JPH11240975A - Production of molded thermoplastic foam - Google Patents

Production of molded thermoplastic foam

Info

Publication number
JPH11240975A
JPH11240975A JP10077602A JP7760298A JPH11240975A JP H11240975 A JPH11240975 A JP H11240975A JP 10077602 A JP10077602 A JP 10077602A JP 7760298 A JP7760298 A JP 7760298A JP H11240975 A JPH11240975 A JP H11240975A
Authority
JP
Japan
Prior art keywords
temperature
weight
resin
liquid crystal
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10077602A
Other languages
Japanese (ja)
Inventor
Kenji Miyazaki
健次 宮崎
Yasushi Kawabata
康史 川端
Kouichi Karikaya
孝一 刈茅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10077602A priority Critical patent/JPH11240975A/en
Publication of JPH11240975A publication Critical patent/JPH11240975A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a molded thermoplastic foam capable of ensuring the retention of a shape on foaming and enabling the acquisition of a deformed thermoplastic foam having a high foaming ratio. SOLUTION: This method for producing a molded thermoplastic foam comprises molding a foaming resin composition comprising 0.5-30 pts.wt. of a thermal decomposition type foaming agent and 100 pts.wt. of a resin composition comprising 0.5-30 wt.% of a fibril-like liquid crystal resin and 70-99.5 wt.% of a thermoplastic resin by an extrusion molding method, a press molding method, a vacuum or air pressure molding method or a blow molding method at a temperature which is higher than the melting point of the thermoplastic resin and below the decomposition-initiating temperature of the thermal decomposition type foaming agent, and subsequently foaming the obtained foaming molded product at a higher temperature than the decomposition temperature of the thermal decomposition type foaming agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車用内
装材や建材等に用いられる熱可塑性賦形発泡体の製造方
法に関し、より詳細には、熱可塑性樹脂及び液晶樹脂を
含む樹脂組成物を賦形・発泡させてなり、発泡時の形状
の保持性に優れた発泡の熱可塑性賦形発泡体を得ること
を可能とする製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic shaped foam used for, for example, interior materials for automobiles and building materials, and more particularly to a method for producing a resin composition containing a thermoplastic resin and a liquid crystal resin. The present invention relates to a method for producing a foamed thermoplastic molded foam which is formed and foamed and has excellent shape retention during foaming.

【0002】[0002]

【従来の技術】ポリオレフィン系発泡体は、断熱性、軽
量性及び柔軟性に優れているため、緩衝性と軽量性との
両立が要求される自動車用内装材、例えば、サンバイザ
ー、ドアパッド、天井材などにポリオレフィン発泡体か
らなる賦形発泡体が幅広く用いられている。例えば、実
公平4−21807号公報には、ポリエチレン発泡体か
らなる自動車用内装材及びその製造方法が開示されてい
る。
2. Description of the Related Art Polyolefin foams are excellent in heat insulation, light weight and flexibility, and therefore are required to be compatible with both cushioning and light weight for automobile interior materials, such as sun visors, door pads and ceilings. Shaped foams made of polyolefin foams are widely used as materials. For example, Japanese Utility Model Publication No. Hei 4-21807 discloses an automotive interior material made of polyethylene foam and a method for producing the same.

【0003】自動車用内装材に用いられる発泡体は平板
状の部材として用いられることはほとんどなく、平板状
の発泡体を二次加工することにより所望の形状とされて
用いられている。
[0003] Foams used for interior materials for automobiles are rarely used as flat members, and are formed into a desired shape by secondary processing of the flat foam.

【0004】しかしながら、二次加工を施すには専用の
プレス型が必要であり、かつバッチ成形を行う必要があ
るため、生産効率が悪く、品質の安定性はそれほど高く
なかった。
[0004] However, since the secondary press requires a dedicated press die and batch molding, the production efficiency is poor and the stability of quality is not so high.

【0005】そこで、異形の発泡性賦形体を発泡させる
ことにより、異形発泡体を得る試みがなされている。し
かしながら、発泡中の形状保持性が低く、異形の発泡性
賦形体を発泡させる方法では、目的とする形状の異形発
泡体を得ることは困難であった。これは、発泡時の樹脂
の伸長応力が不足し、発泡性賦形体が、発泡し易い方
向、すなわち、賦形されない方向に特に発泡するためで
あると考えられる。
[0005] Therefore, attempts have been made to obtain a deformed foam by foaming a deformable foamable shaped body. However, it is difficult to obtain a deformed foam having a desired shape by a method of foaming a deformable foamable shaped article having low shape retention during foaming. It is considered that this is because the elongation stress of the resin at the time of foaming is insufficient, and the foamable shaped body foams particularly in a direction in which foaming is easy, that is, in a direction in which the foaming is not performed.

【0006】近年、自動車用内装材では、耐熱性が重要
視されてきている。そこで、耐熱性を高めるために、エ
ンジニアリングプラスチックスを発泡させる試みがなさ
れてきており、中でも液晶ポリマーを用いた発泡成形品
についての検討が種々なされている。例えば、特開平3
−179042号公報には、液晶ポリマーを用いた発泡
成形品の製造方法が開示されている。
[0006] In recent years, heat resistance has been emphasized in automotive interior materials. Therefore, in order to enhance heat resistance, attempts have been made to foam engineering plastics. In particular, various studies have been made on foam molded articles using a liquid crystal polymer. For example, Japanese Unexamined Patent Publication
Japanese Patent Application Laid-Open No. 179042 discloses a method for producing a foam molded article using a liquid crystal polymer.

【0007】しかしながら、液晶ポリマーのみを発泡さ
せた場合には、発泡倍率は2倍以下と低く、耐熱性と共
に軽量性が要求される自動車用内装材に用いることは困
難であった。
However, when only the liquid crystal polymer is foamed, the expansion ratio is as low as 2 times or less, and it has been difficult to use it as an interior material for automobiles that requires lightness as well as heat resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、発泡
時の伸長応力を高めた異形の発泡性賦形体を用いること
により、発泡時の形状保持性を確保し得ると共に、高い
発泡倍率の異形の熱可塑性賦形発泡体を得ることを可能
とする熱可塑性賦形発泡体の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to use a deformable expandable shaped body having an increased elongation stress at the time of foaming, thereby ensuring shape retention at the time of foaming and achieving a high expansion ratio. It is an object of the present invention to provide a method for producing a thermoplastic shaped foam capable of obtaining a deformed thermoplastic shaped foam.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、フィブリル状の液晶樹脂0.5〜30重量%と、熱
可塑性樹脂70〜99.5重量%とを混合してなる樹脂
組成物100重量部に対し、熱分解型発泡剤0.5〜3
0重量部を混合してなる発泡性樹脂組成物を、熱可塑性
樹脂の溶融温度以上かつ熱分解型発泡剤の分解温度未満
の温度で異形の金型から押出した後熱分解型発泡剤の分
解温度以上に加熱することにより、賦形された発泡体を
得ることを特徴とする熱可塑性賦形発泡体の製造方法で
ある。
According to a first aspect of the present invention, there is provided a resin composition obtained by mixing 0.5 to 30% by weight of a fibril-like liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin. Thermal decomposition type foaming agent 0.5 to 3 parts per 100 parts by weight
0 parts by weight of the foamable resin composition is extruded from a deformed mold at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the thermal decomposition type foaming agent, and then the thermal decomposition type foaming agent is decomposed. A method for producing a thermoplastic shaped foam, characterized in that a shaped foam is obtained by heating the foam to a temperature or higher.

【0010】また、請求項2に記載の発明は、液晶樹脂
0.5〜30重量%と、熱可塑性樹脂70〜99.5重
量%とを混合してなる樹脂組成物100重量部に対し、
熱分解型発泡剤0.5〜30重量部を混合してなる発泡
性樹脂組成物を、熱分解型発泡剤の分解温度以上かつ液
晶樹脂の液晶転移点以上の温度で異形の金型から押出
し、しかる後、熱分解型発泡剤の分解温度以上に再度加
熱することにより賦形された発泡体を得ることを特徴と
する熱可塑性賦形発泡体の製造方法である。
[0010] The invention according to claim 2 is based on 100 parts by weight of a resin composition obtained by mixing 0.5 to 30% by weight of a liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin.
A foamable resin composition obtained by mixing 0.5 to 30 parts by weight of a pyrolytic foaming agent is extruded from a deformed mold at a temperature not lower than the decomposition temperature of the pyrolytic foaming agent and not lower than the liquid crystal transition point of the liquid crystal resin. Thereafter, the method is a method for producing a thermoplastic shaped foam, characterized by obtaining a shaped foam by reheating to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent.

【0011】請求項3に記載の発明は、請求項2に記載
の発明に係る熱可塑性賦形発泡体の製造方法において、
前記発泡性樹脂組成物を異形の金型から押出すに際し、
熱分解型発泡剤の分解温度以上であって、前記液晶樹脂
の転移点を超えかつ300℃以下の温度で押出すことを
特徴とする。
According to a third aspect of the present invention, in the method for producing a thermoplastic shaped foam according to the second aspect,
Upon extruding the foamable resin composition from a deformed mold,
It is characterized by being extruded at a temperature not lower than the decomposition temperature of the thermal decomposition type foaming agent, exceeding the transition point of the liquid crystal resin, and not higher than 300 ° C.

【0012】請求項4に記載の発明は、フィブリル状の
液晶樹脂0.5〜30重量%と、熱可塑性樹脂70〜9
9.5重量%とを含む樹脂組成物100重量部に対し、
熱分解型発泡剤0.5〜30重量部を混合してなるシー
ト状の発泡性樹脂組成物を、熱可塑性樹脂の溶融温度以
上かつ熱分解型発泡剤の分解温度未満の温度でプレス成
形により賦形し、しかる後、熱分解型発泡剤の分解温度
以上に加熱することにより、賦形された発泡体を得るこ
とを特徴とする熱可塑性賦形発泡体の製造方法である。
According to a fourth aspect of the present invention, a fibril-like liquid crystal resin is contained in an amount of 0.5 to 30% by weight and a thermoplastic resin is used in an amount of 70 to 9%.
With respect to 100 parts by weight of a resin composition containing 9.5% by weight,
A sheet-like foamable resin composition obtained by mixing 0.5 to 30 parts by weight of a pyrolytic foaming agent is press-molded at a temperature not lower than the melting temperature of the thermoplastic resin and less than the decomposition temperature of the pyrolytic foaming agent. This is a method for producing a thermoplastic shaped foam, which comprises shaping, followed by heating to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent to obtain a shaped foam.

【0013】請求項5に記載の発明は、フィブリル状の
液晶樹脂0.5〜30重量%と、熱可塑性樹脂70〜9
9.5重量%とを含む樹脂組成物100重量部に対し、
熱分解型発泡剤0.5〜30重量部を混合してなるシー
ト状の発泡性樹脂組成物を、熱可塑性樹脂の溶融温度以
上かつ熱分解型発泡剤の分解温度未満の温度で真空成形
または圧空成形により賦形した後、熱分解型発泡剤の分
解温度以上に加熱することにより、賦形された発泡体を
得ることを特徴とする熱可塑性賦形発泡体の製造方法で
ある。
According to a fifth aspect of the present invention, there is provided a fibril-like liquid crystal resin of 0.5 to 30% by weight and a thermoplastic resin of 70 to 9%.
With respect to 100 parts by weight of a resin composition containing 9.5% by weight,
A sheet-shaped foamable resin composition obtained by mixing 0.5 to 30 parts by weight of a thermal decomposition type foaming agent is vacuum-formed or molded at a temperature not lower than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the thermal decomposition type foaming agent. This is a method for producing a thermoplastic shaped foam, characterized in that a shaped foam is obtained by heating to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent after shaping by pressure forming.

【0014】請求項6に記載の発明は、フィブリル状の
液晶樹脂0.5〜30重量%と、熱可塑性樹脂70〜9
9.5重量%とを含む樹脂組成物100重量部に対し、
熱分解型発泡剤0.5〜30重量部を混合してなる発泡
性樹脂組成物を、熱可塑性樹脂の溶融温度以上かつ熱分
解型発泡剤の分解温度未満の温度でパリソン状に押出
し、ブロー成形によって得た異形賦形体を熱分解型発泡
剤の分解温度以上に加熱することにより、賦形された発
泡体を得ることを特徴とする熱可塑性賦形発泡体の製造
方法である。
According to a sixth aspect of the present invention, there is provided a fibril-like liquid crystal resin of 0.5 to 30% by weight and a thermoplastic resin of 70 to 9%.
With respect to 100 parts by weight of a resin composition containing 9.5% by weight,
A foamable resin composition obtained by mixing 0.5 to 30 parts by weight of a thermal decomposition type foaming agent is extruded into a parison at a temperature not lower than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the thermal decomposition type foaming agent. A method for producing a thermoplastic shaped foam, characterized in that a shaped foam is obtained by heating a deformed shaped body obtained by molding to a temperature not lower than a decomposition temperature of a pyrolytic foaming agent.

【0015】以下、本発明の詳細を説明する。 (液晶樹脂)本発明において用い得る液晶樹脂として
は、使用する熱可塑性樹脂の融点よりも液晶転移点が高
いものであれば、特に限定されるものではないが、全芳
香族ポリエステル、半芳香族ポリエステルなどの熱可塑
性液晶ポリエステルや熱可塑性ポリエステルアミドが好
ましい。具体的には、ベクトラ(ポリプラスチック社
製、住化スーパー(住友化学社製)、ザイダー(日本石
油化学社製)あるいはロッドラン(ユニチカ社製)など
の市販の全芳香族ポリエステル系液晶樹脂や半芳香族ポ
リエステル系樹脂が挙げられる。
Hereinafter, the present invention will be described in detail. (Liquid crystal resin) The liquid crystal resin that can be used in the present invention is not particularly limited as long as it has a liquid crystal transition point higher than the melting point of the thermoplastic resin used. Preferred are thermoplastic liquid crystal polyesters such as polyesters and thermoplastic polyesteramides. Specifically, commercially available wholly aromatic polyester liquid crystal resins such as Vectra (manufactured by Polyplastics, Sumika Super (manufactured by Sumitomo Chemical Co., Ltd.), Zyder (manufactured by Nippon Petrochemical Co., Ltd.) An aromatic polyester resin is exemplified.

【0016】熱可塑性樹脂に対する液晶樹脂の混合割合
は、発泡性樹脂組成物の伸長応力が十分なものであるた
めには、熱可塑性樹脂及び液晶樹脂の合計量100重量
%に対し、0.5〜30重量%であることが必要であ
り、好ましくは1〜25重量%、より好ましくは3〜2
0重量%である。液晶樹脂の混合割合が0.5重量%未
満の場合には、発泡時の形状保持性を十分に確保するこ
とができず、30重量%を超えると、伸長応力が高くな
りすぎ、三次元均等発泡性が低下することになる。
The mixing ratio of the liquid crystal resin to the thermoplastic resin is 0.5 to 0.5% with respect to 100% by weight of the total amount of the thermoplastic resin and the liquid crystal resin in order that the elongation stress of the foamable resin composition is sufficient. To 30% by weight, preferably 1 to 25% by weight, more preferably 3 to 2% by weight.
0% by weight. When the mixing ratio of the liquid crystal resin is less than 0.5% by weight, the shape retention during foaming cannot be sufficiently ensured. When the mixing ratio exceeds 30% by weight, the elongation stress becomes too high and the three-dimensional uniformity is increased. Foamability will be reduced.

