JPH11241910A - Coordinate measuring device with temperature correcting function - Google Patents

Coordinate measuring device with temperature correcting function

Info

Publication number
JPH11241910A
JPH11241910A JP4346698A JP4346698A JPH11241910A JP H11241910 A JPH11241910 A JP H11241910A JP 4346698 A JP4346698 A JP 4346698A JP 4346698 A JP4346698 A JP 4346698A JP H11241910 A JPH11241910 A JP H11241910A
Authority
JP
Japan
Prior art keywords
temperature
measured
coordinates
characteristic shape
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4346698A
Other languages
Japanese (ja)
Inventor
Juichi Shintani
寿一 新谷
Mutsuto Oe
睦人 大江
Hidenobu Umeda
英伸 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP4346698A priority Critical patent/JPH11241910A/en
Publication of JPH11241910A publication Critical patent/JPH11241910A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the temperature in an optional position of a matter to be measured by using a non-contact type temperature measuring means in a short period of time. SOLUTION: A CPU 57 controls the position of temperature measuring position by a non-contact thermometer 3 and the position of image pickup of an object 1 to be measured by an area sensor, and measures the temperature of the position to which the non-contact thermometer 3 is opposed on the basis of the detection signal from the non-contact thermometer 3. It also measures the coordinates of a first and second reference positions and the coordinate of a third characteristic form part as the measuring position on the basis of the signal from an image processing unit 53. The coordinate of the measuring position of the object 1 is corrected according to the temperature change during measurement, and the corrected coordinate of the measuring position is converted into a coordinate at an intended temperature from the difference between the average temperature of the object 1 and the intended temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置等に
使用されているフォトマスク基板やカラーフィルタ基板
などの基板上の加工パターンなどの特徴形状部の座標の
測定を行う座標測定装置に係り、特に高精度の測定を行
うために雰囲気温度に応じて測定値の補正が可能な温度
補正機能付き座標測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coordinate measuring apparatus for measuring the coordinates of a characteristic shape portion such as a processing pattern on a substrate such as a photomask substrate or a color filter substrate used in a liquid crystal display device or the like. More particularly, the present invention relates to a coordinate measuring apparatus having a temperature correction function capable of correcting a measured value according to an ambient temperature for performing highly accurate measurement.

【0002】[0002]

【従来の技術】従来、被測定物の表面に設けられた特徴
形状部分の座標を測定したり、複数の特徴形状部分の座
標を測定してその間の寸法を求める場合には、被測定物
の温度により座標が変化するのを補正するために、被測
定物の温度を測定し、温度測定値により座標測定値を補
正することにより座標測定の精度を向上していた。被測
定物の温度を測定する手段として、特開平3−1004
12号公報には、接触式の温度検出期を用いた例が記載
されている。
2. Description of the Related Art Conventionally, when measuring the coordinates of a characteristic shape portion provided on the surface of an object to be measured or measuring the coordinates of a plurality of characteristic shape portions to determine a dimension therebetween, the measurement of the object to be measured is performed. The accuracy of coordinate measurement has been improved by measuring the temperature of an object to be measured and correcting the coordinate measurement value with the temperature measurement value in order to correct the change in the coordinates with the temperature. As means for measuring the temperature of an object to be measured, Japanese Patent Laid-Open Publication No.
No. 12 discloses an example using a contact-type temperature detection period.

【0003】[0003]

【発明が解決しようとする課題】ところが、接触式の温
度検出器を用いると温度測定に時間を要するため、被測
定物の座標測定に実際に適用するのが困難であった。ま
た、接触式の温度検出器を用いると被測定物の任意の位
置の温度を素速く測定するのが困難である。従って、被
測定物上の複数の特徴形状部分の座標を精度良く測定す
るために、被測定物上の複数の特徴形状部分の温度をそ
れぞれ測定するのが困難で、このため、それぞれの温度
に応じて各座標を補正するのが困難であった。
However, when a contact-type temperature detector is used, it takes a long time to measure the temperature, which makes it difficult to actually apply the method to coordinate measurement of an object to be measured. In addition, if a contact-type temperature detector is used, it is difficult to quickly measure the temperature at an arbitrary position on the measured object. Therefore, it is difficult to measure the temperature of each of the plurality of characteristic shapes on the DUT in order to accurately measure the coordinates of the plurality of characteristic shapes on the DUT. It was difficult to correct each coordinate accordingly.

【0004】本発明は、上記に鑑みてなされたもので、
被測定物の温度を短時間で測定することにより座標測定
時間を短縮することが可能な温度補正機能付き座標測定
装置を提供することを目的とする。
[0004] The present invention has been made in view of the above,
An object of the present invention is to provide a coordinate measuring apparatus with a temperature correction function capable of reducing the coordinate measuring time by measuring the temperature of an object to be measured in a short time.

【0005】また、本発明は、被測定物の任意の位置の
温度を素速く測定することにより座標測定の精度を向上
することが可能な温度補正機能付き座標測定装置を提供
することを目的とする。
Another object of the present invention is to provide a coordinate measuring apparatus with a temperature correction function capable of improving the accuracy of coordinate measurement by quickly measuring the temperature at an arbitrary position on an object to be measured. I do.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、被測
定物の温度を当該被測定物に対して非接触で検出する非
接触温度検出手段と、上記被測定物を撮像する撮像手段
と、上記撮像手段による撮像結果を用いて上記被測定物
の表面に設けられた少なくとも一つの特徴形状部の座標
を測定する座標測定手段と、検出された上記被測定物の
温度を用いて、測定された上記特徴形状部の座標を補正
する座標補正手段とを備えたことを特徴としている。
According to a first aspect of the present invention, there is provided a non-contact temperature detecting means for detecting a temperature of an object to be measured in a non-contact manner with respect to the object to be measured, and an imaging means for imaging the object to be measured. And, using coordinate measurement means for measuring the coordinates of at least one characteristic shape portion provided on the surface of the measured object using the imaging result of the imaging means, and using the detected temperature of the measured object, And a coordinate correcting means for correcting the measured coordinates of the characteristic shape portion.

