JPH11245306A - Optical molding device - Google Patents

Optical molding device

Info

Publication number
JPH11245306A
JPH11245306A JP10051777A JP5177798A JPH11245306A JP H11245306 A JPH11245306 A JP H11245306A JP 10051777 A JP10051777 A JP 10051777A JP 5177798 A JP5177798 A JP 5177798A JP H11245306 A JPH11245306 A JP H11245306A
Authority
JP
Japan
Prior art keywords
resin
photo
convergence
resin container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10051777A
Other languages
Japanese (ja)
Inventor
Norio Goto
典雄 後藤
Masahiko Ozawa
雅彦 小澤
Kiyoshi Wada
清 和田
Toshiro Endo
敏朗 遠藤
Masayuki Muranaka
昌幸 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10051777A priority Critical patent/JPH11245306A/en
Publication of JPH11245306A publication Critical patent/JPH11245306A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To speedily select and switch a resin in response to a material physical property, a molding precision, a molding speed or the like, and a usage of a shape model to be molded, in an optical molding. SOLUTION: Two photo-curing resin containers are provided on the top and the bottom, and at the same time, on the upper resin container, a moving or detaching means such as a sliding mechanism is provided, and in addition, a focal point switching means for an object lens 15, which collects laser light 12 on a resin liquid surface, is provided, and when a model is molded by a first resin 1, the upper resin container is moved by sliding or removed, and at the same time, the focal point of the object lens 15 is set and switched to a first focal point, for the constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明はレーザ光照射により
光硬化樹脂を硬化させ立体樹脂モデルを作成する光造形
装置に係り、特に光硬化樹脂を高速交換可能とし、かつ
造形の分解能の切換えも可能として造形速度あるいは寸
法精度に優れた光造形物を提供するための装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical molding apparatus for producing a three-dimensional resin model by curing a photocurable resin by irradiating a laser beam. The present invention relates to an apparatus for providing an optically molded object excellent in molding speed or dimensional accuracy.

【従来の技術】三次元CADデータから形状モデルを短
期に作成する技術として光造形技術が知られている。特
公平5−33901号公報、特公平5−33899号公
報に示されているように、CADの形状データを輪切り
にして変換された等高線データにしたがって、UV硬化
樹脂にUVレーザを照射して、一層一層硬化積層を繰り
返して造形するものである。
2. Description of the Related Art An optical molding technique is known as a technique for creating a shape model from three-dimensional CAD data in a short time. As shown in Japanese Patent Publication No. Hei 5-33901 and Japanese Patent Publication No. Hei 5-33899, the UV curing resin is irradiated with a UV laser in accordance with the contour data converted by rounding the CAD shape data. The molding is performed by repeating the curing and laminating one layer.

