JPH11237635A - Liquid crystal display panel and its production - Google Patents

Liquid crystal display panel and its production

Info

Publication number
JPH11237635A
JPH11237635A JP3848498A JP3848498A JPH11237635A JP H11237635 A JPH11237635 A JP H11237635A JP 3848498 A JP3848498 A JP 3848498A JP 3848498 A JP3848498 A JP 3848498A JP H11237635 A JPH11237635 A JP H11237635A
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel
substrates
display panel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3848498A
Other languages
Japanese (ja)
Other versions
JP3395884B2 (en
Inventor
Hirobumi Wakemoto
博文 分元
Midori Tsukane
みどり 塚根
Yoneji Takubo
米治 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3848498A priority Critical patent/JP3395884B2/en
Publication of JPH11237635A publication Critical patent/JPH11237635A/en
Application granted granted Critical
Publication of JP3395884B2 publication Critical patent/JP3395884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the leak of light around beads, to enable permit high- contrast display and to improve the uniformity of cell gaps and orientations by forming projections to form the gaps of liquid crystal cells, and performing liquid crystal orienting processing onto the surface of a substrate on the side where the projections exist by irradiating the surface with polarized ultraviolet rays. SOLUTION: Projections 18 composed of acrylic resin are formed on a storage capacitor 16 by photolithography. In this case, the height (thickness) of the projection 18 made of the acrylic resin is 3 μm but the height of the projection 18 can be adjusted corresponding to a required cell gap. Then, the lengthwise direction of pixel electrode wiring 14 and common electrode wiring 13 is irradiated with ultraviolet rays having a polarizing axis at 80 deg., for example, and a liquid crystal orienting processing is performed. Since a liquid crystal molecule is oriented while being deviated from the polarizing axis of the ultraviolet light at 90 deg. by this orienting processing, the long axis of the liquid crystal molecule is oriented while forming the angle of 10 deg. with the lengthwise direction of pixel electrode wiring 14 and common electrode wiring 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板面に略平行な
電界を加えることによって液晶を駆動するIPS(イオ
ン・プレーン・スイッチング)方式の液晶表示パネル
と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel of an IPS (ion plane switching) type which drives a liquid crystal by applying a substantially parallel electric field to a substrate surface, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、薄膜トランジスタ(TFT)を用
いたアクティブマトリクス型液晶ディスプレイは、カム
コーダ用のディスプレイあるいはノートパソコン用のデ
ィスプレイなど、種々の分野において利用されており、
大きな市場を形成してきている。
2. Description of the Related Art In recent years, active matrix type liquid crystal displays using thin film transistors (TFTs) have been used in various fields such as displays for camcorders and displays for notebook computers.
It is forming a big market.

【0003】特に、最近、パソコンあるいはワークステ
ーション用のモニタとしての応用展開が期待されてお
り、対角13〜14インチ以上の画面サイズの要求が高
まっている。
In particular, recently, application development as a monitor for a personal computer or a work station is expected, and a demand for a screen size of 13 to 14 inches or more on a diagonal is increasing.

【0004】TFT液晶ディスプレイの表示モードとし
ては、現状では捻れネマチック(TN)モードが主流と
なっているが、大画面表示用途には、特開平6−160
878号公報などに記載されているように、基板面に略
平行な電界を印加し、基板面に対して平行に液晶分子を
動かすIPSモードのものが、その非常に広い視野角特
性により、期待を集めている。
At present, the twisted nematic (TN) mode is mainly used as the display mode of the TFT liquid crystal display.
As described in, for example, Japanese Patent Application Laid-Open No. 878, the IPS mode in which an electric field substantially parallel to the substrate surface is applied and liquid crystal molecules are moved in parallel to the substrate surface is expected due to its extremely wide viewing angle characteristics. Are gathering.

【0005】IPSモードにおける液晶分子の動きを、
図3に模式的に示したが、IPSモードに係るTFT液
晶ディスプレイの構成は、上下対向する基板1,2に画
素電極3および共通電極4を設け、各基板1,2の外側
に偏光板5,6を設置したものであり、図3(a)に示
すように、両電極3,4に電源電圧7を加えることによ
って、基板1,2面に略平行に加えられた電界により液
晶分子8の方向が、図3(b)に示すような状態に変位
する。このように液晶分子8が動作することにおいて、
従来のTNモードと多くの点で異なるものである。
[0005] The movement of liquid crystal molecules in the IPS mode is
As schematically shown in FIG. 3, the configuration of the TFT liquid crystal display according to the IPS mode is such that a pixel electrode 3 and a common electrode 4 are provided on vertically opposed substrates 1 and 2, and a polarizing plate 5 is provided outside each of the substrates 1 and 2. As shown in FIG. 3 (a), when a power supply voltage 7 is applied to both electrodes 3 and 4, liquid crystal molecules 8 are applied by an electric field applied substantially parallel to the surfaces of substrates 1 and 2. Is displaced to a state as shown in FIG. When the liquid crystal molecules 8 operate as described above,
It differs from the conventional TN mode in many respects.

