
C1s value) is estimated and evaluated.

【0013】このような、通常の工程条件で、表面処理
された炭素繊維のO1s/C1s値は、0.1以上〜
0.3以内の範囲内にあり、この値はカルボン酸基や水
酸基などの官能基の数が増加するに伴って増える値であ
る。
Under such ordinary process conditions, the O1s / C1s value of the surface-treated carbon fiber is 0.1 or more.
It is within 0.3, and this value increases as the number of functional groups such as carboxylic acid groups and hydroxyl groups increases.

【0014】通常、乾燥したフィラメント数が1000
本以上の炭素繊維束は、ストランドのまとまりが悪く、
風等により容易に広がり、取り扱い性が難しい性質のた
め、水、あるいは高級アルコールのような油類、あるい
はエポキシ樹脂のような高粘性の物質を集束剤として炭
素繊維に対して、1〜10重量%付着させることにより
ストランドをまとめ、取り扱い性を改善している。
Usually, the number of dried filaments is 1000
If the carbon fiber bundle is more than one, the strands will not be cohesive,
Due to the property that it is easily spread by wind and the like, and is difficult to handle, water or oil such as higher alcohol, or highly viscous substance such as epoxy resin is used as a sizing agent, and 1 to 10 weight of carbon fiber. %, The strands are put together to improve the handleability.

【0015】また、炭素繊維の用途によっては親水性の
集束剤として、PVA、PEG、等の水溶性高分子物質
で炭素繊維を処理することも知られている。これらの水
溶性物質での処理の目的は、例えば炭素繊維の短繊維を
用いて抄紙する際の水分散性の改良を目的としたもので
ある。
[0015] Further, depending on the use of the carbon fiber, it is also known to treat the carbon fiber with a water-soluble polymer substance such as PVA or PEG as a hydrophilic sizing agent. The purpose of the treatment with these water-soluble substances is, for example, to improve the water dispersibility in papermaking using short fibers of carbon fibers.

【0016】しかしながら、これら従来の水溶性高分子
物質の集束剤で集束された炭素繊維束は、ケイ酸カルシ
ウムマトリックス中に混合した際に、炭素繊維の分散性
が悪く均一に広がらないため、混入された炭素繊維はケ
イ酸カルシウム成形物中に束になったままの不均一な分
布となり、このため機械的性質や耐熱性に劣るものとな
った。
However, the carbon fiber bundles bundled with these conventional water-soluble polymer sizing agents, when mixed in a calcium silicate matrix, have poor dispersibility of the carbon fibers and do not spread evenly. The obtained carbon fibers had a non-uniform distribution as a bundle in the calcium silicate molded product, and thus had poor mechanical properties and heat resistance.

【0017】また、ケイ酸カルシウムマトリックスに対
する炭素繊維混合率は、使用目的や条件によっても変る
が、ケイ酸カルシウムマトリックス中では含有率が1重
量%を越えると繊維相互の絡みにより、成形物中に均一
に繊維が分散することが難しくなり、炭素繊維が塊とな
って成形物中に存在するため、含有率を上げても繊維含
有率に伴う補強効果が充分に発揮できない。
The mixing ratio of carbon fibers to the calcium silicate matrix also varies depending on the purpose of use and conditions. Since it is difficult to uniformly disperse the fibers and the carbon fibers are present in a lump in the molded product, the reinforcing effect accompanying the fiber content cannot be sufficiently exhibited even if the content is increased.

【0018】[0018]

【発明が解決しようとする課題】本発明の目的は、ケイ
酸カルシウムマトリックス中への分散性に優れた炭素繊
維束を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon fiber bundle having excellent dispersibility in a calcium silicate matrix.

【0019】本発明の他の目的は、このように分散性に
優れた炭素繊維束を用いて、強化繊維が均一に分散さ
れ、それゆえ耐熱性、機械的強度の優れる炭素繊維強化
ケイ酸カルシウム成形物を提供し、且つその製造方法を
提供することにある。
Another object of the present invention is to provide a carbon fiber reinforced calcium silicate in which a reinforcing fiber is uniformly dispersed by using such a carbon fiber bundle having excellent dispersibility, and thus has excellent heat resistance and mechanical strength. An object of the present invention is to provide a molded product and a method for producing the same.

【0020】[0020]

【課題を解決するための手段】本発明は、炭素繊維の表
面処理の程度を穏やかなものとし、炭素繊維表面の官能
基数量を低く抑えた範囲の炭素繊維であって、且つ該炭
素繊維に対して、グリセリン集束剤を付着させてストラ
ンドを集束させた繊維長が1mm以上30mm以内の炭
素繊維束を用いることで、ケイ酸カルシウムスラリー中
での混合状態において炭素繊維相互の絡みが少なく、結
果的にケイ酸カルシウムマトリックス中に炭素繊維が均
一に分散した成形物を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a carbon fiber in which the surface treatment of the carbon fiber is moderate and the number of functional groups on the surface of the carbon fiber is kept low. On the other hand, by using a carbon fiber bundle having a fiber length of 1 mm or more and 30 mm or less with the glycerin sizing agent attached to the strands, the carbon fibers are less entangled in the mixed state in the calcium silicate slurry. Specifically, the present invention provides a molded product in which carbon fibers are uniformly dispersed in a calcium silicate matrix.

【0021】即ち、前記した目的を達成するための本発
明の炭素繊維束は、ポリアクリロニトリル繊維を原料と
して熱処理して得られた、炭素含有率90%以上、ES
CA法により測定されるO1s/C1sのピーク比が
0.01以上0.1未満、繊維長が1mm以上30mm
以内の炭素繊維束であり、且つ該炭素繊維束はグリセリ
ン集束剤にて集束されていることを特徴とする。
That is, the carbon fiber bundle of the present invention for achieving the above-mentioned object is obtained by heat-treating polyacrylonitrile fiber as a raw material.
The peak ratio of O1s / C1s measured by the CA method is 0.01 or more and less than 0.1, and the fiber length is 1 mm or more and 30 mm.
Wherein the carbon fiber bundle is bundled with a glycerin sizing agent.