【0017】発泡時に要求される伸長応力を発泡性樹脂
組成物の伸長粘度で表すと、8000ポイズ〜3000
0ポイズ(190℃)の範囲であることが好ましく、よ
り好ましくは10000ポイズ〜27000ポイズ(1
90℃)、さらに好ましくは12000〜25000ポ
イズ(190℃)の範囲である。伸長粘度が、8000
ポイズよりも低い場合には、賦形部以外の部分が集中的
に発泡し、発泡性賦形体段階と同形状の異形発泡体を得
ることが困難となることがあり、30000ポイズより
も高いと、伸長応力が高くなりすぎ、発泡性が低下し、
発泡倍率が上がらず、均一な異形発泡体を得ることがで
きないことがある。なお、上記伸長粘度はJIS K
7117に従って測定された値である。
When the elongation stress required at the time of foaming is represented by the elongational viscosity of the foamable resin composition, it is 8,000 poise to 3,000 poise.
It is preferably in the range of 0 poise (190 ° C.), more preferably 10,000 poise to 27000 poise (1
90 ° C.), and more preferably in the range of 12000 to 25000 poise (190 ° C.). Elongational viscosity is 8000
In the case of lower than poise, the portion other than the imprinted portion foams intensively, and it may be difficult to obtain a deformed foam having the same shape as the expandable shaped object stage, and if it is higher than 30,000 poise, , The elongation stress becomes too high, the foaming property decreases,
In some cases, the expansion ratio does not increase and a uniform deformed foam cannot be obtained. The elongational viscosity is JIS K
It is a value measured according to 7117.

【0018】上記液晶樹脂は、発泡に先立ち熱可塑性樹
脂マトリクス中においてフィブリルとされていることが
必要である。液晶樹脂がフィブリル状とされていること
により、発泡時の高い伸長応力が確保され、三次元的に
均等に発泡することが可能となる。
The liquid crystal resin needs to be fibrils in a thermoplastic resin matrix prior to foaming. Since the liquid crystal resin is in the form of fibrils, a high elongation stress during foaming is ensured, and foaming can be performed three-dimensionally and evenly.

【0019】もっとも、請求項1,3〜5に記載の発明
ではフィブリル状の液晶樹脂を熱可塑性樹脂と混合する
が、請求項2に記載の発明では、当初から液晶樹脂はフ
ィブリル状とされている必要は必ずしもなく、発泡性樹
脂組成物を熱分解型発泡剤の分解温度以上かつ液晶樹脂
の転移点以上の温度で異形の金型から押し出す際に、フ
ィブリル化される。
Although the fibril-shaped liquid crystal resin is mixed with the thermoplastic resin in the first, third to fifth aspects of the present invention, the liquid crystal resin is fibrillated from the beginning in the second aspect. It is not always necessary to extrude the foamable resin composition from a deformed mold at a temperature equal to or higher than the decomposition temperature of the thermal decomposition type foaming agent and equal to or higher than the transition point of the liquid crystal resin.

【0020】ここで、フィブリル状態とは、熱可塑性樹
脂マトリクス中に分散されている液晶樹脂のアスペクト
比(分散長/分散径)が1を超える状態を示すものとす
る。このアスペクト比は、好ましくは10以上とされ
る。また、フィブリル径については、0.1〜100μ
mの範囲が好ましく、1〜10μmがより好ましい。
Here, the fibril state refers to a state in which the aspect ratio (dispersion length / dispersion diameter) of the liquid crystal resin dispersed in the thermoplastic resin matrix exceeds 1. This aspect ratio is preferably set to 10 or more. The fibril diameter is 0.1 to 100 μm.
m is preferable, and 1 to 10 μm is more preferable.

【0021】上記液晶樹脂をフィブリル化するに際して
は、熱可塑性樹脂及び液晶樹脂からなる組成物に、液晶
樹脂の液晶転移点以上の温度で、剪断応力や伸長応力な
どの外部応力を加えることにより、液晶樹脂をフィブリ
ル化することができる。
When the above liquid crystal resin is fibrillated, an external stress such as a shear stress or an elongation stress is applied to the composition comprising the thermoplastic resin and the liquid crystal resin at a temperature not lower than the liquid crystal transition point of the liquid crystal resin. The liquid crystal resin can be fibrillated.

【0022】例えば、熱可塑性樹脂と液晶樹脂とを溶融
混練するに際し、押出機内または金型内で剪断応力を与
えることにより、液晶樹脂を容易にフィブリル化するこ
とができる。液晶樹脂をマトリクス樹脂中でフィブリル
状とするのに必要な混合樹脂組成物に作用させる見かけ
の剪断速度は、1×102 〜1×105-1、好ましく
は3×102 〜1×104-1とすることが望ましい。
この範囲の剪断速度で押出しを受けた混合樹脂組成物中
の液晶樹脂は、フィブリル化を容易に受け、通常、フィ
ブリル径10μm以下、フィブリル長0.1mm以上の
フィブリル状液晶樹脂とすることができる。
For example, when the thermoplastic resin and the liquid crystal resin are melted and kneaded, a shear stress is applied in an extruder or a mold, whereby the liquid crystal resin can be easily fibrillated. The apparent shear rate applied to the mixed resin composition necessary for forming the liquid crystal resin into fibrils in the matrix resin is 1 × 10 2 to 1 × 10 5 sec −1 , preferably 3 × 10 2 to 1 ×. Desirably, 10 4 sec -1 .
The liquid crystal resin in the mixed resin composition extruded at a shear rate in this range easily undergoes fibrillation, and can usually be a fibril-like liquid crystal resin having a fibril diameter of 10 μm or less and a fibril length of 0.1 mm or more. .

【0023】(熱可塑性樹脂)本発明において用いられ
る上記熱可塑性樹脂としては、発泡可能な熱可塑性樹脂
であれば特に限定されず、例えば、低密度ポリエチレ
ン、直鎖状低密度ポリエチレン、高密度ポリエチレン、
ホモポリプロピレン、ブロックポリプロピレン、ランダ
ムポリプロピレンなどのオレフィン系樹脂;エチレン−
酢酸ビニル共重合;ポリ塩化ビニル;ポリスチレンなど
を挙げることができる。中でも、自動車用内装材に要求
される柔軟性を実現し得るため、オレフィン系樹脂が好
ましく用いられる。
(Thermoplastic Resin) The thermoplastic resin used in the present invention is not particularly limited as long as it is a foamable thermoplastic resin, and examples thereof include low-density polyethylene, linear low-density polyethylene, and high-density polyethylene. ,
Olefinic resins such as homopolypropylene, block polypropylene and random polypropylene; ethylene-
Vinyl acetate copolymer; polyvinyl chloride; polystyrene and the like. Among them, olefin resins are preferably used because the flexibility required for interior materials for automobiles can be realized.

【0024】上記熱可塑性樹脂のメルトインデックス
(MI)が大きすぎる場合及び小さすぎる場合のいずれ
の場合においても、発泡安定性を低下させる。従って、
好ましくは、熱可塑性樹脂のMIは0.1〜20g/1
0分の範囲であることが好ましく、0.2〜15g/1
0分の範囲内がより好ましい。なお、本明細書における
MIは、JIS K 7210に従って測定された値で
ある。
In either case where the melt index (MI) of the thermoplastic resin is too large or too small, the foaming stability is reduced. Therefore,
Preferably, the MI of the thermoplastic resin is 0.1 to 20 g / 1.
0 minute, preferably 0.2 to 15 g / 1
More preferably, the range is 0 minutes. In addition, MI in this specification is a value measured according to JIS K7210.

【0025】上記熱可塑性樹脂は必要に応じて架橋され
たものであってもよく、架橋された熱可塑性樹脂を用い
ることにより、より高倍率に発泡することができ、かつ
得られる発泡成形体の軽量化を図ることができ、さらに
熱安定性も高められる。
The above-mentioned thermoplastic resin may be cross-linked as required. By using the cross-linked thermoplastic resin, it is possible to foam at a higher magnification and to obtain a foamed molded article. The weight can be reduced, and the thermal stability can be improved.

【0026】架橋方法については特に限定されず、例え
ば、電子線などの電離性放射線を照射する電子線架橋
法、有機過酸化物を用いた化学架橋法またはシラン変成
樹脂を用いたシラン架橋法などを挙げることができる。
熱可塑性樹脂の架橋度が高すぎると、発泡倍率が低下す
ると共に柔軟性が低下し、架橋度が低すぎると熱安定性
が低下しかつ発泡時にセルが破泡し、均一なセルを得る
ことができない。従って、架橋度の指標となるゲル分率
で、10〜30重量%の範囲が好ましく、10〜20重
量%がより好ましい。
The crosslinking method is not particularly limited, and examples thereof include an electron beam crosslinking method in which an ionizing radiation such as an electron beam is irradiated, a chemical crosslinking method using an organic peroxide, and a silane crosslinking method using a silane-modified resin. Can be mentioned.
If the degree of cross-linking of the thermoplastic resin is too high, the expansion ratio decreases and the flexibility decreases.If the degree of cross-linking is too low, the thermal stability decreases and the cells break during foaming to obtain uniform cells. Can not. Therefore, the gel fraction serving as an index of the degree of crosslinking is preferably in the range of 10 to 30% by weight, and more preferably 10 to 20% by weight.

【0027】なお、本明細書におけるゲル分率とは、発
泡性熱可塑性樹脂を120℃のキシレン中に24時間浸
漬した後の残渣重量の、キシレン浸漬前の架橋樹脂成分
の重量に対する重量百分率をいうものとする。
The gel fraction in the present specification refers to the percentage by weight of the residue weight after immersing the expandable thermoplastic resin in xylene at 120 ° C. for 24 hours based on the weight of the crosslinked resin component before immersion in xylene. Shall be referred to.

【0028】また、本発明においては、必要により、液
晶樹脂及び熱可塑性樹脂を含む混合組成物に、液晶樹脂
及び熱可塑性樹脂の組成に応じて、互いの相溶性を高め
るために、成形前もしくは成形時に相溶化剤を添加して
もよい。この相溶化剤としては、例えば、熱可塑性樹脂
がオレフィン系樹脂の場合、オレフィン成分とスチレン
成分や芳香族ポリエステル成分を共重合したもの;マレ
イン酸成分やアクリル酸成分を有するオレフィン樹脂;
グリシジルメタクリレート成分を有するオレフィン樹脂
共重合体などを挙げることができる。また、相溶化剤の
添加量については、混合系の組成や混合割合に応じて適
宜選択すればよい。
In the present invention, if necessary, the mixed composition containing the liquid crystal resin and the thermoplastic resin may be added to the mixed composition containing the liquid crystal resin and the thermoplastic resin before molding or in order to increase the compatibility thereof. A compatibilizer may be added during molding. Examples of the compatibilizer include, when the thermoplastic resin is an olefin resin, a copolymer of an olefin component and a styrene component or an aromatic polyester component; an olefin resin having a maleic acid component or an acrylic acid component;
An olefin resin copolymer having a glycidyl methacrylate component can be used. Further, the amount of the compatibilizer to be added may be appropriately selected according to the composition and the mixing ratio of the mixed system.

【0029】本発明において用いられる熱分解型発泡剤
は、使用される熱可塑性樹脂の溶融温度より高い分解温
度を有するものであれば特に限定されず、例えば、重炭
酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウ
ム、アジド化合物、ほう水素化ナトリウムなどの無機系
熱分解型発泡剤;アゾジカルボンアミド、アゾビスイソ
ブチロニトリル、N,N´−ジニトロソペンタメチレン
テトラミン、p,p´−ジニトロソペンタメチレンテト
ラミン、p,p´−オキシビスベンゼンスルホニルヒド
ラジド、アゾジカルボン酸バリウム、トリヒドラジノト
リアジンなどの有機系熱分解型発泡剤を挙げることがで
き、分解温度や分解速度の調整が容易であり、ガス発生
量が多く、衛生上優れているため、中でもアゾジカルボ
ンアミドを用いることが好ましい。
The pyrolytic foaming agent used in the present invention is not particularly limited as long as it has a decomposition temperature higher than the melting temperature of the thermoplastic resin used. Examples thereof include sodium bicarbonate, ammonium carbonate, and bicarbonate. Inorganic pyrolytic foaming agents such as ammonium, azide compounds and sodium borohydride; azodicarbonamide, azobisisobutyronitrile, N, N'-dinitrosopentamethylenetetramine, p, p'-dinitrosopentamethylene Organic thermal decomposition-type foaming agents such as tetramine, p, p'-oxybisbenzenesulfonylhydrazide, barium azodicarboxylate, and trihydrazinotriazine can be used, and the decomposition temperature and decomposition rate can be easily adjusted. Use of azodicarbonamide is particularly high due to its high amount of generation and excellent hygiene Preferred.

【0030】上記発泡剤の添加量については、液晶樹脂
及び熱可塑性樹脂の合計100重量部に対し、0.5〜
30重量部、好ましくは1〜20重量部とすることが必
要である。発泡剤の添加割合が0.5重量部未満の場合
には、発泡が不十分となり、異形発泡体を得ることが困
難となり、30重量部を超えると、発泡時の発泡圧が発
泡性樹脂の伸長応力を超え、セルが破泡し、異形発泡体
を得ることができなくなる。
The amount of the foaming agent to be added is 0.5 to 100 parts by weight of the total of the liquid crystal resin and the thermoplastic resin.
It is necessary to use 30 parts by weight, preferably 1 to 20 parts by weight. When the addition ratio of the foaming agent is less than 0.5 part by weight, the foaming becomes insufficient, and it becomes difficult to obtain a deformed foam. When it exceeds 30 parts by weight, the foaming pressure at the time of foaming increases. Exceeding the elongation stress, the cells break, and a deformed foam cannot be obtained.

【0031】(請求項1に記載の発明に係る製造方法)
請求項1に記載の発明において、上記フィブリル状液晶
樹脂、熱可塑性樹脂及び熱分解型発泡剤を混合し、熱に
より発泡させて異形形状の発泡性賦形体を得るには、一
般的な方法により熱可塑性樹脂、液晶樹脂及び熱分解型
発泡剤をブレンドし、溶融混練し、異形形状の金型から
押し出せばよく、具体的な工程については特に限定され
るものではない。中でも、混練度を高めることができ、
かつ発泡安定性を高めることが可能となるため、2軸混
練押出機を用いることが好ましい。
(The manufacturing method according to the first aspect of the present invention)
In the invention according to claim 1, the fibril-like liquid crystal resin, the thermoplastic resin, and the pyrolytic foaming agent are mixed and foamed by heat to obtain a deformable foamable shaped body by a general method. The thermoplastic resin, the liquid crystal resin, and the pyrolytic foaming agent may be blended, melt-kneaded, and extruded from a mold having an irregular shape, and specific steps are not particularly limited. Above all, the degree of kneading can be increased,
In addition, it is preferable to use a twin-screw kneading extruder because foam stability can be improved.