【0006】従来より液晶パネルのギャップ形成は、直
径数μmの樹脂またはガラスから成る球状のスペーサビ
ーズを基板上に分散し、貼り合わせることで行われてい
る。TN方式は、通常、ノーマリーホワイト(NW)モ
ードで使用されるため、黒表示時のビーズ周囲の光漏れ
は、あまり問題とならない。これは、電界が加わった状
態の黒表示時には、ビーズ周辺の液晶分子もかなり立ち
上がっているためである。また、液晶の配向処理はポリ
イミドなどの配向膜を基板表面に形成し、バフ布で一方
向に擦るラビング処理で行われている。
Conventionally, the formation of a gap in a liquid crystal panel has been performed by dispersing spherical spacer beads made of resin or glass having a diameter of several μm on a substrate and bonding them. Since the TN method is usually used in a normally white (NW) mode, light leakage around the beads during black display does not cause much problem. This is because the liquid crystal molecules around the beads also rise considerably during black display with the electric field applied. Further, the alignment treatment of the liquid crystal is performed by a rubbing treatment in which an alignment film such as polyimide is formed on the substrate surface and rubbed in one direction with a buff cloth.

【0007】[0007]

【発明が解決しようとする課題】一方、IPS方式は電
界を加えない状態で黒表示を行うノーマリーブラック
(NB)モードであるため、ビーズ周囲の液晶分子がビ
ーズ表面の配向規制力の影響を直接受け、ビーズ周囲に
比較的大きな光漏れが発生し、コントラスト低下を引き
起こす。またIPS方式はTN方式と比べて高精度なギ
ャップコントロールとギャップ均一性が要求される。こ
の要求を満足するためには、TN方式に比べて単位面積
当たりに多くのビーズを分散する必要がある。このよう
なビーズ分散密度の増大は、単位面積当たりの光漏れを
さらに大きくし、コントラストを低下させる要因とな
る。
On the other hand, since the IPS mode is a normally black (NB) mode in which black display is performed without applying an electric field, the liquid crystal molecules around the beads are affected by the alignment regulating force on the bead surface. Directly received, relatively large light leakage occurs around the beads, causing a decrease in contrast. In addition, the IPS method requires more accurate gap control and gap uniformity than the TN method. In order to satisfy this requirement, it is necessary to disperse more beads per unit area than in the TN method. Such an increase in the bead dispersion density further increases light leakage per unit area and causes a reduction in contrast.

【0008】このようなビーズ周囲の光漏れを防ぐため
には、非表示部に選択的にスペーサーをパターニング形
成することが提案されているが、厚みが数μmのスペー
サーが存在するため、従来のラビングによる配向処理で
は、スペーサにおける段差形状が原因となる配向むら
(ラビング筋むら)が発生し、配向均一性が得られない
という問題があった。
In order to prevent such light leakage around the beads, it has been proposed to selectively form a spacer in a non-display area. However, since a spacer having a thickness of several μm is present, a conventional rubbing method is used. In the alignment treatment by (1), alignment unevenness (rubbing stripe unevenness) due to the stepped shape of the spacer occurs, and there is a problem that alignment uniformity cannot be obtained.

【0009】本発明の目的は、従来のようなビーズ周囲
の光漏れがなく、高コントラスト表示が可能であり、か
つセルギャップおよび配向の均一性にも優れた液晶表示
パネルおよびその製造方法を提供することにある。
An object of the present invention is to provide a liquid crystal display panel which does not leak light around the beads as in the prior art, enables high contrast display, and has excellent cell gap and uniformity of alignment, and a method of manufacturing the same. Is to do.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る液晶表示パネルは、少なくとも一方が
透明な一対の基板,該基板間に挟持され配向した誘電率
異方性と屈折率異方性とを有する液晶組成物層,偏光手
段,マトリクス状に配置された複数の画素,画素ごとに
備えられ画素電極,信号配線電極,走査配線電極に接続
された薄膜トランジスタ素子,共通電極,前記画素の光
透過率または反射率を変化させる電圧信号波形を印加す
る手段を有し、前記画素電極と前記共通電極との間に基
板面に略平行な電界を印加する手段を設けてなる液晶表
示パネルにおいて、前記一対の基板の少なくとも一方に
液晶セルのギャップを形成するための突起を形成し、少
なくとも前記突起が存在する側の基板表面に偏光紫外光
照射を行って液晶配向処理を施したことを特徴とし、こ
の構成によって、突起によりギャップを形成するため、
従来のようなビーズ周囲の光漏れがなく、高コントラス
ト表示が可能であり、しかも光配向性の材料に偏光した
紫外光を照射することにより、一軸配向の配向膜が形成
されるため、セルギャップおよび配向の均一性に優れた
ものになる。
In order to achieve the above object, a liquid crystal display panel according to the present invention comprises a pair of transparent substrates, at least one of which has a dielectric anisotropy and a refractive index sandwiched between the substrates. A liquid crystal composition layer having anisotropy, a polarizing means, a plurality of pixels arranged in a matrix, a thin film transistor element provided for each pixel and connected to a pixel electrode, a signal wiring electrode, a scanning wiring electrode, a common electrode, A liquid crystal display comprising: means for applying a voltage signal waveform that changes the light transmittance or reflectance of a pixel; and means for applying an electric field substantially parallel to a substrate surface between the pixel electrode and the common electrode. In the panel, a projection for forming a gap of a liquid crystal cell is formed on at least one of the pair of substrates, and at least the substrate surface on the side where the projection is present is irradiated with polarized ultraviolet light to form a liquid crystal display. Characterized in that subjected to a treatment, by this arrangement, in order to form a gap by the projections,
There is no light leakage around the beads as in the past, high-contrast display is possible, and a uniaxially oriented film is formed by irradiating polarized ultraviolet light to a photo-alignable material, which results in a cell gap. And it becomes what was excellent in the uniformity of orientation.