【0022】また、本発明は前記の炭素繊維束を強化繊
維として用いた炭素繊維強化ケイ酸カルシウム成形物で
あって、(1)マトリックス材をケイ酸カルシウムと
し、(2)強化繊維を、ポリアクリロニトリル繊維を原
料として熱処理して得られた、炭素含有率90%以上、
ESCA法により測定されるO1s/C1sのピーク比
が0.01以上0.1未満、繊維長が1mm以上30m
m以内の炭素繊維とすることを特徴とする炭素繊維強化
ケイ酸カルシウム成形物である。
The present invention also relates to a carbon fiber reinforced calcium silicate molded article using the carbon fiber bundle as a reinforcing fiber, wherein (1) the matrix material is calcium silicate, and (2) the reinforcing fiber is Acrylonitrile fiber obtained by heat treatment as a raw material, carbon content of 90% or more,
The peak ratio of O1s / C1s measured by the ESCA method is 0.01 or more and less than 0.1, and the fiber length is 1 mm or more and 30 m.
It is a carbon fiber reinforced calcium silicate molded product characterized in that the carbon fiber has a diameter of not more than m.

【0023】また、本発明は、前記の炭素繊維強化ケイ
酸カルシウム成形物の製造方法であって、石灰質原料と
ケイ酸質原料を主原料とする固形分濃度1重量%以上2
0重量%以内の水性スラリー中に、前記炭素繊維束を混
合した後、高分子凝集剤にて水性スラリーを凝集沈殿さ
せ、沈殿物を脱水・賦形・熱処理することを特徴とす
る、耐熱性及び機械的特性に優れた炭素繊維強化ケイ酸
カルシウム成形物の製造方法である。
The present invention also relates to a method for producing a carbon fiber-reinforced calcium silicate molded product, comprising a calcareous raw material and a siliceous raw material as a main raw material having a solid content concentration of 1% by weight or more.
After mixing the carbon fiber bundle in an aqueous slurry of 0% by weight or less, the aqueous slurry is coagulated and precipitated with a polymer coagulant, and the precipitate is subjected to dehydration, shaping, and heat treatment. And a method for producing a carbon fiber reinforced calcium silicate molded article having excellent mechanical properties.

【0024】本発明の炭素繊維束は、ケイ酸カルシウム
を主成分とする無機質マトリックスの水系スラリーに添
加し攪拌することで、容易に該スラリー中で均一に分散
し、最終的に得られる成形物の補強効果及び耐熱効果が
高まる効果を有する。すなわち、本発明によれば、ケイ
酸カルシウムマトリックス中に、前記処理された炭素繊
維が均一分散しているために、得られた成形物の熱伝導
性が均一化され、局所加熱に伴う熱衝撃(サーマルショ
ック)が原因のクラック発生等の劣化現象も比較的少な
いものとなり、耐熱性、及び機械的強度が優れた、炭素
繊維強化ケイ酸カルシウム成形物となる。
The carbon fiber bundle of the present invention is easily dispersed uniformly in the slurry by adding it to an aqueous slurry of an inorganic matrix containing calcium silicate as a main component and stirring the resulting mixture to obtain a finally obtained molded product. Has the effect of increasing the reinforcing effect and heat resistance effect. That is, according to the present invention, since the treated carbon fibers are uniformly dispersed in the calcium silicate matrix, the heat conductivity of the obtained molded product is uniform, and the thermal shock accompanying local heating is obtained. Deterioration phenomena such as cracks caused by (thermal shock) are relatively small, and a carbon fiber reinforced calcium silicate molded article having excellent heat resistance and mechanical strength is obtained.

【0025】[0025]

【発明の実施の形態】図1及び図3は、本発明の炭素繊
維束を用いて強化したケイ酸カルシウム成形物の一例に
おける炭素繊維の分散状態を示す写真である。比較のた
めに本発明によらない成形物、即ち、O1s/Cls比
が本発明の範囲外の成形物における炭素繊維の分散状態
を示す写真を図2に、また、集束剤が本発明以外のもの
を使用してなる成形物における炭素繊維の分散状態を示
す写真を図4に対比して示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 3 are photographs showing a dispersion state of carbon fibers in an example of a calcium silicate molded article reinforced by using a carbon fiber bundle of the present invention. For comparison, FIG. 2 shows a photograph showing the dispersion state of carbon fibers in a molded product not according to the present invention, that is, a molded product having an O1s / Cls ratio outside the range of the present invention. FIG. 4 is a photograph showing the state of dispersion of carbon fibers in a molded article obtained by using the molded article.

【0026】図1乃至図4において、線状に見えるのは
炭素繊維であり、黒く固まって見えるのは炭素繊維が凝
集した部分である。図1乃至図4から分かるように、本
発明の炭素繊維強化ケイ酸カルシウム成形物は、炭素繊
維の分散性が極めて良好であるのに対して、比較の炭素
繊維強化ケイ酸カルシウム成形物は炭素繊維の分散性が
悪い。
In FIG. 1 to FIG. 4, what looks linear is the carbon fiber, and what looks black and solid is the portion where the carbon fiber aggregates. As can be seen from FIGS. 1 to 4, the carbon fiber reinforced calcium silicate molded product of the present invention has extremely good dispersibility of carbon fiber, whereas the comparative carbon fiber reinforced calcium silicate molded product has a carbon fiber dispersibility. Poor fiber dispersibility.

【0027】本発明の炭素繊維束の原料として用いられ
る炭素繊維は、特に制限されないが、ポリアクリロニト
リル繊維を不活性ガス雰囲気の下、1000〜3000
℃にて焼成して作られた、いわゆるアクリル系炭素繊維
が好適である。なお、このアクリル系炭素繊維の製造方
法は周知の方法が適用できる。
The carbon fiber used as a raw material of the carbon fiber bundle of the present invention is not particularly limited, but polyacrylonitrile fiber is prepared by subjecting a polyacrylonitrile fiber to an inert gas atmosphere of 1,000 to 3,000.
So-called acrylic carbon fibers made by firing at ℃ are suitable. In addition, a well-known method can be applied to the method for producing the acrylic carbon fiber.

