JPH11241270A - Production of composite structure and composite structure produced thereby - Google Patents

Production of composite structure and composite structure produced thereby

Info

Publication number
JPH11241270A
JPH11241270A JP10044089A JP4408998A JPH11241270A JP H11241270 A JPH11241270 A JP H11241270A JP 10044089 A JP10044089 A JP 10044089A JP 4408998 A JP4408998 A JP 4408998A JP H11241270 A JPH11241270 A JP H11241270A
Authority
JP
Japan
Prior art keywords
ultrafine particles
solution
composite structure
adsorbed
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10044089A
Other languages
Japanese (ja)
Inventor
Kunisato Abe
晋悟 阿部
Masaki Masuda
正毅 増田
Takamitsu Sakamaki
孝光 酒巻
Hirobumi Shimada
博文 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BENISAN KK
SAKAMAKI SENKO KK
SHIMANAMI NATSUSEN KK
Original Assignee
BENISAN KK
SAKAMAKI SENKO KK
SHIMANAMI NATSUSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BENISAN KK, SAKAMAKI SENKO KK, SHIMANAMI NATSUSEN KK filed Critical BENISAN KK
Priority to JP10044089A priority Critical patent/JPH11241270A/en
Publication of JPH11241270A publication Critical patent/JPH11241270A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a composite structure bearing a functional matter thereon, enabling the functional matter such as an antimicrobial agent, deodorant or dye to adhere to a fibrous or filmy substrate as efficiently as possible and also to be sustained as long as possible, and to obtain such a composite structure by the above method. SOLUTION: This method for producing a composite structure, comprises adsorption of a functional matter 2 of ultrafine particles to a substrate 1, wherein the detailed process is as follows: the surface of the substrate 1 is previously subjected to electrification treatment so as to be electrified to opposite polarity to that of the electrified functional matter 2 being in the form of ultrafine particles made into a colloid in a solution, and the functional matter 2 is adsorbed to the substrate 1 by making use of electrostatic attractive force; otherwise, when the polarity of the ultrafine particles is identical with that of the substrate 1, an intermediate medium bearing ionic polarity opposite to those of the above is mediated, or either of the ionic polarities of the above is converted, thereby making the ultrafine particles substantially adhere to the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機能物質を付着さ
せた複合構造体の製法ならびにその製法により製造され
た複合構造体に関し、特に、該機能物質を付着させる保
持体の物理的な性質を保持しながら、これに付着させた
物質の機能を発揮する機能物質を付着させた複合構造体
の製法ならびにその製法により製造された複合構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite structure to which a functional substance is adhered, and to a composite structure produced by the production method. The present invention relates to a method for producing a composite structure to which a functional substance exhibiting the function of a substance adhered thereto while holding the composite substance is adhered, and to a composite structure produced by the production method.

【0002】[0002]

【従来の技術】例えば、消臭剤を包摂したサイクロデキ
ストリンを、羊毛を除く天然繊維または合成樹脂繊維の
表面に固着させて、消臭機能を保持させた繊維が、特開
平2−251681号公報に記載されており、また、高
吸水性のタオル地に、マイクロカプセル化した保湿成分
を高吸水性樹脂と共に保持させた極めて洗濯堅牢度の高
いタオル地が、特開平4−200515号公報に示され
ている。更に、空洞内部に脂溶性物質であるスクワラン
もしくはスクワレンあるいはそれらの混合物を包接した
サイクロデキストリンを天然繊維もしくは合成樹脂繊維
へ固着し、優れた保湿効果を有し耐久性に富んだ繊維が
特開平6−322670号公報に示されている。
2. Description of the Related Art For example, JP-A-2-251681 discloses a fiber in which a cyclodextrin containing a deodorant is fixed to the surface of a natural fiber or a synthetic resin fiber other than wool to maintain a deodorant function. JP-A-4-200515 discloses a towel having extremely high washing fastness in which a microencapsulated moisturizing component is held together with a highly water-absorbent resin on a highly water-absorbent towel. I have. Furthermore, cyclodextrin containing squalane or squalene as a fat-soluble substance or a mixture thereof is fixed to natural fibers or synthetic resin fibers inside the cavity, and a fiber having excellent moisturizing effect and high durability is disclosed in 6-322670.

【0003】また、繊維成形物を、陽イオン性界面活性
剤を含有する金ヒドロゾル中に浸漬して、金ヒドロゾル
中の金コロイドを繊維表面に吸着させる染色方法が、特
公昭63−4693号公報に記載されている。この染色
方法によると、金ヒドロゾル中に含まれる金コロイドを
繊維に吸着させると、その表面を「カシウスの紫」とし
て知られる紫色に着色し、金の持つ高級イメージが繊維
に付与されて、その価値が高められるものである。
[0003] A dyeing method in which a fiber molded product is immersed in a gold hydrosol containing a cationic surfactant to adsorb gold colloid in the gold hydrosol on the fiber surface is disclosed in Japanese Patent Publication No. 63-4693. It is described in. According to this dyeing method, when the gold colloid contained in the gold hydrosol is adsorbed on the fiber, the surface is colored in purple known as "Cassius purple", and the high-grade image of gold is given to the fiber, Value is enhanced.

【0004】[0004]

【発明が解決しようとする課題】上述の特開平2−25
1681号公報に示されているように、この発明は、消
臭剤を包摂したサイクロデキストリンを繊維の表面に付
着させて、繊維に消臭機能を保持させたものは、各種有
機系消臭剤の中でもとりわけ天然植物抽出エキスを天然
繊維または合成樹脂繊維に包摂させて繊維に消臭機能を
保持させたものであるが、この発明の繊維は、消臭剤を
サイクロデキストリンに包摂させたものであるため、前
記消臭剤がサイクロデキストリンから剥離し、消臭機能
を長持ちさせることが出来ない。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open No. 2-25
As disclosed in Japanese Patent No. 1681, the present invention relates to an organic deodorant in which cyclodextrin containing a deodorant is attached to the surface of a fiber to retain the deodorant function on the fiber. Above all, natural plant extract is included in natural fiber or synthetic resin fiber so that the fiber retains the deodorizing function.The fiber of the present invention is obtained by including a deodorant in cyclodextrin. For this reason, the deodorant peels off from the cyclodextrin, and the deodorant function cannot be prolonged.

【0005】上述の特開平4−200515号公報に示
されているように、この発明は、高吸水性のタオル地
に、マイクロカプセル化した保湿成分を高吸水性樹脂と
共に担持させたものであるが、この発明のタオル地は、
明細書において、極めて洗濯堅牢度の高いタオル地であ
ると述べているが、やはり粒径の大きいマイクロカプセ
ルが、使用時にタオル地から剥離する欠点を有する。
As disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-200515, in the present invention, a microencapsulated moisturizing component is carried on a highly water-absorbing toweling together with a highly water-absorbing resin. The towel of the present invention
Although the specification states that the toweling has extremely high washing fastness, the microcapsules having a large particle size also have a disadvantage that they peel off from the toweling during use.

【0006】上述の特開平6−322670号公報に示
されているように、この発明は、サイクロデキストリン
の空洞内部に脂溶性物質であるスクワランもしくはスク
ワレンあるいはそれらの混合物を包接し、このサイクロ
デキストリンを天然繊維もしくは合成樹脂繊維へ固着し
ているが、該サイクロデキストリンは、繊維の表面に塗
布した状態であるため、繊維の表面とサイクロデキスト
リン間の結合が弱く、やはり使用時あるいは洗濯時に繊
維表面からサイクロデキストリンが剥離する欠点を有す
る。
As disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 6-322670, the present invention includes the inclusion of squalane or squalene, which is a fat-soluble substance, or a mixture thereof in the cavity of cyclodextrin, Although it is fixed to natural fibers or synthetic resin fibers, since the cyclodextrin is applied to the surface of the fiber, the bond between the fiber surface and the cyclodextrin is weak. Cyclodextrin has the disadvantage of exfoliation.

【0007】上述の特公昭63−4693号公報に記載
されているように、この発明は、繊維の表面に金コロイ
ドを付着させて繊維に高級感を保持させた染色方法の発
明であるが、一般に金コロイドを繊維に付着させる技法
はかなり難しく、効率が悪いものであり、特に綿などの
繊維に対して吸着が遅い。そのため染色処理後の残液に
金コロイドの残る量が多くなる。また当該発明のよう
に、液中で界面活性剤などを用いてカチオン化された金
の超微粒子の場合、金属微粒子が凝縮し大きくなる。そ
のため、繊維に吸着した場合金属微粒子が繊維の内部に
まで拡散浸透しにくく表面吸着になるほか、吸着力も小
さくなって摩擦あるいは洗濯の際に金の超微粒子が繊維
から剥離する。当然金属微粒子が凝縮し大きくなると、
粒子の表面活性能が相対的に小さくなり、金属本来の機
能性を十分に発揮できない。
As described in the above-mentioned JP-B-63-4693, the present invention relates to a dyeing method in which a gold colloid is adhered to the surface of a fiber to maintain a high-grade feeling on the fiber. In general, the technique of depositing colloidal gold on fibers is rather difficult and inefficient, and adsorption is slow, especially for fibers such as cotton. Therefore, the amount of colloidal gold remaining in the residual liquid after the dyeing treatment increases. In the case of ultrafine gold particles cationized using a surfactant or the like in a liquid as in the present invention, metal fine particles condense and become large. Therefore, when adsorbed on the fiber, the metal fine particles hardly diffuse and penetrate into the interior of the fiber, resulting in surface adsorption. In addition, the adsorption power is reduced, and the ultrafine gold particles are separated from the fiber during friction or washing. Naturally, when the metal particles condense and grow,
The surface activity of the particles becomes relatively small, and the original functionality of the metal cannot be sufficiently exhibited.

【0008】この他、特公昭63−4693号公報に記
載されているカチオン化超微粒子金属(金)の場合は、
元来溶液のコロイド安定性が不安定なため、溶液中の不
純物や併用される薬剤などの影響を受けやすく、コロイ
ド安定性が破壊されやすい欠点を有する。特に繊維に吸
着される初期の段階でまず金ゾル中のカチオン界面活性
剤が繊維に吸着されてゾル中の濃度が低下し、その結果
不安定になった金コロイドが次の段階で吸着されるため
処理後の残液中の金コロイドは著しく不安定となる。
In addition, in the case of a cationized ultrafine metal (gold) described in JP-B-63-4693,
Since the colloidal stability of the solution is originally unstable, it is susceptible to impurities in the solution and drugs used in combination, and has a disadvantage that the colloidal stability is easily destroyed. Especially in the early stage of adsorption to the fiber, the cationic surfactant in the gold sol is first adsorbed to the fiber, the concentration in the sol decreases, and as a result the unstable gold colloid is adsorbed in the next stage Therefore, the gold colloid in the residual liquid after the treatment becomes extremely unstable.

【0009】更に、特公昭63−4693号公報に記載
されている発明のカチオン化超微粒子金属の金に変え
て、例えば、この発明に記載されている方法で銅をコロ
イド化しようとしてもうまくコロイド化しない。また銀
はこの発明の方法を用いてもコロイドを作ることができ
るが、繊維への吸着能が悪いなど、実用上利用対象とな
る金属が限定される。加えて、金属濃度を高めるとコロ
イドが不安定となり、通常100〜200ppm濃度の
ものしか作ることができず、利用濃度が低い欠点を有す
る。
Further, instead of using the gold of the cationized ultrafine metal of the invention described in Japanese Patent Publication No. 63-4693, for example, if the method described in the present invention is used to convert copper into a colloid, Does not change. Although silver can be formed into a colloid by using the method of the present invention, metals that can be practically used are limited, such as poor adsorption ability to fibers. In addition, when the metal concentration is increased, the colloid becomes unstable, so that usually only those having a concentration of 100 to 200 ppm can be produced, which has a drawback that the used concentration is low.

【0010】本発明は、上述の如き従来の欠点を改善し
ようとするものであり、その目的は、繊維状体、フィル
ム状等に形成された保持体に抗菌剤、消臭剤、染料等の
機能物質を付着させる際、機能物質を可及的に効率良く
これらの機能物質を保持体に付着せしめることが出来、
かつ、これらの保持体に付着させた機能物質を可及的に
長寿命で保持させることが出来る機能物質を付着させた
複合構造体の製法およびその製法により製造される複合
構造体を得ることにある。
An object of the present invention is to improve the above-mentioned conventional disadvantages, and an object of the present invention is to provide a support formed in a fibrous body, a film, or the like, with an antibacterial agent, a deodorant, a dye, or the like. When attaching the functional substance, it is possible to attach the functional substance to the support as efficiently as possible.
In addition, a method for producing a composite structure to which a functional substance capable of retaining the functional substance adhered to these holders for as long a life as possible, and a composite structure produced by the production method are to be obtained. is there.

【0011】[0011]

【課題を解決するための手段】上述のような本発明の目
的を達成するために、本発明の請求項1に記載の発明で
は、保持体に超微粒子からなる機能物質を吸着させる複
合構造体の製法において、溶液中でコロイド化して超微
粒子化している前記機能物質の帯電極性と反対極性に帯
電するように保持体の表面を予め帯電処理を施した後、
溶液中で前記超微粒子化している機能物質を静電的引力
により吸着せしめることを特徴とする複合構造体の製法
が提供される。
In order to achieve the object of the present invention as described above, according to the first aspect of the present invention, there is provided a composite structure in which a functional substance comprising ultrafine particles is adsorbed on a support. In the manufacturing method, after the surface of the holding body is subjected to a charging treatment in advance so as to be charged to the opposite polarity to the charging polarity of the functional material that has been turned into a colloid in a solution and turned into ultrafine particles,
There is provided a method for producing a composite structure, characterized in that the finely divided functional substance is adsorbed in a solution by electrostatic attraction.

【0012】請求項2に記載の発明では、保持体に超微
粒子からなる機能物質を吸着させる複合構造体の製法に
おいて、溶液中でコロイド化して超微粒子化している前
記機能物質の帯電極性と反対極性に帯電する超微粒子か
らなる中間媒介体に予め静電的引力により吸着せしめて
おき、更に溶液中で超微粒子を吸着させた中間媒体を、
予め帯電処理を施した保持体の表面に溶液中で静電的引
力により吸着せしめることを特徴とする複合の構造体製
法が提供される。
According to a second aspect of the present invention, in the method for producing a composite structure in which a functional substance composed of ultrafine particles is adsorbed on a support, the charge polarity of the functional substance which is colloidalized into ultrafine particles in a solution is opposite to that of the charged substance. The intermediate medium, which has been adsorbed in advance by an electrostatic attraction to an intermediate medium composed of polar charged ultrafine particles, and further adsorbed the ultrafine particles in a solution,
There is provided a method for producing a composite structure, characterized in that it is made to adhere to a surface of a holding member which has been subjected to charging treatment in advance by electrostatic attraction in a solution.

【0013】請求項3に記載の発明では、保持体に超微
粒子からなる機能物質を吸着させる複合構造体の製法に
おいて、界面活性剤を用いて、保持体の表面または前記
超微粒子表面のいずれか一方の帯電極性を変換して保持
体表面と超微粒子の表面の帯電極性を互いに異にして、
溶液中で前記超微粒子化している機能物質を静電的引力
により保持体の表面に吸着せしめることを特徴とする複
合構造体の製法が提供される。請求項4に記載の発明で
は、前記保持体は平板状に形成されたフィルムまたは板
状体であることを特徴とする請求項1〜請求項3の内の
選択されるいずれか1つの複合構造体の製法が提供され
る。
According to a third aspect of the present invention, in the method for producing a composite structure in which a functional substance composed of ultrafine particles is adsorbed on a support, a surfactant is used to remove either the surface of the support or the surface of the ultrafine particles. By converting one of the charging polarities to make the charging polarities of the surface of the holder and the surface of the ultrafine particles different from each other,
There is provided a method for producing a composite structure, characterized in that the ultrafinely divided functional substance is adsorbed on the surface of a holder by electrostatic attraction in a solution. According to a fourth aspect of the present invention, the holding body is a film or a plate formed in a flat shape, and the composite structure is selected from one of the first to third aspects. A body recipe is provided.

【0014】請求項5に記載の発明では、前記保持体は
繊維構造体であることを特徴とする請求項1〜請求項3
の内の選択されるいずれか1つの複合構造体の製法が提
供される。請求項6に記載の発明では、前記保持体は多
孔質セラミックであることを特徴とする請求項1〜請求
項3の内の選択されるいずれか1つの複合構造体の製法
が提供される。
According to the fifth aspect of the present invention, the holder is a fibrous structure.
A method is provided for making a composite structure of any one of the following: According to a sixth aspect of the present invention, there is provided a method of manufacturing any one of the first to third composite structures, wherein the holder is a porous ceramic.

【0015】請求項7に記載の発明では、保持体に超微
粒子からなる機能物質を吸着させた複合構造体におい
て、表面を強制的に帯電せしめた保持体の該表面に、該
表面の帯電電極と反対の極性電荷に帯電された超微粒子
が付着されていることを特徴とする複合構造体が提供さ
れる。
According to the present invention, in the composite structure in which the functional substance composed of ultrafine particles is adsorbed on the holder, the surface of the holder whose surface is forcibly charged is charged with the charged electrode on the surface. Provided is a composite structure characterized in that ultrafine particles charged to the opposite polarity charge are attached thereto.

【0016】請求項8に記載の発明では、保持体に超微
粒子からなる機能物質を吸着させた複合構造体におい
て、表面を強制的に帯電せしめた保持体の該表面に、該
表面の帯電電極と反対の極性電荷に帯電された中間媒体
が吸着され、該中間媒体に吸着された超微粒子とからな
ることを特徴とする複合構造体が提供される。
According to the present invention, in a composite structure in which a functional material composed of ultrafine particles is adsorbed on a holder, the surface of the holder whose surface is forcibly charged is charged with a charged electrode on the surface. The composite structure is characterized by comprising an intermediate medium charged to a polarity opposite to that of the intermediate medium and adsorbing the ultrafine particles.

【0017】請求項9に記載の発明では、前記保持体は
平板状に形成されたフィルムまたは板状体であることを
特徴とする請求項7、請求項8の内の選択されるいずれ
か1つの複合構造体が提供される。請求項10に記載の
発明では、前記保持体は繊維構造体であることを特徴と
する請求項7、請求項8の内の選択されるいずれか1つ
の複合構造体が提供される。請求項11に記載の発明で
は、前記保持体は多孔質セラミックであることを特徴と
する請求項7、請求項8の内の選択されるいずれか1つ
の複合構造体が提供される。
According to a ninth aspect of the present invention, the holding member is a film or a plate formed in a flat plate shape. Two composite structures are provided. According to a tenth aspect of the present invention, there is provided any one of the composite structures selected from the seventh and eighth aspects, wherein the holder is a fiber structure. According to an eleventh aspect of the present invention, there is provided a composite structure according to any one of the seventh and eighth aspects, wherein the holder is a porous ceramic.

【0018】[0018]

【発明の実施の形態】次に本発明の一実施の形態を、図
面を用いて詳細に説明する。一般に水の中に分散した超
微粒子は、コロイド状態になるとそれ自身正又は負の一
定電荷を持っていて、そのため超微粒子(コロイド粒
子)間の凝縮が妨げられ、コロイド状体が安定化する。
なお、ここでいう超微粒子とは、その径(d)がおよそ
1nm<d<100nmの範囲のもので、グラム当たり数
十平米以上の表面積を有し、例えば酸化物の2〜5原
子層の薄膜からなる薄い均一な界面層を有する、原子
レベルの階段状表面を有し、気体にも液体にも固体に
も均一分散、混合できる、鎖状超微粒子になり得る、
粒子内電子エネルギーレベルが離散的である、粒径
は固体内電子の平均自由行程の程度である、生物体の
どこにも容易に運ばれ、侵入、拒否或いは取り込まれ
る、等の特別な性質を有する。一方、超微粒子を付着さ
せようとする保持体、例えば繊維は、水中において負に
帯電する傾向がある。しかしながら、繊維自体の帯電が
弱く、コロイド粒子が分散するコロイド溶液中に繊維の
ような保持体をそのまま浸漬しても荷電超微粒子と保持
体間の静電的な引力は弱く、保持体に対して超微粒子が
うまく吸着されない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described in detail with reference to the drawings. Generally, ultrafine particles dispersed in water have a constant positive or negative charge when they are in a colloidal state, which prevents condensation between the ultrafine particles (colloidal particles) and stabilizes the colloidal material.
Here, the ultrafine particles have a diameter (d) in the range of about 1 nm <d <100 nm and have a surface area of several tens of square meters or more per gram. It has a thin uniform interface layer consisting of a thin film, has an atomic level step surface, can be uniformly dispersed and mixed in gas, liquid and solid, and can be chain ultrafine particles.
It has special properties such as discrete electron energy levels in particles, particle size on the order of the mean free path of electrons in solids, and easy transport, penetration, rejection or incorporation anywhere in living organisms. . On the other hand, a carrier to which ultrafine particles are to be attached, for example, a fiber, tends to be negatively charged in water. However, the charge of the fiber itself is weak, and even if a support such as a fiber is immersed in a colloid solution in which colloid particles are dispersed, the electrostatic attraction between the charged ultrafine particles and the support is weak, and the The ultrafine particles are not adsorbed well.

【0019】そこで本発明では、液中でコロイド状態に
なっている超微粒子を付着させる保持体の表面をコロイ
ド液中において、積極的に超微粒子の荷電と反対極性に
帯電せしめ、コロイド液中の超微粒子を無駄なく保持体
に吸着せしめるものである。保持体に対して超微粒子の
吸着は、超微粒子のコロイド溶液に保持体を浸漬させて
行うが、高温で処理されるほど、超微粒子の保持体への
吸着性は大きくなる。又、超微粒子の径が小さくなるほ
ど、表面積が大きくなり、吸着性が大きくなるととも
に、超微粒子を構成する物質本来の機能性(例えば、抗
菌性、消臭性、触媒機能性等)が著しく高まるととも
に、保持体への吸着の際に保持体の内部にまで侵入させ
ることができる。
Therefore, in the present invention, the surface of the support to which the ultrafine particles in the colloidal state are adhered in the liquid is positively charged in the colloidal liquid to the polarity opposite to the charge of the ultrafine particles. The ultrafine particles are adsorbed on the holder without waste. The adsorption of the ultrafine particles to the support is performed by immersing the support in a colloidal solution of the ultrafine particles, but the higher the temperature, the greater the adsorption of the ultrafine particles to the support. In addition, as the diameter of the ultrafine particles decreases, the surface area increases, the adsorptivity increases, and the intrinsic functions (eg, antibacterial properties, deodorant properties, catalytic functions, etc.) of the substances constituting the ultrafine particles significantly increase. At the same time, it can be penetrated into the inside of the holding body at the time of adsorption to the holding body.

【0020】保持体に吸着させたい物質がコロイド溶液
中で超微粒子になった際、これと保持体表面の荷電極性
が同じになるような場合、本発明では、超微粒子あるい
は保持体に対して予め前処理を施して、いずれか一方の
荷電極性を変換せしめ、超微粒子と保持体表面の電荷を
互いに反対にして、保持体に対する超微粒子の吸着を容
易にする。
In the case where the substance to be adsorbed on the carrier becomes ultrafine particles in the colloid solution and the surface of the carrier has the same charged electrode property, in the present invention, the ultrafine particles or the carrier may be used. A pre-treatment is performed in advance to convert either one of the charged electrode properties to make the charges on the ultrafine particles and the surface of the carrier opposite to each other, thereby facilitating the adsorption of the ultrafine particles on the carrier.

【0021】上記において、保持体或いは超微粒子のい
ずれかの極性を変換して保持体と超微粒子の荷電極性を
異ならせることが不可能な場合、本発明においては、保
持体と超微粒子との間にこれらとは極性の異なる極性に
帯電せしめた中間媒体物質を介在せしめ、実質的に超微
粒子を保持体に付着せしめる。
In the above, when it is not possible to change the polarity of either the carrier or the ultrafine particles to make the charged electrode properties of the carrier and the ultrafine particles different, in the present invention, the carrier and the ultrafine particles are used. In between, an intermediate medium material charged to a polarity different from these polarities is interposed, and the ultrafine particles are substantially attached to the support.

【0022】本発明に係る複合構造体のモデル構造図を
図1に示す。図1において、モデル(a)は、アニオン
化された保持体1に、カチオン化された例えば銅超微粒
子2をイオン結合させたものである。モデル(b)は、
カチオン化された保持体11に、カチオン化された銀及
び銅超微粒子12、13をイオン結合させたアニオン化
TiO2 等の中間媒介体14を介してイオン結合させた
ものである。モデル(c)は、カチオン化された保持体
11にアニオン化されたTiO2 等の超微粒子22をイ
オン結合させたものである。
FIG. 1 shows a model structure diagram of the composite structure according to the present invention. In FIG. 1, a model (a) is obtained by ion-bonding cationized, for example, copper ultrafine particles 2 to an anionized support 1. Model (b) is
The cationized silver and copper ultrafine particles 12 and 13 are ion-bonded to the cationized support 11 through an intermediate medium 14 such as anionized TiO 2 in which the ionization is performed. The model (c) is obtained by ion-bonding ultrafine particles 22 such as anionized TiO 2 to the cationized support 11.

【0023】保持体の物理的な形状としては、繊維体、
フィルム、固定形状あるいはセラミックスから成る多孔
質体等を挙げることが出来る。また、超微粒子の物質と
しては、例えば、金、銅、ニッケル、等の金属をあげる
ことができ、更に、酸化チタン、酸化アルミニウム等の
セラミックスの他、一部の高分子化合物を含めることが
できる。
As the physical shape of the holder, a fibrous body,
Examples include films, fixed shapes, and porous bodies made of ceramics. In addition, examples of the substance of the ultrafine particles include metals such as gold, copper, and nickel.In addition to ceramics such as titanium oxide and aluminum oxide, some polymer compounds can be included. .

【0024】本発明では、超微粒子または超微粒子を吸
着させた中間媒介体を保持体に吸着させるために、予め
保持体に対して、吸着させる超微粒子または中間媒介体
とは反対の静電極性に帯電させておく。すなわち、超微
粒子または中間媒介体が吸着される直前でアニオン化さ
れるとき、保持体をカチオン化する。また超微粒子また
は中間媒介体が吸着される直前でカチオン化されると
き、保持体をアニオン化する。たとえば、保持体が綿の
ような天然繊維の場合、一般にカチオン化材として用い
られる薬剤には、窒素系のカチオン界面活性剤、カチオ
ン系水溶性高分子化合物(高分子凝集剤を含む)などが
あり、大別すると、図2に示すように、第1〜第3級の
アミン塩と第4級アンモニウム塩などより構成される。
カチオン界面活性剤の通性として水溶液ではいずれも親
水基が陽イオンに荷電し同種のイオンを反発すると共に
他種の陰イオンと中和してその粒子をイオン的に結合す
る性質がある。
In the present invention, in order to adsorb the ultrafine particles or the intermediate medium having the ultrafine particles adsorbed thereon, the electrostatic polarity opposite to the ultrafine particles or the intermediate medium to be adsorbed is preliminarily applied to the support. To be charged. That is, when the ultrafine particles or the intermediate are anionized immediately before being adsorbed, the support is cationized. When the ultrafine particles or the intermediate are cationized immediately before being adsorbed, the support is anionized. For example, when the support is a natural fiber such as cotton, chemicals generally used as a cationizing agent include a nitrogen-based cationic surfactant and a cationic water-soluble polymer compound (including a polymer flocculant). Yes, roughly, as shown in FIG. 2, it is composed of primary to tertiary amine salts and quaternary ammonium salts.
As an aqueous solution of a cationic surfactant, in an aqueous solution, a hydrophilic group has such a property that a hydrophilic group is charged to a cation and repels ions of the same kind, and is neutralized with other kinds of anions to bind the particles ionically.

【0025】また、たとえば、保持体が綿のような天然
繊維の場合、保持体のアニオン化処理法は種々あるが、
例えば、酸無水物によるエステル化反応や、ハロゲン化
合物によるエーテル化反応を利用するものなどがあり、
代表的なものを次に示す。 1)酸無水物によるエステル化反応による綿のアニオン
化処理 図3の(a)に示す反応式により、無水フッ化酢酸を触
媒としてエステル化反応すると保持体としての綿繊維は
アニオン化される。 2)ハロゲン化合物によるエーテル化による綿のアニオ
ン化処理 図3の(b)に示すように、塩基性触媒の存在下に、モ
ノクロル酢酸と反応してカルボキシメチルエーテルとな
る。このほか、例えば、3−アミノプロピルトリエトキ
シランのような表面活性剤(シランカップリング材)を
用いて、保持体となる酸化珪素の表面をイオン化させる
ことができる。
For example, when the support is a natural fiber such as cotton, there are various methods of anionizing the support.
For example, there are those utilizing an esterification reaction with an acid anhydride or an etherification reaction with a halogen compound,
Representative examples are shown below. 1) Anionization treatment of cotton by esterification reaction with acid anhydride According to the reaction formula shown in FIG. 3 (a), when the esterification reaction is performed using fluorinated acetic anhydride as a catalyst, the cotton fiber as a support is anionized. 2) Anionization treatment of cotton by etherification with a halogen compound As shown in FIG. 3 (b), it reacts with monochloroacetic acid to form carboxymethyl ether in the presence of a basic catalyst. In addition, for example, the surface of silicon oxide serving as a support can be ionized using a surfactant (silane coupling material) such as 3-aminopropyltriethoxysilane.

【0026】[0026]

【実施例】実施例1、化学還元法を用いて、酸化銀水溶
液中の銀を還元せしめ、水溶液中に直径5nmのカチオ
ン化した銀金属超微粒子を形成せしめた溶液と、酸化銅
溶液中の銅を還元せしめ、水溶液中に直径5nmのカチ
オン化した銅金属超微粒子を形成せしめた溶液50部ず
つ混合せしめた溶液中に、たとえば化学的な気相法ある
いは液相法により製造し表面をアニオン化した中間媒体
物質である直径50nm程度の酸化チタン超微粒子を前記
混合液中に投入し、よく撹拌して中間媒体物質である前
記直径50nm程度の酸化チタン超微粒子の表面に銀およ
び銅超微粒子を付着せしめる。そして、銀と銅超微粒子
を表面に吸着固定せしめた酸化チタン超微粒子を、表面
活性剤を用いてさらにアニオン化する。このようにチタ
ンコロイドに銀および銅を固定化したAg/Cu/Ti
2 で濃度を2g/ リットルおよび5g/リットルに調
整した2種類の水分散溶液を用意しておく。
EXAMPLE 1 Silver in an aqueous silver oxide solution was reduced by a chemical reduction method to form ultrafine cationized silver metal particles having a diameter of 5 nm in the aqueous solution. A solution prepared by reducing copper and mixing 50 parts of a solution in which cationized copper ultrafine particles having a diameter of 5 nm is formed in an aqueous solution is produced by, for example, a chemical vapor phase method or a liquid phase method. Ultrafine titanium oxide particles having a diameter of about 50 nm, which is an intermediate medium substance, are put into the mixed solution, and the mixture is thoroughly stirred to form silver and copper ultrafine particles on the surface of the titanium oxide ultrafine particles having a diameter of about 50 nm, which is an intermediate medium substance. To adhere. Then, the titanium oxide ultrafine particles having silver and copper ultrafine particles adsorbed and fixed on the surface are further anionized using a surfactant. Ag / Cu / Ti with silver and copper immobilized on titanium colloid as described above
Two kinds of aqueous dispersion solutions whose concentrations have been adjusted to 2 g / liter and 5 g / liter with O 2 are prepared.

【0027】別に、48番手双糸編み物(天竺編み、綿
100%)よりなる生地に対し、精練処理を施した後、
周知のカチオン化剤を用いて、カチオン化処理を施し、
この繊維を前記のように用意した水分散溶液中に浸漬
し、パディング法にて保持体となる前記生地の表面に銀
・銅超微粒子を吸着させた酸化チタン超微粒子を吸着さ
せた。
Separately, after performing a scouring treatment on a cloth made of a 48th-count double-thread knit (100% cotton),
Using a well-known cationizing agent, cationization treatment is performed,
The fibers were immersed in the aqueous dispersion solution prepared as described above, and the titanium oxide ultrafine particles having silver / copper ultrafine particles adsorbed thereon were adsorbed on the surface of the cloth serving as a holder by a padding method.

【0028】保持体へのAg/Cu/TiO2 吸着度を
調べるため、コロイド溶液から生地を取り出した後、溶
液中のAg/Cu/TiO2 残量を測定したところ、濃
度を2g/ リットルにしたものは、TiO2 は0.1pp
m 以下、Ag23 は0.1ppm 以下、CuOは0.1
ppm 以下であった。また、濃度を5g/ リットルにした
ものは、TiO2 は0.1ppm 以下、Ag23 は0.
1ppm 以下、CuOは0.1ppm 以下であった。
To examine the degree of adsorption of Ag / Cu / TiO 2 on the holder, the dough was taken out of the colloid solution, and the remaining amount of Ag / Cu / TiO 2 in the solution was measured. The concentration was reduced to 2 g / liter. The result is that TiO 2 is 0.1pp
m or less, Ag 2 O 3 is 0.1 ppm or less, CuO is 0.1 ppm or less.
ppm or less. When the concentration was set to 5 g / liter, TiO 2 was 0.1 ppm or less and Ag 2 O 3 was 0.1 ppm.
The content of CuO was 1 ppm or less, and the content of CuO was 0.1 ppm or less.

【0029】吸着度を比較するため、上記生地と同じ精
練処理を施したもの(カチオン化処理を施さないもの)
を用意し、これに上記と同様な方法でAg/Cu/Ti
2を吸着せしめた。そして、残液中のAg/Cu/T
iO2 濃度を調べたところ、前記濃度が2g/リットル
のものは、TiO2 は42ppm 、Ag23 は0.4pp
m 、CuOは1.5ppm であった。また、前記濃度が5
g/リットルのものは、TiO2 は148ppm 、Ag2
3 は1.1ppm 、CuOは6.9ppm であった。ま
た、この繊維の性能の一つである抗菌性能を測定した。
測定方法は抗菌防臭加工製品の加工効果評価試験マニュ
アルシェークーフラスコ法に従った。試験菌である黄色
葡萄状球菌懸濁液75mlに試験片1(濃度を2g/ リ
ットルにて処理したもの)0.75gを入れ、1時間震
とう後、生菌数を測定したところ、生菌数は10個以下
であり、抗菌効果は顕著であった。これに対して、カチ
オン化処理を施さずにAg/Cu/TiO2 を付着させ
たものは、滅菌させることができなかった。試験片2
(濃度を5g/ リットルにて処理したもの)についても
同様な試験を行ったが、滅菌率はほぼ上記と同じで、抗
菌効果は顕著であった。
In order to compare the degree of adsorption, the same scouring treatment as that of the above-mentioned dough was performed (the one without the cationization treatment).
And Ag / Cu / Ti is added thereto in the same manner as described above.
O 2 was adsorbed. And Ag / Cu / T in the residual liquid
When the iO 2 concentration was checked, the concentration of 2 g / liter was 42 ppm for TiO 2 and 0.4 pp for Ag 2 O 3 .
m and CuO were 1.5 ppm. Further, when the concentration is 5
g / liter, 148 ppm of TiO 2 , Ag 2
O 3 was 1.1 ppm and CuO was 6.9 ppm. Further, antibacterial performance, which is one of the performances of this fiber, was measured.
The measuring method followed the processing shake evaluation method of the antibacterial deodorized processed product manual shake flask method. 0.75 g of a test piece 1 (treated at a concentration of 2 g / liter) was placed in 75 ml of the test bacterium Staphylococcus aureus suspension, and after shaking for 1 hour, the number of viable cells was measured. The number was 10 or less, and the antibacterial effect was remarkable. On the other hand, the sample to which Ag / Cu / TiO 2 was adhered without performing the cationization treatment could not be sterilized. Test piece 2
A similar test was also performed for (treated at a concentration of 5 g / liter), but the sterilization rate was almost the same as above, and the antibacterial effect was remarkable.

【0030】実施例2、化学還元法を用いて、酸化銅水
溶液中の銀を還元せしめ、水溶液中に直径5nmのカチ
オン化した銀金属超微粒子を形成せしめた溶液と、酸化
銅溶液中の銅を還元せしめ、水溶液中に直径5nmのカ
チオン化した銅金属超微粒子を形成せしめた溶液50部
ずつ混合せしめた溶液を作成する。
Example 2 A solution in which silver in an aqueous copper oxide solution was reduced by a chemical reduction method to form ultra-fine particles of cationized silver metal having a diameter of 5 nm in the aqueous solution, and a copper solution in a copper oxide solution Is reduced, and a solution is prepared by mixing 50 parts of a solution obtained by forming ultra-fine particles of cationized copper metal having a diameter of 5 nm in an aqueous solution.

【0031】別に、48番手双糸編み物(天竺編み、綿
100%)よりなる生地に対し、精練処理を施した後、
周知のアニオン化剤を用いて、アニオン化処理を施す。
このアニオン化処理は、上記生地を10%モノクロル酢
酸溶液に浸漬後、80%に絞り、50%苛性ソーダ溶液
中で反応させ、カルボキシメチル化処理し、その置換度
が0.1となるよう調整し、以下の反応によりアニオン
化処理する。 CellOH+ClCH2 COOH→Cell−OCH
2 COONa+NaCl+2H2 O このような処理を行った繊維を前記のように用意した水
分散溶液中に浸漬し、パディング法にて保持体となる前
記生地の表面に銀・銅超微粒子を吸着させた。
Separately, after performing a scouring treatment on a cloth made of a 48th twin yarn knit (100% cotton),
Anionization treatment is performed using a well-known anionizing agent.
In this anionization treatment, the cloth is immersed in a 10% monochloroacetic acid solution, squeezed to 80%, reacted in a 50% caustic soda solution, carboxymethylated, and adjusted to have a substitution degree of 0.1. The anionization treatment is performed by the following reaction. CellOH + ClCH 2 COOH → Cell-OCH
2 COONa + NaCl + 2H 2 O The fiber thus treated was immersed in the aqueous dispersion solution prepared as described above, and the silver / copper ultrafine particles were adsorbed on the surface of the cloth serving as a holder by a padding method.

【0032】保持体へのAg/Cu吸着度を調べるた
め、コロイド溶液から生地を取り出した後、溶液中のA
g/Cu残量を測定したところ、Ag23 は0.1pp
m 以下、CuOは0.1ppm 以下であった。
In order to examine the degree of adsorption of Ag / Cu on the holder, the dough was taken out of the colloid solution, and the A
When the g / Cu remaining amount was measured, the amount of Ag 2 O 3 was 0.1 pp.
m or less, and CuO was 0.1 ppm or less.

【0033】吸着度を比較するため、上記生地と同じ精
練処理を施したもの(カチオン化処理を施さないもの)
を用意し、これに上記と同様な方法でAg/Cu を吸
着せしめた。そして、残液中のAg/Cu濃度を調べた
ところ、Ag23 は0.4ppm 、CuOは1.5ppm
であった。なお、滅菌効果は実施例1と同様であった。
In order to compare the degree of adsorption, the same scouring treatment as that of the above-mentioned dough was performed (the one without the cationization treatment)
Was prepared, and Ag / Cu 2 was adsorbed on it in the same manner as described above. Then, when the Ag / Cu concentration in the residual liquid was examined, 0.4 ppm for Ag 2 O 3 and 1.5 ppm for CuO
Met. The sterilization effect was the same as in Example 1.

【0034】実施例3、化学還元法を用いて、酸化銀水
溶液中の銀を還元せしめ、水溶液中に直径5nmのカチ
オン化した銀金属超微粒子を形成せしめた溶液と、酸化
銅溶液中の銅を還元せしめ、水溶液中に直径5nmのカ
チオン化した銅金属超微粒子を形成せしめた溶液50部
ずつ混合せしめた溶液中に、たとえば化学的な気相法あ
るいは液相法により製造し、表面をアニオン化した中間
媒体物質である直径50nm程度の酸化チタン超微粒子を
前記混合液中に投入し、よく撹拌して中間媒体物質であ
る前記直径50nm程度の酸化チタン超微粒子の表面に銀
および銅超微粒子を付着せしめる。そして、銀と銅超微
粒子を表面に吸着固定せしめた酸化チタン超微粒子を、
表面活性剤を用いてさらにアニオン化する。このように
チタンコロイドに銀および銅を固定化したAg/Cu/
TiO2 で濃度を2g/リットルに調整した水分散溶液
を用意しておく。
Example 3 Silver in an aqueous silver oxide solution was reduced by a chemical reduction method to form ultra-fine cationized silver metal particles having a diameter of 5 nm in the aqueous solution. Is prepared by mixing, for example, a chemical vapor phase method or a liquid phase method in a solution prepared by mixing 50 parts of a solution obtained by forming ultra-fine particles of cationized copper metal having a diameter of 5 nm in an aqueous solution. Ultrafine titanium oxide particles having a diameter of about 50 nm, which is an intermediate medium substance, are put into the mixed solution, and the mixture is thoroughly stirred to form silver and copper ultrafine particles on the surface of the titanium oxide ultrafine particles having a diameter of about 50 nm, which is an intermediate medium substance. To adhere. Then, titanium oxide ultrafine particles with silver and copper ultrafine particles adsorbed and fixed on the surface,
Further anionization is performed using a surfactant. Ag / Cu / with silver and copper immobilized on titanium colloid in this way
An aqueous dispersion solution whose concentration is adjusted to 2 g / liter with TiO 2 is prepared.

【0035】別に、アクリル樹脂フィルムに対して下記
の条件で予めカチオン化処理したものを保持体として準
備し、これを上記水分散溶液中に浸漬し、浸漬吸尽法に
て保持体となる前記生地の表面に銀・銅超微粒子を吸着
させた酸化チタン超微粒子を吸着させた。カチオン化処
理の方法は、カチオン化剤として、図4に示す構造を持
つグアニジン系から誘導された縮合ポリアミン型カチオ
ン系高分子化合物を使用し、上記のカチオン化剤を1g
/リットルの溶液とし、これを摂氏70度に暖めた状態
で、上記保持体を該溶液中に30分間浸し、保持体の表
面をカチオン化する。
Separately, an acrylic resin film previously subjected to a cationization treatment under the following conditions is prepared as a support, which is immersed in the above aqueous dispersion solution, and immersed in the above-mentioned aqueous dispersion solution to obtain a support as described above. Ultrafine particles of titanium oxide with ultrafine silver / copper particles adsorbed on the surface of the dough. The method of the cationization treatment uses a guanidine-based condensed polyamine-type cation-based polymer compound having a structure shown in FIG. 4 as the cationization agent, and 1 g of the cationization agent is used.
Per liter of a solution, which is warmed to 70 degrees Celsius, and immersed in the solution for 30 minutes to cationize the surface of the support.

【0036】保持体へのAg/Cu/TiO2 吸着度を
調べるため、コロイド溶液から保持体を取り出した後、
溶液中のAg/Cu/TiO2 残量を測定したところ、
TiO2 は0.1ppm 以下、Ag23 は0.1ppm 以
下、CuOは0.1ppm 以下であった。
In order to examine the adsorption of Ag / Cu / TiO 2 on the support, after removing the support from the colloid solution,
When the remaining amount of Ag / Cu / TiO 2 in the solution was measured,
TiO 2 was 0.1 ppm or less, Ag 2 O 3 was 0.1 ppm or less, and CuO was 0.1 ppm or less.

【0037】吸着度を比較するため、カチオン化処理を
施さないアクリル樹脂フィルムを用意し、これに上記と
同様な方法でAg/Cu/TiO2 を吸着せしめた。そ
して、残液中のAg/Cu/TiO2 濃度を調べたとこ
ろ、TiO2 は30ppm 、Ag23 は0.3ppm 、C
uOは1.0ppm であった。
For comparison of the degree of adsorption, an acrylic resin film not subjected to a cationization treatment was prepared, and Ag / Cu / TiO 2 was adsorbed on the acrylic resin film in the same manner as described above. When the concentration of Ag / Cu / TiO 2 in the remaining liquid was examined, TiO 2 was 30 ppm, Ag 2 O 3 was 0.3 ppm, and C
uO was 1.0 ppm.

【0038】実施例4、化学還元法を用いて、酸化銀水
溶液中の銀を還元せしめ、水溶液中に直径5nmのカチ
オン化した銀金属超微粒子を、中間媒体物質であり、表
面をアニオン化した直径50nm程度の酸化チタン超微粒
子の表面に付着せしめる。そして、銀超微粒子を表面に
吸着固定せしめた酸化チタン超微粒子を、表面活性剤を
用いてさらにアニオン化する。このようにチタンコロイ
ドに銀を固定化したAg/TiO2 濃度を50g/リッ
トルに調整した水分散溶液を用意しておく。
Example 4 Silver in an aqueous silver oxide solution was reduced by a chemical reduction method, and ultrafine cationized silver metal particles having a diameter of 5 nm were used as an intermediate medium substance in the aqueous solution, and the surface was anionized. It is attached to the surface of titanium oxide ultrafine particles having a diameter of about 50 nm. The ultrafine titanium oxide particles having the ultrafine silver particles adsorbed and fixed on the surface are further anionized using a surfactant. An aqueous dispersion in which the Ag / TiO 2 concentration in which silver is immobilized on the titanium colloid is adjusted to 50 g / liter is prepared in advance.

【0039】別に、48番手双糸編み物(天竺編み、綿
100%)よりなる生地に対し、精練処理を施した後、
周知のカチオン化剤を用いて、カチオン化処理を施し、
この繊維を前記のように用意した水分散溶液中に浸漬
し、パディング法にて保持体となる前記生地の表面に銀
超微粒子を吸着させた酸化チタン超微粒子を吸着させ
た。
Separately, after performing a scouring treatment on a cloth made of a 48th twin yarn knit (100% cotton),
Using a well-known cationizing agent, cationization treatment is performed,
The fibers were immersed in the aqueous dispersion solution prepared as described above, and titanium oxide ultrafine particles having silver ultrafine particles adsorbed thereon were adsorbed on the surface of the cloth as a support by a padding method.

【0040】保持体へのAg/TiO2 吸着度を調べる
ため、コロイド溶液から生地を取り出した後、溶液中の
Ag/TiO2 残量を測定したところ、TiO2 は47
5ppm 、Ag23 は32ppm であった。
[0040] To investigate the Ag / TiO 2 adsorption degree to the holding body, after removal of the fabric from a colloidal solution, where the Ag / TiO 2 remaining in the solution was measured, TiO 2 is 47
5 ppm and Ag 2 O 3 were 32 ppm.

【0041】吸着度を比較するため、上記生地と同じ精
練処理を施したものを用意し、これに上記と同様な方法
でAg/TiO2 を吸着せしめた。そして、残液中のA
g/TiO2 濃度を調べたところ、TiO2 は529pp
m 、Ag23 は35ppm であった。
In order to compare the degree of adsorption, a cloth subjected to the same scouring treatment as that of the above-mentioned dough was prepared, and Ag / TiO 2 was adsorbed thereto in the same manner as described above. And A in the remaining liquid
When the g / TiO 2 concentration was examined, TiO 2 was found to be 529 pp.
m and Ag 2 O 3 were 35 ppm.

【0042】実施例5、化学還元法を用いて、酸化銀水
溶液中の銀を還元せしめ、水溶液中に直径5nmのカチ
オン化した銀金属超微粒子を、中間媒体物質であり表面
をアニオン化した直径5nmないし10nm程度の酸化チタ
ン超微粒子の表面に付着せしめる。そして、銀超微粒子
を表面に吸着固定せしめた酸化チタン超微粒子を、表面
活性剤を用いてさらにアニオン化する。このようにチタ
ンコロイドに銀を固定化したAg/TiO2 濃度を5g
/リットルに調整した水分散溶液を用意しておく。
Example 5 Silver in an aqueous silver oxide solution was reduced by a chemical reduction method, and ultra-fine cationized silver metal particles having a diameter of 5 nm were added to the aqueous solution. It is attached to the surface of titanium oxide ultrafine particles of about 5 nm to 10 nm. The ultrafine titanium oxide particles having the ultrafine silver particles adsorbed and fixed on the surface are further anionized using a surfactant. Ag / TiO 2 concentration of 5 g in which silver is immobilized on titanium colloid is 5 g.
Prepare an aqueous dispersion solution adjusted to 1 / liter.

【0043】別に、48番手双糸編み物(天竺編み、綿
100%)よりなる生地に対し、精練処理を施した後、
周知のカチオン化剤を用いて、カチオン化処理を施し、
この繊維を前記のように用意した水分散溶液中に浸漬
し、浸漬吸尽法にて保持体となる前記生地の表面に銀超
微粒子を吸着させた酸化チタン超微粒子を保持体の表面
に吸着させた。
Separately, after performing a scouring process on a cloth made of a 48th twin yarn knit (100% cotton),
Using a well-known cationizing agent, cationization treatment is performed,
This fiber is immersed in the aqueous dispersion solution prepared as described above, and the ultrafine titanium oxide particles obtained by adsorbing the ultrafine silver particles on the surface of the cloth serving as the support by the immersion exhaust method are adsorbed on the surface of the support. I let it.

【0044】保持体へのAg/TiO2 吸着度を調べる
ため、コロイド溶液から生地を取り出した後、溶液中の
Ag/TiO2 残量を測定したところ、TiO2 は5.
3ppm 、Ag23 は0.5ppm 以下であった。
[0044] To investigate the Ag / TiO 2 adsorption degree to the holding body, after removal of the fabric from a colloidal solution, where the Ag / TiO 2 remaining in the solution was measured, TiO 2 is 5.
3 ppm and Ag 2 O 3 were 0.5 ppm or less.

【0045】吸着度を比較するため、上記生地と同じ精
練処理を施したものを用意し、これに上記と同様な方法
でAg/TiO2 を吸着せしめた。そして、残液中のA
g/TiO2 濃度を調べたところ、TiO2 は67ppm
、Ag23 は2.1ppm であった。
In order to compare the degree of adsorption, a cloth subjected to the same scouring treatment as that of the above-mentioned dough was prepared, and Ag / TiO 2 was adsorbed thereto in the same manner as described above. And A in the remaining liquid
Examination of the g / TiO 2 concentration, TiO 2 is 67ppm
, Ag 2 O 3 was 2.1 ppm.

【0046】実施例6、酸化シリコンSiO2 粉末をバ
インダーとしてのポリビニールアルコール液体と混練し
た後、型内で圧縮して所定の形状に整え、これを乾燥し
て内部の水分を十分発散させる。乾燥後、窒素雰囲気中
で摂氏約900度の温度で仮焼成してバインダーを十分
に飛散させる。バインダーを十分に飛散させた後、同じ
く窒素雰囲気中で、摂氏約1150度の温度で約1時間
焼成し、酸化シリコンSiO2 の多孔質体を形成する。
Embodiment 6 After silicon oxide SiO 2 powder is kneaded with a polyvinyl alcohol liquid as a binder, the mixture is compressed in a mold to form a predetermined shape, and dried to sufficiently diffuse internal moisture. After drying, the binder is preliminarily fired at a temperature of about 900 degrees Celsius in a nitrogen atmosphere to sufficiently disperse the binder. After the binder is sufficiently scattered, it is fired at a temperature of about 1150 degrees Celsius for about 1 hour in the same nitrogen atmosphere to form a porous body of silicon oxide SiO 2 .

【0047】一方、化学還元法を用いて、酸化銅液体中
の銅を還元せしめ、水溶液中に直径5nmないし10n
mのカチオン化した銅金属超微粒子を析出せしめてお
く。前記焼成により形成した酸化シリコンSiO2 の多
孔質焼結体を,周知のアニオン化剤を用いてアニオン化
せしめた後、該銅超微粒子を析出せしめた水溶液中に侵
漬し、この水溶液を真空室に移して、該多孔質体の中に
銅超微粒子が析出している水溶液を十分に浸み込ませ、
且つ、銅超微粒子をアニオン化している多孔質体の表面
に付着せしめた。
On the other hand, copper in the copper oxide liquid is reduced by a chemical reduction method, and a diameter of 5 nm to 10 n
Ultra-fine particles of cationized copper metal of m are precipitated. The porous sintered body of silicon oxide SiO 2 formed by the above calcination is anionized by using a well-known anionizing agent, and then immersed in an aqueous solution in which the ultrafine copper particles are deposited, and the aqueous solution is vacuumed. Transfer to the chamber, soak the aqueous solution in which the copper ultrafine particles are precipitated in the porous body sufficiently,
In addition, the ultrafine copper particles were attached to the surface of the porous body that had been anionized.

【0048】保持体へのCu吸着度を調べるため、コロ
イド溶液から多孔質体を取り出した後、溶液中のCu残
量を測定したところ、Cuは10ppm 以下であった。
To examine the degree of adsorption of Cu on the support, the porous body was taken out of the colloid solution, and the remaining amount of Cu in the solution was measured. As a result, Cu was 10 ppm or less.

【0049】吸着度を比較するため、アニオン化処理を
施していない酸化シリコンSiO2の多孔質焼結体を用
意し、これにカチオン化したCu金属超微粒子を吸着せ
しめようとしたが、殆ど銅金属超微粒子を酸化シリコン
SiO2 の多孔質焼結体に付着させることはできなかっ
た。
In order to compare the degree of adsorption, a porous sintered body of silicon oxide SiO 2 not subjected to anionization treatment was prepared, and it was tried to adsorb cationized Cu ultrafine particles. The ultrafine metal particles could not be attached to the porous sintered body of silicon oxide SiO 2 .

【0050】実施例7、60nm径の超微粒子銀コロイド
分散液(水溶液)すなわち、Ag2032% /精製水98
%液を予めデイスパーミキサーを用いて粗分散を行った
後、超高圧(圧力1000kg/ 平方cm)ホモジナイ
ザー処理により超微粒子調整したものを用意しておく。
これを希溶液7という。
The ultrafine silver colloid dispersion of Example 7,60nm diameter (aq) i.e., Ag 203 2% / purified water 98
% Liquid is previously subjected to coarse dispersion using a disperser mixer, and then ultrafine particles are prepared by an ultrahigh pressure (pressure 1000 kg / square cm) homogenizer treatment.
This is called diluted solution 7.

【0051】別に、48番手双糸編み物(スムース編
み、綿100%)よりなる生地に対し、精練処理を施し
た後、周知のアニオン化剤を用いて、アニオン化処理を
施す。このアニオン化処理は、上記生地を10%モノク
ロル酢酸溶液に浸漬後、80%に絞り、50%苛性ソー
ダ溶液中で反応させ、カルボキシメチル化処理し、その
置換度が0.1となるよう調整し、以下の反応によりア
ニオン化処理する。 CellOH+ClCH2 COOH→Cell−OCH
2 COONa+NaCl+2H2 O このような処理を行った繊維を前記のように用意した水
分散溶液中に浸漬し、パディング法にて保持体となる前
記生地の表面に銀超微粒子を吸着させた。
Separately, after a scouring treatment is performed on a cloth made of a 48th-count double yarn knit (smooth knitting, 100% cotton), an anionizing treatment is performed using a well-known anionizing agent. In this anionization treatment, the cloth is immersed in a 10% monochloroacetic acid solution, squeezed to 80%, reacted in a 50% caustic soda solution, carboxymethylated, and adjusted to have a substitution degree of 0.1. The anionization treatment is performed by the following reaction. CellOH + ClCH 2 COOH → Cell-OCH
2 COONa + NaCl + 2H 2 O The fiber subjected to such treatment was immersed in the aqueous dispersion solution prepared as described above, and the ultrafine silver particles were adsorbed on the surface of the cloth serving as a holder by a padding method.

【0052】保持体へのAg吸着度を調べるため、コロ
イド溶液から生地を取り出した後、溶液中のAg残量を
測定したところ、希溶液7の2g/ リットルのものでは
Ag23 は0.1ppm 以下であった。また希溶液7の
5g/ リットルのものではAg23 は8.5ppm であ
った。
[0052] To examine the Ag adsorption degree to the holding body, after removal of the fabric from a colloidal solution, where the Ag remaining in the solution was measured, Ag 2 O 3 by way of 2 g / l of a dilute solution 7 0 0.1 ppm or less. The concentration of Ag 2 O 3 in the diluted solution 7 of 5 g / liter was 8.5 ppm.

【0053】吸着度を比較するため、上記生地と同じ精
練処理を施したものを用意し、これに上記と同様な方法
でAgを吸着せしめた。そして、残液中のAg濃度を調
べたところ、希溶液7の2g/ リットルのものではAg
23 は35ppm であった。また希溶液7の5g/ リッ
トルのものではAg23 は98ppm であった。
In order to compare the degree of adsorption, a cloth subjected to the same scouring treatment as the above-mentioned cloth was prepared, and Ag was adsorbed on the cloth in the same manner as described above. Then, when the Ag concentration in the residual solution was examined, it was found that the dilute solution 7 having a concentration of 2 g / liter
2 O 3 was 35 ppm. The concentration of Ag 2 O 3 in the diluted solution 7 of 5 g / liter was 98 ppm.

【0054】実施例8、化学還元法を用いて、酸化銀水
溶液中の銀を還元せしめ、水溶液中に直径5nmのカチ
オン化した銀金属超微粒子を形成せしめた溶液中に、た
とえば化学的な気相法あるいは液相法により製造し、表
面をアニオン化した中間媒体物質である直径50nm程度
の酸化チタン超微粒子を前記混合液中に投入し、よく撹
拌して中間媒体物質である前記直径50nm程度の酸化チ
タン超微粒子の表面に銀超微粒子を付着せしめる。そし
て、銀超微粒子を表面に吸着固定せしめた酸化チタン超
微粒子を、表面活性剤を用いてさらにアニオン化する。
このようにチタンコロイドに銀および銅を固定化したA
g/Cu/TiO2 で濃度を2g/リットルに調整した
水分散溶液を用意しておく。
Example 8 Using a chemical reduction method, silver in an aqueous silver oxide solution was reduced to form ultra-fine cationized silver metal particles having a diameter of 5 nm in the aqueous solution. Ultrafine particles of titanium oxide having a diameter of about 50 nm, which is an intermediate medium material produced by a phase method or a liquid phase method and having an anionized surface, are introduced into the mixed solution, and the mixture is thoroughly stirred to obtain the intermediate medium substance having a diameter of about 50 nm. Silver ultrafine particles are adhered to the surface of the titanium oxide ultrafine particles. The ultrafine titanium oxide particles having the ultrafine silver particles adsorbed and fixed on the surface are further anionized using a surfactant.
A thus obtained by immobilizing silver and copper on titanium colloid
An aqueous dispersion solution whose concentration has been adjusted to 2 g / liter with g / Cu / TiO 2 is prepared.

【0055】別に、ABS樹脂フィルムに対して下記の
条件で予めカチオン化処理したものを保持体として準備
し、これを上記水分散溶液中に浸漬し、浸漬吸尽法にて
保持体となる前記生地の表面に銀超微粒子を吸着させた
酸化チタン超微粒子を吸着させた。カチオン化処理の方
法は、カチオン化剤として、図4に示す構造を持つグア
ニジン系から誘導された縮合ポリアミン型カチオン系高
分子化合物を使用し、上記のカチオン化剤を1g/リッ
トルの溶液とし、これを摂氏70度に暖めた状態で、上
記保持体を該溶液中に30分間浸し、保持体の表面をカ
チオン化する。
Separately, an ABS resin film which has been subjected to a cationization treatment in advance under the following conditions is prepared as a support, which is immersed in the above aqueous dispersion solution, and immersed in the above-mentioned aqueous dispersion solution. Ultrafine titanium oxide particles having fine silver particles adsorbed thereon were adsorbed on the surface of the fabric. The method of the cationization treatment uses a guanidine-based condensed polyamine-type cation-based high molecular compound having a structure shown in FIG. 4 as a cationization agent, and the cationization agent is converted into a 1 g / liter solution. With this heated to 70 degrees Celsius, the holder is immersed in the solution for 30 minutes to cationize the surface of the holder.

【0056】保持体へのAg/TiO2 吸着度を調べる
ため、コロイド溶液から保持体を取り出した後、溶液中
のAg/TiO2 残量を測定したところ、TiO2
0.1ppm 以下、Ag23 は0.1ppm 以下であっ
た。
[0056] To examine the Ag / TiO 2 adsorption degree to the holding body, after removal of the holder from a colloidal solution, where the Ag / TiO 2 remaining in the solution was measured, TiO 2 is 0.1ppm or less, Ag 2 O 3 was 0.1 ppm or less.

【0057】吸着度を比較するため、カチオン化処理を
施さないABS樹脂フィルムを用意し、これに上記と同
様な方法でAg/TiO2 を吸着せしめた。そして、残
液中のAg/TiO2 濃度を調べたところ、TiO2
35ppm 、Ag23 は0.4ppm であった。
For comparison of the degree of adsorption, an ABS resin film not subjected to a cationization treatment was prepared, and Ag / TiO 2 was adsorbed on the ABS resin film in the same manner as described above. When the concentration of Ag / TiO 2 in the remaining liquid was examined, it was found that TiO 2 was 35 ppm and Ag 2 O 3 was 0.4 ppm.

【0058】以上、本発明を上述の実施の形態により説
明したが、本発明の主旨の範囲内で種々の変形や応用が
可能であり、これらの変形や応用を本発明の範囲から排
除するものではない。
Although the present invention has been described with reference to the above embodiment, various modifications and applications are possible within the scope of the present invention, and these modifications and applications are excluded from the scope of the present invention. is not.

【0059】[0059]

【発明の効果】以上、詳細に説明したように、請求項1
に係る発明では、溶液中でコロイド化して超微粒子化し
ている前記機能物質の帯電極性と反対極性に帯電するよ
うに保持体の表面を予め帯電処理を施した後、溶液中で
前記超微粒子化している機能物質を静電的引力により吸
着せしめて複合構造体を構成しているので、従来のもの
と比較して、超微粒子が保持体に強固に吸引付着し、洗
濯などの歪みが加わっても、超微粒子が剥離するような
ことがない。
As described in detail above, claim 1 is as follows.
In the invention according to the present invention, after the surface of the holding body is subjected to a pre-charging treatment so as to be charged to the opposite polarity to the charging polarity of the functional substance that has been turned into a colloid in a solution and turned into ultra-fine particles, the ultra-fine particles are turned into a solution. Since the composite structure is composed by adsorbing the functional materials that are present by electrostatic attraction, the ultrafine particles are more strongly attracted and adhered to the holder compared to the conventional structure, and distortion such as washing is added. Also, the ultrafine particles do not peel off.

【0060】また、保持体を予めカチオン化あるいはア
ニオン化してから超微粒子を保持体に付着せしめると、
きわめて大量の超微粒子が保持体に付着し、コロイド溶
液中にとどまるものはきわめて少なくなる。このため、
超微粒子からなる機能物質を可及的に効率良く保持体に
付着せしめることが出来る。
When the support is preliminarily cationized or anionized and the ultrafine particles are adhered to the support,
An extremely large amount of ultrafine particles adhere to the support, and very little remains in the colloid solution. For this reason,
The functional substance composed of ultrafine particles can be made to adhere to the holder as efficiently as possible.

【0061】さらに、請求項2に係る発明では、請求項
1に係る発明の効果に加え、機能物質である超微粒子と
保持体のイオン化極性が同じ場合であっても、中間媒介
体を介在させることで、超微粒子を保持体に付着させる
ことができる。
Further, in the invention according to claim 2, in addition to the effect of the invention according to claim 1, even if the ionization polarity of the ultrafine particles as the functional substance and the carrier is the same, an intermediate medium is interposed. This allows the ultrafine particles to adhere to the holder.

【0062】請求項3に係る発明では、請求項1に係る
発明の効果に加え、機能物質である超微粒子と保持体の
イオン化極性が同じ場合であっても、いずれか一方のイ
オン化極性を転換させることができるので、超微粒子を
保持体に付着させることができる。
According to the invention of claim 3, in addition to the effect of the invention of claim 1, even if the ionization polarity of the ultrafine particles as the functional substance and the holder is the same, either one of them is converted. Therefore, the ultrafine particles can be adhered to the holder.

【0063】請求項4に係る発明では、保持体として板
状体、フィルムにまで適用用途を広げることができる。
In the invention according to the fourth aspect, the application can be extended to a plate-like body and a film as the holding body.

【0064】請求項5に係る発明では、保持体として、
繊維構造体にまで適用用途を広げることができる。
[0064] In the invention according to claim 5, as the holding body,
Applications can be extended to fiber structures.

【0065】請求項6に係る発明では、保持体として、
多孔質構造体にまで適用用途を広げることができる。
In the invention according to claim 6, as the holding body,
Applications can be extended to porous structures.

【0066】請求項7および請求項8に係る発明では、
従来のものと比較して、超微粒子が保持体に強固に吸引
付着し、洗濯などの歪みが加わっても、超微粒子が剥離
するようなことがない。また、保持体を予めカチオン化
あるいはアニオン化しているので、きわめて大量の超微
粒子が保持体に付着しており、さらに従来のものと比較
して、超微粒子が保持体に強固に吸引付着し、洗濯など
の歪みが加わっても、超微粒子が剥離するようなことが
ない。加えて、今まで、付着が不可能である超微粒子と
保持体の吸着が自在となる。
In the invention according to claims 7 and 8,
Compared with the conventional one, the ultrafine particles are firmly attached to the holder by suction, and the ultrafine particles do not peel off even if a strain such as washing is applied. In addition, since the support is previously cationized or anionized, an extremely large amount of ultrafine particles are attached to the support, and the ultrafine particles are firmly attached to the support by suction as compared with conventional ones. Even when distortion such as washing is applied, the ultrafine particles do not peel off. In addition, it becomes possible to freely adsorb the ultrafine particles and the holder, which have not been able to be attached.

【0067】請求項9、10、11に係る発明では、保
持体としてフィルムまたは板状体、繊維構造体、多孔質
セラミックにまで本発明を適用することができる。
In the invention according to the ninth, tenth and eleventh aspects, the present invention can be applied to a film or a plate, a fibrous structure, and a porous ceramic as a support.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る構造体を示すモデル構造
図である。
FIG. 1 is a model structure diagram showing a structure according to the present invention.

【図2】図2は、保持体のカチオン化処理を示す化学構
造式図である。
FIG. 2 is a chemical structural diagram showing a cationization treatment of a support.

【図3】図3は、保持体のアニオン化処理を示す化学構
造式図である。
FIG. 3 is a chemical structural diagram showing anionization treatment of a support.

【図4】図4は、縮合ポリアミン型カチオン系高分子化
合物の化学構造式図である。
FIG. 4 is a chemical structural formula of a condensed polyamine type cationic polymer compound.

【符号の説明】[Explanation of symbols]

1、11、21・・・・・保持体 14・・・・・・・・・・・中間媒介体 2、12、13、22・・超微粒子 1, 11, 21 ... Holder 14 ... Intermediate 2, 12, 13, 22 ... Ultrafine particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 正毅 栃木県足利市新宿町780番地 株式会社紅 三足利工場内 (72)発明者 酒巻 孝光 栃木県足利市本城2丁目1908番地 (72)発明者 島田 博文 栃木県足利市末広町24番地 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masatake Masuda 780 Shinjuku-cho, Ashikaga-city, Tochigi Pref. Person Hirofumi Shimada 24 Suehirocho, Ashikaga City, Tochigi Prefecture

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】保持体に超微粒子からなる機能物質を吸着
させる複合構造体の製法において、 溶液中でコロイド化して超微粒子化している前記機能物
質の帯電極性と反対極性に帯電するように保持体の表面
を予め帯電処理を施した後、溶液中で前記超微粒子化し
ている機能物質を静電的引力により吸着せしめることを
特徴とする複合構造体の製法。
1. A method for producing a composite structure in which a functional material composed of ultrafine particles is adsorbed on a support, wherein the functional material is colloidalized in a solution and charged so as to have a polarity opposite to that of the charged functional material. A method for producing a composite structure, comprising: subjecting a surface of a body to a charging treatment in advance, and then adsorbing the ultrafinely divided functional substance in a solution by electrostatic attraction.
【請求項2】保持体に超微粒子からなる機能物質を吸着
させる複合構造体の製法において、 溶液中でコロイド化して超微粒子化している前記機能物
質の帯電極性と反対極性に帯電する超微粒子からなる中
間媒介体に予め静電的引力により吸着せしめておき、更
に溶液中で超微粒子を吸着させた中間媒体を、予め帯電
処理を施した保持体の表面に溶液中で静電的引力により
吸着せしめることを特徴とする複合構造体の製法。
2. A method for producing a composite structure in which a functional substance comprising ultrafine particles is adsorbed on a support, comprising: a method of forming ultrafine particles by colloidalization in a solution; The intermediate medium which has been adsorbed in advance by an electrostatic attraction to the intermediate medium, and the ultrafine particles are adsorbed in the solution, is adsorbed by the electrostatic attraction in the solution to the surface of the pre-charged holding body in the solution. A method for producing a composite structure, comprising:
【請求項3】保持体に超微粒子からなる機能物質を吸着
させる複合構造体の製法において、 界面活性剤を用いて、保持体の表面または前記超微粒子
表面のいずれか一方の帯電極性を変換して保持体表面と
超微粒子の表面の帯電極性を互いに異にして、溶液中で
前記超微粒子化している機能物質を静電的引力により保
持体の表面に吸着せしめることを特徴とする複合構造体
の製法。
3. A method for producing a composite structure in which a functional material composed of ultrafine particles is adsorbed on a support, wherein a surfactant is used to convert the charging polarity of either the surface of the support or the surface of the ultrafine particles. Wherein the charged material on the surface of the carrier and the surface of the ultrafine particles are made different from each other, and the functional material, which has been turned into ultrafine particles, is adsorbed on the surface of the carrier by electrostatic attraction in a solution. Recipe.
【請求項4】前記保持体は平板状に形成されたフィルム
または板状体であることを特徴とする請求項1〜請求項
3の内の選択されるいずれか1つの複合構造体の製法。
4. A method according to claim 1, wherein said holder is a film or a plate formed in a flat plate shape.
【請求項5】前記保持体は繊維構造体であることを特徴
とする請求項1〜請求項3の内の選択されるいずれか1
つの複合構造体の製法。
5. The method according to claim 1, wherein said holding body is a fiber structure.
Of two composite structures.
【請求項6】前記保持体は多孔質セラミックであること
を特徴とする請求項1〜請求項3の内の選択されるいず
れか1つの複合構造体の製法。
6. A method according to claim 1, wherein said holding body is a porous ceramic.
【請求項7】保持体に超微粒子からなる機能物質を吸着
させた複合構造体において、 表面を強制的に帯電せしめた保持体の該表面に、該表面
の帯電電極と反対の極性電荷に帯電された超微粒子が付
着されていることを特徴とする複合構造体。
7. A composite structure in which a functional material composed of ultrafine particles is adsorbed on a carrier, wherein the surface of the carrier whose surface is forcibly charged is charged to a polarity opposite to that of a charged electrode on the surface. A composite structure, characterized in that the coated ultrafine particles are attached to the composite structure.
【請求項8】保持体に超微粒子からなる機能物質を吸着
させた複合構造体において、 表面を強制的に帯電せしめた保持体の該表面に、該表面
の帯電電極と反対の極性電荷に帯電された中間媒体が吸
着され、該中間媒体に吸着された超微粒子とからなるこ
とを特徴とする複合物構造体
8. A composite structure in which a functional material composed of ultrafine particles is adsorbed on a holder, wherein the surface of the holder whose surface is forcibly charged is charged to a polarity opposite to that of a charging electrode on the surface. Characterized in that the intermediate structure is adsorbed and the ultrafine particles are adsorbed by the intermediate medium.
【請求項9】前記保持体は平板状に形成されたフィルム
または板状体であることを特徴とする請求項7、請求項
8の内の選択されるいずれか1つの複合構造体。
9. The composite structure according to claim 7, wherein said holding body is a film or a plate formed in a flat plate shape.
【請求項10】前記保持体は繊維構造体であることを特
徴とする請求項7、請求項8の内の選択されるいずれか
1つの複合構造体。
10. The composite structure according to claim 7, wherein said holding body is a fibrous structure.
【請求項11】前記保持体は多孔質セラミックであるこ
とを特徴とする請求項7、請求項8の内の選択されるい
ずれか1つの複合構造体。
11. The composite structure according to claim 7, wherein said holder is a porous ceramic.
JP10044089A 1998-02-25 1998-02-25 Production of composite structure and composite structure produced thereby Pending JPH11241270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10044089A JPH11241270A (en) 1998-02-25 1998-02-25 Production of composite structure and composite structure produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10044089A JPH11241270A (en) 1998-02-25 1998-02-25 Production of composite structure and composite structure produced thereby

Publications (1)

Publication Number Publication Date
JPH11241270A true JPH11241270A (en) 1999-09-07

Family

ID=12681908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10044089A Pending JPH11241270A (en) 1998-02-25 1998-02-25 Production of composite structure and composite structure produced thereby

Country Status (1)

Country Link
JP (1) JPH11241270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357534A (en) * 2001-03-28 2002-12-13 Sysmex Corp Method for measuring particle
KR100894086B1 (en) 2007-11-09 2009-04-21 한국과학기술연구원 Method for fabricating anti-microbial adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357534A (en) * 2001-03-28 2002-12-13 Sysmex Corp Method for measuring particle
KR100894086B1 (en) 2007-11-09 2009-04-21 한국과학기술연구원 Method for fabricating anti-microbial adsorbent

Similar Documents

Publication Publication Date Title
Kirsch et al. Three-dimensional metallization of microtubules
TWI285694B (en) Long-term antibiotic and deodorant textile and preparation method thereof
Liang et al. Highly active carbonaceous nanofibers: a versatile scaffold for constructing multifunctional free-standing membranes
CN107158962A (en) A kind of preparation method for the nano fiber porous film for loading high-activity nano metallic particles
Gouda et al. Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric
TW200946068A (en) A carbon nanotube containing material for the capture and removal of contaminants from a surface
CN103232989A (en) Preparation method of alginate hybrid hydrogel film and grafting material of immobilized bio-macromolecule
CN101044848A (en) Nanometer silver antibiotic powder fixed by silk fibroin and preparation method thereof
TW200906483A (en) Nanosilver porous material and fabricating method thereof
CN102849730A (en) Method for preparing nanometer silver-graphene bionic nanostructure composite film
Cheng et al. In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol
Liu et al. Progress of recyclable magnetic particles for biomedical applications
CN111804345A (en) Mediator confinement type bionic catalytic membrane, preparation method and application thereof
CN114470296A (en) Stable and super-strong antibacterial super-blood-dredging dressing and preparation method thereof
Alberti et al. Porous polydimethylsiloxane membranes loaded with low-temperature crystallized TiO2 NPs for detachable antibacterial films
CN113318277B (en) Sustainable antibacterial film material and preparation method thereof
JPH11241270A (en) Production of composite structure and composite structure produced thereby
CN109603750A (en) One kind includes Fe3O4The preparation method of the plural gel adsorbed film of-GQDs
CN112011532B (en) Immobilized enzyme carrier material and preparation method and application thereof
CN109122678A (en) A kind of nano-silver loaded is in the nano-ag composite and its preparation method and purposes of amphipathic biological carbon material
WO2023173670A1 (en) Preparation method for graphene oxide nano roll
CN107456930A (en) One-step synthesis method inlays the SiO of Ag nano particles2Nanocapsule and preparation method thereof
Asefa et al. Corrugated and nanoporous silica microspheres: synthesis by controlled etching, and improving their chemical adsorption and application in biosensing
CN115532231A (en) Preparation method of polyethyleneimine modified graphene oxide coating composite material
JP4085159B2 (en) Porous material having inner surface of pore coated with transition metal film and method for producing the same