【0032】異形形状の金型から押し出す際の成形温度
については、熱可塑性樹脂の溶融温度以上かつ熱分解型
発泡剤の分解温度未満とする必要がある。熱分解型発泡
剤の分解温度以上とすると、異形形状の金型から押し出
すに際し、1次発泡を引き起こしてしまい、逆に、熱可
塑性樹脂の溶融温度以下で押し出すと背圧が高くなりす
ぎ、異形形状の金型から押し出すことができなくなる。
The molding temperature at the time of extrusion from a mold having an irregular shape must be equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent. When the temperature is higher than the decomposition temperature of the thermal decomposition type foaming agent, primary foaming is caused when extruding from a mold having an irregular shape. Conversely, when extruding below the melting temperature of the thermoplastic resin, the back pressure becomes too high, and It cannot be extruded from the shaped mold.

【0033】異形形状の金型とは、目的とする異形発泡
体の形状に応じ適宜構成される。例えば、桶のような形
状の異形発泡体を得ることを目的とする場合には、桶形
状の異形金型を用い、桶形状の発泡性賦形体を得ればよ
い。また、波板状の異形発泡体を得る場合には、波板状
の異形金型を用い、波板形状の発泡体性賦形体を得れば
よい。
The irregularly shaped mold is appropriately constituted according to the shape of the desired irregularly shaped foam. For example, when the purpose is to obtain a deformed foam having a tub-like shape, a tub-shaped foaming shaped body may be obtained by using a tub-shaped deformed mold. When a corrugated shaped foam is obtained, a corrugated foamed shaped body may be obtained by using a corrugated deformed mold.

【0034】これらの場合、異形金型の樹脂吐出部の寸
法については、縦及び横の2方向のそれぞれに対し、目
的とする異形発泡体の発泡倍率を3乗根分の1に縮尺し
たものである必要がある。すなわち、発泡倍率20倍の
桶状の発泡体を得る場合には、タテ及びヨコのそれぞれ
の方向に対し、20の3乗根分の1の樹脂吐出部を有す
る桶形状の異形金型を用いればよい。
In these cases, the dimensions of the resin discharge portion of the deformed mold are obtained by reducing the expansion ratio of the desired deformed foam to one third root in each of the two directions of the vertical and horizontal directions. Needs to be That is, when obtaining a tub-shaped foam having a foaming ratio of 20 times, a tub-shaped deformed mold having a resin discharge portion of one third root of 20 in each of the vertical and horizontal directions is used. I just need.

【0035】前述した電子線架橋やシラン架橋を施す場
合には、上記発泡性熱可塑性樹脂を異形形状の金型から
押し出す工程及び該工程後に架橋方法に準じた処理を施
せばよい。
In the case of performing the above-mentioned electron beam crosslinking or silane crosslinking, a step of extruding the expandable thermoplastic resin from a mold having an irregular shape, and a treatment according to a crosslinking method may be performed after the step.

【0036】異形金型から発泡性賦形体を押出し、次
に、熱分解型発泡剤の分解温度以上に加熱した後、熱可
塑性樹脂の軟化点以下まで冷却し、固化させることによ
り異形発泡体を得ることができる。この場合、加熱及び
冷却方法については特に限定されない。
The foamed extrudate is extruded from the deformed mold, heated to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent, and then cooled to a temperature lower than the softening point of the thermoplastic resin and solidified to form the deformed foam. Obtainable. In this case, the heating and cooling methods are not particularly limited.

【0037】例えば、加熱方法としては、外部が一定の
温度に保たれた加熱炉内に上記発泡性賦形体を入れた
り、熱風を発泡性賦形体に吹き付けたりすることにより
行われ、冷却方法としては、冷風を吹き付ける方法、冷
水の中に賦形発泡体を浸漬する方法などを用い、熱可塑
性樹脂の溶融温度以下まで冷却すればよい。
For example, the heating method is performed by putting the foamable shaped body in a heating furnace in which the outside is kept at a constant temperature, or by blowing hot air on the foamed shaped body. What is necessary is just to cool to below the melting temperature of a thermoplastic resin using the method of blowing cold air, the method of immersing a shaped foam in cold water, etc.

【0038】(請求項2,3に記載の発明の製造方法)
請求項2に記載の発泡に係る製造方法では、請求項1に
記載の発明と同様に、液晶樹脂及び熱可塑性樹脂を上記
特定の割合で混合してなる樹脂組成物を用いる。この場
合、液晶樹脂は、フィブリル状とされておらずともよ
い。
(Production method of the invention according to claims 2 and 3)
In the production method according to the second aspect of the invention, a resin composition obtained by mixing a liquid crystal resin and a thermoplastic resin at the above specific ratio is used, as in the first aspect. In this case, the liquid crystal resin does not have to be in the form of fibrils.

【0039】また、上記液晶樹脂及び熱可塑性樹脂を混
合してなる樹脂組成物100重量部に対し、熱分解型発
泡剤0.5〜30重量部の割合で混合してなる発泡性樹
脂組成物を、熱分解型発泡剤の分解温度以上かつ液晶樹
脂の転移点以上に加熱することにより1次発泡を引き起
こし、該異形の金型から押し出す。その結果、液晶樹脂
に伸長応力が与えられ、液晶樹脂がフィブリル化され
る。
A foamable resin composition obtained by mixing the above liquid crystal resin and the thermoplastic resin in a proportion of 0.5 to 30 parts by weight of the pyrolytic foaming agent with respect to 100 parts by weight of the resin composition. Is heated above the decomposition temperature of the thermal decomposition type foaming agent and above the transition point of the liquid crystal resin to cause primary foaming and extrude from the deformed mold. As a result, an elongation stress is applied to the liquid crystal resin, and the liquid crystal resin is fibrillated.

【0040】この1次発泡時の発泡倍率は1.5〜10
倍程度であることが好ましく、より好ましくは2〜8倍
の範囲である。1次発泡時の発泡倍率が1.5倍より低
いと、1次発泡時の伸長応力が不十分であるため、液晶
樹脂が十分にフィブリル化しないことがあり、10倍を
超えると、セルが大きくなりすぎ、次工程の発泡におい
て破泡を引き起こし、目的とする発泡倍率の発泡体を得
ることができないことがある。
The expansion ratio at the time of the primary expansion is 1.5 to 10
It is preferably about twice, more preferably 2 to 8 times. If the expansion ratio at the time of the primary foaming is lower than 1.5 times, the elongation stress at the time of the primary foaming is insufficient, so that the liquid crystal resin may not be sufficiently fibrillated. It may be too large, causing foam breakage in the next step of foaming, making it impossible to obtain a foam having a desired expansion ratio.

【0041】上記1次発泡の段階における発泡倍率と、
後で行われる2次発泡を終えた段階における最終的な発
泡倍率とを制御するために、請求項2に記載の発明で
は、熱分解型発泡剤の添加量については、液晶樹脂及び
熱可塑性樹脂100重量部に対し、1〜30重量部とす
ることが好ましい。熱分解型発泡剤の使用割合が1重量
部未満の場合に、発泡倍率が十分に高まらないことがあ
り、30重量部を超えると、1次発泡段階における発泡
倍率制御が困難となる。
The expansion ratio at the above-mentioned primary expansion stage,
In order to control the final expansion ratio at the stage when the secondary foaming performed later is completed, in the invention according to claim 2, the addition amount of the pyrolytic foaming agent is determined by the liquid crystal resin and the thermoplastic resin. Preferably, the amount is 1 to 30 parts by weight based on 100 parts by weight. When the use ratio of the thermal decomposition type foaming agent is less than 1 part by weight, the expansion ratio may not be sufficiently increased, and when it exceeds 30 parts by weight, it becomes difficult to control the expansion ratio in the primary expansion stage.

【0042】請求項2に記載の発明の製造方法では、上
記のようにして、混合樹脂組成物を異形の金型から押し
出した後、再度熱分解型発泡剤の分解温度以上に加熱す
ることにより2次発泡を完結させる。この場合、1次発
泡終了段階で残存している熱分解型発泡剤が分解するこ
とにより発泡が完結する。この場合においても、液晶樹
脂がフィブリル状となって熱可塑性樹脂マトリクス中に
分散されているため、発泡時の伸長応力が高く、三次元
的に均等に発泡する。その結果、異形の金型から押し出
された形状を保持したまま発泡が完結し、異形の金型に
応じた熱可塑性賦形発泡体を得ることができる。
In the production method according to the second aspect of the present invention, after the mixed resin composition is extruded from the odd-shaped mold as described above, the mixed resin composition is heated again to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent. Complete secondary foaming. In this case, the foaming is completed by the decomposition of the pyrolytic foaming agent remaining at the primary foaming end stage. Also in this case, since the liquid crystal resin is in the form of fibrils and dispersed in the thermoplastic resin matrix, the elongation stress at the time of foaming is high, and the foam is evenly three-dimensionally foamed. As a result, foaming is completed while maintaining the shape extruded from the deformed mold, and a thermoplastic shaped foam according to the deformed mold can be obtained.

【0043】また、請求項3に記載の発明に係る製造方
法では、上記発泡性樹脂組成物を異形の金型から押し出
すに際し、発泡性樹脂組成物の温度を、熱分解型発泡剤
の分解温度以上であって、液晶樹脂の転移点を超え、か
つ300℃以下の温度で押し出す。その他の点について
は、請求項2に記載の発明と同様である。このように、
発泡性樹脂組成物の押出しに際しての温度を上記特定の
範囲とする理由は、以下の通りである。
In the production method according to the third aspect of the present invention, when the foamable resin composition is extruded from a deformed mold, the temperature of the foamable resin composition is set to the decomposition temperature of the pyrolytic foaming agent. Extrusion is performed at a temperature exceeding the transition point of the liquid crystal resin and 300 ° C. or less. Other points are the same as those of the second aspect. in this way,
The reason for setting the temperature at the time of extruding the foamable resin composition to the above specific range is as follows.

【0044】すなわち、前述した通り、液晶樹脂として
は、全芳香族系液晶樹脂と、半芳香族系液晶樹脂とが存
在する。このうち、耐熱性に優れているのは、全芳香族
系の液晶樹脂である。
That is, as described above, the liquid crystal resin includes a wholly aromatic liquid crystal resin and a semi-aromatic liquid crystal resin. Among them, a wholly aromatic liquid crystal resin is excellent in heat resistance.

【0045】従って、耐熱性が良好であることが求めら
れる用途では、全芳香族系の液晶樹脂が用いられる。し
かしながら、全芳香族系液晶樹脂は、液晶転移点、すな
わち固体の液晶ポリマーが液晶状態になる温度が285
℃前後と高い。従って、成形温度をそれだけ高くする必
要があり、全芳香族系液晶樹脂を一般的な熱可塑性樹脂
とブレンドして用いた場合、成形温度領域が狭くなる。
Therefore, in applications where good heat resistance is required, a wholly aromatic liquid crystal resin is used. However, the wholly aromatic liquid crystal resin has a liquid crystal transition point, that is, a temperature at which a solid liquid crystal polymer becomes a liquid crystal state at 285.
High around ℃. Therefore, it is necessary to increase the molding temperature accordingly. When a wholly aromatic liquid crystal resin is blended with a general thermoplastic resin and used, the molding temperature range becomes narrow.

【0046】他方、液晶樹脂は、成形中に液晶転移点以
上の温度で剪断力や伸長流動を与えると容易にフィブリ
ル化する。もっとも、一旦フィブリル化したものを液晶
転移点以上の温度で無応力状態に放置すると、液晶樹脂
は、再び、マトリクスの熱可塑性樹脂中で球状の形状に
戻ることになる。
On the other hand, the liquid crystal resin easily fibrillates when subjected to shearing force or elongational flow at a temperature higher than the liquid crystal transition point during molding. However, once the fibrillated material is left in a stress-free state at a temperature equal to or higher than the liquid crystal transition point, the liquid crystal resin returns to a spherical shape again in the thermoplastic resin of the matrix.

【0047】そこで、請求項3に記載の発明では、発泡
性樹脂組成物の押出しに際し、発泡性樹脂組成物の温度
が液晶樹脂の転移点を超え、300℃以下の温度とされ
ている。すなわち、この温度範囲に発泡性樹脂組成物を
制御することにより、液晶樹脂はフィブリル化され、か
つフィブリル化された後直ちに液晶転移点以下に冷却さ
れることになる。従って、液晶樹脂は、フィブリル化さ
れ、かつそのアスペクト比が高い状態で保持されること
になる。アスペクト比が高い状態で保持されると、液晶
フィブリルの比表面積が増大し、熱可塑性樹脂を補強す
る効果を高めることができる。
Therefore, in the invention according to claim 3, when extruding the foamable resin composition, the temperature of the foamable resin composition is set to a temperature exceeding the transition point of the liquid crystal resin and 300 ° C. or less. That is, by controlling the foamable resin composition within this temperature range, the liquid crystal resin is fibrillated, and is cooled immediately below the liquid crystal transition point after the fibrillation. Therefore, the liquid crystal resin is fibrillated and maintained in a state where its aspect ratio is high. When the aspect ratio is maintained in a high state, the specific surface area of the liquid crystal fibrils increases, and the effect of reinforcing the thermoplastic resin can be enhanced.

【0048】なお、押出しに際しての発泡性樹脂組成物
の温度を、液晶樹脂の液晶転移点未満とした場合には、
液晶樹脂が溶融せず、成形を行うことが困難となり、3
00℃を超えると、押出機から押出した後、冷却される
までにフィブリル状態に緩和され、アスペクト比が低下
することになる。
When the temperature of the foamable resin composition at the time of extrusion is lower than the liquid crystal transition point of the liquid crystal resin,
The liquid crystal resin does not melt, making molding difficult,
If the temperature exceeds 00 ° C., after extruding from the extruder, it is relaxed to a fibril state before cooling, and the aspect ratio decreases.

【0049】(請求項4に記載の発明の製造方法)請求
項4に記載の発泡に係る熱可塑性賦形発泡体の製造方法
では、請求項1に記載の発明と同様に、フィブリル状の
エポキシ樹脂0.5〜30重量%と、熱可塑性樹脂70
〜99.5重量%の割合で混合された樹脂組成物100
重量部に対し、熱分解型発泡剤が0.5〜20重量部の
割合で混合された発泡性樹脂組成物を用いる。もっと
も、請求項4に記載の発明では、該発泡性樹脂組成物と
して、シート状の発泡性樹脂組成物を用い、熱可塑性樹
脂の溶融温度以上かつ熱分解型発泡剤の分解温度未満で
プレス成形により賦形する。
(Production method of the invention according to claim 4) In the method for producing a thermoplastic shaped foam according to the invention described in claim 4, the fibril-like epoxy resin is produced in the same manner as in the invention described in claim 1. Resin 0.5 to 30% by weight and thermoplastic resin 70
Resin composition 100 mixed at a ratio of 9999.5% by weight
A foamable resin composition in which a pyrolysis type foaming agent is mixed in a ratio of 0.5 to 20 parts by weight with respect to parts by weight is used. However, in the invention according to claim 4, a sheet-shaped foamable resin composition is used as the foamable resin composition, and press molding is performed at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent. To shape.