【0028】前記周知の方法によって得られる通常のア
クリル系炭素繊維は、フィラメントの単繊維直径が3〜
10μm、繊維比重1.6〜2.0、フィラメントが集
束して形成されたストランドの引っ張り強さ250〜8
00kfg/mm2 、ストランドの引っ張り弾性率20
〜80tonf/mm2 、ESCA法により測定される
O1s/C1sのピーク比が0.1以上0.3以内であ
る。
The ordinary acrylic carbon fiber obtained by the above-mentioned known method has a filament single fiber diameter of 3 to 3.
10 μm, fiber specific gravity 1.6 to 2.0, tensile strength of strand formed by bundling filaments 250 to 8
00 kfg / mm 2 , tensile modulus of strand 20
8080 tonf / mm 2 , and the peak ratio of O1s / C1s measured by the ESCA method is 0.1 or more and 0.3 or less.

【0029】この通常の炭素繊維に対して、ESCA法
により測定されるO1s/C1sのピーク比を、0.0
1以上0.1未満とするためには、該炭素繊維を100
0〜3000℃にて焼成し、次いで不活性ガス雰囲気下
で400℃以下の温度まで冷却の後、軽い表面処理を施
すことにより達成できる。あるいは該表面処理工程以外
の方法によっても、ESCA法により測定されるO1s
/C1sのピーク比を、0.01以上0.1未満とする
ことができる。
With respect to this ordinary carbon fiber, the peak ratio of O1s / C1s measured by the ESCA method is set to 0.0
In order to make it 1 or more and less than 0.1, the carbon fiber should be 100
This can be achieved by baking at 0 to 3000 ° C., and then cooling to a temperature of 400 ° C. or lower under an inert gas atmosphere, and then performing a light surface treatment. Alternatively, O1s measured by the ESCA method by a method other than the surface treatment step
The peak ratio of / C1s can be 0.01 or more and less than 0.1.

【0030】例えば、前記表面処理工程を省略した炭素
繊維においても、400℃を越える温度の空気雰囲気中
に暴露した場合、空気中の酸素と化学反応を起こし、O
1s/Clsのピーク比が0.01以上0.1未満の範
囲を超える場合があるので、400℃を越える空気雰囲
気中に炭素繊維を暴露することは避けなければならな
い。
For example, even in the case of carbon fibers from which the above-mentioned surface treatment step has been omitted, when exposed to an air atmosphere at a temperature exceeding 400 ° C., a chemical reaction occurs with oxygen in the air and O 2
Since the peak ratio of 1 s / Cls may exceed the range of 0.01 or more and less than 0.1, exposure of the carbon fiber to an air atmosphere exceeding 400 ° C. must be avoided.

【0031】O1s/Clsのピーク比を0.01以上
0.1未満とするための、炭素繊維の表面処理方法とし
ては、硫酸、硝酸のような強酸あるいは強酸の塩、酢
酸、次亜塩素酸のような弱酸あるいは弱酸の塩、または
水酸化ナトリウム、水酸化カリウムのようなアルカリあ
るいはアルカリの塩等の溶液に炭素繊維束を浸し処理す
る方法が適用できる。
The surface treatment of the carbon fiber for setting the peak ratio of O1s / Cls to 0.01 or more and less than 0.1 includes strong acids such as sulfuric acid and nitric acid or salts of strong acids, acetic acid, and hypochlorous acid. A method in which the carbon fiber bundle is immersed in a solution of a weak acid or a salt of a weak acid such as described above, or an alkali or an alkali salt such as sodium hydroxide or potassium hydroxide or the like is applied.

【0032】また、この表面処理の際に炭素繊維束に電
気を流し、電解酸化を行わせてもよい。あるいは、オゾ
ンやハロゲン等の気体に炭素繊維束を接触させて酸化処
理を行わせる方法も適用できる。酸化処理が進んだ炭素
繊維については、電解還元処理をすることもできる。
Further, at the time of this surface treatment, electricity may be supplied to the carbon fiber bundle to perform electrolytic oxidation. Alternatively, a method in which a carbon fiber bundle is brought into contact with a gas such as ozone or halogen to perform an oxidation treatment can also be applied. Electrolytic reduction treatment can also be performed on carbon fibers that have undergone oxidation treatment.

【0033】何れの場合においても、炭素繊維のESC
A法により測定されるO1s/Clsのピーク比が0.
01以上0.1未満の範囲内になるように、処理溶液の
濃度、温度、電気量、または気体の濃度、処理時間等を
設定する必要がある。
In each case, carbon fiber ESC
The peak ratio of O1s / Cls measured by Method A is 0.
It is necessary to set the concentration of the processing solution, the temperature, the amount of electricity, the concentration of the gas, the processing time, and the like so as to fall within the range of 01 or more and less than 0.1.

【0034】本発明においてグリセリン集束剤とは、グ
リセリン単独及びグリセリンを主成分とし、集束剤中に
グリセリンを50重量%以上含む、水との混合溶液を云
う。特に、グリセリンの含有率が50〜80重量%の水
溶液を使用することは、ケイ酸カルシウムのスラリー中
での炭素繊維束の分散性を良好ならしめる上で好まし
い。
In the present invention, the glycerin sizing agent refers to a mixed solution of glycerin alone and glycerin as a main component and water containing at least 50% by weight of glycerin in the sizing agent. In particular, it is preferable to use an aqueous solution having a glycerin content of 50 to 80% by weight in order to improve the dispersibility of the carbon fiber bundle in the calcium silicate slurry.