【0011】また本発明に係る液晶表示パネルの製造方
法は、前記液晶表示パネルを製造するため、基板の少な
くとも一方に液晶セルのギャップを形成するための突起
をフォトリソグラフ法によりパターン形成する工程と、
少なくとも前記突起が存在する側の基板表面に対して偏
光紫外光を照射して配向処理を行う工程を有することを
特徴とする。
The method for manufacturing a liquid crystal display panel according to the present invention includes the steps of: forming a projection for forming a gap of a liquid crystal cell on at least one of the substrates by photolithography in order to manufacture the liquid crystal display panel; ,
The method includes a step of irradiating polarized ultraviolet light to at least the substrate surface on the side where the protrusions are present to perform an alignment treatment.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、少なくとも一方が透明な一対の基板,該基板間に挟
持され配向した誘電率異方性と屈折率異方性とを有する
液晶組成物層,偏光手段,マトリクス状に配置された複
数の画素,画素ごとに備えられて画素電極と信号配線電
極と走査配線電極に接続された薄膜トランジスタ素子,
共通電極,前記画素の光透過率または反射率を変化させ
る電圧信号波形を印加する手段を有し、前記画素電極と
前記共通電極との間に基板面に略平行な電界を印加する
手段を設けてなる液晶表示パネルにおいて、前記一対の
基板の少なくとも一方に液晶セルのギャップを形成する
ための突起を形成し、少なくとも前記突起が存在する側
の基板表面に偏光紫外光照射を行って配向処理を施した
ことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention has a pair of transparent substrates, at least one of which has a dielectric anisotropy and a refractive index anisotropy sandwiched between the substrates. A liquid crystal composition layer, a polarizing means, a plurality of pixels arranged in a matrix, a thin film transistor element provided for each pixel and connected to a pixel electrode, a signal wiring electrode, and a scanning wiring electrode;
A common electrode, means for applying a voltage signal waveform for changing the light transmittance or reflectance of the pixel, and means for applying an electric field substantially parallel to the substrate surface between the pixel electrode and the common electrode; In the liquid crystal display panel, a projection for forming a gap of a liquid crystal cell is formed on at least one of the pair of substrates, and at least the substrate surface on the side where the projection is present is irradiated with polarized ultraviolet light to perform an alignment process. It is characterized by having been performed.

【0013】請求項2に記載の発明は、少なくとも一方
が透明な一対の基板,該基板間に挟持され配向した誘電
率異方性と屈折率異方性とを有する液晶組成物層,偏光
手段,マトリクス状に配置された複数の画素,画素ごと
に備えられて画素電極と信号配線電極と走査配線電極に
接続された薄膜トランジスタ素子,共通電極,前記画素
の光透過率または反射率を変化させる電圧信号波形を印
加する手段を有し、前記画素電極と前記共通電極との間
に基板面に略平行な電界を印加する手段を設けてなる液
晶表示パネルを製造する製造方法において、前記基板の
少なくとも一方に液晶セルのギャップを形成するための
突起をフォトリソグラフ法によりパターン形成する工程
と、少なくとも前記突起が存在する側の基板表面に対し
て偏光紫外光を照射して配向処理を行う工程を有するこ
とを特徴とする。
According to a second aspect of the present invention, there is provided a liquid crystal composition layer having a dielectric anisotropy and a refractive index anisotropy which are sandwiched between at least one of the pair of substrates, and oriented between the substrates. A plurality of pixels arranged in a matrix, a thin film transistor element provided for each pixel and connected to the pixel electrode, the signal wiring electrode, and the scanning wiring electrode, a common electrode, and a voltage for changing the light transmittance or reflectance of the pixel A manufacturing method for manufacturing a liquid crystal display panel, comprising: means for applying a signal waveform; and means for applying an electric field substantially parallel to a substrate surface between the pixel electrode and the common electrode. On one side, a step of patterning projections for forming a gap of the liquid crystal cell by photolithography, and irradiating polarized ultraviolet light to at least the substrate surface on the side where the projections are present. It characterized by having a step of performing an alignment process by.

【0014】本発明の液晶表示パネルおよびその製造方
法において、セルギャップを形成するための突起は、T
FTアレイ基板側に形成しても、対向基板側に形成して
も、あるいは両側の基板に形成してもかまわない。しか
しプロセス的にはどちらか一方の基板に形成する方が有
利である。
In the liquid crystal display panel and the method of manufacturing the same according to the present invention, the projection for forming the cell gap has a thickness of T.
It may be formed on the FT array substrate side, on the opposite substrate side, or on both sides of the substrate. However, in terms of process, it is more advantageous to form it on one of the substrates.