【0007】この構成によれば、非接触温度検出手段に
より被測定物の温度が当該被測定物に対して非接触で検
出され、撮像手段により被測定物が撮像され、その撮像
結果を用いて座標測定手段により被測定物の表面に設け
られた特徴形状部の座標が測定され、測定された特徴形
状部の座標が被測定物の温度を用いて補正されることに
より、被測定物の温度が短時間で検出されることとな
り、座標測定の測定時間が短縮される。
[0007] According to this configuration, the temperature of the object to be measured is detected by the non-contact temperature detecting means in a non-contact manner with respect to the object to be measured, the image of the object to be measured is captured by the imaging means, and the imaging result is used by using the imaging result. The coordinates of the characteristic shape portion provided on the surface of the object to be measured are measured by the coordinate measuring means, and the measured coordinates of the characteristic shape portion are corrected using the temperature of the object to be measured. Is detected in a short time, and the measurement time of coordinate measurement is reduced.

【0008】また、請求項2の発明は、請求項1記載の
温度補正機能付き座標測定装置において、上記非接触温
度検出手段は、上記撮像手段による被測定物の撮像前に
該被測定物上の複数の位置の温度を検出するとともに、
上記撮像手段による該被測定物の撮像後に上記特徴形状
部の温度を検出するもので、上記座標補正手段は、上記
撮像前に検出した温度の平均値と上記撮像後に検出した
上記特徴形状部の温度との温度差を用いて、上記特徴形
状部の座標を補正するものであることを特徴としてい
る。
According to a second aspect of the present invention, in the coordinate measuring apparatus with the temperature correcting function according to the first aspect, the non-contact temperature detecting means is provided on the object to be measured before the imaging means takes an image of the object. To detect the temperature at multiple locations
Detecting the temperature of the characteristic shape portion after imaging the object to be measured by the imaging means, wherein the coordinate correction means calculates the average value of the temperature detected before the imaging and the characteristic shape portion detected after the imaging. It is characterized in that the coordinates of the characteristic shape portion are corrected using the temperature difference from the temperature.

【0009】この構成によれば、撮像手段による被測定
物の撮像前に、被測定物上の複数の位置の温度が検出さ
れ、撮像手段による被測定物の撮像後に、特徴形状部の
温度が検出されて、座標補正手段により、上記撮像前に
検出した温度の平均値と上記撮像後に検出した上記特徴
形状部の温度との温度差を用いて、上記特徴形状部の座
標が補正されることにより、測定動作中における被測定
物の特徴形状部の温度変化に応じて座標の補正が可能に
なり、測定精度が向上することとなる。
According to this structure, the temperatures of a plurality of positions on the object to be measured are detected before the imaging of the object to be measured by the imaging means, and the temperature of the characteristic shape portion is reduced after the imaging of the object to be measured by the imaging means. The coordinates of the characteristic shape portion are corrected by using the temperature difference between the average value of the temperature detected before the imaging and the temperature of the characteristic shape portion detected after the imaging by the coordinate correction means. Accordingly, the coordinates can be corrected according to the temperature change of the characteristic shape portion of the measured object during the measurement operation, and the measurement accuracy is improved.

【0010】また、請求項3の発明は、請求項1又は2
記載の温度補正機能付き座標測定装置において、補正さ
れた上記特徴形状部の座標を目的温度における座標に換
算する座標換算手段を備えたことを特徴としている。
[0010] The invention of claim 3 is based on claim 1 or 2.
The coordinate measuring apparatus with a temperature correction function described above is characterized in that a coordinate conversion means for converting the corrected coordinates of the characteristic shape portion into coordinates at a target temperature is provided.

【0011】この構成によれば、補正された特徴形状部
の座標が目的温度における座標に換算されることによ
り、短時間で目的温度における特徴形状部の座標が得ら
れることとなる。
According to this configuration, the corrected coordinates of the characteristic shape portion are converted into the coordinates at the target temperature, so that the coordinates of the characteristic shape portion at the target temperature can be obtained in a short time.

【0012】また、上記被測定物は、上記特徴形状部と
して、第1特徴形状部、第2特徴形状部及び第3特徴形
状部を有するもので、上記非接触温度検出手段は、上記
第1、第2、第3特徴形状部の撮像前に上記被測定物上
の複数の位置の温度を検出するとともに、上記第1、第
2、第3特徴形状部の撮像後に上記第3特徴形状部の温
度を検出するもので、上記座標補正手段は、上記温度差
が所定レベル以上のときに上記撮像手段により上記第1
特徴形状部及び上記第2特徴形状部を再撮像させ、最初
の撮像時の上記第1特徴形状部と上記第2特徴形状部の
座標間の距離と再撮像時の上記距離との変化量が所定レ
ベル以上のときに、上記温度差を用いて上記第3特徴形
状部の座標を補正するものであるとしてもよい。
The object to be measured has a first characteristic shape portion, a second characteristic shape portion, and a third characteristic shape portion as the characteristic shape portion, and the non-contact temperature detecting means includes the first characteristic shape portion. Detecting the temperatures at a plurality of positions on the object to be measured before imaging the second, third, and third characteristic shape portions, and detecting the third characteristic shape portion after imaging the first, second, and third characteristic shape portions. The coordinate correction means detects the first temperature by the imaging means when the temperature difference is equal to or higher than a predetermined level.
The characteristic shape part and the second characteristic shape part are re-imaged, and the amount of change between the distance between the coordinates of the first characteristic shape part and the second characteristic shape part at the time of the first imaging and the distance at the time of re-imaging is When the temperature is equal to or higher than a predetermined level, the coordinates of the third characteristic shape portion may be corrected using the temperature difference.