【0035】炭素繊維に対するグリセリン集束剤の付与
は、炭素繊維に通常施されるサイズ剤の一般的な付与が
採用できる。即ち、グリセリン集束剤に連続炭素繊維を
浸漬し、次いで乾燥することによって行われる。或いは
スプレー法、ローラー転写法、リップ法等特に制限され
ない。グリセリン集束剤の付与後、所望の繊維長にカッ
トし、1mm〜30mmの炭素繊維束とする。
For the application of the glycerin sizing agent to the carbon fiber, a general application of a sizing agent usually applied to the carbon fiber can be employed. That is, the continuous carbon fiber is immersed in the glycerin sizing agent and then dried. Alternatively, the method is not particularly limited, such as a spray method, a roller transfer method, and a lip method. After the glycerin sizing agent is applied, the fiber is cut into a desired fiber length to obtain a carbon fiber bundle of 1 mm to 30 mm.

【0036】本発明の炭素繊維束を使用してケイ酸カル
シウムマトリックスを補強するには、例えば、次のよう
な従来行われている方法をそのまま採用することができ
る。すなわち、本発明の炭素繊維束は、ケイ酸カルシウ
ムスラリーに対する分散性もさることながら、ケイ酸カ
ルシウムマトリックスとの親和性を満足するため、炭素
繊維が比較的高い含有率の系においても、機械的性質及
び耐熱性に優れるケイ酸カルシウム成形物を得ることが
できる。
In order to reinforce the calcium silicate matrix using the carbon fiber bundle of the present invention, for example, the following conventional method can be employed as it is. That is, the carbon fiber bundle of the present invention is not only dispersible in the calcium silicate slurry, but also satisfies the affinity with the calcium silicate matrix. A calcium silicate molded article having excellent properties and heat resistance can be obtained.

【0037】[0037]

【実施例】〔実施例1〕アクリロニトリル系繊維を通常
の方法で耐炎化処理及び最高温度1300℃で炭素化処
理を施した炭素繊維ストランドを、後工程である炭素繊
維の表面処理工程において、硫酸アンモニウム溶液に浸
し、電解表面処理を行い、ESCA法により測定した炭
素繊維表面のO1s/Clsのピーク比が0.08の炭
素繊維を得た。このストランド1本のフィラメント数は
12,000本、単繊維直径は7μm、繊維の比重は
1.75、ストランド引っ張り強度は350kgf/m
2であった。
[Example 1] A carbon fiber strand obtained by subjecting an acrylonitrile fiber to a flame-proofing treatment and a carbonization treatment at a maximum temperature of 1300 ° C by an ordinary method was subjected to ammonium sulfate in a subsequent carbon fiber surface treatment step. The carbon fiber was immersed in the solution and subjected to electrolytic surface treatment to obtain a carbon fiber having a O1s / Cls peak ratio of 0.08 on the surface of the carbon fiber measured by the ESCA method. The number of filaments per strand is 12,000, the diameter of a single fiber is 7 μm, the specific gravity of the fiber is 1.75, and the strand tensile strength is 350 kgf / m.
m 2 .

【0038】グリセリン/水の重量比が10/90の溶
液を循環させたバスに、この炭素繊維束を導き浸漬し溶
液を付着させた後、150℃で5分間乾燥した。得られ
た炭素繊維束を切断し、繊維長6mmの短繊維状の炭素
繊維チョップドストランドを得た。このチョップドスト
ランドに付着したグリセリン集束剤の重量%は5.0
%、水分率は2.5%であった。
The carbon fiber bundle was introduced and immersed in a bath in which a solution having a weight ratio of glycerin / water of 10/90 was circulated, and the solution was adhered to the bath, followed by drying at 150 ° C. for 5 minutes. The obtained carbon fiber bundle was cut to obtain a chopped strand of short carbon fiber having a fiber length of 6 mm. The weight percent of the glycerin sizing agent attached to the chopped strand was 5.0
% And the water content were 2.5%.

【0039】ケイ酸カルシウム/水の重量比が1/8の
スラリー状溶液に、少量のケイ酸系添加物を加えた後、
上記工程で得られた炭素繊維チョップドストランドをケ
イ酸カルシウム固形分に対して2%添加して1時間攪拌
の後、アクリルアミド系高分子凝集剤をケイ酸カルシウ
ム固形分に対して3%添加して混合した。
After adding a small amount of a silicic acid-based additive to a slurry-like solution having a weight ratio of calcium silicate / water of 1/8,
The carbon fiber chopped strand obtained in the above step was added at 2% based on the solid content of calcium silicate, and the mixture was stirred for 1 hour. Then, an acrylamide polymer flocculant was added at 3% based on the solid content of calcium silicate. Mixed.

【0040】このスラリー状溶液をメス型に注入し静置
しておくと、凝集剤によって溶液はゲル化し、ケイ酸カ
ルシウムが凝集固化し沈殿した。型の上部よりオス型を
入れ、約3kg/cm2 の圧力で加圧脱水させ、水分を
除去し、続いて150℃で乾燥させ、型より取り出し、
ケイ酸カルシウムの予備成形物を得た。得られた予備成
形物を300〜500℃の温度にて1〜5時間熱処理
し、ケイ酸カルシウム成形物とした。
When this slurry-like solution was poured into a female mold and allowed to stand, the solution was gelled by the coagulant, and the calcium silicate was coagulated, solidified and precipitated. Insert a male mold from the top of the mold, dehydrate under pressure at a pressure of about 3 kg / cm 2 to remove water, then dry at 150 ° C., take out from the mold,
A preform of calcium silicate was obtained. The obtained preform was heat-treated at a temperature of 300 to 500 ° C for 1 to 5 hours to obtain a calcium silicate formed product.