【発明が解決しようとする課題】光造形においては形状
データを等高線データに変換後、該等高線データに従っ
て樹脂容器の樹脂液面をレーザ光走査して光硬化樹脂を
露光硬化する。この動作を該等高線データの最下層から
はじめ順次露光硬化、積層することにより形状モデルを
造形する。このため光硬化樹脂を造形しようとするモデ
ルの寸法より大きい寸法の樹脂容器に光硬化樹脂を満た
しておくことが必要である。例えば概略寸法:幅500
mm、奥行き500mm、高さ500mmのモデルを造
形しようとする、光硬化樹脂の容器の寸法はおおよそ幅
600mm、奥行き600mm、深さ600mmになっ
てしまう。光硬化樹脂を満たすと総重量が300Kgに
もなってしまう。モデルの用途により光硬化樹脂を交換
するにも、樹脂の抜き取り、洗浄等極めて手間のかかる
作業が必要になる。また容器ごと取り出し交換するにし
ても300Kgの重量物を引き出し、移動交換するのは
大変な作業を必要とする。ここで以下に樹脂の交換の必
要性について説明する。樹脂交換の必要性は2点ある。
第1は材料の物性の点、第2は露光感度の調整選択の点
から造形しようとするモデルの用途に応じて樹脂を切り
換える必要がある。先ず第1の物性の点では、造形する
モデルの用途に応じて高強度が求められるものには高強
度樹脂を、高耐熱性を求められる物には高耐熱樹脂を、
軟質特性を求められるものには軟質樹脂を切り換えて造
形する必要がある。第2の露光感度については、積層ピ
ッチを粗くして、造形速度を上げて短時間に造形するの
か、または積層ピッチを精細にして高精度に造形するの
かの選択に関わり。物性的に同じ樹脂であっても、求め
る寸法精度、あるいは造形速度により樹脂の露光感度を
調整切り換えたものを用いる必要がある。積層ピッチを
粗く造形する為の樹脂で積層ピッチを精細にすると余剰
硬化を多大に生じ、逆に寸法精度が低下してしまう。一
方、精細な積層ピッチ用の樹脂にて積層ピッチを粗く造
形しようとしても、積層ピッチの厚さで樹脂を露光硬化
できず上下層での接合ができずモデルの造形が困難にな
ってしまう問題がある。以上のように造形モデルの用途
に応じて樹脂の切り換えが必要であるが、前述したよう
に樹脂の交換切り換えには多大な時間を要してしまう。
大きな容器の樹脂を抜き取り、洗浄等を行えば2乃至3
日を要してしまう。また、容器全体を取り外し交換して
も重量の点から作業性は悪く、半日から1日を要してし
まう問題がある。光造形は非常に短時間に形状モデルを
作成出来ることが特徴であるのに反し、樹脂切り替えの
準備に時間を要して短期作成の特徴を発現できない問題
がある。
In stereolithography, after converting shape data into contour data, the resin liquid surface of the resin container is scanned with a laser beam in accordance with the contour data to expose and cure the photocurable resin. This operation is performed starting from the lowest layer of the contour line data, and is sequentially cured by exposure and laminated to form a shape model. For this reason, it is necessary to fill the photo-curable resin with a resin container having a size larger than that of the model in which the photo-curable resin is to be formed. For example, approximate dimensions: width 500
The dimensions of the photo-curable resin container for forming a model having a height of 500 mm, a depth of 500 mm, and a height of 500 mm are approximately 600 mm in width, 600 mm in depth, and 600 mm in depth. When the photocurable resin is filled, the total weight becomes as much as 300 kg. Even if the photocurable resin is replaced depending on the use of the model, extremely troublesome work such as extraction and cleaning of the resin is required. Also, even if the entire container is taken out and replaced, it takes a lot of work to draw out a 300 kg heavy object, and to move and replace it. Here, the necessity of replacing the resin will be described below. There are two points that need to be changed.
The first is that it is necessary to switch the resin according to the use of the model to be modeled from the viewpoint of the physical properties of the material, and the second, from the viewpoint of selecting and adjusting the exposure sensitivity. First, in terms of the first physical property, a high-strength resin is required for those requiring high strength according to the use of the model to be molded, and a high heat-resistant resin is required for those requiring high heat resistance.
For those requiring soft characteristics, it is necessary to switch the soft resin to form the object. The second exposure sensitivity is related to the choice between roughing the laminating pitch and increasing the molding speed to form in a short time, or finer laminating pitch and forming with high precision. Even if the resins have the same physical properties, it is necessary to use a resin whose exposure sensitivity is adjusted and switched according to the required dimensional accuracy or molding speed. If the laminating pitch is made fine with a resin for roughly forming the laminating pitch, excessive hardening occurs greatly, and conversely, the dimensional accuracy decreases. On the other hand, even when trying to form a coarse lamination pitch using a fine lamination pitch resin, the resin cannot be cured by exposure due to the thickness of the lamination pitch, and the upper and lower layers cannot be joined, making modeling of the model difficult. There is. As described above, it is necessary to switch the resin according to the use of the modeling model. However, as described above, it takes a great deal of time to switch the resin.
2 to 3 if the resin in the large container is removed and washed
It takes days. Further, even if the entire container is removed and replaced, workability is poor in terms of weight, and there is a problem that it takes half a day to one day. In contrast to the feature of stereolithography that a shape model can be created in a very short time, there is a problem that it takes time to prepare for resin switching and the feature of short-term creation cannot be exhibited.