【0013】この構成によれば、撮像前の被測定物の複
数の位置の温度の平均値と撮像後の第3特徴形状部の温
度との温度差が所定レベル以上のときに、第1特徴形状
部及び第2特徴形状部が再撮像される。そして、最初の
撮像時の第1特徴形状部の座標と第2特徴形状部の座標
との間の距離と再撮像時の上記距離との変化量が所定レ
ベル以上のときに、上記温度差を用いて第3特徴形状部
の座標が補正されることにより、測定動作中の温度変化
に応じて座標の補正が可能になり、第3特徴形状部の座
標が精度良く求められることとなる。
According to this configuration, when the temperature difference between the average value of the temperatures at a plurality of positions of the object to be measured before the imaging and the temperature of the third characteristic shape portion after the imaging is equal to or more than the predetermined level, the first characteristic is obtained. The shape part and the second characteristic shape part are imaged again. When the amount of change between the distance between the coordinates of the first characteristic shape portion and the coordinates of the second characteristic shape portion at the time of the first imaging and the distance at the time of re-imaging is equal to or greater than a predetermined level, the temperature difference is calculated. By correcting the coordinates of the third characteristic shape portion using the correction, the coordinates can be corrected according to the temperature change during the measurement operation, and the coordinates of the third characteristic shape portion can be obtained with high accuracy.

【0014】[0014]

【発明の実施の形態】図1は本発明に係る温度補償機能
付き座標測定装置の一実施形態の構成図、図2は測定台
2に載置された被測定物1を示す図で、(a)は平面
図、(b)は正面図、図3は撮像装置4の構成図であ
る。この座標測定装置は、被測定物1の座標を測定する
もので、図1に示すように、測定台2、非接触温度計
3、撮像装置4、制御部5等を備えている。
FIG. 1 is a block diagram of an embodiment of a coordinate measuring apparatus having a temperature compensation function according to the present invention, and FIG. 2 is a view showing an object to be measured 1 placed on a measuring table 2. 3A is a plan view, FIG. 3B is a front view, and FIG. This coordinate measuring device is for measuring the coordinates of the DUT 1, and includes a measuring table 2, a non-contact thermometer 3, an imaging device 4, a control unit 5, and the like, as shown in FIG.

【0015】測定台2は、被測定物1を載置するための
矩形の平板で、ステージ6に固定されており、このステ
ージ6は、例えばステッピングモータからなるモータ7
を駆動源として、図2(a)中、左右方向及び上下方向
に精度良く移動するように構成されている。
The measuring table 2 is a rectangular flat plate on which the DUT 1 is placed, and is fixed to a stage 6. The stage 6 has a motor 7 composed of, for example, a stepping motor.
Is a driving source, and is configured to move with high accuracy in the left-right direction and the up-down direction in FIG.

【0016】また、測定台2は、図2(a)中、上辺に
沿って突設された支持片21,21と、左辺に沿って突
設された支持片22,22とを備え、図2(a)(b)
に示すように、支持片21,21,22,22によっ
て、載置する被測定物1の位置決めが可能になってい
る。
The measuring table 2 is provided with support pieces 21 and 21 protruding along the upper side and support pieces 22 and 22 protruding along the left side in FIG. 2 (a) (b)
As shown in (1), the positioning of the DUT 1 to be mounted can be performed by the support pieces 21, 22, 22, and 22.

【0017】そして、この座標測定装置は、座標測定に
おける座標系として、図2(a)に示すように、支持片
21,21の下端を結ぶ直線と支持片22,22の右端
を結ぶ直線との交点Oを原点として設定されたX,Y座
標系を備えている。
As shown in FIG. 2 (a), the coordinate measuring device uses a straight line connecting the lower ends of the support pieces 21 and 21 and a straight line connecting the right ends of the support pieces 22 and 22, as shown in FIG. An X, Y coordinate system set with the intersection point O as the origin.

【0018】被測定物1は、例えば液晶基板で使用され
ているフォトマスク基板、カラーフィルタ基板やTFT
基板などからなるもので、その表面には、特徴的な形状
を有する特徴形状部が設けられている。この特徴形状部
は、例えば液晶の各画素やアライメントマークなどの加
工パターンである。
The DUT 1 is, for example, a photomask substrate, a color filter substrate or a TFT used for a liquid crystal substrate.
It is made of a substrate or the like, and its surface is provided with a characteristic shape portion having a characteristic shape. This characteristic shape portion is a processed pattern such as each pixel of a liquid crystal and an alignment mark.

【0019】本実施形態では、被測定物1は、上記特徴
形状部として、図2(a)に示すように、第1特徴形状
部11、第2特徴形状部12及び第3特徴形状部13a
〜13eを備えている。これらの特徴形状部のうち、第
1特徴形状部11は、第1基準位置としての機能を有
し、第2特徴形状部12は、第2基準位置としての機能
を有している。なお、第1特徴形状部(以下「第1基準
位置」という。)11と第2特徴形状部(以下「第2基
準位置」という。)12とは、互いに比較的離れた位置
に設定されているのが好ましい。また、第3特徴形状部
13a〜13eは、それぞれ測定位置としての機能を有
している。
In the present embodiment, the DUT 1 has the first characteristic shape portion 11, the second characteristic shape portion 12, and the third characteristic shape portion 13a as the characteristic shape portions as shown in FIG.
To 13e. Among these characteristic shape portions, the first characteristic shape portion 11 has a function as a first reference position, and the second characteristic shape portion 12 has a function as a second reference position. Note that the first characteristic shape portion (hereinafter, referred to as “first reference position”) 11 and the second characteristic shape portion (hereinafter, referred to as “second reference position”) 12 are set at positions relatively distant from each other. Is preferred. Further, the third characteristic shape portions 13a to 13e each have a function as a measurement position.