【0041】得られた成形物の表面を、1000番のサ
ンドぺーパーで研磨した。該成形物の表面に浮きでてい
る繊維の分散形状を示す写真を図1として示す。該成形
物に含まれる炭素繊維束の分散状態を目視で観察したと
ころ、成形物の表面は、図1に示すように炭素繊維の分
散性が良く、炭素繊維が凝集し黒く固まった状態の欠点
の少ない物であった。
The surface of the obtained molded product was polished with a No. 1000 sandpaper. FIG. 1 shows a photograph showing the dispersion shape of the fibers floating on the surface of the molded product. When the dispersion state of the carbon fiber bundles contained in the molded product was visually observed, the surface of the molded product showed good dispersibility of the carbon fibers as shown in FIG. It was a little thing.

【0042】成形物の曲げ強度は130kgf/cm2
と良好であった。また、成形物にカッターで約1cmの
切れ目を入れた後、空気中にて800℃で3時間熱処理
したが、熱処理によりカッター切れ目部から発生するク
ラックの成長が少なく、耐熱性にも優れることが確認で
きた。
The bending strength of the molded product is 130 kgf / cm 2
And was good. Also, after making a cut of about 1 cm in the molded product with a cutter, it was heat-treated at 800 ° C. for 3 hours in the air. It could be confirmed.

【0043】〔比較例1〕炭素繊維の表面処理工程にお
いて、10%の硫酸アンモニウム溶液に浸し、炭素繊維
に対して15C/gの電気量にて電解表面処理を行った
以外は、前記実施例1と同じ条件で処理して炭素繊維を
得た。得られた炭素繊維の、ESCA測定による炭素繊
維表面のO1s/Clsのピーク比は0.20であっ
た。
Comparative Example 1 In the surface treatment step of carbon fiber, the same procedure as in Example 1 was performed except that the carbon fiber was immersed in a 10% ammonium sulfate solution, and the carbon fiber was subjected to electrolytic surface treatment at an electric quantity of 15 C / g. The same conditions were followed to obtain carbon fibers. The peak ratio of O1s / Cls on the surface of the obtained carbon fiber measured by ESCA was 0.20.

【0044】ストランド1本のフィラメント数は12,
000本、単繊維直径は7μm、繊維の比重は1.7
5、ストランド引っ張り強度は370kgf/mm2
あり前記実施例1と差はなかった。
The number of filaments per strand is 12,
000 fibers, single fiber diameter 7 μm, specific gravity of fiber 1.7
5. The strand tensile strength was 370 kgf / mm 2 , which was not different from that of Example 1.

【0045】前記実施例1と同様にグリセリンを付着さ
せ、繊維長6mmの短繊維状のチョップドストランドを
得た。前記実施例1と同様にケイ酸カルシウム成形物を
作製した。該成形物の表面に浮きでている繊維の分散形
状を示す写真を図2として示す。成形物に含まれる炭素
繊維束の分散状態を目視で観察した。
Glycerin was adhered in the same manner as in Example 1 to obtain a short fiber chopped strand having a fiber length of 6 mm. A molded product of calcium silicate was produced in the same manner as in Example 1. FIG. 2 shows a photograph showing the dispersion shape of the fiber floating on the surface of the molded product. The dispersion state of the carbon fiber bundle contained in the molded product was visually observed.

【0046】成形物の表面は、図2に示すように炭素繊
維の分散性が悪く、炭素繊維が凝集し黒く固まった部分
が見られ、成形物の曲げ強度も110kgf/cm
2 で、機械的強度は前記実施例1に比べてやや低下し
た。
As shown in FIG. 2, the surface of the molded product had poor carbon fiber dispersibility, a portion where the carbon fiber was coagulated and solidified black, and the flexural strength of the molded product was 110 kgf / cm.
In 2 , the mechanical strength was slightly lower than that in Example 1.

【0047】また、成形物にカッターで約1cmの切れ
目を入れた後、空気中にて800℃で3時間熱処理した
ところ、熱処理によりカッター切れ目部から大きなクラ
ック成長が認められた。これらの結果を下記の表1に示
す。
When a cut of about 1 cm was made in the molded product with a cutter and then heat-treated in air at 800 ° C. for 3 hours, large crack growth was observed from the cut of the cutter due to the heat treatment. The results are shown in Table 1 below.

【0048】〔実施例2〕炭素繊維の表面処理工程にお
いて、電解表面処理を行わずにサンプルを採取した以外
は前記実施例1と同じ条件で処理をして炭素繊維を得
た。該炭素繊維のESCA法により測定した炭素繊維表
面のO1s/Clsのピーク比は、0.05であった。
ストランド1本のフィラメント数は12,000本、単
繊維直径は7μm、繊維の比重は1.75、ストランド
引っ張り強度は340kgf/mm2で前記実施例1と
差はなかった。
Example 2 A carbon fiber was obtained by performing the same treatment as in Example 1 except that in the surface treatment step of the carbon fiber, a sample was collected without performing the electrolytic surface treatment. The peak ratio of O1s / Cls on the carbon fiber surface of the carbon fiber measured by the ESCA method was 0.05.
The number of filaments per strand was 12,000, the diameter of a single fiber was 7 μm, the specific gravity of the fiber was 1.75, and the strand tensile strength was 340 kgf / mm 2 .

【0049】前記実施例1と同様にグリセリンを付着さ
せ、繊維長6mmの短繊維状のチョップドストランドを得
た。該成形物の表面に浮きでている繊維の分散形状を示
す写真を図3として示す。前記実施例1と同様にケイ酸
カルシウム成形物を作製し、成形物に含まれる炭素繊維
束の分散状態を目視で観察した。成形物の表面は、図3
に示すように炭素繊維の分散性が良好で、炭素繊維がフ
ィラメント状に均一に成形物中に分散していた。
Glycerin was adhered in the same manner as in Example 1 to obtain a short fiber chopped strand having a fiber length of 6 mm. FIG. 3 shows a photograph showing the dispersion shape of the fiber floating on the surface of the molded product. A calcium silicate molded product was produced in the same manner as in Example 1, and the dispersion state of the carbon fiber bundle contained in the molded product was visually observed. Fig. 3
As shown in (1), the dispersibility of the carbon fiber was good, and the carbon fiber was uniformly dispersed in a filament in the molded product.