【課題を解決するための手段】上記目的は、光硬化樹脂
容器を二つ上下に設けるとともに、上部の樹脂容器にス
ライド機構等の移動あるいは着脱手段を設け、更に樹脂
液面にレーザ光を集光する対物レンズの焦点の切り換え
手段を設け、第1の焦点を下部樹脂容器の液面近傍に設
定し、第2の焦点を上部樹脂容器の液面近傍に設定し、
第1の樹脂を下部樹脂容器に入れ、第2の樹脂を上部樹
脂容器に入れ、第1の樹脂にてモデルを造形するときに
は、上部樹脂容器をスライド移動あるいは取り外すとと
もに対物レンズの焦点を第1の焦点に設定切り換えする
構成とする。一方、第2の樹脂にてモデルを造形すると
きには上部樹脂容器をスライド移動しにより下部樹脂容
器の上方に配置し、あるいは装着するとともに対物レン
ズの焦点を第2の焦点に設定切り換えする構成にて達成
される。
SUMMARY OF THE INVENTION The object of the present invention is to provide two photo-curing resin containers vertically and a moving or attaching / detaching means such as a slide mechanism in the upper resin container, and to collect laser light on the resin liquid surface. Means for switching the focal point of the objective lens that emits light, the first focal point is set near the liquid surface of the lower resin container, the second focal point is set near the liquid surface of the upper resin container,
When the first resin is placed in the lower resin container, the second resin is placed in the upper resin container, and the model is formed with the first resin, the upper resin container is slid or removed and the focus of the objective lens is shifted to the first resin. The focus is set to be switched. On the other hand, when the model is formed with the second resin, the upper resin container is slid and arranged above the lower resin container, or is mounted and the focus of the objective lens is switched to the second focus. Achieved.