【0050】上記シート状の発泡性樹脂組成物を得るに
は、一般的な方法により、熱可塑性樹脂、液晶樹脂及び
熱分解型発泡剤をブレンドし、溶融混練し、シート化す
ればよい。この場合、混練度を高めることができ、かつ
発泡安定性を高め得るため、2軸混練押出機を用いるこ
とが好ましい。
In order to obtain the sheet-like foamable resin composition, a thermoplastic resin, a liquid crystal resin and a pyrolytic foaming agent may be blended, melt-kneaded and formed into a sheet by a general method. In this case, it is preferable to use a twin-screw kneading extruder since the kneading degree can be increased and the foaming stability can be increased.

【0051】また、押出機から押し出された混合樹脂組
成物をシート状にする方法については、押出機の先端に
取り付けられたTダイから押し出された樹脂組成物を所
定のクリアランスを有する一対の対向冷却ロール間を通
過させればよい。
Further, as for the method of forming the mixed resin composition extruded from the extruder into a sheet, the resin composition extruded from a T-die attached to the tip of the extruder is formed into a pair of opposed resin sheets having a predetermined clearance. What is necessary is just to pass between cooling rolls.

【0052】一対の冷却ロール間のクリアランスの大き
さについては、狙い厚みよりも0.2〜0.5mm小さ
く設定することが望ましい。クリアランスが上記範囲よ
り小さい場合には、シートの表面平滑性が低下すること
があり、上記範囲より大きい場合にはシートが目的とす
る厚みよりも薄くなることがある。上述した電子線架橋
やシラン架橋を施す場合には、発泡性熱可塑性樹脂をシ
ート状に成形する工程及び該工程後に、架橋方法に応じ
た処理を施せばよい。
The size of the clearance between the pair of cooling rolls is desirably set to be 0.2 to 0.5 mm smaller than the target thickness. When the clearance is smaller than the above range, the surface smoothness of the sheet may be reduced. When the clearance is larger than the above range, the sheet may be thinner than a target thickness. In the case where the above-mentioned electron beam crosslinking or silane crosslinking is performed, a process according to a crosslinking method may be performed after the step of forming the expandable thermoplastic resin into a sheet and after the step.

【0053】また、請求項4に記載の発明では、上記の
ようにして得たシート状発泡性樹脂組成物を、熱可塑性
樹脂の溶融温度以上かつ熱分解型発泡剤の分解温度未満
の温度で射出成形して賦形する。この場合、目的とする
異形発泡体を、該異形発泡体の発泡倍率に応じた縮尺率
を有するプレス型で賦形する方法を用いることができ
る。すなわち、発泡倍率が20倍の異形発泡体を得る場
合には、タテ×ヨコ×高さの3方向それぞれに対し、異
形発泡体の20の3乗根分の1に縮尺したプレス型で賦
形すればよい。
In the invention according to claim 4, the sheet-like foamable resin composition obtained as described above is treated at a temperature not lower than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent. Injection molding and shaping. In this case, a method can be used in which the desired deformed foam is shaped by a press die having a scale factor corresponding to the expansion ratio of the deformed foam. In other words, when obtaining a deformed foam having an expansion ratio of 20 times, shaping is performed with a press die that is scaled down to one third of the 20th root of the deformed foam in each of the three directions of vertical × horizontal × height. do it.

【0054】次に、得られた発泡性賦形体を、上記熱分
解型発泡剤の分解温度以上の温度まで加熱し、発泡さ
せ、しかる後、熱可塑性樹脂の軟化温度以下の温度まで
冷却し、固化させることにより異形発泡体を得ることが
できる。この発泡、加熱及び冷却の方法については、特
に限定されるものではなく、請求項1に記載の発明と同
様の加熱方法及び冷却方法を用いることができる。
Next, the obtained foamable shaped body is heated to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent to cause foaming, and then cooled to a temperature lower than the softening temperature of the thermoplastic resin. A solid foam can be obtained by solidification. The method of foaming, heating and cooling is not particularly limited, and the same heating method and cooling method as in the first aspect of the invention can be used.

【0055】(請求項5に記載の発明に係る熱可塑性賦
形発泡体の製造方法)請求項5に記載の発明では、請求
項4に記載の発明と同様にして、シート状発泡性樹脂組
成物を得る。しかる後、シート状発泡性樹脂組成物を、
熱可塑性樹脂の溶融温度以上かつ熱分解型発泡剤の分解
温度未満に加熱し、真空成形または圧空成形により賦形
し、発泡性賦形体を得る。
(Production method of thermoplastic shaped foam according to the invention of claim 5) In the invention of claim 5, in the same manner as in the invention of claim 4, a sheet-like foamable resin composition Get things. Thereafter, the sheet-shaped foamable resin composition is
It is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent, and shaped by vacuum forming or pressure forming to obtain a foamable shaped body.

【0056】シート状発泡性樹脂組成物の加熱方法につ
いては、特に限定されないが、例えば、シート状発泡性
樹脂組成物を遠赤外線オーブンに投入し、加熱する方法
を挙げることができる。真空成形及び圧空成形を行う際
に用いる空気圧としては、1kg/cm2 〜10kg/
cm2 の範囲とすることが好ましく、より好ましくは3
〜8kg/cm2 の範囲である。空気圧が1kg/cm
2 より低い場合には、賦形型の細部にわたる忠実な賦形
が困難となることがあり、10kg/cm2 を超える
と、シート状発泡性樹脂組成物が破断することがある。
The method for heating the sheet-like foamable resin composition is not particularly limited, and examples thereof include a method in which the sheet-like foamable resin composition is put into a far-infrared oven and heated. The air pressure used when performing vacuum forming and compressed air forming is 1 kg / cm 2 to 10 kg /
cm 2 , more preferably 3 cm 2
88 kg / cm 2 . Air pressure is 1kg / cm
When it is lower than 2, it may be difficult to faithfully shape the molding die in detail, and when it exceeds 10 kg / cm 2 , the sheet-like foamable resin composition may be broken.

【0057】真空成形及び圧空成形を行う際の空気の温
度については、常温であることが好ましく、それによっ
て、賦形後、冷却まで同時に行うことが可能である。賦
形に用いる賦形型としては、目的とする異形発泡体の発
泡倍率に応じた縮尺比を有するものを用いればよい。す
なわち、発泡倍率が20倍の異形発泡体を得たい場合に
は、タテ×ヨコ×高さの3方向のそれぞれに対し、異形
発泡体の20の3乗根分の1に縮尺したプレス型を用い
ればよい。
The temperature of the air at the time of performing the vacuum forming and the pressure forming is preferably room temperature, whereby it is possible to perform the steps from the shaping to the cooling at the same time. As a shaping mold used for shaping, a shaping mold having a scale ratio corresponding to the expansion ratio of a desired deformed foam may be used. In other words, when it is desired to obtain a deformed foam having an expansion ratio of 20 times, a press mold reduced in scale to one third of the 20th root of the deformed foam in each of the three directions of length × width × height. It may be used.

【0058】次に、得られた発泡性賦形体を、熱分解型
発泡剤の分解温度以上の温度まで加熱し、発泡させる。
しかる後、熱可塑性樹脂の軟化温度以下の温度まで冷却
し、固化させることにより異形発泡体を得る。この場
合、加熱及び冷却方法について特に限定されず、請求項
1に記載の発明と同様にして行い得る。
Next, the obtained foamable shaped body is heated to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent to foam.
Thereafter, the thermoplastic resin is cooled to a temperature equal to or lower than the softening temperature of the thermoplastic resin and solidified to obtain a deformed foam. In this case, the heating and cooling methods are not particularly limited, and can be performed in the same manner as the first aspect of the present invention.

【0059】(請求項6に記載の発明に係る熱可塑性発
明賦形体の製造方法)請求項6に記載の発明に係る熱可
塑性賦形発泡体の製造方法では、請求項1に記載の発明
に係る製造方法と同様の発泡性樹脂組成物を用い、熱可
塑性樹脂の溶融温度以上かつ熱分解型発泡剤の分解温度
未満でパリソン状に押出し、ブロー成形し、異形形状に
賦形し、発泡性賦形体を得る。
(Method for Producing a Thermoplastic Shaped Article According to the Invention According to Claim 6) In the method for producing a thermoplastic shaped foam according to the invention according to claim 6, the method according to claim 1 Using the same foamable resin composition as in the production method, extruded in a parison shape at a melting temperature of the thermoplastic resin or higher and lower than the decomposition temperature of the pyrolytic foaming agent, blow-molded, shaped into an irregular shape, and foamed. Obtain the excipient.

【0060】この場合、パリソン状に押し出すには、例
えば1軸の押出機で樹脂組成物を溶融混練した後、パリ
ソン形状の金型から押し出せばよい。押出に際しての温
度は、熱可塑性樹脂の溶融温度以上かつ熱分解型発泡剤
の分解温度未満の温度とする。
In this case, in order to extrude the resin composition in a parison shape, for example, the resin composition may be melt-kneaded by a single screw extruder and then extruded from a parison-shaped mold. The temperature at the time of extrusion is a temperature higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent.

【0061】次に、目的とする形状の異形発泡体に応じ
た金型を用いてブロー成形を行う。ブロー成形に用いる
賦形型については、目的とする異形発泡体の発泡倍率に
応じた縮尺比を有するものを用いればよい。すなわち、
発泡倍率が20倍の異形発泡体を得たい場合には、タテ
×ヨコ×高さの3方向のそれぞれに対して、異形発泡体
の20の3乗根分の1に縮尺したブロー成形型を用いれ
ばよい。
Next, blow molding is performed using a mold corresponding to the deformed foam having the desired shape. What is necessary is just to use the shaping die used for blow molding which has a scale ratio according to the expansion ratio of the target deformed foam. That is,
When it is desired to obtain a deformed foam having an expansion ratio of 20 times, a blow molding die reduced to one third root of 20 of the deformed foam in each of the three directions of vertical × horizontal × height. It may be used.

【0062】ブロー成形型は、例えば水冷などの方法に
より、熱可塑性樹脂の溶融温度以下に冷却されているこ
とが望ましい。また、ブロー成形に際しての空気圧につ
いては、1〜10kg/cm2 の範囲であることが好ま
しく、より好ましくは3〜8kg/cm2 の範囲であ
る。空気圧が1kg/cm2 より低い場合には、賦形型
の細部にわたる忠実な賦形が困難となることがあり、1
0kg/cm2 を超えると、成形中にパリソン状の発泡
性樹脂組成物が破断することがある。
It is desirable that the blow mold is cooled to a temperature lower than the melting temperature of the thermoplastic resin by, for example, water cooling. Also, the air pressure during blow molding is preferably in the range of 1 to 10 kg / cm 2, more preferably from 3~8kg / cm 2. If the air pressure is lower than 1 kg / cm 2 , faithful shaping over the details of the shaping mold may be difficult, and
If it exceeds 0 kg / cm 2 , the parison-like foamable resin composition may break during molding.

【0063】ブロー成形により得られた発泡性賦形体
を、熱分解型発泡剤の分解温度以上に加熱することによ
り、発泡させ、しかる後、熱可塑性樹脂の軟化点以下の
温度まで冷却し、固化させることにより、異形発泡体を
得ることができる。この場合の加熱及び冷却方法につい
ては、請求項1に記載の発明と同様に行い得る。
The foamable shaped body obtained by blow molding is foamed by heating it to a temperature not lower than the decomposition temperature of the pyrolytic foaming agent, and then cooled to a temperature lower than the softening point of the thermoplastic resin and solidified. By doing so, a deformed foam can be obtained. The heating and cooling methods in this case can be performed in the same manner as in the first aspect of the present invention.

【0064】(作用)請求項1に記載の発明に係る熱可
塑性賦形発泡体の製造方法では、フィブリル状液晶樹脂
と熱可塑性樹脂とを上記特定の割合で含む樹脂組成物に
熱分解型発泡剤を上記特定の割合で混合してなる発泡性
樹脂組成物を、熱可塑性樹脂の溶融温度以上かつ熱分解
型発泡剤の分解温度未満の温度で異形の金型から押し出
すことにより、発泡性賦形体が得られ、該発泡性賦形体
を熱分解型発泡剤の分解温度以上に加熱することによ
り、賦形された発泡体を得ることができる。
(Function) In the method for producing a thermoplastic shaped foam according to the first aspect of the present invention, the resin composition containing the fibril-like liquid crystal resin and the thermoplastic resin in the above-described specific ratio is thermally decomposed and foamed. The foaming resin composition obtained by mixing the agents in the above-mentioned specific ratio is extruded from a deformed mold at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent, so that the foaming property can be improved. A shaped body is obtained, and by heating the foamable shaped body to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent, a shaped foam can be obtained.

【0065】この場合、液晶樹脂が熱可塑性樹脂中にフ
ィブリル状となって分散されているため、発泡時の伸長
応力が増大し、伸長応力が増大することにより、発泡時
のセル膜の破れが生じ難くなり、発泡安定性が高まる。
従って、事前に賦形された部分の残存応力に発泡を阻害
されることなく、三次元的に均一に発泡する。加えて、
異形形状の金型から上記樹脂組成物を押し出すことによ
り、連続的に異形の発泡性賦形体を得ることができる。
In this case, since the liquid crystal resin is dispersed in the form of fibrils in the thermoplastic resin, the elongation stress at the time of foaming increases, and the elongation stress increases. It hardly occurs and foaming stability is increased.
Therefore, the foam is three-dimensionally and uniformly foamed without being affected by the residual stress of the previously shaped portion. in addition,
By extruding the above-mentioned resin composition from a deformed mold, a deformable foamable shaped body can be continuously obtained.

【0066】請求項2に記載の発明では、液晶樹脂が添
加された発泡性樹脂組成物を1次発泡させるに際し、液
晶樹脂がフィブリル化され、熱可塑性樹脂マトリクス中
に分散される。そのため、異形形状の発泡性賦形体の発
泡時の伸長応力が増大し、請求項1に記載の発明の場合
と同様に、発泡時のセル膜の破れが生じ難く、発泡安定
性が高められる。従って、請求項1に記載の発明と同様
に、事前に賦形された部分の残存応力に発泡を阻害され
ることなく、三次元的に均等に発泡する。また、断面異
形の金型から押し出すことにより、異形の発泡性賦形体
は連続的に得られる。
In the second aspect of the invention, when the foamable resin composition to which the liquid crystal resin is added is primarily foamed, the liquid crystal resin is fibrillated and dispersed in the thermoplastic resin matrix. Therefore, the elongation stress at the time of foaming of the foamable shaped body having the irregular shape is increased, and as in the case of the first aspect of the invention, the cell membrane is hardly broken at the time of foaming, and the foaming stability is enhanced. Therefore, similarly to the first aspect of the present invention, foaming is performed three-dimensionally and uniformly without being affected by the residual stress of the previously formed portion. In addition, by extruding from a mold having a modified cross section, a deformable foamable shaped body can be obtained continuously.

【0067】また、請求項3に記載の発明では、請求項
2に記載の発明に係る製造方法において、押出しに際し
て発泡性樹脂組成物の温度が、液晶樹脂の液晶転移点を
超え、300℃以下の温度とされているので、異形の金
型から安定に押出し成形することができ、かつ高アスペ
クト比のフィブリルとされた液晶樹脂が、高アスペクト
比を保持したまま押出し後に直ちに冷却されるため、高
アスペクト比の液晶フィブリルにより賦形発泡体が効果
的に補強される。
According to a third aspect of the present invention, in the manufacturing method according to the second aspect, the temperature of the foamable resin composition at the time of extrusion exceeds the liquid crystal transition point of the liquid crystal resin and is 300 ° C. or less. Because it is the temperature of, it can be stably extruded from a deformed mold, and the liquid crystal resin that has been made into a fibril with a high aspect ratio is cooled immediately after extrusion while maintaining a high aspect ratio, The shaped foam is effectively reinforced by the high aspect ratio liquid crystal fibrils.

【0068】請求項4に記載の発明においても、フィブ
リル状液晶樹脂、熱可塑性樹脂及び熱分解型発泡剤が上
記特定の割合で混合された発泡性樹脂組成物を、熱可塑
性樹脂の溶融温度以上かつ熱分解型発泡剤の分解温度未
満の温度で賦形するため、請求項1に記載の発明と同様
に、フィブリル状液晶樹脂が分散された発泡性賦形体を
得ることができる。もっとも、請求項4に記載の発明で
は、発泡性賦形体を得るに当たり、シート状の発泡性樹
脂組成物をプレス成形することにより発泡性賦形体が得
られる。
Also in the invention according to claim 4, the foamable resin composition in which the fibril-like liquid crystal resin, the thermoplastic resin and the pyrolytic foaming agent are mixed at the above-mentioned specific ratio, is heated to a temperature higher than the melting temperature of the thermoplastic resin. In addition, since the shape is formed at a temperature lower than the decomposition temperature of the thermally decomposable foaming agent, a foamable shaped body in which the fibril-like liquid crystal resin is dispersed can be obtained in the same manner as in the first aspect of the present invention. According to the fourth aspect of the present invention, in order to obtain the foamable shaped body, the foamable shaped body is obtained by press-molding the sheet-shaped foamable resin composition.

【0069】また、上記発泡性賦形体では、フィブリル
状液晶樹脂が分散されているため、次に熱分解型発泡剤
の分解温度以上に加熱することにより、請求項1に記載
の発明と同様に、発泡時の伸長応力の増大により、セル
膜の破れが生じ難く、発泡安定性が高められると共に、
事前に賦形された部分の残存応力に発泡を阻害されるこ
となく、3次元的に均等に発泡させることができる。従
って、目的とする形状の発泡体を確実に得ることができ
る。
Since the fibril-like liquid crystal resin is dispersed in the expandable shaped article, the foamable shaped article is heated to a temperature not lower than the decomposition temperature of the thermal decomposition type foaming agent. Due to the increase in the elongation stress at the time of foaming, it is difficult for the cell membrane to be broken, and the foaming stability is enhanced,
Foaming can be performed three-dimensionally evenly without the foaming being hindered by the residual stress of the previously shaped portion. Therefore, a foam having a desired shape can be reliably obtained.

【0070】請求項5に記載の発明では、請求項4に記
載の発明と同様に、シート状の発泡性樹脂組成物を、熱
可塑性樹脂の溶融温度以上かつ熱分解型発泡剤の分解開
始温度未満で賦形するため、もっとも、請求項5に記載
の発明では、真空成形または圧空成形により賦形する
が、請求項4に記載の発明と同様に、発泡性賦形体を容
易に得ることができる。しかも、該発泡性賦形体を、熱
分解型発泡剤の分解温度以上に加熱することにより発泡
させて賦形された発泡体を得るため、請求項4に記載の
発明と同様に発泡時の伸長応力が増大し、発泡時にセル
膜が破れ難く、発泡安定性が高められると共に、事前に
賦形された部分の残存応力に発泡を阻害されることな
く、三次元的に均等に発泡させることができる。
According to the fifth aspect of the present invention, similarly to the fourth aspect of the present invention, the sheet-like foamable resin composition is heated at a temperature not lower than the melting temperature of the thermoplastic resin and at the decomposition starting temperature of the pyrolytic foaming agent. However, in the invention according to the fifth aspect, the shape is formed by vacuum molding or air pressure molding. However, similarly to the invention according to the fourth aspect, it is possible to easily obtain an expandable shaped body. it can. Moreover, since the foamable shaped body is foamed by heating it to a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent to obtain a shaped foam, the elongation during foaming is the same as in the invention of claim 4. The stress increases, the cell membrane is hardly broken at the time of foaming, the foaming stability is enhanced, and the foaming is uniformly performed three-dimensionally without being affected by the residual stress of the previously shaped portion. it can.

【0071】請求項6に記載の発明においても、請求項
1に記載の発泡性樹脂組成物を賦形し、発泡性賦形体を
得ているため、該発泡性賦形体においてフィブリル状の
液晶樹脂が熱可塑性樹脂マトリックス中に分散されてい
るので、発泡性賦形体を熱分解型発泡剤の分解温度以上
に加熱し発泡させた場合、発泡時の伸長応力が増大す
る。従って、伸長応力の増大により、発泡時のセル膜の
破れが生じ難く、発泡安定性が高められると共に、事前
に賦形された部分の残存応力に発泡を阻害されることな
く、三次元的に均等に発泡されることになる。
Also in the invention according to claim 6, since the foamable resin composition according to claim 1 is shaped to obtain a foamable shaped body, a fibril-like liquid crystal resin is formed in the foamable shaped body. Is dispersed in the thermoplastic resin matrix, so that when the foamable shaped body is foamed by heating it to a temperature higher than the decomposition temperature of the pyrolytic foaming agent, the elongation stress during foaming increases. Therefore, due to the increase in the elongation stress, the cell membrane is less likely to be broken during foaming, foaming stability is increased, and foaming is not hindered by the residual stress of the previously shaped portion, and three-dimensionally. It will be evenly foamed.

【0072】また、請求項6に記載の発泡では、上記発
泡性賦形体を得るにあたり、発泡性樹脂組成物をパリソ
ン状に押出した後、ブロー成形することにより発泡性賦
形体を得ているため、筒状などのブロー成形により得る
ことが適当な成形体を容易に得ることが可能となる。
In the foaming according to the sixth aspect, in order to obtain the foamable shaped body, the foamable resin composition is extruded into a parison shape and then blow-molded to obtain the foamable shaped body. It is possible to easily obtain a molded article suitable for being obtained by blow molding such as a cylinder.

【0073】[0073]

【実施例】以下、本発明の非限定的な実施例を挙げるこ
とにより、本発明を詳細に説明する。
The present invention will now be described in detail with reference to non-limiting examples.

【0074】(実施例1)ポリプロピレン(三菱化学社
製、商品名:EA9A、MI=0.3g/10分、密度
0.9g/cm3 、溶融温度165℃)と、液晶樹脂
(ユニチカ社製、商品名:ロッドランLC−5000、
液晶転移温度280℃)とを、下記の表1に示す割合で
混合し、2軸混練押出機(池貝機工社製、商品名:PC
M−30)で溶融混練し、直径3mmのストランドダイ
から押出し、水冷し、ペレタイザーでペレット化するこ
とにより、液晶樹脂/熱可塑性樹脂ペレットを得た。こ
の場合、バレル温度及び金型温度は、いずれも290℃
に設定した。上記複合ペレットを液体窒素により凍結
し、破断し、破断面を走査型電子顕微鏡で観察したとこ
ろ、複合ペレット中の液晶樹脂がフィブリル化してい
た。
Example 1 Polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: EA9A, MI = 0.3 g / 10 min, density 0.9 g / cm 3 , melting temperature 165 ° C.) and liquid crystal resin (manufactured by Unitika) , Trade name: Rodrun LC-5000,
And a liquid crystal transition temperature of 280 ° C.) at a ratio shown in Table 1 below, and a twin-screw kneading extruder (trade name: PC, manufactured by Ikegai Kiko Co., Ltd.)
M-30), melt-kneaded, extruded from a strand die having a diameter of 3 mm, cooled with water, and pelletized with a pelletizer to obtain a liquid crystal resin / thermoplastic resin pellet. In this case, the barrel temperature and the mold temperature are both 290 ° C.
Set to. The composite pellet was frozen with liquid nitrogen, fractured, and the fracture surface was observed with a scanning electron microscope. As a result, the liquid crystal resin in the composite pellet was fibrillated.

【0075】次に、上記複合ペレットとシラン架橋性ポ
リプロピレン(三菱化学社製、商品名:リンクロンXP
M800HM、MI=10g/10分、溶融温度167
℃)とシラン架橋触媒マスターバッチ(三菱化学社製、
商品名:PZ−10S、ポリプロピレン100重量部に
ジブチル錫ラウレートが1重量部が添加されたもの)
と、熱分解型発泡剤(アゾジカルボンアミド、大塚化学
社製、商品名:ユニホームAZ,SO−20、分解温度
201℃)を、下記の表2示す割合で混合し、2軸混練
押出機(池貝機工社製、商品名:PCM−30)で溶融
混練し、図1に示す樹脂吐出部1aが波板形状の異形金
型1から押出し、押し出された賦形体を20℃の水で水
冷した後、長さ100mmにカットし、発泡性賦形体を
得た。この場合、バレル温度及び金型温度は、いずれも
180℃に設定しておいた。
Next, the above-mentioned composite pellets and silane-crosslinkable polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Linklon XP)
M800HM, MI = 10 g / 10 min, melting temperature 167
℃) and silane crosslinking catalyst master batch (Mitsubishi Chemical Corporation,
Product name: PZ-10S, 100 parts by weight of polypropylene with 1 part by weight of dibutyltin laurate added)
And a thermal decomposition type foaming agent (azodicarbonamide, manufactured by Otsuka Chemical Co., Ltd., trade name: Uniform AZ, SO-20, decomposition temperature 201 ° C.) at a ratio shown in Table 2 below, and a twin screw kneading extruder ( Melted and kneaded with Ikegai Kiko Co., Ltd., trade name: PCM-30), and the resin discharge portion 1a shown in FIG. 1 was extruded from the corrugated deformed mold 1, and the extruded shaped body was water-cooled with water at 20 ° C. Thereafter, the resultant was cut into a length of 100 mm to obtain a foamable shaped body. In this case, the barrel temperature and the mold temperature were both set at 180 ° C.

【0076】上記のようして得た発泡性賦形体の発泡倍
率を測定した。すなわち、賦形発泡体の密度を測定し、
発泡性樹脂組成物の密度で除算し、その逆数を発泡倍率
とした。結果を下記の表3に示す。
The expansion ratio of the expandable shaped body obtained as described above was measured. That is, the density of the shaped foam is measured,
The result was divided by the density of the foamable resin composition, and the reciprocal thereof was defined as the expansion ratio. The results are shown in Table 3 below.

【0077】しかる後、上記発泡性賦形体を、100℃
の熱水に2時間浸漬し、架橋した。架橋された発泡性賦
形体をテトラフルオロエチレン製のシートに載置し、2
30℃に温度調節された加熱用オーブンに投入し、10
分間放置し、加熱発泡させた。加熱発泡後、該加熱用オ
ーブンから発泡体を取り出し、自然放冷することにより
異形発泡体を固化させた。
Thereafter, the foamable shaped body was heated at 100 ° C.
In hot water for 2 hours to crosslink. The crosslinked foamable excipient is placed on a sheet made of tetrafluoroethylene, and 2
Put into a heating oven controlled at 30 ° C.
The mixture was allowed to stand for a minute and heated and foamed. After the heating and foaming, the foam was taken out of the heating oven and allowed to cool naturally to solidify the deformed foam.

【0078】上記のようにして得た異形発泡体の曲面部
の曲率の測定を、図1にAで示す位置で行った。曲面部
を円弧の一部と見なし、その円弧の半径を測定すること
により曲面部の曲率半径とした。このようにして得た曲
率半径から、下記の式(1)により、曲率半径の均等発
泡からのズレを計算した。
The curvature of the curved surface of the deformed foam obtained as described above was measured at the position indicated by A in FIG. The curved surface portion was regarded as a part of a circular arc, and the radius of the circular arc was measured to obtain the radius of curvature of the curved surface portion. From the radius of curvature thus obtained, the deviation of the radius of curvature from the uniform foam was calculated by the following equation (1).

【0079】[0079]

【数1】 (Equation 1)

【0080】なお、式(1)において、Xは、曲面部の
曲率半径の均等発泡からのズレの割合(%)を、Rは曲
面部の曲率半径を、Tは全体の平均発泡倍率を、R0は
曲面部の発泡前の曲率半径を示す。
In the equation (1), X is the ratio (%) of deviation of the radius of curvature of the curved surface from the uniform foaming, R is the radius of curvature of the curved surface, T is the average foaming ratio of the whole, R0 indicates the radius of curvature of the curved surface portion before foaming.

【0081】なお、均一発泡であれば、R/T2/3 であ
るため、R/T2/3 は、発泡の均一性の指標となり、従
って、上記式(1)では、R/T2/3 のR0に対する比
を基準として均等発泡からのズレの割合を求めたもので
ある。
[0081] Note that if uniform foaming, since a R / T 2/3, R / T 2/3 becomes a uniformity index of the foam, therefore, in the above formula (1), R / T 2 The ratio of deviation from uniform foaming was determined based on the ratio of R / 3 to R0.

【0082】また、得られた異形発泡体のタテ、ヨコ、
及び高さの実寸をのぎすを用いて測定した。このようし
て得られた寸法から、下記の式(2)に示す計算方法に
より、タテ、ヨコ、高さのそれぞれの発泡倍率の均等発
泡からのズレの割合Yを計算した。
Further, the resulting deformed foams in the vertical, horizontal,
And the actual size of the height was measured using a scale. From the dimensions thus obtained, the ratio Y of the deviation from the uniform foaming of each of the expansion ratios of the vertical, horizontal and height was calculated by the calculation method shown in the following equation (2).

【0083】[0083]

【数2】 (Equation 2)

【0084】なお、式(2)において、Yは、タテ、ヨ
コまたは高さの均等発泡からのズレの割合(%)を、L
はタテ、ヨコまたは高さの実寸を、L0は、タテ、ヨコ
または高さの発泡前の寸法を、Tは全体の平均発泡倍率
を示す。式(2)により得られた結果を下記の表4に示
す。
In the formula (2), Y represents a ratio (%) of deviation from vertical, horizontal or uniform foaming of height, expressed by L
Represents the actual size of the length, width or height, L0 represents the dimension before foaming of the length, width or height, and T represents the average average expansion ratio. Table 4 below shows the results obtained by the equation (2).

【0085】(実施例2)用いた樹脂の割合を表1,2
のように変更したことを除いては、賦形発泡体を得、実
施例1と同様にして評価した。
Example 2 The proportions of the resins used are shown in Tables 1 and 2.
A molded foam was obtained and evaluated in the same manner as in Example 1 except for the following changes.

【0086】(比較例1)用いた樹脂の割合を、表1,
2のように変更したことを除いては、実施例1と同様に
して賦形発泡体を得、かつ評価した。
(Comparative Example 1) Table 1
A shaped foam was obtained and evaluated in the same manner as in Example 1 except that the shape was changed as in Example 2.

【0087】(比較例2)用いた樹脂の割合を、表1,
2のように変更したことを除いては、実施例1と同様に
して賦形発泡体を得、かつ評価した。
(Comparative Example 2) Table 1
A shaped foam was obtained and evaluated in the same manner as in Example 1 except that the shape was changed as in Example 2.

【0088】(実施例3)下記の表1及び表2に示す配
合の発泡性樹脂組成物を、2軸混練押出機(池貝機工社
製、商品名:PCM−30)で溶融混練し、図1に示す
異型金型から押出し、20℃の水で水冷し、固化させ、
長さ100mmにカットし、1次発泡された発泡性賦形
体を得た。この場合、バレル温度及び金型温度は、いず
れも290℃に設定した。
Example 3 A foamable resin composition having the composition shown in Tables 1 and 2 below was melt-kneaded by a twin-screw kneading extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.). Extruded from the mold shown in FIG. 1, water-cooled with water at 20 ° C., solidified,
It was cut to a length of 100 mm to obtain a primary foamed foamable shaped body. In this case, the barrel temperature and the mold temperature were both set to 290 ° C.

【0089】上記のようにして得た発泡性賦形体の発泡
倍率を測定した。すなわち、発泡倍率は、1次発泡した
上記発泡性賦形体の密度を測定し、発泡性樹脂組成物の
密度で除算し、その逆数とした。結果を下記の表5に示
す。
The expansion ratio of the expandable shaped body obtained as described above was measured. That is, the expansion ratio was obtained by measuring the density of the foamable shaped body that was primarily foamed, dividing the result by the density of the foamable resin composition, and calculating the reciprocal thereof. The results are shown in Table 5 below.

【0090】上記発泡性賦形体を100℃の熱水に2時
間浸漬し、架橋した。架橋された発泡性賦形体をテトラ
フルオロエチレン製シートの上に載置し、230℃に温
度調節された加熱用オーブンに入れ、10分間放置し、
加熱発泡させた。
The foamable shaped body was immersed in hot water at 100 ° C. for 2 hours to crosslink. The crosslinked foamable excipient is placed on a tetrafluoroethylene sheet, placed in a heating oven temperature-controlled at 230 ° C., and left for 10 minutes,
Heat and foam.

【0091】加熱発泡後、加熱用オーブンから発泡体を
取り出し、放冷し、賦形発泡体を固化させた。この賦形
発泡体の一部を破断し、破断面を走査型電子顕微鏡で観
察したところ、80%以上の液晶樹脂がフィブリル化
し、分散していることが認められた。
After the heating and foaming, the foam was taken out of the heating oven, allowed to cool, and the shaped foam was solidified. A part of the shaped foam was broken, and the broken surface was observed with a scanning electron microscope. As a result, it was confirmed that 80% or more of the liquid crystal resin was fibrillated and dispersed.

【0092】また、上記賦形発泡体の発泡倍率を測定し
た。発泡倍率の測定については、賦形発泡体の密度を測
定し、発泡性樹脂組成物の密度で除算し、その逆数とし
た。結果を表5に示す。
Further, the expansion ratio of the shaped foam was measured. Regarding the measurement of the expansion ratio, the density of the shaped foam was measured, divided by the density of the expandable resin composition, and the reciprocal thereof was obtained. Table 5 shows the results.

【0093】しかる後、上記賦形発泡体の曲率及び実寸
を、実施例1と同様にして測定した。また、実施例1と
同様の方法で、曲率半径の均等発泡からのズレ量と、タ
テ、ヨコ及び高さのそれぞれの方向の発泡倍率の均等発
泡からのズレを計算した。結果を下記の表5及び表6に
示す。
Thereafter, the curvature and actual size of the shaped foam were measured in the same manner as in Example 1. Further, in the same manner as in Example 1, the amount of deviation from the uniform foaming of the radius of curvature and the deviation of the expansion ratio in each of the vertical, horizontal, and height directions from the uniform foaming were calculated. The results are shown in Tables 5 and 6 below.

【0094】(実施例4)熱分解型発泡剤の混合割合を
表2に示すように変更したことを除いては、実施例3と
同様にして賦形発泡体を得、実施例3と同様にして評価
した。
Example 4 A shaped foam was obtained in the same manner as in Example 3 except that the mixing ratio of the pyrolytic foaming agent was changed as shown in Table 2, and the same as in Example 3. Was evaluated.

【0095】(比較例3)下記の表1及び表2に示すよ
うに、液晶樹脂を用いずに、ポリプロピレンのみを用い
たことを除いては、実施例3と同様にして賦形発泡体を
得、かつ評価した。
Comparative Example 3 As shown in Tables 1 and 2 below, a shaped foam was prepared in the same manner as in Example 3 except that only polypropylene was used without using a liquid crystal resin. Obtained and evaluated.

【0096】(比較例4)下記の表1及び表2に示すよ
うに、ポリプロピレン350重量部に対し液晶樹脂を5
00重量部用いたことを除いては、実施例3と同様にし
て賦形発泡体を得、評価した。
Comparative Example 4 As shown in Tables 1 and 2 below, liquid crystal resin was added to 350 parts by weight of polypropylene.
A shaped foam was obtained and evaluated in the same manner as in Example 3, except that 00 parts by weight was used.

【0097】(比較例5)下記の表1に示すように、ポ
リプロピレンを600重量部、液晶樹脂を200重量部
の割合としたことを除いては、実施例3と同様にして賦
形発泡体を得、かつ評価した。
Comparative Example 5 As shown in Table 1 below, a shaped foam was produced in the same manner as in Example 3 except that the proportion of polypropylene was 600 parts by weight and the liquid crystal resin was 200 parts by weight. Was obtained and evaluated.

【0098】[0098]

【表1】 [Table 1]

【0099】[0099]

【表2】 [Table 2]

【0100】[0100]

【表3】 [Table 3]

【0101】[0101]

【表4】 [Table 4]

【0102】[0102]

【表5】 [Table 5]

【0103】[0103]

【表6】 [Table 6]

【0104】表3及び表4から明らかなように、液晶樹
脂を用いていない比較例1に比べ、実施例1,2では、
請求項1に記載の発明に従ってポリプロピレン及び液晶
樹脂を配合し、液晶樹脂をフィブリル化させて分散させ
ているためか、曲率半径の均等発泡からのズレが極めて
小さく、得られた賦形発泡体のタテ、ヨコ及び高さのい
ずれの方向においても、均等発泡からのズレが極めて小
さく、従って、三次元的に均一に発泡された賦形発泡体
の得られることがわかる。
As is clear from Tables 3 and 4, in Examples 1 and 2 as compared with Comparative Example 1 in which no liquid crystal resin was used.
Probably because the polypropylene and the liquid crystal resin are blended according to the invention of claim 1 and the liquid crystal resin is fibrillated and dispersed, the deviation from the uniform foaming of the curvature radius is extremely small, and the obtained shaped foam is It can be seen that the deviation from uniform foaming is extremely small in any of the vertical, horizontal, and height directions, and thus a shaped foam that is three-dimensionally and uniformly foamed can be obtained.

【0105】また、比較例2では、液晶樹脂の配合割合
が高すぎたためか、比較例1と同様に、均等発泡からの
ズレが大きく、タテ、ヨコ及び高さ方向の均等発泡から
のズレも大きかった。
Also, in Comparative Example 2, the deviation from uniform foaming was large as in Comparative Example 1, probably because the compounding ratio of the liquid crystal resin was too high. It was big.

【0106】また、表5及び表6から明らかなように、
液晶樹脂を用いていない比較例3、液晶樹脂の配合割合
が多すぎる比較例4及び液晶樹脂の配合割合が少なすぎ
る比較例5に対し、実施例3,4では、曲率半径の均等
発泡からのズレが非常に小さく、かつ得られた賦形発泡
体におけるタテ、ヨコ及び高さ方向の均等発泡からのズ
レも非常に小さかった。
As is clear from Tables 5 and 6,
In Comparative Examples 3 and 4 in which the liquid crystal resin was not used, Comparative Example 4 in which the compounding ratio of the liquid crystal resin was too large, and Comparative Example 5 in which the compounding ratio of the liquid crystal resin was too small, in Examples 3 and 4, the radius of curvature was changed from uniform foaming. The deviation was very small, and the deviation from uniform foaming in the vertical, horizontal, and height directions in the obtained shaped foam was also very small.

【0107】(実施例5)ポリプロピレン(三菱化学社
製、商品名:EA9A、MI=0.3g/10分、密度
0.9g/cm3 と、液晶樹脂(ユニチカ社製、商品
名:ロッドランLC−5000、液晶転移温度280
℃)を、下記の表7に示す割合で混合し、2軸混練押出
機(池貝機工社製、商品名:PCM−30)で溶融混練
し、直径3mmのストランドダイから押出し、水冷し、
ペレタイザーでペレット化することにより、液晶樹脂/
ポリプロピレン複合ペレットを得た。この複合ペレット
の断面を走査型電子顕微鏡で観察したところ、液晶樹脂
がフィブリル化し分散していた。なお、上記溶融混練及
び押出しに際しては、バレル温度及び金型温度のいずれ
も290℃に設定した。
Example 5 Polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: EA9A, MI = 0.3 g / 10 min, density 0.9 g / cm 3 , liquid crystal resin (produced by Unitika, trade name: Rodrun LC) -5000, liquid crystal transition temperature 280
° C) at the ratio shown in Table 7 below, melt-kneaded with a twin-screw kneading extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.), extruded from a 3 mm diameter strand die, and water-cooled.
By pelletizing with a pelletizer, liquid crystal resin /
A polypropylene composite pellet was obtained. When the cross section of this composite pellet was observed with a scanning electron microscope, the liquid crystal resin was fibrillated and dispersed. In addition, at the time of the above-mentioned melt kneading and extrusion, both the barrel temperature and the mold temperature were set to 290 ° C.

【0108】次に、上記複合ペレット、シラン架橋性ポ
リプロピレン(三菱化学社製、商品名:リンクロンXP
M800HM、溶融温度167℃、MI=10g/10
分)と、シラン架橋触媒マスターバッチ(三菱化学社
製、商品名:PZ−10S)と、熱分解型発泡剤として
のアゾジカルボンアミド(大塚化学社製、商品名:ユニ
ホームAZ SO−20、分解温度201℃)とを下記
の表8に示す割合で混合し、2軸混練押出機(池貝機工
社製、商品名:PCM−30)で溶融混練し、リップク
リアランス2mm及び幅200mmのシートダイから押
出し、上下一対の水冷式ロールでサイジングすることに
より、厚み2mm及び幅180mmの発泡性シートを得
た。なお、このとき、バレル温度及び金型温度は、いず
れも180℃に設定しておいた。
Next, the above-mentioned composite pellets, silane-crosslinkable polypropylene (trade name: Linklon XP, manufactured by Mitsubishi Chemical Corporation)
M800HM, melting temperature 167 ° C., MI = 10 g / 10
), A silane crosslinking catalyst master batch (manufactured by Mitsubishi Chemical Corporation, trade name: PZ-10S), and azodicarbonamide as a pyrolysis type foaming agent (manufactured by Otsuka Chemical Co., trade name: Uniform AZ SO-20, decomposition) At a temperature shown in Table 8 below, and melt-kneaded with a twin screw extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.), and extruded from a sheet die having a lip clearance of 2 mm and a width of 200 mm. By sizing with a pair of upper and lower water-cooled rolls, a foamable sheet having a thickness of 2 mm and a width of 180 mm was obtained. At this time, the barrel temperature and the mold temperature were both set at 180 ° C.

【0109】しかる後、上記のようにして得た発泡性シ
ートを、長さ200mmに裁断し、180℃に温度調節
された図2,3に示す上型及び下型からなるプレス型を
用い、プレス圧1kg/cm2 でプレスし、タテとヨコ
との長さが180mm及び130mmとなるようにカッ
トし、発泡性賦形体を得た。
Thereafter, the foamable sheet obtained as described above was cut into a length of 200 mm, and a press die composed of an upper die and a lower die shown in FIGS. It was pressed at a pressing pressure of 1 kg / cm 2 , and cut so that the lengths of the vertical and horizontal sides were 180 mm and 130 mm, respectively, to obtain a foamable shaped body.

【0110】得られた発泡性賦形体を常温まで放冷し、
しかる後、100℃の熱水に2時間浸漬し、架橋した。
架橋された発泡性賦形体をテトラフルオロエチレン製シ
ート上に載置し、230℃に温度調節された加熱用オー
ブンに入れ、10分間放置し、加熱発泡させた。加熱発
泡後、該加熱用オーブンから取り出し、放冷し、賦形発
泡体を固化させた。
[0110] The obtained foamable shaped body is allowed to cool to room temperature,
Thereafter, it was immersed in hot water at 100 ° C. for 2 hours to perform crosslinking.
The crosslinked foamable shaped body was placed on a sheet made of tetrafluoroethylene, placed in a heating oven temperature-controlled at 230 ° C., left for 10 minutes, and heated and foamed. After the heating and foaming, the foam was taken out of the heating oven, allowed to cool, and the shaped foam was solidified.

【0111】上記のようにして、図4に示す賦形発泡体
2を得た。この賦形発泡体のA〜Cで示す位置で、曲率
半径及び曲率半径の均等発泡からのズレを、実施例1と
同様にして評価した。また、得られた賦形発泡体のタ
テ、ヨコ及び高さの実寸をノギスを用いて測定し、実施
例1と同様の計算方法により、タテ、ヨコ及び高さのそ
れぞれの方向における発泡倍率の均等発泡からのズレを
計算した。結果を下記の表9に示す。
As described above, the shaped foam 2 shown in FIG. 4 was obtained. At the positions A to C of the shaped foam, the curvature radius and the deviation of the curvature radius from the uniform foaming were evaluated in the same manner as in Example 1. In addition, the actual size of the length, width and height of the obtained shaped foam was measured using calipers, and the same calculation method as in Example 1 was used to calculate the expansion ratio in each direction of the length, width and height. The deviation from uniform foaming was calculated. The results are shown in Table 9 below.

【0112】(実施例6)使用した樹脂の配合を、下記
の表7及び表8に示すように変更したことを除いては、
実施例5と同様にして賦形発泡体を得、かつ評価した。
Example 6 Except that the composition of the resin used was changed as shown in Tables 7 and 8 below,
A shaped foam was obtained and evaluated in the same manner as in Example 5.

【0113】(実施例7)熱分解型発泡剤の混合割合を
下記の表8に示すように変更したことを除いては、実施
例5と同様にして賦形発泡体を得、かつ評価した。
Example 7 A shaped foam was obtained and evaluated in the same manner as in Example 5, except that the mixing ratio of the pyrolytic foaming agent was changed as shown in Table 8 below. .

【0114】(比較例6,7)使用した樹脂組成を下記
の表7及び表8に示すように変更したことを除いては、
実施例5と同様にして賦形発泡体を得、かつ評価した。
(Comparative Examples 6 and 7) Except that the resin composition used was changed as shown in Tables 7 and 8 below,
A shaped foam was obtained and evaluated in the same manner as in Example 5.

【0115】(比較例8,9)熱分解型発泡剤の混合割
合を下記の表8に示すように変更したことを除いては、
実施例5と同様にして賦形発泡体を得、評価した。
(Comparative Examples 8 and 9) Except that the mixing ratio of the pyrolytic foaming agent was changed as shown in Table 8 below,
A shaped foam was obtained and evaluated in the same manner as in Example 5.

【0116】(実施例8)ポリプロピレン(三菱化学社
製、商品名:EA9A、MI=0.3g/10分、密度
0.9g/cm3 )と、液晶樹脂(ユニチカ社製、商品
名:ロッドランLC−5000、液晶転移温度280
℃)を、下記の表7に示す割合で混合し、2軸混練押出
機(池貝機工社製、商品名:PCM−30)で溶融混練
し、直径3mmのストランドダイから押出し、水冷し、
ペレタイザーでペレット化することにより、液晶樹脂/
ポリプロピレン複合ペレットを得た。この複合ペレット
を破断し、破断面を走査型電子顕微鏡で観察したとこ
ろ、液晶樹脂がフィブリル化し、分散していることが確
かめれた。なお、上記溶融混練及び押出しに際し、バレ
ル温度及び金型温度は、いずれも290℃に設定してお
いた。
Example 8 Polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: EA9A, MI = 0.3 g / 10 min, density: 0.9 g / cm 3 ) and liquid crystal resin (produced by Unitika, trade name: rod run) LC-5000, liquid crystal transition temperature 280
° C) at the ratio shown in Table 7 below, melt-kneaded with a twin-screw kneading extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.), extruded from a 3 mm diameter strand die, and water-cooled.
By pelletizing with a pelletizer, liquid crystal resin /
A polypropylene composite pellet was obtained. The composite pellet was broken, and the fracture surface was observed with a scanning electron microscope. As a result, it was confirmed that the liquid crystal resin was fibrillated and dispersed. In addition, at the time of the above-mentioned melt kneading and extrusion, the barrel temperature and the mold temperature were both set to 290 ° C.

【0117】次に、上記複合ペレットと、シラン架橋性
ポリプロピレン(三菱化学社製、商品名:リンクロンX
PM800HM)と、シラン架橋触媒マスターバッチ
(三菱化学社製、商品名:PZ−10S)と、熱分解型
発泡剤としてのアゾジカルボンアミド(大塚化学社製、
商品名:ユニホールAZ SO−20、分解温度201
℃)とを下記の表8に示す割合で混合し、2軸混練押出
機(池貝機工社製、商品名:PCM−30)で溶融混練
し、リップクリアランス2mm及び幅200mmのシー
トダイから押出し、上下一対の水冷式ロールでサイジン
グすることにより、厚み2mm及び幅180mmの発泡
性シートを得た。このとき、バレル温度及び金型温度
は、いずれも180℃に設定しておいた。
Next, the above-mentioned composite pellet and silane-crosslinkable polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Linklon X)
PM800HM), a silane crosslinking catalyst masterbatch (manufactured by Mitsubishi Chemical Corporation, trade name: PZ-10S), and azodicarbonamide (manufactured by Otsuka Chemical Co., Ltd.) as a pyrolytic foaming agent.
Product name: Unihall AZ SO-20, decomposition temperature 201
° C) at a ratio shown in Table 8 below, and melt-kneaded with a twin-screw kneading extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.), extruded from a sheet die having a lip clearance of 2 mm and a width of 200 mm, and By sizing with a pair of water-cooled rolls, a foamable sheet having a thickness of 2 mm and a width of 180 mm was obtained. At this time, the barrel temperature and the mold temperature were both set at 180 ° C.

【0118】しかる後、上記のようにして得た発泡性シ
ートを、高さ200mmに裁断したものを、180℃に
温度調節された加熱用オーブンに入れ、5分間加熱し、
該発泡性シートを溶融状態とした。続いて、溶融状態に
ある発泡性シートを、図5に示す賦形型を用い、5kg
/cm2 の空気圧の圧縮空気を用いて圧空成形し、しか
る後、成形体をタテ及びヨコ140mmの寸法となるよ
うに切断し、発泡性賦形体を得た。
Thereafter, the foamable sheet obtained as described above was cut into a height of 200 mm, placed in a heating oven controlled at a temperature of 180 ° C., and heated for 5 minutes.
The foamable sheet was in a molten state. Subsequently, the foamable sheet in the molten state was weighed by 5 kg using a shaping die shown in FIG.
Compressed air was formed using compressed air having an air pressure of / cm 2 , and then the molded body was cut into a length and a width of 140 mm to obtain a foamable shaped body.

【0119】上記発泡性賦形体を常温まで放冷し、しか
る後、100℃に熱水に2時間浸漬し、架橋した。架橋
された発泡性賦形体をテトラフルオロエチレン製シート
上に載置し、230℃に温度調節された加熱用オーブン
に入れ、10分間放置し、加熱発泡した。加熱発泡後、
加熱用オーブンから取り出し、放冷し、賦形発泡体を固
化させた。
The foamed shaped body was allowed to cool to room temperature, and then immersed in hot water at 100 ° C. for 2 hours to crosslink. The crosslinked foamable excipient was placed on a tetrafluoroethylene sheet, placed in a heating oven controlled at 230 ° C., left for 10 minutes, and foamed by heating. After heating and foaming
The molded foam was taken out of the heating oven, allowed to cool, and the shaped foam was solidified.

【0120】上記賦形発泡体の曲率半径及び曲率半径の
均等発泡からのズレ、並びに賦形発泡体のタテ、ヨコ及
び高さの各方向における発泡倍率の均等発泡からのズレ
を、図5のA〜Cに示す部分に相当の位置で、実施例1
と同様にして評価した。結果を下記の表10に示す。
The deviation of the radius of curvature and the radius of curvature of the shaped foam from the uniform foaming and the deviation of the foaming ratio of the shaped foam from the uniform foaming in each of the vertical, horizontal and height directions are shown in FIG. In the positions corresponding to the parts shown in FIGS.
The evaluation was performed in the same manner as described above. The results are shown in Table 10 below.

【0121】(比較例10)用いた樹脂組成を、下記の
表7,表8に示すように変更したことを除いては、実施
例8と同様にして賦形発泡体を得、かつ評価した。
Comparative Example 10 A shaped foam was obtained and evaluated in the same manner as in Example 8, except that the resin composition used was changed as shown in Tables 7 and 8 below. .

【0122】(実施例9)ポリプロピレン(三菱化学社
製、商品名:EA9A、MI=0.3g/10分、密度
0.9g/cm3 と、液晶樹脂(ユニチカ社製、商品
名:ロッドランLC−5000、液晶転移温度280
℃)を、下記の表7に示す割合で混合し、2軸混練押出
機(池貝機工社製、商品名:PCM−30)で溶融混練
し、直径3mmのストランドダイから押出し、水冷し、
ペレタイザーでペレット化することにより、液晶樹脂/
ポリプロピレン複合ペレットを得た。この場合、バレル
温度及び金型温度は、いずれも290℃に設定した。ま
た、上記複合ペレットを破断し、破断面を走査型電子顕
微鏡で観察したところ、液晶樹脂がフィブリル化し、分
散していることが認められた。
Example 9 Polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: EA9A, MI = 0.3 g / 10 min, density 0.9 g / cm 3 , liquid crystal resin (produced by Unitika, trade name: Rodrun LC) -5000, liquid crystal transition temperature 280
° C) at the ratio shown in Table 7 below, melt-kneaded with a twin-screw kneading extruder (trade name: PCM-30, manufactured by Ikegai Kiko Co., Ltd.), extruded from a 3 mm diameter strand die, and water-cooled.
By pelletizing with a pelletizer, liquid crystal resin /
A polypropylene composite pellet was obtained. In this case, the barrel temperature and the mold temperature were both set to 290 ° C. The composite pellet was broken, and the fracture surface was observed with a scanning electron microscope. As a result, it was confirmed that the liquid crystal resin was fibrillated and dispersed.

【0123】次に、上記複合ペレットと、シラン架橋性
ポリプロピレン(三菱化学社製、商品名:リンクロンX
PM800HM、溶融温度167℃、MI=10g/1
0分)と、シラン架橋触媒マスターバッチ(三菱化学社
製、商品名:PZ−10S)と、アゾジカルボンアミド
(大塚化学社製、商品名:ユニホームAZ SO−2
0、分解温度201℃)とを下記の表8に示す割合で混
合し、ブロー成形機(日本製鋼社製、品番:JEB−7
形)で溶融混練し、樹脂吐出部が直径50mmの金型か
らパリソン形状に押出し、図6に示すブロー形成型を用
い、賦形した。このとき、バレル及び金型は、いずれも
180℃の温度に設定した。また、ブロー成形に際して
は、空気圧を5kg/cm2 の圧縮空気を用い、ブロー
成形型は25℃に温度調節し、空気吹き込み時間は35
秒とした。
Next, the composite pellets and a silane crosslinkable polypropylene (trade name: LINKRON X, manufactured by Mitsubishi Chemical Corporation)
PM800HM, melting temperature 167 ° C., MI = 10 g / 1
0 minutes), a silane crosslinking catalyst master batch (manufactured by Mitsubishi Chemical Corporation, trade name: PZ-10S), and azodicarbonamide (manufactured by Otsuka Chemical Co., trade name: Uniform AZ SO-2)
0, and a decomposition temperature of 201 ° C.) at a ratio shown in Table 8 below, and a blow molding machine (manufactured by Nippon Steel Corporation, product number: JEB-7)
), And the resin discharge portion was extruded into a parison shape from a mold having a diameter of 50 mm, and was shaped using a blow forming mold shown in FIG. At this time, the barrel and the mold were both set at a temperature of 180 ° C. In the blow molding, compressed air having an air pressure of 5 kg / cm 2 was used, the temperature of the blow mold was adjusted to 25 ° C., and the air blowing time was 35 ° C.
Seconds.

【0124】空気吹き込み後、ブロー成形型を解放し、
発泡性賦形体を取り出した。上記のようにして得た発泡
性賦形体を100℃の熱水に2時間浸漬し、架橋させ
た。
After blowing air, release the blow mold,
The effervescent vehicle was taken out. The foamable shaped body obtained as described above was immersed in hot water at 100 ° C. for 2 hours to crosslink.

【0125】架橋された発泡性賦形体を、テトラフルオ
ロエチレン製シート上に載置し、230℃に温度調節さ
れた加熱用オーブンに入れ、10分間放置し、加熱発泡
させた。加熱発泡後、加熱用オーブンから取り出し、放
冷し、賦形発泡体を固化させた。
The crosslinked foamable shaped body was placed on a sheet made of tetrafluoroethylene, placed in a heating oven adjusted to a temperature of 230 ° C., and allowed to stand for 10 minutes to foam by heating. After the heating and foaming, the foam was taken out of the heating oven, allowed to cool, and the shaped foam was solidified.

【0126】上記のようにして得た賦形発泡体の曲率半
径、曲率半径の均等発泡からのズレ、賦形発泡体のタ
テ、ヨコ及び高さの各方向における発泡倍率の均等発泡
からのズレを、図6のA,Bで示す位置に相当する部分
において、実施例1と同様にして評価した。
The deviation of the radius of curvature and the radius of curvature of the shaped foam obtained as described above from uniform foaming, and the deviation of the foaming ratio of the shaped foam from uniform foaming in each of the vertical, horizontal and height directions. Was evaluated in the same manner as in Example 1 at the portions corresponding to the positions indicated by A and B in FIG.

【0127】(比較例11)用いた樹脂の組成を、下記
の表7及び表8に示すように変更したことを除いては、
実施例9と同様にして賦形発泡体を得、かつ評価した。
(Comparative Example 11) Except that the composition of the resin used was changed as shown in Tables 7 and 8 below,
A shaped foam was obtained and evaluated in the same manner as in Example 9.

【0128】[0128]

【表7】 [Table 7]

【0129】[0129]

【表8】 [Table 8]

【0130】[0130]

【表9】 [Table 9]

【0131】[0131]

【表10】 [Table 10]

【0132】表7〜表10から明らかなように、液晶樹
脂を用いていない比較例6や液晶樹脂の配合割合が低す
ぎた比較例7、熱分解型発泡剤の配合割合が少なすぎる
比較例8及び多すぎる比較例9に比べ、実施例6,7に
よれば、曲率半径の均等発泡からのズレが著しく小さく
なり、かつ賦形発泡体におけるタテ方向、ヨコ方向及び
高さ方向の各方向における均等発泡からのズレも著しく
小さくなることがわかる。
As is clear from Tables 7 to 10, Comparative Example 6 in which no liquid crystal resin was used, Comparative Example 7 in which the compounding ratio of the liquid crystal resin was too low, and Comparative Example in which the compounding ratio of the thermal decomposition type foaming agent was too small. According to Examples 6 and 7, as compared with Comparative Example 8 and too many Comparative Examples 9, the deviation from the uniform foaming of the radius of curvature was significantly reduced, and each of the shaped foam in the vertical direction, the horizontal direction, and the height direction. It can be seen that the deviation from the uniform foaming in Example 1 was also significantly reduced.

【0133】同様に、液晶樹脂を用いていない比較例6
に対し、対応する実施例8において、曲率半径の均等発
泡からのズレが著しく小さく、賦形発泡体のタテ、ヨコ
及び高さの各方向における均等発泡からのズレも非常に
小さいことがわかる。
Similarly, Comparative Example 6 using no liquid crystal resin
On the other hand, in the corresponding Example 8, the deviation of the radius of curvature from the uniform foaming is remarkably small, and the deviation of the shaped foam from the uniform foaming in each of the vertical, horizontal, and height directions is very small.