【0050】成形物の曲げ強度は125kgf/cm2
で、機械的強度は前記実施例1とほぼ同等の値であっ
た。また、成形物にカッターで約1cmの切れ目を入れ
た後、空気中にて800℃で3時間熱処理したところ、
熱処理によりカッター切れ目部からのクラック発生量は
少なかった。これらの結果を下記の表1に示す。
The bending strength of the molded product is 125 kgf / cm 2
The mechanical strength was almost the same as that of Example 1. Also, after making a cut of about 1 cm in the molded product with a cutter, and heat-treated at 800 ℃ in air for 3 hours,
Due to the heat treatment, the amount of crack generation from the cut portion of the cutter was small. The results are shown in Table 1 below.

【0051】〔比較例2〕前記実施例1と同じ条件で製
造した炭素繊維のサンプルを採取し、集束剤としてポリ
ビニルアルコールの2重量%水溶液を循環させたバス
に、この炭素繊維束を導入し、120℃で乾燥した。得
られた炭素繊維束を切断し、繊維長6mmの短繊維状の
チョップドストランドを得た。このチョップドストラン
ドに付着したポリビニルアルコール量は1.0%であっ
た。
[Comparative Example 2] A sample of carbon fiber produced under the same conditions as in Example 1 was collected and introduced into a bath in which a 2% by weight aqueous solution of polyvinyl alcohol was circulated as a sizing agent. And dried at 120 ° C. The obtained carbon fiber bundle was cut to obtain a short fiber chopped strand having a fiber length of 6 mm. The amount of polyvinyl alcohol attached to the chopped strand was 1.0%.

【0052】前記実施例1と同じ方法にてケイ酸カルシ
ウム成形物を作製した。該成形物の表面に浮きでている
繊維の分散形状を示す写真を図4として示す。成形物に
含まれる炭素繊維束の分散状態を目視で観察した。成形
物の表面は、図4に示すように炭素繊維の分散性不良が
見られ、不均一な成形物となった。成形物の曲げ強度は
105kgf/cm2 で、熱衝撃テストにて大きなクラ
ック発生現象が認められた。これらの結果を下記の表1
に示す。
A molded product of calcium silicate was produced in the same manner as in Example 1. FIG. 4 shows a photograph showing the dispersion shape of the fiber floating on the surface of the molded product. The dispersion state of the carbon fiber bundle contained in the molded product was visually observed. As shown in FIG. 4, poor dispersibility of carbon fibers was observed on the surface of the molded product, and the molded product was non-uniform. The bending strength of the molded product was 105 kgf / cm 2 , and a large crack generation phenomenon was recognized in the thermal shock test. The results are shown in Table 1 below.
Shown in

【0053】〔実施例3〜6〕下記の表1に示す炭素繊
維の製造条件及び電解表面処理条件の異なる炭素繊維ス
トランドであって、本発明の範囲内のESCA法により
測定されるO1s/C1sのピーク比の各値の炭素繊維
ストランドを用いて、前記実施例1と同じ条件でケイ酸
カルシウム成形物を作製し、炭素繊維束の分散状態、成
形物の曲げ強度及び熱処理によるクラック発生状況を調
査した。それらの結果を下記の表1に示す。
Examples 3 to 6 Carbon fiber strands having different carbon fiber production conditions and electrolytic surface treatment conditions shown in Table 1 below, and O1s / C1s measured by the ESCA method within the scope of the present invention. Using a carbon fiber strand having each value of the peak ratio, a calcium silicate molded product was produced under the same conditions as in Example 1, and the dispersion state of the carbon fiber bundle, the bending strength of the molded product, and the state of crack generation due to heat treatment were measured. investigated. The results are shown in Table 1 below.

【0054】〔比較例3〜5〕炭素繊維の製造条件、電
解表面処理条件及び炭素繊維を集束させる集束剤の異な
る炭素繊維チョップドストランドより、前記実施例1と
同じ条件でケイ酸カルシウム成形物を作製し、炭素繊維
束の分散状態、成形物の曲げ強度及び熱処理によるクラ
ック発生状況を調査した。それらの結果を下記の表1に
示す。
[Comparative Examples 3 to 5] A calcium silicate molded product was produced under the same conditions as in Example 1 above, using carbon fiber production conditions, electrolytic surface treatment conditions, and carbon fiber chopped strands having different sizing agents for sizing the carbon fibers. The prepared carbon fiber bundle was dispersed, the bending strength of the molded product, and the state of crack generation due to heat treatment were investigated. The results are shown in Table 1 below.

【0055】[0055]

【表1】 [Table 1]

【0056】表1に示すように、実施例1〜6の炭素繊
維強化ケイ酸カルシウム成形物は、成形物中の分散性及
び曲げ強度に優れ、クラック発生は少なかった。これに
対して比較例1〜4の炭素繊維強化ケイ酸カルシウム成
形物は、ESCA法により測定されるO1s/C1sの
ピーク比が本発明の範囲外であったり、或いは集束剤が
本発明のものとは異なったり、或いは繊維長が本発明の
範囲外であったり、或いは強化繊維を使用しなかったり
しているので、得られた成形物における炭素繊維の分散
性及び曲げ強度にやや劣り、クラック発生頻度は高かっ
た。
As shown in Table 1, the carbon fiber reinforced calcium silicate molded products of Examples 1 to 6 were excellent in the dispersibility and bending strength in the molded products, and the occurrence of cracks was small. On the other hand, in the carbon fiber reinforced calcium silicate molded products of Comparative Examples 1 to 4, the peak ratio of O1s / C1s measured by the ESCA method is out of the range of the present invention, or the sizing agent of the present invention is used. Or the fiber length is out of the range of the present invention, or the reinforcing fiber is not used, so that the dispersibility and flexural strength of the carbon fiber in the obtained molded product are slightly inferior, and cracks are generated. The frequency was high.