【発明の実施の形態】本発明の実施例を図面を用いて説
明する。図1は本発明の一実施例の光造形装置の構成説
明図である。第1の光硬化樹脂1は下部の第1の光硬化
樹脂容器2の中に満たされている。第2の光硬化樹脂3
は上部の第2の光硬化樹脂容器4に満たされている。各
光硬化樹脂容器には造形用のワークテーブル5,6を設
け、該ワークテーブルは上下方向の移動手段7,8によ
り、該略各光硬化樹脂の液面から各容器の底部の間で上
下移動できる構成となっている。さらに、各光硬化樹脂
容器の液面部には光硬化樹脂を液面に塗布する塗布手段
9,10をそれぞれ設けている。上部樹脂容器4は下部
樹脂容器2の上方側部に設けたスライドレール架台11
の上に載せている。(上部樹脂容器4が下部樹脂容器2
の上方に位置している)。レーザ光12はレーザ発振器
13に発し、光スイッチ手段14を介して、対物レンズ
15に入り、さらに走査のためのガルバノミラー16を
介して下部の第1の光硬化樹脂容器2中の第1の樹脂の
液面17、あるいは上部の第2の光硬化樹脂容器2の第
2の樹脂の液面18にて集光する。対物レンズ15は二
つの対物レンズ15aと15bとスライドベース19か
らなり、レンズ15aとレンズ16bはスライドベース
19に載せている。レンズ15aの光軸とレンズ15b
の光軸はそれぞれレーザ光に平行であり、スライド移動
することにより一方の光軸がレーザ光ビームと一致する
ように構成した。レンズ15aはレーザ光を第1の樹脂
液面に集光するように、レンズ15bはレーザ光を第2
の樹脂液面に集光するように焦点を設定した。システム
制御手段20は形状データ21に従ってレーザ光を液面
にて走査するように光スイッチ手段14およびカルバノ
ミラー16を制御する。光硬化樹脂塗布手段9,10、
ワークテーブル移動手段は切り換えBOX22により選
択的に切り換える構成である。動作を説明する。先ず第
1の樹脂にて光造形する動作を説明する。図2に示すよ
うに下部の第1の光硬化樹脂容器2の上方に位置してい
た上部の第2の光硬化樹脂容器4をスライド架台11上
でスライド移動させ、下部の第1の光硬化樹脂容器2の
上方より退ける。レーザ光12に対して下部の第1の光
硬化樹脂容器2の第1の光硬化樹脂1の液面17が露出
する。また対物レンズ15のスライドベース19を移動
させ、対物レンズ15aの光軸がレーザ光ビーム12に
一致するように設置する。対物レンズ15aの焦点は長
く、下部樹脂容器中の第2の光硬化樹脂液面17にレー
ザ光を収束できる。以上により第1の光硬化樹脂による
造形の準備を終わる。造形の手順を説明する。はじめに
ワークテーブル5の高さを第1の樹脂液面17に一致さ
せた後、造形モデルの等高線データのスライスピッチP
(例えばP=0.1mm)だけ光硬化樹脂液中1に沈め、
樹脂塗布手段9にてワークテーブル面にスライスピッチ
Pの厚さで第1の光硬化樹脂を塗布する。塗布した光硬
化樹脂の液面は第1の光硬化樹脂容器2の液面17と一
致し、液面高さは容器内で一様な高さになり、第1の光
硬化樹脂液面は安定に保持される。次いで、光スイッチ
をONにして対物レンズ15(第1の樹脂の場合は15
a)、ガルバノミラー16を介して第1の樹脂液面17
にレーザ光を収束して照射する。このとき、ガルバノミ
ラー16は光硬化樹脂液面17に形状モデルの等高線デ
ータ21を描くように制御される。液面の光硬化樹脂1
はレーザ光12の照射を受け、露光部位は硬化する。ワ
ークテーブル上に厚さPの等高線形状を得ることが出来
る。次いでワークテーブル5をピッチPだけ更に沈め、
再び光硬化樹脂を塗布し、下部より第2番目の等高線デ
ータによりガルバノミラー16、光スイッチ14を制御
し、最下層の等高線形状の上に次層の等高線形状を描画
し、積層硬化させる。以下順次積層を繰り返すことによ
り形状全体を造形することが出来る。以上により第1の
樹脂を用いて光造形が可能である。次に第2の光硬化樹
脂での造形を説明する。図3に示したように移動待避さ
せた上部の第2の樹脂容器4をスライド架台11に載
せ、下部の第1の樹脂容器2の上方の所定位置に設置す
る。対物レンズ15についてスライドベース19を移動
し、対物レンズ15bの光軸がレーザビームに一致する
ように移動設定する。切り換えBOXにより塗布手段1
0、ワークテーブル移動手段の制御を選択して切り換え
る。切り換えはコネクタを接続替えしても良い。以上に
より造形に用いる光硬化樹脂の切り換え選択が完了す
る。造形の手順を説明する。はじめにワークテーブルの
高さを第2の光硬化樹脂液面18に一致させた後、造形
モデルの等高線データのスライスピッチP(例えばP=
0.1mm)だけ第2の光硬化樹脂液3中に沈め、光硬化
樹脂塗布手段10にてワークテーブル面にスライスピッ
チPの厚さで第2の光硬化樹脂を塗布する。塗布した光
硬化樹脂の液面18は上部の第2の光硬化樹脂容器4の
液面と一致し、液面高さは容器内で一様な高さになり、
容器内の光硬化樹脂液面18は安定に保持される。次い
で、光スイッチ14をONにして対物レンズ15(第2
の光硬化樹脂の場合は15b)、ガルバノミラー16を
介して第2の光硬化樹脂液面18にレーザ光12を収束
して照射する。このとき、ガルバノミラー16は第2の
光硬化樹脂液面18に形状モデルの等高線データ21を
描くように制御される。液面の第2の光硬化樹脂3はレ
ーザ光12の照射を受け、露光部位は硬化する。ワーク
テーブル上に厚さPの等高線形状を得ることが出来る。
次いでワークテーブルをピッチPだけ更に沈め、再び光
硬化樹脂を塗布し、下部より第2番目の等高線データに
よりガルバノミラー16、光スイッチ14を制御し、最
下層の等高線形状の上に次層の等高線形状を描画し、積
層硬化させる。以下順次積層を繰り返すことにより形状
全体を造形することが出来る。以上により第2の樹脂を
用いて光造形が可能である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of the configuration of an optical shaping apparatus according to one embodiment of the present invention. The first photocurable resin 1 is filled in a lower first photocurable resin container 2. Second photocurable resin 3
Is filled in the upper second photocurable resin container 4. Each photocurable resin container is provided with a work table 5 for modeling, and the work table is vertically moved between the liquid surface of each photocurable resin and the bottom of each container by vertical moving means 7, 8. It can be moved. Further, coating means 9 and 10 for coating the photocurable resin on the liquid surface are provided on the liquid surface of each photocurable resin container. The upper resin container 4 is a slide rail mount 11 provided on the upper side of the lower resin container 2.