【0015】また前記突起は、コントラストおよびパネ
ルの光透過率の点を考慮すれば、非表示領域に配置する
ことが好ましい。つまりTFTアレイ基板側では配線
上,蓄積容量上,トランジタ上などに、あるいは対向基
板(一般的にはカラーフィルター基板)側ではブラック
マトリクス上に配置することが好ましい。
The projections are preferably arranged in the non-display area in consideration of the contrast and the light transmittance of the panel. That is, it is preferable that the TFT array substrate is arranged on a wiring, a storage capacitor, a transistor, or the like, or the counter substrate (generally, a color filter substrate) is arranged on a black matrix.

【0016】さらに前記突起は、印刷法などによって形
成しても良いが、厚み,形状,位置精度の制御を考慮す
れば、フォトリソグラフ法によって形成することが好ま
しい。突起の材質は、無機物でも有機物でもよいが、絶
縁体であることが好ましい。プロセス的には、アクリル
系樹脂等の感光性ポリマーを使用することが最も容易で
ある。
The protrusions may be formed by a printing method or the like, but are preferably formed by a photolithographic method in consideration of controlling the thickness, shape, and positional accuracy. The material of the projections may be inorganic or organic, but is preferably an insulator. In terms of process, it is easiest to use a photosensitive polymer such as an acrylic resin.

【0017】また前記配向膜としては、一般に光反応性
の材料を用いることが可能である。例えば、光分解性の
ポリマー材料または光架橋型のポリマー材料などであ
る。光配向性の材料に偏光した紫外光を照射することに
より、偏光方向に遷移モーメントを有する部分の選択的
光反応が起こり、一軸配向が形成される。本発明におい
て、偏光紫外光による液晶配向処理は、両側の基板に対
して行っても、あるいは片側の基板のみに対して行って
もよいが、片側の場合には突起を形成した基板側に行う
必要がある。
In general, a photoreactive material can be used as the alignment film. For example, a photodegradable polymer material or a photocrosslinkable polymer material is used. By irradiating the photoalignable material with polarized ultraviolet light, a selective photoreaction occurs in a portion having a transition moment in the polarization direction, and a uniaxial orientation is formed. In the present invention, the liquid crystal alignment treatment by polarized ultraviolet light may be performed on the substrates on both sides, or may be performed only on one substrate, but in the case of one side, it is performed on the substrate side on which the protrusions are formed. There is a need.

【0018】以下、本発明の一実施形態を図面に基づい
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0019】本実施形態として、画面の対角15.2イ
ンチ,アスペクト比16:9,解像度が(縦768)×
(横1364)の条件のRGBのIPSモードTFT液
晶パネルを以下のようにして作製した。図1は本実施形
態におけるパネルの画素部のアレイ形状の平面構造を表
す模式図、図2は図1のパネルにおける断面構造を表す
模式図である。
In this embodiment, the screen has a diagonal of 15.2 inches, an aspect ratio of 16: 9, and a resolution of (vertical 768) .times.
An RGB IPS mode TFT liquid crystal panel under the conditions of (horizontal 1364) was manufactured as follows. FIG. 1 is a schematic diagram showing a planar structure of an array shape of a pixel portion of the panel in the present embodiment, and FIG. 2 is a schematic diagram showing a cross-sectional structure of the panel of FIG.

【0020】図1,図2において、11と13はそれぞ
れ走査電極配線と共通電極配線を示しており、本実施形
態では、両電極配線11,13はアルミニウムを主成分
とする金属薄膜を成膜し、図に示す形状をフォトリソグ
ラフ法を用いて同一平面上に形成した。使用する金属材
料は配線抵抗の低い金属が望ましいが、特にアルミニウ
ム系金属に限定する必要はなく、また単層膜であっても
多層膜であってもよい。このように両電極配線11,1
3を形成した後、絶縁膜19として前記アルミニウム膜
の陽極酸化層と窒化珪素(SiNx)を積層し、半導体
層としてアモルファスシリコンを積層した後、共通電極
配線13上の陽極酸化層と窒化珪素層の一部を取り除
き、その後、スパッタリング法によりアルミニウム/チ
タン(Al/Ti)の2層を堆積させ、ドライエッチン
グにより信号電極配線12をおよび画素電極配線14を
形成した。
1 and 2, reference numerals 11 and 13 denote a scanning electrode wiring and a common electrode wiring, respectively. In this embodiment, both electrode wirings 11 and 13 are formed by forming a metal thin film mainly composed of aluminum. Then, the shape shown in the figure was formed on the same plane by using a photolithographic method. The metal material to be used is desirably a metal having a low wiring resistance. However, it is not particularly limited to an aluminum-based metal, and may be a single-layer film or a multilayer film. Thus, both electrode wirings 11, 1
3 is formed, an anodic oxide layer of the aluminum film and silicon nitride (SiN x ) are stacked as an insulating film 19, and amorphous silicon is stacked as a semiconductor layer. After removing a part of the layer, two layers of aluminum / titanium (Al / Ti) were deposited by a sputtering method, and the signal electrode wiring 12 and the pixel electrode wiring 14 were formed by dry etching.

【0021】15はスイッチング素子である薄膜トラン
ジスタ(TFT)を示しており、本実施形態では、画素
電極配線14の線幅は5μm、画素電極配線14と共通
電極配線13の間隔は12μmとした。また画素電極配
線14と走査電極配線11の間で蓄積容量16を形成し
た。本実施形態では、蓄積容量16は対応する1ライン
前の走査電極配線11との間で形成したが、1ライン後
の走査電極配線11または共通電極配線13との間で形
成してもよい。
Reference numeral 15 denotes a thin film transistor (TFT) as a switching element. In this embodiment, the line width of the pixel electrode wiring 14 is 5 μm, and the distance between the pixel electrode wiring 14 and the common electrode wiring 13 is 12 μm. Further, a storage capacitor 16 was formed between the pixel electrode wiring 14 and the scanning electrode wiring 11. In the present embodiment, the storage capacitor 16 is formed between the corresponding scanning electrode wiring 11 one line before, but may be formed between the scanning electrode wiring 11 or the common electrode wiring 13 one line later.

【0022】さらに絶縁層17として窒化珪素(SiN
x)を堆積した後、蓄積容量16上にアクリル系樹脂か
ら成る突起18をフォトリソグラフ法により形成した。
本実施形態ではアクリル系樹脂の突起18の高さ(膜
厚)は3μmとしたが、突起18の高さは必要なセルギ
ャップに応じて調整することが可能である。このアレイ
基板20にシクロブタンテトラカルボン酸と芳香族ジア
ミンを主成分として構成されるポリアミック酸ワニスを
オフセット印刷法で塗布し、220℃で焼成してポリイ
ミド膜を80nmの膜厚で形成した。
Further, as the insulating layer 17, silicon nitride (SiN
After the deposition of x ), a projection 18 made of an acrylic resin was formed on the storage capacitor 16 by photolithography.
In the present embodiment, the height (film thickness) of the protrusion 18 of the acrylic resin is set to 3 μm, but the height of the protrusion 18 can be adjusted according to a required cell gap. A polyamic acid varnish composed mainly of cyclobutanetetracarboxylic acid and aromatic diamine was applied to this array substrate 20 by an offset printing method, and baked at 220 ° C. to form a polyimide film with a thickness of 80 nm.

【0023】その後、画素電極配線14および共通電極
配線13の長手方向に対して80゜の角度の偏光軸を有
する紫外光を照射し、液晶配向処理を施した。照射した
紫外光の積算エネルギは、254nmに中心感度をもつ
照度計により測定して、800mJとした。この配向処
理によって、液晶分子が紫外光の偏光軸と90゜ずれて
配向するため、液晶分子の長軸は、画素電極配線14お
よび共通電極配線13の長手方向と10゜の角度を成し
て配向することになる。
Thereafter, ultraviolet light having a polarization axis at an angle of 80 ° with respect to the longitudinal direction of the pixel electrode wiring 14 and the common electrode wiring 13 was irradiated to perform a liquid crystal alignment treatment. The integrated energy of the irradiated ultraviolet light was measured by an illuminometer having a center sensitivity at 254 nm, and was set to 800 mJ. Since the liquid crystal molecules are aligned by 90 ° from the polarization axis of the ultraviolet light by this alignment treatment, the major axis of the liquid crystal molecules forms an angle of 10 ° with the longitudinal direction of the pixel electrode wiring 14 and the common electrode wiring 13. It will be oriented.

【0024】さらに、その後、紫外光照射で変化したT
FT特性を回復させるために、アレイ基板20を200
℃で1時間熱処理した。
After that, T changed by irradiation with ultraviolet light.
To restore the FT characteristics, the array substrate 20 is
Heat-treated at 1 ° C. for 1 hour

【0025】そして、光遮光層(ブラックマトリクス)
とR,G,Bの色材層からなるカラーフィルタを前記と
同様に偏光紫外光によって配向処理し、周辺にシール樹
脂を塗布し、液晶の配向方向がアレイ基板20と対向基
板(図示せず)とにおいて一致するように貼り合わせ、
液晶を真空注入した。用いた液晶は、屈折率異方性Δn
が0.090で、かつ誘電率異方性Δεが正の全フッ素
系の混合液晶であった。
Then, the light shielding layer (black matrix)
And a color filter composed of R, G, and B color material layers in the same manner as described above, using a polarized ultraviolet light, applying a sealing resin to the periphery thereof, and setting the alignment direction of the liquid crystal to the array substrate 20 and the counter substrate (not shown). )
Liquid crystal was injected under vacuum. The used liquid crystal has a refractive index anisotropy Δn
Was 0.090 and the dielectric anisotropy Δε was a positive perfluorinated mixed liquid crystal.