【0057】[0057]

【発明の効果】1.ケイ酸カルシウムスラリー中に本発
明の炭素繊維束を分散させる場合、攪拌により容易に該
炭素繊維束が分散し、個々のフィラメントがスラリー中
に均一に広がったスラリー状物が得られる。
Advantages of the Invention When the carbon fiber bundle of the present invention is dispersed in a calcium silicate slurry, the carbon fiber bundle is easily dispersed by stirring, and a slurry in which individual filaments are uniformly spread in the slurry is obtained.

【0058】2.ケイ酸カルシウムスラリー状物を高分
子凝集剤でゲル化させた後、加圧脱水成形及び加熱によ
り得られた成形物において、本発明の炭素繊維束を用い
ることでケイ酸カルシウムマトリックス中に均一に分散
した成形物が得られる。
2. After the calcium silicate slurry is gelled with a polymer coagulant, the molded product obtained by pressure dehydration molding and heating is uniformly dispersed in the calcium silicate matrix by using the carbon fiber bundle of the present invention. A dispersed molded product is obtained.

【0059】3.熱処理して得られた本発明のケイ酸カ
ルシウム成形物は、曲げ強度等の機械的性質に優れ、熱
衝撃特性にも優れる性質を持つ。
3. The calcium silicate molded product of the present invention obtained by the heat treatment has excellent mechanical properties such as bending strength and also has excellent thermal shock properties.

【0060】4.本発明のケイ酸カルシウム成形物は、
ケイ酸カルシウム固形分に対して本発明の炭素繊維束を
1重量%以上含ませてもケイ酸カルシウムマトリックス
中に炭素繊維を均一に分散させることができる。
4. The calcium silicate molded product of the present invention,
Even when the carbon fiber bundle of the present invention is contained in an amount of 1% by weight or more based on the solid content of calcium silicate, the carbon fibers can be uniformly dispersed in the calcium silicate matrix.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭素繊維束を用いて強化したケイ酸カ
ルシウム成形物の一例における炭素繊維の分散した形状
を示す写真である。
FIG. 1 is a photograph showing a dispersed shape of carbon fibers in an example of a calcium silicate molded article reinforced using a carbon fiber bundle of the present invention.

【図2】本発明によらない成形物、即ち、O1s/Cl
s比が本発明の範囲外の成形物における炭素繊維の分散
した形状を示す写真である。
FIG. 2 shows a molding not according to the invention, ie O1s / Cl
It is a photograph which shows the dispersed shape of the carbon fiber in the molded object whose s ratio was outside the range of the present invention.

【図3】本発明の炭素繊維束を用いて強化したケイ酸カ
ルシウム成形物の一例における炭素繊維の分散した形状
を示す写真である。
FIG. 3 is a photograph showing a dispersed shape of carbon fibers in an example of a calcium silicate molded article reinforced using the carbon fiber bundle of the present invention.

【図4】集束剤が本発明以外のものを使用してなる成形
物における炭素繊維の分散した形状を示す写真である。
FIG. 4 is a photograph showing a dispersed shape of carbon fibers in a molded product using a sizing agent other than that of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 孝浩 東京都中央区日本橋3−3−9 東邦レー ヨン株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahiro Hayashi 3-3-9 Nihonbashi, Chuo-ku, Tokyo Inside Toho Rayon Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ポリアクリロニトリル繊維を原料として
熱処理して得られた、炭素含有率90%以上、ESCA
法により測定されるO1s/C1sのピーク比が0.0
1以上0.1未満、繊維長が1mm以上30mm以内の
炭素繊維束であり、且つ該炭素繊維束はグリセリン集束
剤にて集束されていることを特徴とする炭素繊維束。
An ESCA having a carbon content of 90% or more obtained by heat-treating polyacrylonitrile fiber as a raw material.
The peak ratio of O1s / C1s is 0.0
A carbon fiber bundle, which is a carbon fiber bundle having a length of 1 to less than 0.1 and a fiber length of 1 mm to 30 mm, and wherein the carbon fiber bundle is bundled with a glycerin sizing agent.
【請求項2】 前記グリセリン集束剤が、グリセリン水
溶液である請求項1記載の炭素繊維束。
2. The carbon fiber bundle according to claim 1, wherein the glycerin sizing agent is an aqueous glycerin solution.
【請求項3】 前記グリセリン水溶液の濃度が50重量
%以上である請求項2記載の炭素繊維束。
3. The carbon fiber bundle according to claim 2, wherein the concentration of the glycerin aqueous solution is 50% by weight or more.
【請求項4】 前記炭素繊維束に付着されているグリセ
リン集束剤の重量%は、炭素繊維重量に対して1重量%
以上である請求項1記載の炭素繊維束。
4. The weight percent of the glycerin sizing agent attached to the carbon fiber bundle is 1% by weight based on the weight of the carbon fiber.
The carbon fiber bundle according to claim 1, which is the above.
【請求項5】 前記炭素繊維束は、直径3μm以上、1
000本以上の炭素繊維の単繊維が集束して構成されて
いる請求項1記載の炭素繊維束。
5. The carbon fiber bundle has a diameter of 3 μm or more,
The carbon fiber bundle according to claim 1, wherein a single fiber of 000 or more carbon fibers is bundled.
【請求項6】 前記炭素繊維束は、直径3μm以上、引
っ張り強さ250kgf/mm2 以上、引っ張り弾性率
20tonf/mm2 以上の炭素繊維の単繊維が集束し
て構成されている請求項1記載の炭素繊維束。
6. The carbon fiber bundle is formed by bundling single fibers of carbon fibers having a diameter of 3 μm or more, a tensile strength of 250 kgf / mm 2 or more, and a tensile elasticity of 20 tonf / mm 2 or more. Carbon fiber bundle.
【請求項7】 (1)ケイ酸カルシウムを主成分として
含むものをマトリックス材をとし、 (2)強化繊維を、ポリアクリロニトリル繊維を原料と
して熱処理して得られた、炭素含有率90%以上、ES
CA法により測定されるO1s/C1sのピーク比が
0.01以上0.1未満、繊維長が1mm以上30mm
以内の炭素繊維とすることを特徴とする炭素繊維強化ケ
イ酸カルシウム成形物。
7. A matrix material containing (1) calcium silicate as a main component, and (2) a carbon fiber content of at least 90% obtained by heat-treating a reinforcing fiber using polyacrylonitrile fiber as a raw material. ES
The peak ratio of O1s / C1s measured by the CA method is 0.01 or more and less than 0.1, and the fiber length is 1 mm or more and 30 mm.
A carbon fiber reinforced calcium silicate molded product, characterized in that the carbon fiber is within:
【請求項8】 石灰質原料とケイ酸質原料を主原料とす
る固形分濃度1重量%以上20重量%以内の水性スラリ
ー中に、請求項1記載の炭素繊維束を混合した後、高分
子凝集剤にて水性スラリーを凝集沈殿させ、沈殿物を脱
水・賦形・熱処理することを特徴とする炭素繊維強化ケ
イ酸カルシウム成形物の製造方法。
8. The carbon fiber bundle according to claim 1, which is mixed with an aqueous slurry containing a calcareous material and a siliceous material as main materials and having a solid content concentration of 1% by weight or more and 20% by weight or less. A method for producing a carbon fiber reinforced calcium silicate molded product, comprising coagulating and precipitating an aqueous slurry with an agent, and subjecting the precipitate to dehydration, shaping and heat treatment.
JP06958098A 1998-03-04 1998-03-04 Carbon fiber bundle, carbon fiber reinforced calcium silicate molded product, and method for producing the same Expired - Fee Related JP3674898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06958098A JP3674898B2 (en) 1998-03-04 1998-03-04 Carbon fiber bundle, carbon fiber reinforced calcium silicate molded product, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06958098A JP3674898B2 (en) 1998-03-04 1998-03-04 Carbon fiber bundle, carbon fiber reinforced calcium silicate molded product, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11246248A true JPH11246248A (en) 1999-09-14
JP3674898B2 JP3674898B2 (en) 2005-07-27