On it. (The upper resin container 4 is the lower resin container 2
Located above). The laser beam 12 is emitted to a laser oscillator 13, enters an objective lens 15 via an optical switch means 14, and further passes through a galvanomirror 16 for scanning to a first light-curing resin container 2 in a lower first photocurable resin container 2. The light is condensed on the liquid surface 17 of the resin or on the liquid surface 18 of the second resin in the upper second photocurable resin container 2. The objective lens 15 includes two objective lenses 15a and 15b and a slide base 19, and the lens 15a and the lens 16b are mounted on the slide base 19. Optical axis of lens 15a and lens 15b
The optical axes are parallel to the laser light, and one of the optical axes coincides with the laser light beam by sliding. The lens 15b focuses the laser light on the first resin liquid surface, and the lens 15b focuses the laser light on the second resin liquid level.
The focal point was set so that light was condensed on the resin liquid surface. The system control means 20 controls the optical switch means 14 and the carbano mirror 16 so that the laser light is scanned on the liquid surface according to the shape data 21. Light-curing resin application means 9, 10,
The work table moving means is selectively switched by the switching box 22. The operation will be described. First, the operation of stereolithography with the first resin will be described. As shown in FIG. 2, the upper second photocurable resin container 4 located above the lower first photocurable resin container 2 is slid on the slide base 11, and the lower first photocurable resin container 4 is moved. Withdraw from above the resin container 2. The liquid surface 17 of the first photocurable resin 1 of the lower first photocurable resin container 2 is exposed to the laser light 12. Further, the slide base 19 of the objective lens 15 is moved so that the optical axis of the objective lens 15a is set to coincide with the laser light beam 12. The focus of the objective lens 15a is long, and the laser beam can be converged on the second photocurable resin liquid surface 17 in the lower resin container. Thus, the preparation for modeling with the first photocurable resin is completed. The molding procedure will be described. First, after making the height of the work table 5 coincide with the first resin liquid level 17, the slice pitch P of the contour data of the molding model is obtained.
(For example, P = 0.1 mm) is submerged in 1 in the photo-curing resin liquid,
The first photocurable resin is applied to the work table surface with a thickness of the slice pitch P by the resin application means 9. The liquid level of the applied photocurable resin coincides with the liquid level 17 of the first photocurable resin container 2, the liquid level becomes uniform within the container, and the first photocurable resin liquid level is It is kept stable. Next, the optical switch is turned on to set the objective lens 15 (in the case of the first resin, the objective lens 15).
a), the first resin liquid level 17 via the galvanomirror 16
Is converged and irradiated with laser light. At this time, the galvanometer mirror 16 is controlled so that contour data 21 of the shape model is drawn on the photocurable resin liquid surface 17. Photocurable resin on liquid level 1
Is irradiated with the laser beam 12, and the exposed portion is cured. A contour having a thickness P can be obtained on the work table. Next, the worktable 5 is further lowered by the pitch P,
The photocurable resin is applied again, and the galvanomirror 16 and the optical switch 14 are controlled based on the second contour data from the lower part, and the contour of the next layer is drawn on the contour of the lowermost layer and laminated and cured. Thereafter, the entire shape can be formed by sequentially repeating the lamination. Thus, stereolithography can be performed using the first resin. Next, molding with the second photocurable resin will be described. As shown in FIG. 3, the upper second resin container 4, which has been moved and retracted, is placed on the slide gantry 11 and installed at a predetermined position above the lower first resin container 2. The slide base 19 is moved with respect to the objective lens 15, and the movement is set so that the optical axis of the objective lens 15b coincides with the laser beam. Application means 1 by switching BOX
0, select and switch the control of the work table moving means. For the switching, the connectors may be replaced. Thus, the switching selection of the photocurable resin used for the modeling is completed. The molding procedure will be described. First, after making the height of the work table coincide with the second light-curing resin liquid level 18, the slice pitch P (for example, P =
0.1 mm) in the second photocurable resin liquid 3 and the photocurable resin application means 10 applies the second photocurable resin to the work table surface at a thickness of the slice pitch P. The liquid level 18 of the applied photocurable resin coincides with the liquid level of the upper second photocurable resin container 4, and the liquid level becomes uniform in the container,
The photocurable resin liquid surface 18 in the container is stably held. Next, the optical switch 14 is turned on, and the objective lens 15 (second
15b), the laser beam 12 is converged and applied to the second photocurable resin liquid surface 18 via the galvanometer mirror 16. At this time, the galvanomirror 16 is controlled so that contour data 21 of the shape model is drawn on the second photocurable resin liquid surface 18. The second photocurable resin 3 on the liquid surface is irradiated with the laser beam 12, and the exposed portion is cured. A contour having a thickness P can be obtained on the work table.
Next, the work table is further sunk by the pitch P, the photocuring resin is applied again, and the galvanometer mirror 16 and the optical switch 14 are controlled based on the second contour data from the lower part. Draw the shape and laminate harden. Thereafter, the entire shape can be formed by sequentially repeating the lamination. As described above, stereolithography can be performed using the second resin.

【発明の効果】本発明によれば、光硬化樹脂を手早く切
り換えて、用途に応じた材料特性の光硬化樹脂にて短期
間の造形可能ができる。さらに、上部樹脂容器にて造形
する場合には小型形状モデルの高精度造形が、下部樹脂
容器にて造形する場合には大型形状モデルの造形が可能
である。
According to the present invention, it is possible to quickly switch the photo-curing resin and form a photo-curing resin having a material characteristic suitable for the application in a short period of time. Furthermore, when modeling is performed with the upper resin container, high-precision modeling of a small-sized model is possible, and when modeling is performed with the lower resin container, modeling of a large-sized model is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である光造形装置の構成を説明
する図。
FIG. 1 is a diagram illustrating a configuration of an optical shaping apparatus according to an embodiment of the invention.

【図2】図1の第1の光硬化樹脂を選択したときの構成
を示す斜視図。
FIG. 2 is a perspective view showing a configuration when a first photocurable resin of FIG. 1 is selected.

【図3】図1の第2の光硬化樹脂を選択したときの構成
を示す斜視図。
FIG. 3 is a perspective view showing a configuration when a second photocurable resin in FIG. 1 is selected.

【符号の説明】[Explanation of symbols]

1…第1の光硬化樹脂、 2…第1の光硬化樹脂容器、 3…第2の光硬化樹脂スキージ、 4…第5の光硬化樹脂容器、 5,6…ワークテーブル、 7,8…テーブル移動手段、 9,10…樹脂塗布手段、 11…スライド架台、 12レーザ光、 13…レーザ発振器、 14…光スイッチ、 15…対物レンズ、 16…ガルバノミラー、 17…第1の光硬化樹脂液面、 18…第2の光硬化樹脂液面、 19…スライドベース、 20…光造形制御システム回路、 21…形状データ、 22…切り換えBOX。 DESCRIPTION OF SYMBOLS 1 ... 1st photocurable resin, 2 ... 1st photocurable resin squeegee, 3 ... 2nd photocurable resin squeegee, 4 ... 5th photocurable resin container, 5, 6 ... Work table, 7, 8 ... Table moving means, 9, 10 Resin coating means, 11 Slide base, 12 Laser light, 13 Laser oscillator, 14 Optical switch, 15 Objective lens, 16 Galvano mirror, 17 First light curable resin liquid Surface: 18: second light-curing resin liquid surface, 19: slide base, 20: stereolithography control system circuit, 21: shape data, 22: switching BOX.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 清 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 遠藤 敏朗 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 村中 昌幸 東京都千代田区神田駿河台四丁目6番地株 式会社日立製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Wada 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Multimedia Systems Development Headquarters, Hitachi, Ltd. (72) Inventor Toshiro Endo Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa 292 Hitachi, Ltd. Multimedia System Development Headquarters (72) Inventor Masayuki Muranaka 4-6, Kanda Surugadai, Chiyoda-ku, Tokyo Stock Company Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】レーザ光発振手段と、該レーザ光のON/
OFFスイッチ手段と、該レーザ光の収束手段と、該レ
ーザ光の平面的走査手段と、光硬化樹脂容器と、該光硬
化樹脂容器中に沈むように設けられたワークテーブル
と、該光硬化樹脂容器の液面において、光硬化樹脂を塗
布する塗布手段とこれらを制御する制御手段とからな
り、該光硬化樹脂容器に光硬化樹脂を溜め、該収束され
たレーザ光を形状データに従って該光硬化樹脂の液面に
て照射、走査し、該光硬化樹脂をワークテーブル上で露
光硬化し、該硬化層の上に未硬化の光硬化樹脂を該塗布
手段により層状に塗布し、該未硬化層を露光硬化させる
ことを繰り返して逐次積層して形状モデルを造形する光
造形装置において、第1のワークテーブル、光硬化樹脂
塗布手段および光硬化樹脂容器の上部に着脱可能な第2
の光硬化樹脂容器、ワークテーブル、光硬化樹脂塗布手
段を設けるとともに、レーザ光の収束において第1のレ
ーザ収束位置と第2のレーザ収束位置とを切り替えるこ
とができる収束位置可変のレーザ収束手段を有し、第2
の光硬化樹脂容器を除いたときに、レーザ光収束手段の
収束位置を第1の光硬化樹脂容器の樹脂液面位置に相当
する第1の収束位置の切換えるよう構成し、第1の光硬
化樹脂容器のワークテーブル上の光硬化樹脂液面を該レ
ーザ光で走査し、第1の光硬化樹脂を硬化積層してモデ
ルの造形を行うように構成し、第2の光硬化樹脂容器、
ワークテーブル、光硬化樹脂塗布手段およびを装着した
ときに、レーザ光収束手段の収束位置を第2の光硬化樹
脂容器の樹脂液面位置に相当する第2の収束位置の切換
えるよう構成し、第2の光硬化樹脂容器のワークテーブ
ル上の光硬化樹脂液面を該レーザ光で走査し、第2の光
硬化樹脂を硬化積層してモデルの造形を行うように構成
したことを特徴とする光造形装置。
1. A laser light oscillating means, comprising:
OFF switch means, converging means for the laser light, planar scanning means for the laser light, a photocurable resin container, a work table provided to sink in the photocurable resin container, and the photocurable resin container A coating means for applying a photo-curable resin on the liquid surface of the photo-curable resin, and a control means for controlling the photo-curable resin. Irradiation and scanning on the liquid surface, the photocurable resin is exposed and cured on a work table, an uncured photocurable resin is applied on the cured layer in a layered manner by the coating means, and the uncured layer is In an optical molding apparatus for forming a shape model by repeating exposure and curing to form a shape model sequentially, a second work table, a photo-curable resin coating unit, and a second removable photo-curable resin container.
A light-curing resin container, a work table, and a light-curing resin application unit, and a laser convergence unit with a variable convergence position capable of switching between a first laser convergence position and a second laser convergence position in convergence of laser light. Have, second
When the light-curing resin container is removed, the convergence position of the laser beam converging means is switched to a first convergence position corresponding to the resin liquid surface position of the first light-curing resin container. A second photo-curing resin container configured to scan the liquid surface of the photo-curing resin on the work table of the resin container with the laser beam, to cure and stack the first photo-curing resin to form a model;
When the work table, the photo-curing resin applying means and the photo-curing resin applying means are mounted, the convergence position of the laser beam converging means is switched to a second convergence position corresponding to the resin liquid level position of the second photo-curing resin container. 2. A light characterized in that the photocurable resin liquid surface on the work table of the photocurable resin container 2 is scanned with the laser light, and the second photocurable resin is cured and laminated to form a model. Modeling equipment.
【請求項2】収束位置可変のレーザ光収束手段として、
スライド移動可能なスライド手段あるいは回転移動する
タレット手段を設け、該スライド手段あるいはタレット
手段に光軸が異なる2つの光学レンズ系を設け、該2つ
の光学レンズ系の該レーザ光の収束位置を異なるように
構成し、スライド手段をスライド移動あるいはタレット
手段を回転移動することにより、レーザ光の収束位置を
第1の収束位置および第2の収束位置に切換える収束位
置可変のレーザ光収束手段を有したことを特徴とする請
求項1記載の光造形装置。
2. A laser beam converging means having a variable converging position.
A sliding means or a turret means for sliding movement is provided, and two optical lens systems having different optical axes are provided on the sliding means or the turret means so that the convergence positions of the laser beams of the two optical lens systems are different. And a convergence position variable laser beam convergence means for switching the convergence position of the laser beam between the first convergence position and the second convergence position by sliding the slide means or rotating the turret means. The stereolithography apparatus according to claim 1, wherein:
JP10051777A 1998-03-04 1998-03-04 Optical molding device Pending JPH11245306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051777A JPH11245306A (en) 1998-03-04 1998-03-04 Optical molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051777A JPH11245306A (en) 1998-03-04 1998-03-04 Optical molding device

Publications (1)

Publication Number Publication Date
JPH11245306A true JPH11245306A (en) 1999-09-14

Family

ID=12896390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051777A Pending JPH11245306A (en) 1998-03-04 1998-03-04 Optical molding device

Country Status (1)

Country Link
JP (1) JPH11245306A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507224A (en) * 1999-08-20 2003-02-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for formative production of three-dimensional objects
JP2006500241A (en) * 2002-08-02 2006-01-05 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for manufacturing three-dimensional object using generative manufacturing method
KR101006414B1 (en) 2010-03-10 2011-01-06 주식회사 캐리마 Rapid layer upon layer form stereolithography
KR101025132B1 (en) 2009-06-03 2011-03-31 한국산업기술대학교산학협력단 Stereolithography Device Using Blue Lay Pick-up Unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507224A (en) * 1999-08-20 2003-02-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for formative production of three-dimensional objects
JP2006500241A (en) * 2002-08-02 2006-01-05 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for manufacturing three-dimensional object using generative manufacturing method
KR101025132B1 (en) 2009-06-03 2011-03-31 한국산업기술대학교산학협력단 Stereolithography Device Using Blue Lay Pick-up Unit
KR101006414B1 (en) 2010-03-10 2011-01-06 주식회사 캐리마 Rapid layer upon layer form stereolithography

Similar Documents

Publication Publication Date Title
JP5018076B2 (en) Stereolithography apparatus and stereolithography method
US5089185A (en) Optical molding method
JPH0248422B2 (en)
CN104816479B (en) Large-format light curing 3D printer
JPS61114818A (en) Apparatus for forming solid configuration
JPH09277384A (en) Manufacture of three dimensional structure and apparatus therefor
JPH11245306A (en) Optical molding device
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JP2008162189A (en) Optical shaping apparatus
JPS63141725A (en) Apparatus for forming three dimensional shape
JP3578590B2 (en) Stereolithography equipment using lamps
KR20040102531A (en) Micro-stereolithography method and apparatus
JPH10249943A (en) Apparatus for stereo lithography
JPS61217219A (en) Three-dimensional configuration forming device
JPH0798363B2 (en) Method and apparatus for creating three-dimensional objects
JPH0493228A (en) Method for forming three-dimensional matter
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JP2613928B2 (en) Method and apparatus for forming a three-dimensional shape
JPS6299753A (en) Formation of three-dimensional shape
JP3444740B2 (en) Apparatus and method for manufacturing a three-dimensional object
JPH0885155A (en) Optically molding apparatus and method therefor
JPH049662B2 (en)
Ikonomov et al. Journal of the Technical University of Gabrovo
JPH032030A (en) Forming method of three dimensional shape
CN118124146A (en) Microbubble-assisted projection type photocuring 3D printing system and method