【0020】図1に戻って、非接触温度計3は、ベース
8に固定され、制御部5に電気的に接続されており、例
えばサーモパイルなどの赤外線受光素子31を備えた放
射温度計であり、温度に比例した電圧信号などの検出信
号を制御部5に出力するものである。
Returning to FIG. 1, the non-contact thermometer 3 is a radiation thermometer fixed to the base 8 and electrically connected to the control unit 5 and provided with an infrared light receiving element 31 such as a thermopile. , And outputs a detection signal such as a voltage signal proportional to the temperature to the control unit 5.

【0021】撮像装置4は、制御部5に電気的に接続さ
れており、図3に示すように、落射照明系41、顕微鏡
部42及びカメラ部43からなる。
The image pickup device 4 is electrically connected to the control unit 5, and comprises an epi-illumination system 41, a microscope unit 42, and a camera unit 43, as shown in FIG.

【0022】落射照明系41は、図略の光源およびレン
ズ系を備え、顕微鏡部42に向けて水平方向に光を照射
するものである。顕微鏡部42は、水平面に対して45°
傾斜して配設されたハーフミラー44と、ハーフミラー
44の下方に配設されるとともに、光軸が鉛直方向に配
設された集束レンズ45とを備えている。
The epi-illumination system 41 includes a light source and a lens system (not shown), and irradiates the microscope section 42 with light in the horizontal direction. The microscope section 42 is at 45 ° with respect to the horizontal plane.
The optical system includes a half mirror 44 disposed at an angle, and a focusing lens 45 disposed below the half mirror 44 and having an optical axis disposed in a vertical direction.

【0023】カメラ部43は、エリアセンサ46を備
え、このエリアセンサ46は、制御部5に電気的に接続
され、CCD等の光電変換素子が縦方向及び横方向に2
次元的に配列されてなり、被測定物1からの反射光によ
る像を撮像する撮像手段としての機能を有する。
The camera unit 43 has an area sensor 46, which is electrically connected to the control unit 5 and has two photoelectric conversion elements such as CCDs in the vertical and horizontal directions.
It is arranged in a dimensional manner and has a function as an image pickup means for picking up an image by light reflected from the DUT 1.

【0024】そして、落射照明系41から照射された光
がハーフミラー44で反射され、その反射光により集束
レンズ45を介して被測定物1が照明され、集束レンズ
45を通った被測定物1からの反射光がハーフミラー4
4を透過して、エリアセンサ46に結像し、エリアセン
サ46の撮像信号が制御部5に送出される。
The light emitted from the epi-illumination system 41 is reflected by the half mirror 44, and the reflected light illuminates the DUT 1 via the focusing lens 45, and the DUT 1 passing through the focusing lens 45 Reflected light from the half mirror 4
4 to form an image on the area sensor 46, and an image signal of the area sensor 46 is sent to the control unit 5.

【0025】図1に戻って、制御部5は、モータ制御部
51、インターフェース52、画像処理ユニット53、
ROM54、RAM55、表示部56及びCPU57を
備えており、各部51〜56は、それぞれCPU57に
電気的に接続されている。
Returning to FIG. 1, the control unit 5 includes a motor control unit 51, an interface 52, an image processing unit 53,
A ROM 54, a RAM 55, a display unit 56, and a CPU 57 are provided. Each of the units 51 to 56 is electrically connected to the CPU 57.

【0026】モータ制御部51は、モータ7に供給する
駆動パルス信号などの駆動電流を制御するものである。
インターフェース52は、非接触温度計3からのアナロ
グ値の検出信号をディジタル値に変換してCPU57に
送出するものである。画像処理ユニット53は、エリア
センサ46からの撮像信号にA/D変換やシェーディン
グ補正その他の画像処理を施してCPU57に送出する
ものである。
The motor control section 51 controls a drive current such as a drive pulse signal supplied to the motor 7.
The interface 52 converts an analog value detection signal from the non-contact thermometer 3 into a digital value and sends it to the CPU 57. The image processing unit 53 performs A / D conversion, shading correction, and other image processing on the image pickup signal from the area sensor 46 and sends the image signal to the CPU 57.

【0027】ROM54は、この座標測定装置の制御プ
ログラムを記憶するもので、RAM55は、データなど
を一時的に記憶するものである。表示部56は、LCD
パネルなどからなり、測定結果などを表示するものであ
る。
The ROM 54 stores a control program for the coordinate measuring device, and the RAM 55 temporarily stores data and the like. The display unit 56 is an LCD
It consists of a panel and displays the measurement results.

【0028】CPU57は、後述する手順に従って被測
定物1の座標測定を行うもので、以下の〜に示す機
能を有する。 モータ制御部51を介してモータ7の動作を制御して
ステージ6の位置制御を行うことにより、非接触温度計
3による被測定物1の温度測定位置、エリアセンサ57
による被測定物1の撮像位置を制御する機能。
The CPU 57 measures the coordinates of the device under test 1 in accordance with a procedure described later, and has the following functions. By controlling the position of the stage 6 by controlling the operation of the motor 7 via the motor control unit 51, the temperature measurement position of the DUT 1 by the non-contact thermometer 3 and the area sensor 57
Function for controlling the imaging position of the DUT 1 by the

【0029】画像処理ユニット53からの信号に基づ
いて、第1、第2基準位置11,12の座標、測定位置
としての第3特徴形状部13a〜13eの座標を測定す
る座標測定手段としての機能。
Based on a signal from the image processing unit 53, a function as coordinate measuring means for measuring the coordinates of the first and second reference positions 11 and 12 and the coordinates of the third feature portions 13a to 13e as measurement positions. .

【0030】測定中の温度変化に応じて被測定物1の
測定位置の座標を補正する座標補正手段としての機能。 被測定物1の平均温度と目的温度の差から、補正され
た測定位置の座標を目的温度における座標に換算する座
標換算手段としての機能。 測定結果に基づいて表示部56の表示内容を制御する
機能。
Function as coordinate correction means for correcting the coordinates of the measurement position of the DUT 1 in accordance with the temperature change during measurement. A function as coordinate conversion means for converting the coordinates of the corrected measurement position into coordinates at the target temperature from the difference between the average temperature of the DUT 1 and the target temperature. A function of controlling the display content of the display unit 56 based on the measurement result.

【0031】次に、図2(a)を参照しながら、図4、
図5のフローチャートに従って、この座標測定装置によ
る測定手順について説明する。まず、測定台2の数箇
所、例えば図2(a)に示す温度測定位置23,…の6
箇所の温度を測定し、その平均値T1を求める(#10
0)。
Next, referring to FIG. 2A, FIG.
The measurement procedure by the coordinate measuring device will be described with reference to the flowchart of FIG. First, at several points on the measuring table 2, for example, 6 of the temperature measuring positions 23,... Shown in FIG.
The temperature of the portions were measured and calculate the average T 1 (# 10
0).

【0032】次いで、被測定物1を測定台2にセットし
て(#110)、被測定物1の数箇所、例えば図2
(a)に示す温度測定位置10,…の6箇所の温度を測
定し(#120)、温度測定位置10,…の温度が均一
か否かを、例えば各温度の最大値と最小値の差が0.2℃
以下であるか否かによって判定する(#130)。
Next, the DUT 1 is set on the measurement table 2 (# 110), and several positions of the DUT 1, for example, FIG.
The temperatures at the six temperature measurement positions 10,... Shown in (a) are measured (# 120), and whether or not the temperatures at the temperature measurement positions 10,. Is 0.2 ℃
It is determined whether or not the following is true (# 130).

【0033】そして、均一でなければ(#130でN
O)、所定時間t1(例えば60秒)待機した後(#14
0)、#120に戻り、被測定物1の温度測定位置1
0,…の温度を再測定する。
If it is not uniform (N in # 130)
O), after waiting for a predetermined time t 1 (for example, 60 seconds) (# 14
0), returning to # 120, the temperature measurement position 1 of the DUT 1
Re-measure the temperature of 0,.

【0034】一方、被測定物1の温度が均一になると
(#130でYES)、各温度の平均値T2を算出し
(#150)、被測定物1と測定台2の温度差ΔTaを
算出して(#160)、温度差ΔTaが0.2℃以下か否か
を判定する(#170)。
On the other hand, when the temperature of the DUT 1 becomes uniform (YES in # 130), the average value T 2 of each temperature is calculated (# 150), and the temperature difference ΔTa between the DUT 1 and the measuring table 2 is calculated. It is calculated (# 160), and it is determined whether the temperature difference ΔTa is equal to or less than 0.2 ° C. (# 170).

【0035】そして、ΔTa>0.2℃であれば(#170
でNO)、所定時間t2(例えば60秒)待機した後(#
180)、#120に戻り、被測定物1の温度測定位置
10,…の温度を再測定する。
If ΔTa> 0.2 ° C. (# 170)
NO), and after waiting for a predetermined time t 2 (for example, 60 seconds) (#
180), returning to # 120, the temperature of the temperature measurement positions 10,... Of the DUT 1 is measured again.

【0036】一方、ΔTa≦0.2℃であれば(#170で
YES)、第1基準位置11の座標及び第2基準位置1
2の座標を測定し(#190)、下記数1により基準位
置間の寸法L0を算出する(#200)。
On the other hand, if ΔTa ≦ 0.2 ° C. (YES in # 170), the coordinates of the first reference position 11 and the second reference position 1
2 are measured (# 190), and a dimension L0 between the reference positions is calculated by the following equation (# 200).

【0037】[0037]

【数1】L0=√{(Lx2−Lx1)2+(Ly2−Ly1)2} 但し、#190で測定した第1基準位置11の座標を
(Lx1,Ly1)とし、第2基準位置12の座標を(L
2,Ly2)とする。
L 0 = {{(Lx 2 −Lx 1 ) 2 + (Ly 2 −Ly 1 ) 2 } where the coordinates of the first reference position 11 measured at # 190 are (Lx 1 , Ly 1 ). , The coordinates of the second reference position 12 are (L
x 2 , Ly 2 ).

【0038】次いで、測定位置、例えば第3特徴形状部
13aの座標を測定し(#210)、その測定位置の温
度Tnを測定する(#220)。次いで、温度Tnと平均
値T 2の温度差ΔTbを求め(#230)、この温度差Δ
Tbが0.1℃以下か否かを判定し(#240)、ΔTb≦
0.1℃であれば(#240でYES)、#300に進
む。
Next, the measurement position, for example, the third characteristic shape portion
13a is measured (# 210), and the temperature of the measurement position is measured.
Degree TnIs measured (# 220). Then, the temperature TnAnd average
Value T TwoIs obtained (# 230), and the temperature difference ΔTb
It is determined whether Tb is 0.1 ° C. or less (# 240), and ΔTb ≦
If it is 0.1 ° C (YES in # 240), proceed to # 300
No.

【0039】一方、ΔTb>0.1℃であれば(#240で
NO)、第1基準位置11の座標及び第2基準位置12
の座標を再測定し(#250)、下記数2により基準位
置間の寸法L'0を算出する(#260)。
On the other hand, if ΔTb> 0.1 ° C. (NO in # 240), the coordinates of the first reference position 11 and the second reference position 12
Are measured again (# 250), and a dimension L' 0 between the reference positions is calculated by the following equation (2) (# 260).

【0040】[0040]

【数2】L'0=√{(Lx'2−Lx'1)2+(Ly'2−Ly'1)2} 但し、#250で再測定した第1基準位置11の座標を
(Lx'1,Ly'1)とし、第2基準位置12の座標を
(Lx'2,Ly'2)とする。
L ′ 0 = {{(Lx ′ 2 −Lx ′ 1 ) 2 + (Ly ′ 2 −Ly ′ 1 ) 2 } where the coordinates of the first reference position 11 re-measured in # 250 are (Lx ' 1 , Ly' 1 ) and the coordinates of the second reference position 12 are (Lx ' 2 , Ly' 2 ).

【0041】次いで、#200で算出した寸法L0と#
260で算出した寸法L'0の寸法差ΔL0を算出し(#
270)、この寸法差ΔL0が0.2μm以下か否かを判定
する(#280)。
Next, the dimensions L 0 calculated in # 200 and #
The dimension difference ΔL 0 of the dimension L ′ 0 calculated in 260 is calculated (#
270), it is determined whether or not the dimensional difference ΔL 0 is 0.2 μm or less (# 280).

【0042】そして、ΔL0≦0.2μmであれば(#28
0でYES)、測定位置の座標の変化量Δxn,Δyn
0として(#300)、#310に進む。
If ΔL 0 ≦ 0.2 μm (# 28
YES 0), the change amount [Delta] x n of the measured position coordinates, the [Delta] y n as 0 (# 300), the process proceeds to # 310.

【0043】一方、ΔL0>0.2μmであれば(#280
でNO)、測定位置の座標の変化量Δxn,Δynを下記
数3により算出する(#290)。
On the other hand, if ΔL 0 > 0.2 μm (# 280
In NO), the change amount [Delta] x n of the measured position coordinates, the [Delta] y n is calculated by the following equation 3 (# 290).

【0044】[0044]

【数3】Δxn=Lxn・ΔTb・α Δyn=Lyn・ΔTb・α 但し、#210で測定した測定位置の座標を(Lxn
Lyn)とし、被測定物1の熱膨張係数をαとする。
Equation 3] Δx n = Lx n · ΔTb · α Δy n = Ly n · ΔTb · α However, the coordinates of the measurement position measured by the # 210 (Lx n,
Ly n ) and the coefficient of thermal expansion of the DUT 1 is α.

【0045】次いで、測定位置の座標を、下記数4によ
り被測定物1の平均温度T2における座標に補正する
(#310)。
Next, the coordinates of the measurement position are corrected to the coordinates at the average temperature T 2 of the DUT 1 according to the following equation (4) (# 310).

【0046】[0046]

【数4】Lx'n=Lxn−Δxn Ly'n=Lyn−Δyn 但し、#210で測定した測定位置の座標を(Lxn
Lyn)とし、被測定物1の平均温度T2における座標を
(Lx'n,Ly'n)とする。
Equation 4] Lx 'n = Lx n -Δx n Ly' n = Ly n -Δy n However, the coordinates of the measurement position measured by the # 210 (Lx n,
And Ly n), the coordinates in the average temperature T 2 of the DUT 1 and (Lx 'n, Ly' n ).

【0047】次いで、全測定位置、本実施形態では第3
特徴形状部13a〜13eの測定が終了したか否かが判
別され(#320)、終了していなければ(#320で
NO)、#210に戻って、#210〜#310のステ
ップが繰り返される。
Next, all the measurement positions, in this embodiment the third measurement position
It is determined whether or not the measurement of the characteristic shapes 13a to 13e has been completed (# 320). If the measurement has not been completed (NO in # 320), the process returns to # 210 and the steps of # 210 to # 310 are repeated. .

【0048】一方、全測定位置の測定が終了すれば(#
320でYES)、下記数5により測定位置の座標を目
的温度における座標に換算して(#330)、終了す
る。
On the other hand, when the measurement at all the measurement positions is completed (#
(YES at 320), the coordinates of the measurement position are converted into coordinates at the target temperature by the following equation (# 330), and the process ends.

【0049】[0049]

【数5】Lx''n=Lx'n−Lx'n・(T2−Tm)・α Ly''n=Ly'n−Ly'n・(T2−Tm)・α 但し、目的温度をTmとし、換算された目的温度におけ
る座標を(Lx''n,Ly''n)とする。
Equation 5] Lx '' n = Lx 'n -Lx' n · (T 2 -Tm) · α Ly '' n = Ly 'n -Ly' n · (T 2 -Tm) · α where target temperature was a Tm, the coordinates in terms of purpose temperature (Lx '' n, Ly ' ' n).

【0050】このように、非接触温度計3を用いるよう
にしたので、任意の位置の温度を短時間で測定すること
ができる。これによって、測定位置である第3特徴形状
部13a〜13eの温度をそれぞれ測定して、測定中の
温度変化に応じて各座標値を補正することができること
となり、目的温度における測定位置の座標を精度よく短
時間で求めることができる。
As described above, since the non-contact thermometer 3 is used, the temperature at an arbitrary position can be measured in a short time. This makes it possible to measure the temperatures of the third characteristic shape portions 13a to 13e, which are the measurement positions, and correct each coordinate value according to the temperature change during the measurement. It can be obtained accurately and in a short time.

【0051】従って、座標測定中における被測定物1の
雰囲気温度を目的温度に制御する必要がない。これによ
って、製造したフォトマスク基板やカラーフィルタ基板
などの基板上の加工パターンの位置や基板の寸法などの
検査を基板の製造ラインに近接して行うことができ、基
板製造の作業性や効率を向上することができる。
Therefore, it is not necessary to control the ambient temperature of the DUT 1 during the coordinate measurement to the target temperature. As a result, inspection of the position of a processing pattern on a substrate such as a manufactured photomask substrate or a color filter substrate and the dimensions of the substrate can be performed in close proximity to the substrate manufacturing line, thereby improving workability and efficiency of the substrate manufacturing. Can be improved.

【0052】なお、本発明は、上記実施形態に限られ
ず、以下の変形形態(1)〜(4)を採用することがで
きる。 (1)上記実施形態では、非接触温度計3が備える赤外
線受光素子としてサーモパイルを用いているが、これに
限られず、焦電型赤外線センサなどの他の赤外線受光素
子を用いてもよい。
The present invention is not limited to the above embodiment, but can adopt the following modifications (1) to (4). (1) In the above embodiment, a thermopile is used as the infrared light receiving element included in the non-contact thermometer 3. However, the present invention is not limited to this, and another infrared light receiving element such as a pyroelectric infrared sensor may be used.

【0053】(2)種々の材質について複数の熱膨張係
数αをROM54に記憶しておくとともに、ディップス
イッチなどを備え、被測定物1の材質に応じてディップ
スイッチのオンオフを切り替えることによって、演算に
用いる熱膨張係数αの値を変更可能にしてもよい。
(2) A plurality of thermal expansion coefficients α are stored in the ROM 54 for various materials, a dip switch is provided, and the on / off of the dip switches is switched in accordance with the material of the DUT 1, thereby calculating May be changeable.

【0054】(3)図5のフローチャートの#240に
おいて、温度差ΔTbが0.1℃以下かどうかの判定を行っ
ているが、判定レベルはこれに限られず、例えば判定レ
ベルを0.05℃に低下させて測定精度の向上を図るなど、
必要とする測定精度に応じて変更すればよい。
(3) At # 240 in the flowchart of FIG. 5, it is determined whether the temperature difference ΔTb is 0.1 ° C. or less. However, the determination level is not limited to this. For example, the determination level is reduced to 0.05 ° C. For example, to improve measurement accuracy,
What is necessary is just to change according to the required measurement accuracy.

【0055】(4)図5のフローチャートの#280に
おいて、寸法差ΔL0が0.2μm以下かどうかの判定を行
っているが、判定レベルはこれに限られず、例えば判定
レベルを0.1μmに低下させて測定精度の向上を図るな
ど、必要とする測定精度に応じて変更すればよい。
(4) In step # 280 of the flowchart of FIG. 5, it is determined whether or not the dimensional difference ΔL 0 is 0.2 μm or less. However, the determination level is not limited to this. For example, the determination level is reduced to 0.1 μm. It may be changed according to the required measurement accuracy, for example, to improve the measurement accuracy.

【0056】[0056]

【発明の効果】以上説明したように、請求項1の発明に
よれば、非接触温度検出手段により被測定物の温度を当
該被測定物に対して非接触で検出し、撮像手段により被
測定物を撮像し、その撮像結果を用いて座標測定手段に
より被測定物の表面に設けられた特徴形状部の座標を測
定し、測定された特徴形状部の座標を被測定物の温度を
用いて補正するようにしたので、被測定物の温度を短時
間で検出でき、座標測定の測定時間を短縮することがで
きる。
As described above, according to the first aspect of the present invention, the temperature of the object to be measured is detected by the non-contact temperature detecting means in a non-contact manner with respect to the object to be measured, and the temperature is measured by the imaging means. The object is imaged, the coordinates of the characteristic shape portion provided on the surface of the measured object are measured by the coordinate measuring means using the imaging result, and the measured coordinates of the characteristic shape portion are measured using the temperature of the measured object. Since the correction is performed, the temperature of the object to be measured can be detected in a short time, and the measurement time of coordinate measurement can be reduced.

【0057】また、請求項2の発明によれば、撮像手段
による被測定物の撮像前に、被測定物上の複数の位置の
温度を検出し、撮像手段による被測定物の撮像後に、特
徴形状部の温度を検出して、上記撮像前に検出した温度
の平均値と上記撮像後に検出した上記特徴形状部の温度
との温度差を用いて、上記特徴形状部の座標を補正する
ことにより、測定動作中における被測定物の特徴形状部
の温度変化に応じて座標の補正をすることができ、座標
測定の精度を向上することができる。
According to the second aspect of the present invention, the temperature of a plurality of positions on the object to be measured is detected before the imaging of the object to be measured by the imaging means, and the characteristic is detected after the imaging of the object to be measured by the imaging means. By detecting the temperature of the shape portion, using the temperature difference between the average value of the temperature detected before the imaging and the temperature of the feature shape portion detected after the imaging, correcting the coordinates of the feature shape portion In addition, the coordinates can be corrected according to the temperature change of the characteristic shape portion of the measured object during the measurement operation, and the accuracy of the coordinate measurement can be improved.

【0058】また、請求項3の発明によれば、補正され
た特徴形状部の座標を目的温度における座標に換算する
ことにより、短時間で目的温度における特徴形状部の座
標を得ることができる。
According to the third aspect of the present invention, the coordinates of the characteristic shape portion at the target temperature can be obtained in a short time by converting the corrected coordinates of the characteristic shape portion into coordinates at the target temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度補償機能付き座標測定装置の
一実施形態の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a coordinate measuring device with a temperature compensation function according to the present invention.

【図2】測定台に載置された被測定物を示す図で、
(a)は平面図、(b)は正面図を示している。
FIG. 2 is a diagram showing an object to be measured placed on a measuring table,
(A) is a plan view, and (b) is a front view.

【図3】撮像装置の構成図である。FIG. 3 is a configuration diagram of an imaging device.

【図4】測定手順を示すフローチャートである。FIG. 4 is a flowchart showing a measurement procedure.

【図5】測定手順を示すフローチャートである。FIG. 5 is a flowchart showing a measurement procedure.