【0134】さらに、液晶樹脂を用いていない比較例1
1に比べて、対応の実施例9においても、賦形発泡体曲
部の曲率半径の均等発泡からのズレ及び賦形発泡体のタ
テ、ヨコ及び高さの各方向における均等発泡からのズレ
が非常に小さくなっていることがわかる。
Further, Comparative Example 1 in which no liquid crystal resin was used
Compared with Example 1, in the corresponding Example 9, the deviation from the uniform foaming of the radius of curvature of the shaped foam curved part and the deviation from the uniform foaming in the vertical, horizontal, and height directions of the shaped foam are also different. It turns out that it has become very small.

【0135】[0135]

【発明の効果】以上のように、請求項1,4〜6に記載
の各発明に係る熱可塑性賦形発泡体の製造方法では、フ
ィブリル状液晶樹脂、熱可塑性樹脂及び熱分解型発泡剤
を上記特定の割合で含む発泡性樹脂組成物を賦形した
後、請求項1に記載の発明では押出し成形により、請求
項4に記載の発明では、プレス成形により、請求項5に
記載の発明では、真空もしくは圧空成形により、請求項
6に記載の発明では、ブロー成形により、それぞれ、発
泡性賦形体を得、得られた発泡性賦形体を加熱発泡させ
ることにより賦形発泡体を得ている。
As described above, in the method for producing a thermoplastic shaped foam according to each of the first to fourth aspects of the present invention, a fibril-like liquid crystal resin, a thermoplastic resin and a pyrolytic foaming agent are used. After shaping the foamable resin composition containing the above specific ratio, the invention according to claim 1 employs extrusion molding, the invention according to claim 4 employs press molding, and the invention according to claim 5 employs press molding. In the invention according to claim 6, the foamable molded body is obtained by blow molding or vacuum or pressure forming, and the obtained foamable molded body is heated and foamed to obtain a molded foam. .

【0136】また、請求項2に記載の発明では、熱可塑
性樹脂、液晶樹脂及び熱分解型発泡剤を含む発泡性樹脂
組成物を1次発泡させるに際し、液晶樹脂をフィブリル
化し、発泡性賦形体を得、該発泡性賦形体を加熱するこ
とにより賦形発泡体を得ている。
According to the second aspect of the present invention, when the foamable resin composition containing a thermoplastic resin, a liquid crystal resin and a pyrolytic foaming agent is primarily foamed, the liquid crystal resin is fibrillated to form a foamable shaped body. And heating the foamable shaped body to obtain a shaped foam.

【0137】また、請求項3に記載の発明では、押出し
に際しての発泡性樹脂組成物の温度を、液晶樹脂の液晶
転移点を超える温度とするため、液晶樹脂が発泡性樹脂
組成物に確実に溶融され、押出し成形を円滑に行うこと
ができ、かつ300℃以下の温度であるため、フィブリ
ル化した液晶樹脂が、高いアスペクト比を保持したまま
直ちに冷却され、従ってアスペクト比が高い液晶樹脂で
効果的に補強された賦形発泡体を得ることができる。
In the third aspect of the present invention, the temperature of the foamable resin composition at the time of extrusion is set to a temperature exceeding the liquid crystal transition point of the liquid crystal resin. Since the molten resin can be smoothly extruded and has a temperature of 300 ° C. or less, the fibrillated liquid crystal resin is immediately cooled while maintaining a high aspect ratio, and thus is effective with a liquid crystal resin having a high aspect ratio. Thus, it is possible to obtain a shaped foam which is reinforced in a natural manner.

【0138】従って、請求項1〜6に記載の発明に係る
製造方法では、異形形状の発泡性賦形体の発泡時の伸長
応力が増大し、発泡時のセル膜の破れが生じ難く、発泡
安定性が高められるので、発泡性賦形体段階で賦形され
た部分の残存応力に発泡を阻害されることなく、発泡性
賦形体の形状を維持したまま三次元的に均等に発泡す
る。よって、発泡中の形状保持性が高いため、目的とす
る形状の異形発泡体であって、高発泡倍率の異形発泡体
を提供することが可能となる。
Therefore, in the manufacturing method according to the first to sixth aspects of the present invention, the elongation stress at the time of foaming of the deformable foamed shaped body is increased, the cell membrane is hardly broken at the time of foaming, and the foaming stability is improved. Since the foamability is enhanced, foaming is uniformly performed three-dimensionally while maintaining the shape of the foamable shaped body without being hindered by foaming due to the residual stress of the portion shaped in the foamable shaped body stage. Therefore, since the shape retention during foaming is high, it is possible to provide a deformed foam having a desired shape and a high expansion ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で発泡性賦形体を得るのに用いた波板
形状の金型の打ち出し口側からみた正面図。
FIG. 1 is a front view of a corrugated mold used to obtain a foamable shaped body in Example 1, as viewed from the ejection opening side.

【図2】(a)〜(c)は、それぞれ、実施例5で用い
たプレス型の上型の平面図、側面断面図及び正面断面
図。
FIGS. 2A to 2C are a plan view, a side sectional view, and a front sectional view of an upper die of a press die used in Example 5, respectively.

【図3】(a)〜(c)は、それぞれ、実施例5で用い
たプレス型の下型の平面図、側面断面図及び正面断面
図。
FIGS. 3A to 3C are a plan view, a side cross-sectional view, and a front cross-sectional view of a lower die of a press die used in Example 5, respectively.

【図4】実施例5で得た賦形発泡体を示す斜視図。FIG. 4 is a perspective view showing a shaped foam obtained in Example 5.

【図5】(a)〜(c)は、実施例8で用いた圧空成形
後の賦形型を説明するための平面図、側面断面図及び正
面断面図。
FIGS. 5A to 5C are a plan view, a side cross-sectional view, and a front cross-sectional view for explaining a forming die after air pressure molding used in Example 8.

【図6】(a)〜(c)は、実施例9で用いたブロー成
形用金型を示す平面図、側面断面図及び正面断面図。
FIGS. 6A to 6C are a plan view, a side cross-sectional view, and a front cross-sectional view illustrating a blow molding die used in Example 9. FIGS.

【符号の説明】[Explanation of symbols]

1…異形の金型 2…賦形発泡体 1. Mold of irregular shape 2. Shaped foam

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フィブリル状の液晶樹脂0.5〜30重
量%と、熱可塑性樹脂70〜99.5重量%とを混合し
てなる樹脂組成物100重量部に対し、熱分解型発泡剤
0.5〜30重量部を混合してなる発泡性樹脂組成物
を、熱可塑性樹脂の溶融温度以上かつ熱分解型発泡剤の
分解温度未満の温度で異形の金型から押出した後熱分解
型発泡剤の分解温度以上に加熱することにより、賦形さ
れた発泡体を得ることを特徴とする熱可塑性賦形発泡体
の製造方法。
1. A thermal decomposition type foaming agent is added to 100 parts by weight of a resin composition obtained by mixing 0.5 to 30% by weight of a fibril liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin. 0.5 to 30 parts by weight of a foamable resin composition is extruded from a deformed mold at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent. A method for producing a thermoplastic shaped foam, characterized in that a shaped foam is obtained by heating to a temperature not lower than the decomposition temperature of the agent.
【請求項2】 液晶樹脂0.5〜30重量%と、熱可塑
性樹脂70〜99.5重量%とを混合してなる樹脂組成
物100重量部に対し、熱分解型発泡剤0.5〜30重
量部とを混合してなる発泡性樹脂組成物を、熱分解型発
泡剤の分解温度以上かつ液晶樹脂の液晶転移点以上の温
度で異形の金型から押出し、しかる後、熱分解型発泡剤
の分解温度以上に再度加熱することにより賦形された発
泡体を得ることを特徴とする熱可塑性賦形発泡体の製造
方法。
2. A heat-decomposable foaming agent of 0.5 to 30% by weight is added to 100 parts by weight of a resin composition obtained by mixing 0.5 to 30% by weight of a liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin. 30 parts by weight of the foamable resin composition is extruded from a deformed mold at a temperature equal to or higher than the decomposition temperature of the thermal decomposition type foaming agent and higher than the liquid crystal transition point of the liquid crystal resin. A method for producing a thermoplastic shaped foam, comprising obtaining a shaped foam by reheating to a temperature not lower than the decomposition temperature of the agent.
【請求項3】 前記発泡性樹脂組成物を異形の金型から
押出すに際し、熱分解型発泡剤の分解温度以上であっ
て、前記液晶樹脂の転移点を超えかつ300℃以下の温
度で押出すことを特徴とする、請求項2に記載の熱可塑
性賦形発泡体の製造方法。
3. Extrusion of the foamable resin composition from a deformed mold at a temperature not lower than the decomposition temperature of the thermal decomposition type foaming agent but exceeding the transition point of the liquid crystal resin and not higher than 300 ° C. The method for producing a thermoplastic shaped foam according to claim 2, wherein the foam is discharged.
【請求項4】 フィブリル状の液晶樹脂0.5〜30重
量%と、熱可塑性樹脂70〜99.5重量%とを含む樹
脂組成物100重量部に対し、熱分解型発泡剤0.5〜
30重量部を混合してなるシート状の発泡性樹脂組成物
を、熱可塑性樹脂の溶融温度以上かつ熱分解型発泡剤の
分解温度未満の温度でプレス成形により賦形し、しかる
後、熱分解型発泡剤の分解温度以上に加熱することによ
り、賦形された発泡体を得ることを特徴とする熱可塑性
賦形発泡体の製造方法。
4. A thermal decomposition type foaming agent of 0.5 to 30% by weight based on 100 parts by weight of a resin composition containing 0.5 to 30% by weight of a fibril-like liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin.
A sheet-like foamable resin composition obtained by mixing 30 parts by weight is shaped by press molding at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent. A method for producing a thermoplastic shaped foam, characterized in that a shaped foam is obtained by heating to a temperature not lower than the decomposition temperature of a mold blowing agent.
【請求項5】 フィブリル状の液晶樹脂0.5〜30重
量%と、熱可塑性樹脂70〜99.5重量%とを含む樹
脂組成物100重量部に対し、熱分解型発泡剤0.5〜
30重量部を混合してなるシート状の発泡性樹脂組成物
を、熱可塑性樹脂の溶融温度以上かつ熱分解型発泡剤の
分解温度未満の温度で真空成形または圧空成形により賦
形した後、熱分解型発泡剤の分解温度以上に加熱するこ
とにより、賦形された発泡体を得ることを特徴とする熱
可塑性賦形発泡体の製造方法。
5. A thermally decomposable foaming agent of 0.5 to 30% by weight per 100 parts by weight of a resin composition containing 0.5 to 30% by weight of a fibril liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin.
After forming the sheet-shaped foamable resin composition obtained by mixing 30 parts by weight at a temperature not lower than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent, by vacuum forming or pressure forming, heat is applied. A method for producing a thermoplastic shaped foam, wherein a shaped foam is obtained by heating the foam to a temperature equal to or higher than the decomposition temperature of the decomposable foaming agent.
【請求項6】 フィブリル状の液晶樹脂0.5〜30重
量%と、熱可塑性樹脂70〜99.5重量%とを含む樹
脂組成物100重量部に対し、熱分解型発泡剤0.5〜
30重量部を混合してなる発泡性樹脂組成物を、熱可塑
性樹脂の溶融温度以上かつ熱分解型発泡剤の分解温度未
満の温度でパリソン状に押出し、ブロー成形によって得
た異形賦形体を熱分解型発泡剤の分解温度以上に加熱す
ることにより、賦形された発泡体を得ることを特徴とす
る熱可塑性賦形発泡体の製造方法。
6. A thermal decomposition type foaming agent of 0.5 to 30% by weight based on 100 parts by weight of a resin composition containing 0.5 to 30% by weight of a fibril liquid crystal resin and 70 to 99.5% by weight of a thermoplastic resin.
The foamable resin composition obtained by mixing 30 parts by weight is extruded in a parison shape at a temperature equal to or higher than the melting temperature of the thermoplastic resin and lower than the decomposition temperature of the pyrolytic foaming agent, and the deformed shaped body obtained by blow molding is heated. A method for producing a thermoplastic shaped foam, wherein a shaped foam is obtained by heating the foam to a temperature equal to or higher than the decomposition temperature of the decomposable foaming agent.
JP10077602A 1997-12-24 1998-03-25 Production of molded thermoplastic foam Pending JPH11240975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10077602A JPH11240975A (en) 1997-12-24 1998-03-25 Production of molded thermoplastic foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35511997 1997-12-24
JP9-355119 1997-12-24
JP10077602A JPH11240975A (en) 1997-12-24 1998-03-25 Production of molded thermoplastic foam

Publications (1)

Publication Number Publication Date
JPH11240975A true JPH11240975A (en) 1999-09-07

Family

ID=26418676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10077602A Pending JPH11240975A (en) 1997-12-24 1998-03-25 Production of molded thermoplastic foam

Country Status (1)

Country Link
JP (1) JPH11240975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114917A (en) * 1999-10-20 2001-04-24 T S Tec Kk Foamed substrate for vehicle, its preparation method and sheet for vehicle
JP2002159093A (en) * 2000-11-16 2002-05-31 Kyowa Leather Cloth Co Ltd Foamed speaker diaphragm edge material and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114917A (en) * 1999-10-20 2001-04-24 T S Tec Kk Foamed substrate for vehicle, its preparation method and sheet for vehicle
JP2002159093A (en) * 2000-11-16 2002-05-31 Kyowa Leather Cloth Co Ltd Foamed speaker diaphragm edge material and its producing method

Similar Documents

Publication Publication Date Title
KR960704969A (en) A compatibilized carbon black and a process and a method for using
JP3571352B2 (en) Foamable synthetic resin composition, synthetic resin foam, and method for producing synthetic resin foam
CA2486159A1 (en) To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
JPS61215631A (en) Propylene random copolymer resin particle and its production
CA2628473C (en) Microcellular foam of thermoplastic resin prepared with die having improved cooling property and method for preparing the same
JP2000017079A (en) Expanded particle of uncrosslinked polyethylenic resin and its molding
CN112194834A (en) High-temperature-shrinkage-resistant polyethylene foamed sheet and preparation method thereof
JPH11240975A (en) Production of molded thermoplastic foam
JPH11279307A (en) Thermoplastic foamed article
JP3531922B2 (en) Method for producing molded article of expanded aliphatic polyester resin particles
JPS61113627A (en) Foamed particle of high-density polyethylene resin and production thereof
JP3792371B2 (en) Method for producing polyolefin resin foam
JPH07330935A (en) Crystalline polyolefin foam
JP3588545B2 (en) Method for producing polyolefin resin foam
JP2000034360A (en) Production of foamed article of thermoplastic resin
JPH1170537A (en) Thermopastic resin foam and its manufacture
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
CN116656051B (en) Foaming polypropylene material for bumper energy absorption block and preparation method thereof
JPH10316786A (en) Foamed sheet and production of press molding
JPH07138397A (en) Foamed propylene resin molding and its preparation
JP3302806B2 (en) Foam molding material and method for producing foam molding
JP2000117805A (en) Manufacture of thermoplastic resin foam
JP2001098100A (en) Thermoplastic resin foam and method for production thereof
JPH1112381A (en) Thermoplastic resin-based foam
JP2000006286A (en) Manufacture of thermoplastic resin foam