Family

ID=13406899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06958098A Expired - Fee Related JP3674898B2 (en) 1998-03-04 1998-03-04 Carbon fiber bundle, carbon fiber reinforced calcium silicate molded product, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3674898B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069754A (en) * 2000-08-31 2002-03-08 Toho Tenax Co Ltd Carbon fiber having high strength and high elongation, and forming material of the same
JP2009234812A (en) * 2008-03-26 2009-10-15 A & A Material Corp Method for manufacturing carbon fiber reinforced calcium silicate material
JP2009234813A (en) * 2008-03-26 2009-10-15 A & A Material Corp Method for manufacturing carbon fiber reinforced calcium silicate material
JP2013204168A (en) * 2012-03-27 2013-10-07 Nichias Corp Sizing agent for carbon fiber
JP2017132670A (en) * 2016-01-29 2017-08-03 株式会社エーアンドエーマテリアル Mold base material for cfrp molding and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069754A (en) * 2000-08-31 2002-03-08 Toho Tenax Co Ltd Carbon fiber having high strength and high elongation, and forming material of the same
JP4533518B2 (en) * 2000-08-31 2010-09-01 東邦テナックス株式会社 Fiber reinforced composite material using high strength and high elongation carbon fiber
JP2009234812A (en) * 2008-03-26 2009-10-15 A & A Material Corp Method for manufacturing carbon fiber reinforced calcium silicate material
JP2009234813A (en) * 2008-03-26 2009-10-15 A & A Material Corp Method for manufacturing carbon fiber reinforced calcium silicate material
JP2013204168A (en) * 2012-03-27 2013-10-07 Nichias Corp Sizing agent for carbon fiber
JP2017132670A (en) * 2016-01-29 2017-08-03 株式会社エーアンドエーマテリアル Mold base material for cfrp molding and method for producing the same

Also Published As

Publication number Publication date
JP3674898B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP5306567B2 (en) Thermal insulation product and manufacturing method thereof
CA1142312A (en) Silicic acid fibers and their use
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP2756258B2 (en) Refractory solid article and method for producing the same
WO2024041439A1 (en) Continuous sio2 aerogel composite fiber, and preparation method therefor and use thereof
CN1749190A (en) Method for producing mullite crystal refractory fiber blanket and its product
JP3674898B2 (en) Carbon fiber bundle, carbon fiber reinforced calcium silicate molded product, and method for producing the same
JPS6211089B2 (en)
EP0305024B1 (en) Oxidation resistant alumina-silica articles containing silicon carbide and carbon
JP2000160436A (en) Carbon fiber, and production of precursor for carbon fiber
JPS6327446B2 (en)
KR20070066732A (en) Method for preparing graphite coated with silica
WO2019019366A1 (en) Special impregnating agent for alumina continuous fiber twisted yarn and preparation method therefor
JP2000199183A (en) Acrylonitrile fiber for producing carbon fiber
JPS6128019A (en) Production of pitch based carbon fiber
JP3213841B2 (en) Carbon fiber nonwoven
CN107190363A (en) A kind of aluminosilicate refractory fiber of high intensity
JP2000017569A (en) Oxidation-resistant carbon fiber and its production
JPH09249747A (en) Silicone rubber, silicone rubber particle, precursor for carbon fiber, and carbon fiber
CN111548604A (en) Nano TiO (titanium dioxide)2Method for modifying carbon fiber/epoxy resin composite material
JP2000136485A (en) Silicone straight oil finishing agent, precursor fiber for carbon fiber, carbon fiber and their production
CN110195272B (en) Method for oiling mesophase pitch fibers
JP3898292B2 (en) Silicone oil, carbon fiber precursor and method for producing the same
JPS6312761A (en) Carbon fiber and composite material using the same
CN116161890B (en) Calcium carbonate micro-nano particle coated carbon fiber powder composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees