JPH11244998A - Cooling structure of assembled mold for continuous casting - Google Patents

Cooling structure of assembled mold for continuous casting

Info

Publication number
JPH11244998A
JPH11244998A JP5495698A JP5495698A JPH11244998A JP H11244998 A JPH11244998 A JP H11244998A JP 5495698 A JP5495698 A JP 5495698A JP 5495698 A JP5495698 A JP 5495698A JP H11244998 A JPH11244998 A JP H11244998A
Authority
JP
Japan
Prior art keywords
cooling
fastening bolt
cooling water
bolt boss
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5495698A
Other languages
Japanese (ja)
Inventor
Norikimi Yamazaki
伯公 山▲崎▼
Noriyuki Suzuki
規之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5495698A priority Critical patent/JPH11244998A/en
Publication of JPH11244998A publication Critical patent/JPH11244998A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To drastically reduce the temp. difference of the surface of a cooling copper plate by disposing zigzag a fastening bolt boss parts in a cooling water passage and arranging tapered supporting plates. SOLUTION: In the cooling structure composed of a water cooling type mold wall for feeding the cooling water into the cooling water passage 5 formed between the fastened cooling copper plate 1 and back plate 2, the cooling structure is provided with the fastening bolt boss parts 7 positioned at the interval between the cooling copper plate 1 and the back plate 2 and arranged at the cooling copper plate 1 and the supporting plate 3 disposed at the downstream zone side of the fastening bolt boss part 7, and the cooling copper plate 1 and the back plate 2 are fastened with the fastening bolt 4. In this cooling structure, the fastening bolt boss parts 7 are disposed zigzag in the flow passage of the cooling water. Further, the width of the supporting plate 3 is made not more than the diameter of the fastening bolt boss part 7 at the position adjoined to the fastening bolt boss part 7 and formed as tapered state toward the downstream direction of the cooling water. The length 8 of the supporting plate is made equal to not less than 5 times of the diameter of the fastening bolt boss part 7. The each setting pitch of the fastening bolt boss part 7 is made larger than the diameter of the fastening bolt boss part 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造時に鋳片
表面温度を均一化し、鋳片の材料特性を改善できる連続
鋳造用の組立鋳型の冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for an assembling mold for continuous casting, which can make the surface temperature of a slab uniform during continuous casting and improve the material properties of the slab.

【0002】[0002]

【従来の技術】連続鋳造鋳型において場所による冷却む
らを少なくし冷却を均一化させるために、連続鋳造用の
鋳型冷却構造には、溶鋼及び鋳片に接触する鋳型面を熱
伝導の優れた銅または銅合金で形成する水冷チューブラ
鋳型冷却構造及び組立鋳型冷却構造等がある。
2. Description of the Related Art In order to reduce cooling unevenness in a continuous casting mold and to make the cooling uniform, a mold cooling structure for continuous casting includes a mold surface in contact with molten steel and a slab with copper having excellent heat conductivity. Alternatively, there are a water-cooled tubular mold cooling structure and an assembled mold cooling structure formed of a copper alloy.

【0003】チューブラ鋳型の冷却構造は、銅または銅
合金鋳型の水冷溝を有するハウジングに鋳片に直接接触
する内側銅製チューブと外側チューブを収納してチュー
ブの両端部を固定し、双方のチューブの間隙に冷却水を
送水する構造となっている。銅製チューブは任意の形状
に容易に変形できるので製造費用は廉価であり、銅また
は銅合金鋳型壁を薄肉化することが可能である。しかし
ながら、鋳型の構造的強度を考慮すると、鋳片寸法は1
80mm角形程度が上限であり大型の鋳型とすることが
できない。したがって、この銅製チューブラ鋳型冷却構
造では、連続鋳造されるものは鋳片断面積の小さなビッ
レトに限定される。さらに、銅製チューブラ鋳型冷却構
造は、水冷溝を有するハウジング及び銅製チューブの2
重構造となるために、メンテナンスコストが高くなる。
[0003] The cooling structure of a tubular mold includes an inner copper tube and an outer tube which are in direct contact with a slab and is housed in a housing having a water-cooled groove of a copper or copper alloy mold to fix both ends of the tube. The structure is such that cooling water is supplied to the gap. Since the copper tube can be easily deformed into an arbitrary shape, the production cost is low, and the copper or copper alloy mold wall can be thinned. However, considering the structural strength of the mold, the slab size is 1
The upper limit is about 80 mm square, and it cannot be used as a large mold. Therefore, in this copper tubular mold cooling structure, what is continuously cast is limited to a biletto having a small slab cross-sectional area. Further, the copper tubular mold cooling structure has a housing having a water cooling groove and a copper tube.
Due to the heavy structure, maintenance costs are increased.

【0004】さらに、組立形鋳型の冷却構造10は、図
8の(a)、(b)及び(c)に示すように、銅または
銅合金板に冷却水流路5を加工して設け、この加工され
た冷却銅板1とバックプレート2とを重ね合わせて締結
ボルトボス部7を締結ボルト4で締結し冷却水流路5を
完成し、さらに、この4枚の重ね合わせ板を組み合わせ
て形成される。この銅または銅合金製の冷却構造10を
備える組立鋳型は、鋳型内面寸法を正確にすることがで
きるので、ブルーム及びスラブ鋳片の鋳造用に多く使用
される。また、4枚の銅または銅合金製の冷却銅板から
なる組立鋳型は、対面する2辺の冷却銅板を摺動可能に
することにより、鋳片幅可変鋳型として使用することが
できる。銅または銅合金製の冷却銅板は矯正が容易であ
るために、メンテナンスコストを低くすることができ
る。しかしながら、冷却銅板に冷却溝すなわち冷却水流
路5を複数路機械加工するために、冷却銅板を薄肉化す
ることができないために、加工費及び材料費が高くな
る。図8の(a)に示すように、冷却銅板1は、締結ボ
ルトボス部7付近の機械加工が非常に複雑となる。ま
た、鋳片幅が狭い場合は、鋳片に冷却不均一が生じる問
題がある。
Further, as shown in FIGS. 8 (a), 8 (b) and 8 (c), a cooling structure 10 for an assembling mold is provided by processing a cooling water channel 5 in a copper or copper alloy plate. The processed cooling copper plate 1 and the back plate 2 are overlapped, the fastening bolt boss 7 is fastened with the fastening bolts 4 to complete the cooling water flow path 5, and further formed by combining these four stacked plates. The assembled mold having the cooling structure 10 made of copper or a copper alloy is often used for casting blooms and slab slabs because the inner dimensions of the mold can be made accurate. In addition, an assembly mold composed of four copper or copper alloy cooling copper plates can be used as a slab width variable mold by allowing two facing cooling copper plates to slide. The cooling copper plate made of copper or a copper alloy can be easily straightened, so that the maintenance cost can be reduced. However, since the cooling groove, that is, the cooling water flow path 5 is machined in a plurality of paths in the cooling copper plate, the cooling copper plate cannot be thinned, so that the processing cost and the material cost increase. As shown in FIG. 8A, the machining of the cooling copper plate 1 in the vicinity of the fastening bolt boss 7 becomes very complicated. In addition, when the slab width is narrow, there is a problem that the slab has uneven cooling.

【0005】別の組立形鋳型の冷却構造は、冷却銅板と
バックプレートの間のほぼ全面に渡って直接冷却水を送
水する構造となっており、この冷却銅板とバックプレー
トとは締結ボルトで締結されている。この構造の冷却銅
板を使用した鋳型は、締結ボルト付近を除き鋳型をほぼ
全面的に冷却することができ、冷却均一化を非常に向上
することができ且つ鋳型厚さを薄くすることができる。
しかしながら、図1の(b)に示すように、冷却水流路
5に存在する締結ボルト4及びボス部7が、それらの後
方に冷却水の淀みを形成し、これにより、まだ鋳片に冷
却不均一による鋳片表面の温度むらを発生させる。
[0005] Another cooling structure of the assembled mold has a structure in which cooling water is directly supplied over almost the entire surface between the cooling copper plate and the back plate, and the cooling copper plate and the back plate are fastened with fastening bolts. Have been. The mold using the cooling copper plate having this structure can cool the mold almost entirely except for the vicinity of the fastening bolt, can greatly improve the uniformity of cooling, and can reduce the thickness of the mold.
However, as shown in FIG. 1 (b), the fastening bolts 4 and the bosses 7 present in the cooling water flow path 5 form a stagnation of the cooling water behind them, and as a result, the slab still cannot be cooled. Temperature unevenness on the slab surface due to uniformity is generated.

【0006】[0006]

【発明が解決しようとする課題】上述したように連続鋳
造における銅製チューブラ鋳型の冷却構造では、構造上
から強度が制限され連続鋳造されるものは鋳片断面積の
小さなビッレトに留まっている。したがって、この銅製
チューブラ鋳型は、大型鋳片の連続鋳造に使用すること
ができない。銅または銅合金板に水冷溝または冷却水流
路を加工しバックプレートと組み合わせた組立形鋳型の
冷却構造においては、冷却水流路を何本も銅板に直接機
械加工するために、加工費及び材料費が高くなり、且つ
連続鋳造される鋳片幅が狭い場合に冷却不均一が生じ鋳
片表面に温度むらを生じる問題がある。さらに、冷却銅
板とバックプレートの間のほぼ全面に渡って直接冷却水
を送水循環する組立形鋳型の冷却構造においては、冷却
水流路に存在する締結ボルトボス部の後方に冷却水のよ
どみを形成し、これにより、上記と同様に鋳片に冷却不
均一が生じ鋳片表面の温度むらによる材料特性に不安定
性をもたらせる問題があった。
As described above, in the cooling structure of the copper tubular mold in the continuous casting, the strength of the structure is limited and the continuous casting is limited to a small slab having a small slab cross-sectional area. Therefore, this copper tubular mold cannot be used for continuous casting of large slabs. In a cooling structure of an assembled mold in which a water cooling groove or cooling water flow path is formed on a copper or copper alloy plate and combined with a back plate, machining and material costs are required because many cooling water flow paths are directly machined on the copper plate. When the cast slab is continuously cast and the width of the cast slab is narrow, there is a problem that the cooling becomes uneven and the temperature of the slab becomes uneven. Further, in the cooling structure of the assembled mold in which the cooling water is directly fed and circulated over almost the entire surface between the cooling copper plate and the back plate, the cooling water is formed behind the fastening bolt boss existing in the cooling water flow path. As a result, there has been a problem that, as in the above case, the slab has a non-uniform cooling, which causes instability in the material properties due to uneven temperature on the slab surface.

【0007】[0007]

【課題を解決するための手段】上記課題を解決し、大き
な鋳片から小さな鋳片までを均一に冷却することがで
き、材料特性の優れた連続鋳片の製造を可能にする連続
鋳造用組立鋳型の冷却構造は、以下に述べる本発明の連
続鋳造用組立鋳型によって達成される。本発明は、締結
され冷却銅板とバックプレートとの間に形成される冷却
水流路に冷却水を送水及び循環する水冷式の鋳型壁から
成る連続鋳造用組立鋳型の冷却構造であって、冷却銅板
とバックプレートとの間に位置し且つ冷却銅板に設けら
れる締結ボルトボス部、及び冷却水流路内の締結ボルト
ボス部の下流域側に配置される支持プレートを備え、且
つ冷却銅板とバックプレートとを締結ボルトで締結する
ことを特徴とする連続鋳造用組立鋳型の冷却構造によっ
て達成される。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is possible to uniformly cool a large slab to a small slab, and to manufacture a continuous slab having excellent material properties. The cooling structure of the mold is achieved by the continuous casting assembly mold of the present invention described below. The present invention relates to a cooling structure for a continuous casting assembly mold comprising a water-cooled mold wall for supplying and circulating cooling water to a cooling water flow passage formed between a cooling copper plate and a back plate, the cooling copper plate being provided. And a backing plate, and a fastening bolt boss portion provided on the cooling copper plate, and a support plate disposed downstream of the fastening bolt boss portion in the cooling water flow path, and fastening the cooling copper plate and the back plate. This is achieved by a cooling structure for an assembling mold for continuous casting, which is characterized by fastening with bolts.

【0008】また、本発明は、締結ボルトボス部を、冷
却水流路内に千鳥状に或いは食い違い状に配置したこと
を特徴とする冷却構造部によって達成される。さらに、
本発明は、締結ボルトボス部に隣接する位置では、支持
プレートの幅を締結ボルトボス部の直径以下とし、且
つ、支持プレートの幅を冷却水の下流方向に向かって先
細りにしたことを特徴とする冷却構造によって達成され
る。
Further, the present invention is achieved by a cooling structure characterized in that the fastening bolt bosses are arranged in a staggered or staggered manner in the cooling water flow path. further,
The present invention is characterized in that at a position adjacent to the fastening bolt boss portion, the width of the support plate is equal to or less than the diameter of the fastening bolt boss portion, and the width of the support plate is tapered in the downstream direction of the cooling water. Achieved by structure.

【0009】さらに、本発明は、冷却水の流れ方向に平
行な支持プレートの長さを、締結ボルトボス部の直径以
上から該直径の5倍以下としたことを特徴とする冷却構
造によって達成される。さらに、本発明は、冷却水の流
れ方向に対して直角方向の締結ボルトボス部の各々の配
置ピッチを、締結ボルトボス部の直径を越える配置ピッ
チとしたことを特徴とする冷却構造によって達成され
る。
Further, the present invention is achieved by a cooling structure characterized in that a length of a support plate parallel to a flow direction of cooling water is set to be not less than the diameter of the fastening bolt boss portion and not more than five times the diameter. . Further, the present invention is achieved by a cooling structure characterized in that the arrangement pitch of the fastening bolt bosses in the direction perpendicular to the flow direction of the cooling water is an arrangement pitch exceeding the diameter of the fastening bolt boss.

【0010】[0010]

【発明の実施の形態及び実施例】本発明においては、組
立鋳型の冷却不均一を改善するために、冷却銅板とバッ
クプレートを締結する締結ボルトボス部の冷却水流路内
の配置に注目した。従来の組立鋳型の冷却構造10にお
いては、図1の(b)に示すように、締結ボルトボス部
7が冷却銅板1の冷却水流路5内に碁盤目状に配置され
ていたが、本発明の組立鋳型の冷却構造10において
は、図1の(a)に示すように、締結ボルトボス部7を
冷却水流路5内に千鳥状に配置した。これによって、冷
却水流路内の締結ボルトボス部の後方に発生する冷却水
のよどみが改善される。以下に本発明の締結ボルトボス
部7を千鳥状に配置した冷却銅板1の冷却水よどみの改
善結果を比較例とともに示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, attention has been paid to the arrangement of the fastening bolt bosses for fastening the cooling copper plate and the back plate in the cooling water flow path in order to improve the uneven cooling of the assembly mold. In the cooling structure 10 of the conventional assembly mold, the fastening bolt bosses 7 are arranged in a grid pattern in the cooling water flow path 5 of the cooling copper plate 1 as shown in FIG. In the cooling structure 10 of the assembled mold, the fastening bolt bosses 7 are arranged in a staggered manner in the cooling water flow path 5 as shown in FIG. Thereby, the stagnation of the cooling water generated behind the fastening bolt boss portion in the cooling water channel is improved. Hereinafter, the results of improving the cooling water stagnation of the cooling copper plate 1 in which the fastening bolt bosses 7 of the present invention are arranged in a staggered manner are shown together with comparative examples.

【0011】実施例1 上記従来の締結ボルトボス部7を碁盤の目状に配置した
冷却構造10を採用した組立鋳型内の冷却水流速は、図
2に示すように、締結ボルトボス部7の冷却水流路下流
域(例えば、図2の横軸で約0.08mの位置)で約2
m/secまでも低下し、一方、それぞれの締結ボルト
ボス部7間の中央部(例えば、図2の横軸で約0.05
の位置)では約16m/secになり、その冷却水流速
の分布幅は14m/secにもなる。また、冷却水流速
の流路幅方向の流速分布周期は、締結ボルトボス部の配
置ピッチに比例し約6cmになった。
Embodiment 1 As shown in FIG. 2, the flow rate of the cooling water in the assembly mold employing the cooling structure 10 in which the conventional fastening bolt bosses 7 are arranged in a grid pattern as shown in FIG. In the downstream area (for example, about 0.08 m on the horizontal axis in FIG. 2), about 2
m / sec, while the central portion between the respective fastening bolt bosses 7 (for example, about 0.05 in the horizontal axis of FIG. 2).
At position (16), the distribution width of the cooling water flow velocity becomes as high as 14 m / sec. Further, the cycle of the flow velocity distribution of the cooling water velocity in the flow channel width direction was about 6 cm in proportion to the arrangement pitch of the fastening bolt bosses.

【0012】それにかわって、本発明の締結ボルトボス
部7を千鳥状に配置した冷却構造10を採用した組立鋳
型内の冷却水流速は、図3に示すように、締結ボルトボ
ス部7の冷却水流路下流域(例えば、図3横軸で約0.
015mの位置)で約6m/secであり、流路幅方向
で最も近い締結ボルトボス部7間同士の中央部(例え
ば、図3横軸でで約3.5mの位置)では約12m/s
ecになり、したがって、冷却水流速の分布幅は6m/
secにまで減少された。また、冷却水流速の流路幅方
向の分布周期は、最も近い締結ボルトボス部の配置ピッ
チに比例し約3cmで、上記従来例に比較して1/2に
減少された。このことは、冷却水流速が均一化され、そ
れによって、連続鋳片の表面温度のむらが甚だしく低減
されることを示すものである。
Instead, as shown in FIG. 3, the flow rate of the cooling water in the assembly mold employing the cooling structure 10 in which the fastening bolt bosses 7 of the present invention are arranged in a staggered manner is shown in FIG. The downstream area (for example, about 0.
165 m), and about 12 m / s at the center (eg, about 3.5 m on the horizontal axis in FIG. 3) between the fastening bolt bosses 7 closest in the flow channel width direction.
ec, and the distribution width of the cooling water flow velocity is 6 m /
sec. Further, the distribution cycle of the cooling water flow velocity in the flow channel width direction was about 3 cm in proportion to the arrangement pitch of the closest fastening bolt boss portions, and was reduced to half of that in the conventional example. This indicates that the cooling water flow rate is made uniform, thereby significantly reducing the unevenness in the surface temperature of the continuous slab.

【0013】実施例2 本発明も別の実施例によれば、締結ボルトボス部の冷却
水流路下流側に発生する流れのよどみによる連続鋳片の
表面温度のむらをさらに低減するために、締結ボルトボ
ス部の冷却水流路下流側に支持プレートを設けることが
できる。この支持プレートは、締結ボルトボス部と一体
化形成して、支持プレート付き締結ボルトボス部として
冷却水流路に設けることもでき、または、支持プレート
は別個に冷却流路に備えることもできる。この支持プレ
ートの形状及び大きさは、締結ボルトボス部間の間隔及
び冷却水の流速等に依存するが、支持プレートの幅は締
結ボルトボス部の直径以下とし、且つ、支持プレートの
高さは、冷却銅板とバックプレートを締結ボルトで締め
つけるときの支持の役目も果たすために、冷却銅板とバ
ックプレートの間隔に等しくする。図4の(a)及び
(b)のように千鳥状に配置した各締結ボルトボス部7
の冷却水下流側に4角形の一体化形成した支持プレート
3を設けた冷却銅板の冷却構造の場合と、図1の(a)
のように支持プレートを設けず単に千鳥状に配置した締
結ボルトボス部7の冷却銅板の冷却構造の場合と、の冷
却銅板表面温度の温度分布の比較を図5に示す。双方の
実施例とも、冷却銅板の温度則定点は、組立鋳型のメニ
スカスに最近接の締結ボルトボス部間隔で温度測定を行
った。図5において、締結ボルトボス部の配置が千鳥状
であるが支持プレートが配置されていない鎖線の場合、
横軸の締結ボルトボス部中心部すなわち約0mmの位置
では冷却銅板の表面温度は約270℃であるが、締結ボ
ルトボス部中心部から冷却水流路幅方向に約20mm離
れた位置では約235℃であり、その温度差は約35℃
になった。一方、締結ボルトボス部の配置が千鳥状であ
り且つ4角形の支持プレートが配置されている実線の場
合、横軸の締結ボルトボス部中心部すなわち約0mmの
位置では冷却銅板の表面温度は約248℃であるが、締
結ボルトボス部から冷却水流路幅方向に約20mm離れ
た位置では約230℃であり、4角形の支持プレート3
を配置することによりその温度差は約18℃まで改善さ
れた。このように支持プレートを締結ボルトボス部下流
側に配置することにより、支持プレートの伝熱効果によ
り冷却水流路幅方向に対する冷却銅板表面温度の不均一
性が改善された。
Embodiment 2 According to another embodiment of the present invention, in order to further reduce the unevenness of the surface temperature of the continuous slab due to the stagnation of the flow generated on the downstream side of the cooling water flow path of the fastening bolt boss, the fastening bolt boss is required. A support plate can be provided downstream of the cooling water flow path. The support plate may be integrally formed with the fastening bolt boss and provided as a fastening bolt boss with a support plate in the cooling water passage, or the support plate may be separately provided in the cooling passage. The shape and size of the support plate depend on the spacing between the fastening bolt bosses, the flow rate of the cooling water, etc., but the width of the support plate is equal to or smaller than the diameter of the fastening bolt boss, and the height of the support plate is In order to also serve as a support when fastening the copper plate and the back plate with the fastening bolts, the distance between the cooling copper plate and the back plate is made equal. As shown in FIGS. 4A and 4B, the fastening bolt bosses 7 arranged in a staggered manner.
FIG. 1 (a) shows a case of a cooling structure of a cooling copper plate provided with a support plate 3 integrally formed in a square shape on the downstream side of the cooling water.
FIG. 5 shows a comparison of the temperature distribution of the cooling copper plate surface temperature with the case of the cooling copper plate cooling structure of the fastening bolt boss portions 7 which are simply arranged in a staggered manner without providing the support plate. In both examples, the temperature law fixed point of the cooled copper plate was measured at the interval between the fastening bolt boss portions closest to the meniscus of the assembly mold. In FIG. 5, in the case of a chain line in which the arrangement of the fastening bolt boss portions is staggered but the support plate is not arranged,
The surface temperature of the cooling copper plate is about 270 ° C. at the center of the fastening bolt boss on the horizontal axis, that is, at a position of about 0 mm, but is about 235 ° C. at a position about 20 mm away from the center of the fastening bolt boss in the width direction of the cooling water flow path. , The temperature difference is about 35 ° C
Became. On the other hand, when the arrangement of the fastening bolt bosses is staggered and the solid line on which the rectangular support plate is arranged, the surface temperature of the cooling copper plate is about 248 ° C. at the center of the fastening bolt boss on the horizontal axis, that is, at the position of about 0 mm. However, at a position about 20 mm away from the fastening bolt boss in the width direction of the cooling water channel, the temperature is about 230 ° C.
The temperature difference was improved to about 18 ° C. By disposing the support plate on the downstream side of the fastening bolt boss portion, the nonuniformity of the surface temperature of the cooling copper plate in the width direction of the cooling water channel is improved by the heat transfer effect of the support plate.

【0014】実施例3 さらに、本発明も別の実施例によれば、締結ボルトボス
部7下流側に発生する流れのよどみをさらに低減するに
は、支持プレート3を冷却水流路下流方向に向かって先
細りとすることにより達成できる。図6に、千鳥状に配
置した各締結ボルトボス部7の冷却水下流側に3角形の
一体成形した支持プレート3を設けた冷却銅板の部分透
視図及び断面図を示す。図6の(a)〜(c)のように
千鳥状に配置した各締結ボルトボス部の冷却水下流側に
3角形の支持プレートを設けた冷却銅板の冷却構造の場
合と、上記図の4の(a)及び(b)のように千鳥状に
配置した締結ボルトボス部の冷却水下流側に4角形の支
持プレートを設けた冷却銅板の場合との、冷却銅板表面
温度の比較を図7に示す。双方の実施例とも、冷却銅板
の温度測定点は、組立鋳型のメニスカスに最近接の締結
ボルトボス部位置で温度測定を行った。図7において、
締結ボルトボス部の配置が千鳥状であるが支持プレート
が4角形の鎖線の冷却構造の場合、実施例2で述べたよ
うに、横軸の締結ボルトボス部中心部から冷却水流路幅
方向に約20mm離れた位置では、4角形の支持プレー
トを配置することによりその温度差は約18℃まで改善
された。しかし、さらにこの支持プレートを先細りの三
角形にした場合は、横軸の締結ボルトボス部中心部では
冷却銅板表面温度は約235℃であるが、締結ボルトボ
ス部から冷却水流路幅方向に約20mm離れた位置では
約230℃であり、先細りの3角形の支持プレートを配
置することによりその温度差は約5℃まで改善された。
このように先細りの3角形の支持プレートを締結ボルト
ボス部下流側に配置することにより、冷却水流路幅方向
に対するよどみがさらに低減され、冷却銅板表面温度の
均一性が向上され、よって、連続鋳片の材料特性が改善
される。
Embodiment 3 According to another embodiment of the present invention, in order to further reduce the flow stagnation generated on the downstream side of the fastening bolt boss 7, the support plate 3 is moved toward the downstream of the cooling water flow path. This can be achieved by tapering. FIG. 6 shows a partial perspective view and a cross-sectional view of a cooling copper plate provided with a triangular integrally formed support plate 3 on the downstream side of the cooling water of the fastening bolt bosses 7 arranged in a staggered manner. As shown in FIGS. 6A to 6C, a cooling copper plate cooling structure in which a triangular support plate is provided on the cooling water downstream side of each fastening bolt boss portion arranged in a staggered manner, and FIG. FIG. 7 shows a comparison of a cooling copper plate surface temperature with a cooling copper plate provided with a rectangular support plate on the cooling water downstream side of the fastening bolt bosses arranged in a staggered manner as in (a) and (b). . In both examples, the temperature of the cooled copper plate was measured at the position of the fastening bolt boss closest to the meniscus of the assembly mold. In FIG.
In the case where the arrangement of the fastening bolt bosses is staggered but the support plate has a rectangular chain-shaped cooling structure, as described in Embodiment 2, about 20 mm from the center of the fastening bolt boss on the horizontal axis in the width direction of the cooling water flow path. At a remote location, the temperature difference was improved to about 18 ° C. by placing a square support plate. However, when the support plate is further tapered into a triangle, the cooling copper plate surface temperature is about 235 ° C. at the center of the fastening bolt boss on the horizontal axis, but is about 20 mm away from the fastening bolt boss in the cooling water channel width direction. The position was about 230 ° C., and the temperature difference was improved to about 5 ° C. by placing a tapered triangular support plate.
By arranging the tapered triangular support plate on the downstream side of the fastening bolt boss in this manner, stagnation in the width direction of the cooling water flow path is further reduced, and the uniformity of the surface temperature of the cooling copper plate is improved. Material properties are improved.

【0015】[0015]

【発明の効果】本発明の連続鋳造の冷却構造においは、
冷却水流路内の締結ボルトボス部を千鳥状に配置したこ
とにより、冷却水流速分布幅を減少でき且つその冷却水
流路幅方向の分布周期は、約1/2に減少できた(図2
及び図3参照)。また、本発明の4角形の支持プレート
を、従来の冷却水流路内の締結ボルトボス部に碁盤目状
に配置して冷却銅板に設けることによっても、この冷却
銅板の表面温度差は従来の技術のものに比較して約1/
2まで減少することができる(図5参照)。
The cooling structure of the continuous casting of the present invention is as follows.
By arranging the fastening bolt bosses in the cooling water flow path in a staggered manner, the cooling water flow velocity distribution width can be reduced, and the distribution cycle in the cooling water flow path width direction can be reduced to about ((FIG. 2).
And FIG. 3). Also, the surface temperature difference of the cooling copper plate can be reduced by arranging the rectangular support plate of the present invention on the cooling copper plate by arranging it in a grid pattern on the fastening bolt boss portion in the conventional cooling water flow path. About 1 /
2 (see FIG. 5).

【0016】さらに、本発明の連続鋳造の冷却構造にお
いて、冷却水流路内の締結ボルトボス部を千鳥状に配置
し且つ先細りの支持プレートを設けたことにより、冷却
銅板の表面温度差を従来の技術に支持プレートを設けた
ものに比較しても約1/7までに大幅に減少することが
できた(図2と図7参照)。
Further, in the cooling structure for continuous casting of the present invention, the fastening bolt bosses in the cooling water flow passage are arranged in a staggered manner and a tapered support plate is provided, so that the surface temperature difference of the cooling copper plate can be reduced. In comparison with the case where the supporting plate was provided, it was possible to greatly reduce to about 1/7 (see FIGS. 2 and 7).

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1の(a)は本発明の締結ボルトボス部を千
鳥状配置の冷却構造を示し、図1の(b)は従来の締結
ボルトボス部の碁盤の目状配置の冷却構造を示す透視図
である。
FIG. 1 (a) shows a cooling structure in which the fastening bolt bosses of the present invention are arranged in a staggered pattern, and FIG. 1 (b) shows a conventional cooling structure in which the fastening bolt bosses are arranged in a grid pattern. It is a perspective view.

【図2】従来の締結ボルトボス部を碁盤の目状配置した
冷却構造の組立鋳型の冷却水流路内幅方向の平均冷却水
流速の分布を示す。
FIG. 2 shows the distribution of the average cooling water flow velocity in the width direction of the inside of the cooling water flow path of the cooling mold assembly mold having the conventional fastening bolt bosses arranged in a grid pattern.

【図3】本発明の締結ボルトボス部を千鳥状に配置した
冷却構造の組立鋳型の冷却水流路内幅方向の平均冷却水
流速の分布を示す。
FIG. 3 shows the distribution of the average cooling water flow velocity in the width direction of the cooling water flow path of the assembly mold having the cooling structure in which the fastening bolt bosses of the present invention are arranged in a staggered manner.

【図4】本発明の締結ボルトボス部を千鳥状に配置し且
つ4角形の支持プレートを設けた冷却構造の図であり、
図4の(a)は冷却構造の部分透視図であり、図4の
(b)は図4の(a)のA−A線断面図である。
FIG. 4 is a diagram of a cooling structure in which fastening bolt bosses of the present invention are arranged in a staggered manner and a rectangular support plate is provided;
4A is a partial perspective view of the cooling structure, and FIG. 4B is a cross-sectional view taken along line AA of FIG.

【図5】本発明の冷却銅板とバックプレートを締結する
締結ボルトボス部を千鳥状に配置した冷却銅板における
支持プレートの有無による、締結ボルトボス間の冷却銅
板表面温度差を示す。
FIG. 5 shows a difference in surface temperature of a cooling copper plate between fastening bolt bosses depending on the presence or absence of a support plate in a cooling copper plate in which fastening bolt bosses for fastening a cooling copper plate and a back plate are staggered.

【図6】本発明の締結ボルトボス部7を千鳥状に配置し
且つ3角形の支持プレートを設けた冷却構造の図であ
り、図6の(a)は冷却構造の部分透視図であり、図6
の(b)は図6の(a)のA−A線断面図であり、且つ
図6の(c)は図6の(a)のB−B線断面図である。
FIG. 6 is a diagram of a cooling structure in which the fastening bolt bosses 7 of the present invention are arranged in a staggered manner and a triangular support plate is provided, and FIG. 6A is a partial perspective view of the cooling structure; 6
6B is a sectional view taken along line AA of FIG. 6A, and FIG. 6C is a sectional view taken along line BB of FIG. 6A.

【図7】本発明の締結ボルトボス部を千鳥状に配置した
冷却構造において、4角形(鎖線)の支持プレート及び
3角形(実線)の支持プレートを使用した場合の、締結
ボルト中心からの距離に対する冷却銅板の表面温度を示
す。
FIG. 7 is a graph showing the relationship between the distance from the center of the fastening bolt when a square (chain line) supporting plate and a triangular (solid line) supporting plate are used in the cooling structure of the present invention in which the fastening bolt bosses are arranged in a staggered manner. Shows the surface temperature of the cooled copper plate.

【図8】冷却銅板に直接に冷却水流路と締結ボルトボス
部を設けた従来技術の冷却構造の図であり、図8の
(a)は冷却構造の部分透視図であり、図8の(b)は
図8の(a)のA−A線断面図であり、且つ図8の
(c)は図8の(a)のB−B線断面図である。
FIG. 8 is a diagram of a conventional cooling structure in which a cooling water channel and a fastening bolt boss are provided directly on a cooling copper plate. FIG. 8A is a partial perspective view of the cooling structure, and FIG. 8) is a sectional view taken along line AA of FIG. 8A, and FIG. 8C is a sectional view taken along line BB of FIG. 8A.

【符号の説明】[Explanation of symbols]

1…冷却銅板 2…バックプレート 3…支持プレート 4…締結ボルト 5…冷却水流路 6…冷却水流れ方向 7…締結ボルトボス部 8…支持プレート長さ 9…支持プレート幅 10…冷却構造 DESCRIPTION OF SYMBOLS 1 ... Cooling copper plate 2 ... Back plate 3 ... Support plate 4 ... Fastening bolt 5 ... Cooling water flow path 6 ... Cooling water flow direction 7 ... Fastening bolt boss part 8 ... Support plate length 9 ... Support plate width 10 ... Cooling structure

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 締結され冷却銅板とバックプレートとの
間に形成される冷却水流路に冷却水を送水する水冷式の
鋳型壁から成る連続鋳造用組立鋳型の冷却構造であっ
て、 前記冷却銅板と前記バックプレートとの間に位置し、且
つ前記冷却銅板に設けられる締結ボルトボス部、及び前
記冷却水流路内の前記締結ボルトボス部の下流域側に配
置される支持プレート、を備え、且つ前記冷却銅板と前
記バックプレートとを締結ボルトで締結することを特徴
とする連続鋳造用組立鋳型の冷却構造。
1. A cooling structure for an assembly mold for continuous casting comprising a water-cooled mold wall for feeding cooling water to a cooling water flow passage formed between a cooling copper plate and a back plate, the cooling copper plate being provided. A fastening bolt boss provided on the cooling copper plate, and a support plate disposed downstream of the fastening bolt boss in the cooling water flow path; and A cooling structure for an assembling mold for continuous casting, wherein a copper plate and the back plate are fastened with fastening bolts.
【請求項2】 前記締結ボルトボス部を、前記冷却水流
路内に千鳥状に配置したことを特徴とする請求項1記載
の冷却構造部。
2. The cooling structure according to claim 1, wherein the fastening bolt bosses are arranged in a staggered manner in the cooling water flow path.
【請求項3】 前記締結ボルトボス部に隣接する位置で
は、前記支持プレートの幅を前記締結ボルトボス部の直
径以下とし、且つ、前記支持プレートの幅を前記冷却水
の下流方向に向かって先細りにしたことを特徴とする請
求項1記載の冷却構造。
3. In a position adjacent to the fastening bolt boss portion, the width of the support plate is set to be equal to or less than the diameter of the fastening bolt boss portion, and the width of the support plate is tapered in a downstream direction of the cooling water. The cooling structure according to claim 1, wherein:
【請求項4】 前記冷却水の流れ方向に平行な前記支持
プレートの長さを、前記締結ボルトボス部の直径以上か
ら該直径の5倍以下としたことを特徴とする請求項1記
載の冷却構造。
4. The cooling structure according to claim 1, wherein a length of the support plate parallel to a flow direction of the cooling water is set to be equal to or larger than the diameter of the fastening bolt boss and equal to or smaller than five times the diameter. .
【請求項5】 前記冷却水の流れ方向に対して直角方向
の前記締結ボルトボス部の各々の配置ピッチを、前記締
結ボルトボス部の直径を越える配置ピッチとしたことを
特徴とする請求項2記載の冷却構造。
5. The arrangement pitch of each of the fastening bolt bosses in a direction perpendicular to the flow direction of the cooling water, the arrangement pitch exceeding the diameter of the fastening bolt boss. Cooling structure.
JP5495698A 1998-03-06 1998-03-06 Cooling structure of assembled mold for continuous casting Withdrawn JPH11244998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5495698A JPH11244998A (en) 1998-03-06 1998-03-06 Cooling structure of assembled mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5495698A JPH11244998A (en) 1998-03-06 1998-03-06 Cooling structure of assembled mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH11244998A true JPH11244998A (en) 1999-09-14

Family

ID=12985131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5495698A Withdrawn JPH11244998A (en) 1998-03-06 1998-03-06 Cooling structure of assembled mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH11244998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361373A (en) * 2001-05-31 2002-12-17 Japan Engineering Network Kk Built up mold for continuous casting
JP2006320925A (en) * 2005-05-18 2006-11-30 Sanyo Special Steel Co Ltd Continuous casting mold for preventing crack of cast product by uniform cooling
JP2006341312A (en) * 2005-06-07 2006-12-21 Km Europ Metal Ag Liquid-cooled casting mold for continuously casting metal
KR100940552B1 (en) * 2002-08-16 2010-02-10 카엠이 저머니 아게 Liquid-cooled mold
CN105108081A (en) * 2015-09-15 2015-12-02 西峡龙成特种材料有限公司 Liquid-cooling crystallizer for metal continuum casting
JP2020075282A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Mold and method for steel continuous casting
WO2020130693A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Continuous casting mold device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361373A (en) * 2001-05-31 2002-12-17 Japan Engineering Network Kk Built up mold for continuous casting
KR100940552B1 (en) * 2002-08-16 2010-02-10 카엠이 저머니 아게 Liquid-cooled mold
JP2006320925A (en) * 2005-05-18 2006-11-30 Sanyo Special Steel Co Ltd Continuous casting mold for preventing crack of cast product by uniform cooling
JP2006341312A (en) * 2005-06-07 2006-12-21 Km Europ Metal Ag Liquid-cooled casting mold for continuously casting metal
CN105108081A (en) * 2015-09-15 2015-12-02 西峡龙成特种材料有限公司 Liquid-cooling crystallizer for metal continuum casting
JP2020075282A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Mold and method for steel continuous casting
WO2020130693A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Continuous casting mold device
KR20200076776A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Mold Device for Continuous Casting

Similar Documents

Publication Publication Date Title
US4009749A (en) Thin-walled mold for the continuous casting of molten metal
JPH01210153A (en) Casting device for continuous casting
US11204205B2 (en) Heat sink and method for producing same
JPH11244998A (en) Cooling structure of assembled mold for continuous casting
US3595302A (en) Cooling structure for continuous-casting mold
JP2006341312A (en) Liquid-cooled casting mold for continuously casting metal
US6742571B2 (en) Build-up mold for continuous casting
US3588059A (en) Guide rail assembly for pusher-type furnace
US3654989A (en) Apparatus for cooling continuous castings
US3625498A (en) Cooling apparatus for continuous casting plants
JP2003311377A (en) Tube-type mold for continuous casting
US3981350A (en) Apparatus for supporting and cooling a continuously cast product
JPH0335850A (en) Mold for continuous casting
JP3862896B2 (en) Furnace stave
JPH0270358A (en) Mold for continuous casting
JPH04187344A (en) Mold for continuous casting
JP2001526590A (en) Casting wheel
CN216838156U (en) Anti-deformation structure of target material and ion plating target material with anti-deformation structure
JPH0337819B2 (en)
JPS5838640A (en) Continuous casting device for thin metal sheet
JPS63123552A (en) Cooling apparatus for belt in belt type continuous casting machine
JPH08215800A (en) Irregular-section amorphous metallic thin strip
US3763924A (en) Apparatus for continuous vertical casting
CN2227999Y (en) Continuous casting crystallizer copper plate
KR20110122585A (en) Mold plate, mold plate assembly, and mold for casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510