【0026】液晶注入後、この液晶パネルのギャップを
パネル全面に渡って25ポイントで測定した結果、ギャ
ップの平均値が3.2μm、ギャップのバラツキが±
0.05μm以下であり、非常にギャップ均一性の良い
パネルを作製することができた。そして、一対の偏光板
を基板の上下に互いの偏光軸を直交させ、かつ一方の偏
光軸を液晶の配向方向と一致させて貼り付け、このパネ
ルに駆動回路を実装し、表示状態を調べたところ、黒表
示,中間調表示,および白表示時において、ラビング筋
のような配向むらは全く認められず、非常に均一な表示
が得られた。またコントラスト比もパネル全面において
300:1以上を実現することができた。
After injecting the liquid crystal, the gap of this liquid crystal panel was measured at 25 points over the entire surface of the panel. As a result, the average value of the gap was 3.2 μm and the variation of the gap was ±
The thickness was 0.05 μm or less, and a panel with very good gap uniformity could be manufactured. Then, a pair of polarizing plates were attached to the top and bottom of the substrate with their polarization axes orthogonal to each other, and one of the polarization axes was aligned with the alignment direction of the liquid crystal, and a driving circuit was mounted on this panel, and the display state was examined. However, at the time of black display, halftone display and white display, no alignment unevenness such as rubbing stripes was observed at all, and a very uniform display was obtained. Also, the contrast ratio was able to be realized at 300: 1 or more over the entire panel.

【0027】(比較例1)比較例1として、ギャップ形
成のために前記本実施形態のような突起を形成せずに、
従来のようにビーズを分散することによってギャップを
形成したこと、およびラビングによって配向処理を行っ
たこと以外は、前記本実施形態とまったく同様に液晶パ
ネルを作製し、ギャップの均一性と配向むらを評価し
た。
(Comparative Example 1) As Comparative Example 1, without forming a projection as in the present embodiment for forming a gap,
Except that the gap was formed by dispersing the beads as in the related art, and that the alignment treatment was performed by rubbing, a liquid crystal panel was manufactured in exactly the same manner as in the present embodiment, and the uniformity of the gap and the alignment unevenness were reduced. evaluated.

【0028】ギャップ形成のためのビーズとして、平均
粒径(直径)3.0μmの樹脂ビーズを用い、平均分散
密度は200個/mm2とした。また配向膜には、主成
分の酸無水物成分としてピロメリット酸、またジアミン
成分として4,4’−ジアミノジフェニルメタンからな
るポリアミック酸ワニスをオフセット印刷法で塗布し、
220℃で1時間焼成し、膜厚70nmのポリイミド膜
としたものを用いた。ラビングはレーヨンのバフ布を用
いて、前記本実施形態における画素電極配線14および
共通電極配線13に対するのと同様に、その長手方向に
対して10゜の角度で行った。
As beads for forming the gap, resin beads having an average particle diameter (diameter) of 3.0 μm were used, and the average dispersion density was 200 / mm 2 . Further, on the alignment film, a polyamic acid varnish consisting of pyromellitic acid as an acid anhydride component as a main component and 4,4′-diaminodiphenylmethane as a diamine component is applied by offset printing,
Baking was performed at 220 ° C. for 1 hour to form a polyimide film having a thickness of 70 nm. The rubbing was performed using a rayon buff cloth at an angle of 10 ° with respect to the longitudinal direction, similarly to the pixel electrode wiring 14 and the common electrode wiring 13 in the present embodiment.

【0029】そして、ギャップをパネル全面に亘って2
5ポイントで測定した結果、ギャップの平均値は3.2
μm、ギャップのばらつきは±0.07μmであり、前
記本実施形態の構成のものに比べてギャップの均一性が
悪いことがわかった。また平均のコントラスト比は18
0:1であったが、ビーズの分散密度が高い領域におい
ては、コントラスト比が100:1程度の領域も存在し
た。さらにビーズの凝集により、輝点状の表示むらも見
られた。前記本実施形態と比較してコントラスト比が低
い原因は、ビーズ周囲の光漏れによるものである。
Then, the gap is set to 2 over the entire surface of the panel.
As a result of measurement at 5 points, the average value of the gap was 3.2.
μm and the variation of the gap was ± 0.07 μm, and it was found that the uniformity of the gap was worse than that of the configuration of the present embodiment. The average contrast ratio is 18
Although the ratio was 0: 1, in a region where the dispersion density of beads was high, there was a region where the contrast ratio was about 100: 1. Further, due to the aggregation of the beads, bright spot-like display unevenness was also observed. The reason why the contrast ratio is lower than that in the present embodiment is due to light leakage around the beads.

【0030】(比較例2)比較例2として、ラビングに
よって配向処理を行った以外は、前記本実施形態とまっ
たく同様に液晶パネルを作製し、ギャップの均一性と配
向むらを評価した。ギャップ形成のための突起も前記本
実施形態とまったく同様に作製した。配向膜は主成分の
酸無水物成分としてピロメリット酸、またジアミン成分
として4,4’−ジアミノジフェニルメタンからなるポ
リアミック酸ワニスをオフセット印刷法で塗布し、22
0℃で1時間焼成し、膜厚70nmのポリイミド膜とし
たものを用いた。ラビングは、レーヨンのバフ布を用い
て、前記本実施形態における前記画素電極配線14およ
び共通電極配線13に対するのと同様に、その長手方向
に対して10゜の角度で行った。
Comparative Example 2 As Comparative Example 2, a liquid crystal panel was produced in exactly the same manner as in the present embodiment except that the alignment treatment was performed by rubbing, and the uniformity of the gap and the uneven alignment were evaluated. Protrusions for forming a gap were produced in exactly the same manner as in the present embodiment. The alignment film is formed by applying a polyamic acid varnish composed of pyromellitic acid as an acid anhydride component as a main component and 4,4′-diaminodiphenylmethane as a diamine component by an offset printing method.
Baking was performed at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 70 nm. The rubbing was performed using a rayon buff cloth at an angle of 10 ° with respect to the longitudinal direction, similarly to the pixel electrode wiring 14 and the common electrode wiring 13 in the present embodiment.

【0031】そして、ギャップをパネル全面に亘って2
5ポイントで測定した結果、ギャップの平均値は3.2
μm、ギャップのばらつきは±0.05μm以下であ
り、コントラスト比は150:1であった。しかし、本
比較例2においては、ギャップ形成用の突起が存在する
ため、ラビングによる配向処理が均一に行えず、ラビン
グ処理に起因する配向むらがパネル全面に認められ、著
しく表示品位を低下させた。
The gap is set to 2 over the entire panel.
As a result of measurement at 5 points, the average value of the gap was 3.2.
μm, the variation of the gap was ± 0.05 μm or less, and the contrast ratio was 150: 1. However, in Comparative Example 2, since the projections for gap formation were present, the alignment treatment by rubbing could not be performed uniformly, and the alignment unevenness caused by the rubbing treatment was recognized on the entire panel, and the display quality was significantly lowered. .

【0032】[0032]

【発明の効果】以上説明したように、本発明の液晶表示
パネルおよびその製造方法によれば、従来のギャップ形
成用のスペーサビーズに起因するコントラスト低下をな
くすことができ、よって、高コントラスト表示が可能に
なり、セルギャップの均一性に優れ、かつラビング処理
による配向むらを排除することができ、配向の均一性に
も優れた実際的で高品位のIPS方式の液晶表示パネル
を容易に実現することができる。
As described above, according to the liquid crystal display panel and the method of manufacturing the same according to the present invention, it is possible to eliminate a decrease in contrast due to the conventional spacer beads for forming a gap, thereby achieving a high contrast display. This makes it possible to easily realize a practical and high-quality IPS type liquid crystal display panel having excellent cell gap uniformity, eliminating alignment unevenness due to rubbing treatment, and also having excellent alignment uniformity. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を説明するための液晶表示
パネルにおけるアレイ形状の平面構造を示す模式図
FIG. 1 is a schematic diagram showing a planar structure of an array in a liquid crystal display panel for describing an embodiment of the present invention.

【図2】図1の液晶表示パネルにおける断面構造を表す
模式図
FIG. 2 is a schematic diagram showing a cross-sectional structure of the liquid crystal display panel of FIG.

【図3】IPS方式における液晶分子の動きを説明する
ための模式図。
FIG. 3 is a schematic diagram for explaining movement of liquid crystal molecules in the IPS mode.

【符号の説明】[Explanation of symbols]

11 走査電極配線 12 信号電極配線 13 共通電極配線 14 画素電極配線 15 薄膜トランジスタ 16 蓄積容量 17,19 絶縁層 18 突起 20 アレイ基板 DESCRIPTION OF SYMBOLS 11 Scan electrode wiring 12 Signal electrode wiring 13 Common electrode wiring 14 Pixel electrode wiring 15 Thin film transistor 16 Storage capacitance 17, 19 Insulating layer 18 Projection 20 Array substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が透明な一対の基板,該
基板間に挟持され配向した誘電率異方性と屈折率異方性
とを有する液晶組成物層,偏光手段,マトリクス状に配
置された複数の画素,画素ごとに備えられて画素電極と
信号配線電極と走査配線電極に接続された薄膜トランジ
スタ素子,共通電極,前記画素の光透過率または反射率
を変化させる電圧信号波形を印加する手段を有し、前記
画素電極と前記共通電極との間に基板面に略平行な電界
を印加する手段を設けてなる液晶表示パネルにおいて、 前記一対の基板の少なくとも一方に液晶セルのギャップ
を形成するための突起を形成し、少なくとも前記突起が
存在する側の基板表面に偏光紫外光照射を行って液晶配
向処理を施したことを特徴とする液晶表示パネル。
1. A liquid crystal composition layer having at least one of a pair of transparent substrates, a liquid crystal composition having dielectric anisotropy and refractive index anisotropy sandwiched and aligned between the substrates, polarizing means, and a matrix arranged in a matrix. A plurality of pixels, a thin film transistor element provided for each pixel, connected to the pixel electrode, the signal wiring electrode, and the scanning wiring electrode, a common electrode, and a means for applying a voltage signal waveform for changing the light transmittance or reflectance of the pixel. A liquid crystal display panel having means for applying an electric field substantially parallel to a substrate surface between the pixel electrode and the common electrode, wherein a liquid crystal cell gap is formed on at least one of the pair of substrates. A liquid crystal display panel, comprising: forming a projection; and irradiating polarized ultraviolet light to at least the surface of the substrate on which the projection is present to perform a liquid crystal alignment process.
【請求項2】 少なくとも一方が透明な一対の基板,該
基板間に挟持され配向した誘電率異方性と屈折率異方性
とを有する液晶組成物層,偏光手段,マトリクス状に配
置された複数の画素,画素ごとに備えられて画素電極と
信号配線電極と走査配線電極に接続された薄膜トランジ
スタ素子,共通電極,前記画素の光透過率または反射率
を変化させる電圧信号波形を印加する手段を有し、前記
画素電極と前記共通電極との間に基板面に略平行な電界
を印加する手段を設けてなる液晶表示パネルを製造する
製造方法において、 前記基板の少なくとも一方に液晶セルのギャップを形成
するための突起をフォトリソグラフ法によりパターン形
成する工程と、少なくとも前記突起が存在する側の基板
表面に対して偏光紫外光を照射して液晶配向処理を行う
工程を有することを特徴とする液晶表示パネルの製造方
法。
2. A liquid crystal composition layer having at least one pair of transparent substrates, a liquid crystal composition layer having a dielectric anisotropy and a refractive index anisotropy sandwiched and aligned between the substrates, polarizing means, and a matrix. A plurality of pixels, a thin film transistor element provided for each pixel, connected to the pixel electrode, the signal wiring electrode, and the scanning wiring electrode, a common electrode, and a means for applying a voltage signal waveform for changing the light transmittance or reflectance of the pixel. A manufacturing method for manufacturing a liquid crystal display panel having a means for applying an electric field substantially parallel to a substrate surface between the pixel electrode and the common electrode, wherein a gap of a liquid crystal cell is formed on at least one of the substrates. A step of patterning projections to be formed by a photolithographic method, and irradiating polarized ultraviolet light to at least the substrate surface on the side where the projections are present to perform a liquid crystal alignment process. Method of manufacturing a liquid crystal display panel comprising a step.
JP3848498A 1998-02-20 1998-02-20 Liquid crystal display panel and method of manufacturing the same Expired - Lifetime JP3395884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3848498A JP3395884B2 (en) 1998-02-20 1998-02-20 Liquid crystal display panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3848498A JP3395884B2 (en) 1998-02-20 1998-02-20 Liquid crystal display panel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11237635A true JPH11237635A (en) 1999-08-31
JP3395884B2 JP3395884B2 (en) 2003-04-14

Family

ID=12526544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3848498A Expired - Lifetime JP3395884B2 (en) 1998-02-20 1998-02-20 Liquid crystal display panel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3395884B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010411A (en) * 2003-06-18 2005-01-13 Sony Corp Manufacturing method of liquid crystal display
US6975380B2 (en) 2002-07-09 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a liquid crystal display device
JP2008209456A (en) * 2007-02-23 2008-09-11 Hitachi Displays Ltd Liquid crystal display
JP2012113163A (en) * 2010-11-25 2012-06-14 Nlt Technologies Ltd Liquid crystal display device
JP2013130862A (en) * 2011-11-22 2013-07-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same
CN107844001A (en) * 2017-09-04 2018-03-27 深圳市华星光电技术有限公司 A kind of display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090853A (en) 2013-01-10 2014-07-18 삼성디스플레이 주식회사 Display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975380B2 (en) 2002-07-09 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a liquid crystal display device
US7362408B2 (en) 2002-07-09 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a liquid crystal display device
JP2005010411A (en) * 2003-06-18 2005-01-13 Sony Corp Manufacturing method of liquid crystal display
JP2008209456A (en) * 2007-02-23 2008-09-11 Hitachi Displays Ltd Liquid crystal display
US7663720B2 (en) 2007-02-23 2010-02-16 Hitachi Displays, Ltd. Liquid crystal display device
JP2012113163A (en) * 2010-11-25 2012-06-14 Nlt Technologies Ltd Liquid crystal display device
US9091889B2 (en) 2010-11-25 2015-07-28 Nlt Technologies, Ltd. Liquid crystal display device having columnar spacers
JP2013130862A (en) * 2011-11-22 2013-07-04 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same
CN107844001A (en) * 2017-09-04 2018-03-27 深圳市华星光电技术有限公司 A kind of display panel

Also Published As

Publication number Publication date
JP3395884B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3211581B2 (en) Liquid crystal display
US8023084B2 (en) In-plane switching mode LCD and manufacturing method thereof
JP3066255B2 (en) Liquid crystal display
JPH0728063A (en) Liquid crystal display device
JP2000305089A (en) Liquid crystal display device
JP2001066617A (en) Liquid crystal display device and its production
US7916254B2 (en) Liquid crystal display apparatus for performing alignment process by irradiating light
JPH11305256A (en) Active matrix type liquid crystal display device
JP3395884B2 (en) Liquid crystal display panel and method of manufacturing the same
US20090201453A1 (en) Liquid crystal display panel and method of manufacturing the same
JP3367901B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JPH09179123A (en) Liquid crystal display element and production of liquid crystal display element.
JP3522095B2 (en) Liquid crystal display device
JP2001264773A (en) Liquid crystal display device
JP4131798B2 (en) Liquid crystal display
JP2000356775A (en) Liquid crystal display element and its production
JPH07333634A (en) Liquid crystal display panel
JP2002214646A (en) Liquid crystal display element
JPH0829790A (en) Liquid crystal display device
JP3468923B2 (en) Liquid crystal display device and manufacturing method thereof
JP2000035590A (en) Liquid crystal display device and its manufacturing method
JP3721156B2 (en) Manufacturing method of liquid crystal display device
JPH10213802A (en) Liquid crystal display device
JP3643704B2 (en) Liquid crystal display panel and manufacturing method thereof
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150207

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term