【符号の説明】[Explanation of symbols]

1 被測定物 2 測定台 3 非接触温度計 4 撮像装置 46 エリアセンサ 5 制御部 54 ROM 55 RAM 57 CPU REFERENCE SIGNS LIST 1 object to be measured 2 measuring table 3 non-contact thermometer 4 imaging device 46 area sensor 5 control unit 54 ROM 55 RAM 57 CPU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の温度を当該被測定物に対して
非接触で検出する非接触温度検出手段と、 上記被測定物を撮像する撮像手段と、 上記撮像手段による撮像結果を用いて上記被測定物の表
面に設けられた少なくとも一つの特徴形状部の座標を測
定する座標測定手段と、 検出された上記被測定物の温度を用いて、測定された上
記特徴形状部の座標を補正する座標補正手段とを備えた
ことを特徴とする温度補正機能付き座標測定装置。
A non-contact temperature detecting unit configured to detect a temperature of the measured object in a non-contact manner with respect to the measured object; an imaging unit configured to image the measured object; and an imaging result obtained by the imaging unit. Coordinate measuring means for measuring the coordinates of at least one characteristic shape portion provided on the surface of the object to be measured, and correcting the measured coordinates of the characteristic shape portion using the detected temperature of the object to be measured. A coordinate correcting device having a temperature correcting function.
【請求項2】 請求項1記載の温度補正機能付き座標測
定装置において、 上記非接触温度検出手段は、上記撮像手段による被測定
物の撮像前に該被測定物上の複数の位置の温度を検出す
るとともに、上記撮像手段による該被測定物の撮像後に
上記特徴形状部の温度を検出するもので、 上記座標補正手段は、上記撮像前に検出した温度の平均
値と上記撮像後に検出した上記特徴形状部の温度との温
度差を用いて、上記特徴形状部の座標を補正するもので
あることを特徴とする温度補正機能付き座標測定装置。
2. A coordinate measuring apparatus with a temperature correction function according to claim 1, wherein said non-contact temperature detecting means measures the temperatures at a plurality of positions on the measured object before the imaging means takes an image of the measured object. Detecting and detecting the temperature of the characteristic shape portion after imaging the object to be measured by the imaging means, wherein the coordinate correcting means detects the average value of the temperature detected before the imaging and the temperature detected after the imaging. A coordinate measuring device with a temperature correction function, wherein the coordinates of the characteristic shape portion are corrected using a temperature difference from the temperature of the characteristic shape portion.
【請求項3】 請求項1又は2記載の温度補正機能付き
座標測定装置において、補正された上記特徴形状部の座
標を目的温度における座標に換算する座標換算手段を備
えたことを特徴とする温度補正機能付き座標測定装置。
3. The temperature measuring apparatus according to claim 1, further comprising a coordinate conversion unit configured to convert the corrected coordinates of the characteristic shape portion into coordinates at a target temperature. Coordinate measuring device with correction function.
JP4346698A 1998-02-25 1998-02-25 Coordinate measuring device with temperature correcting function Withdrawn JPH11241910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346698A JPH11241910A (en) 1998-02-25 1998-02-25 Coordinate measuring device with temperature correcting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346698A JPH11241910A (en) 1998-02-25 1998-02-25 Coordinate measuring device with temperature correcting function

Publications (1)

Publication Number Publication Date
JPH11241910A true JPH11241910A (en) 1999-09-07

Family

ID=12664504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346698A Withdrawn JPH11241910A (en) 1998-02-25 1998-02-25 Coordinate measuring device with temperature correcting function

Country Status (1)

Country Link
JP (1) JPH11241910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067627A (en) * 2008-09-08 2010-03-25 Shimadzu Corp Method and device for controlling position of substrate
JP2014066669A (en) * 2012-09-27 2014-04-17 Kubota Corp Measurement device and measurement method
JP2015111101A (en) * 2013-11-05 2015-06-18 キヤノン株式会社 Information processing apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067627A (en) * 2008-09-08 2010-03-25 Shimadzu Corp Method and device for controlling position of substrate
JP2014066669A (en) * 2012-09-27 2014-04-17 Kubota Corp Measurement device and measurement method
JP2015111101A (en) * 2013-11-05 2015-06-18 キヤノン株式会社 Information processing apparatus and method

Similar Documents

Publication Publication Date Title
US10277790B2 (en) Full-range image detecting system and method thereof
EP0132122A2 (en) Apparatus for inspecting mask for use in manufacturing large scale integrated circuits
JP2000121324A (en) Thickness measuring apparatus
CN209992407U (en) Large-caliber ultra-clean smooth surface defect detection device combined with linear array camera
JPS6211110A (en) Distance measuring apparatus
TWI568989B (en) Full-range image detecting system and method thereof
JPH11241910A (en) Coordinate measuring device with temperature correcting function
JP4603177B2 (en) Scanning laser microscope
JP5531883B2 (en) Adjustment method
JP2013250098A (en) Method and apparatus for detecting wiring defect, and method for manufacturing wiring board
JPH11190616A (en) Surface shape measuring device
JP3135063B2 (en) Comparative inspection method and apparatus
JPH08255819A (en) Temperature measuring method and equipment
JP2010243212A (en) Tilt detection method and device of the same
JP4384446B2 (en) Autofocus method and apparatus
JP2000002664A (en) Method and apparatus for inspection of defect
JP2830614B2 (en) Pattern position measuring method and apparatus
JP3508368B2 (en) Image measuring machine
JPH10311705A (en) Image input apparatus
JP3552381B2 (en) Image measuring machine
JP4265786B2 (en) Height measuring method, height measuring apparatus, and signal processing method
JP2005055217A (en) Method for measuring height
JP2001176953A (en) Instrument for measuring dimensions at delivering section of semiconductor wafer carrier, measuring/ adjusting method using that instrument and apparatus for calibration
JP2001034743A (en) Method and device for comparison and checking
JP4657700B2 (en) Calibration method for measuring equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510