JPH11237229A - Surface-interface roughness measuring method and measuring equipment - Google Patents

Surface-interface roughness measuring method and measuring equipment

Info

Publication number
JPH11237229A
JPH11237229A JP10037479A JP3747998A JPH11237229A JP H11237229 A JPH11237229 A JP H11237229A JP 10037479 A JP10037479 A JP 10037479A JP 3747998 A JP3747998 A JP 3747998A JP H11237229 A JPH11237229 A JP H11237229A
Authority
JP
Japan
Prior art keywords
measured
interface
sample
rays
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037479A
Other languages
Japanese (ja)
Inventor
Shigeru Yasuami
繁 安阿彌
Hideki Satake
秀喜 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10037479A priority Critical patent/JPH11237229A/en
Publication of JPH11237229A publication Critical patent/JPH11237229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure unevenness on a specimen surface or an interface between regions different in refractive index by distinguishing the unevenness from composition change when it exists in a measurement object region. SOLUTION: This measuring method makes X rays 2 having coherency monochromatic, and irradiates the surface or the thickness direction of a specimen to be measured with X rays 6 which are made monochromatic and different in wavelength, at the same visual oblique angle, by adjusting a visual oblique angle in such a manner that selective reflection is generated on the interface between regions different in refractive index. X rays 9 having the respective wavelengths which are reflected by the specimen to be measured are recorded as scattered images in a recording medium 10. From correlation of the respective scattered images corresponding to the respective wavelengths which are recorded in the recording medium, unevenness on the surface of the specimen 8 to be measured or the interface between regions is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面・ 界面粗さ測
定方法及び測定装置、特にオングストロームオーダーの
微小な凹凸を非破壊で測定することが可能な測定方法及
び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring surface and interface roughness, and more particularly to a method and an apparatus capable of non-destructively measuring fine irregularities on the order of angstroms.

【0002】[0002]

【従来の技術】X線を用いてオングストロームオーダー
の微小な凹凸を非破壊で測定する方法として、反射率或
いはCTR(Crystal Truncation Rod)散乱を用いる方
法が従来より知られている。しかしながら、通常X線は
波長や位相がそろっていないため、測定対象領域に組成
変動がある場合には、組成変動と試料の凹凸とが一体と
して測定されてしまい、組成変動と凹凸とを区別するこ
とができない。
2. Description of the Related Art As a method for non-destructively measuring minute irregularities on the order of angstroms using X-rays, a method using reflectance or CTR (Crystal Truncation Rod) scattering has been conventionally known. However, since the X-rays usually do not have the same wavelength and phase, if there is a composition variation in the measurement target area, the composition variation and the unevenness of the sample are measured as one, and the composition variation and the unevenness are distinguished. Can not do.

【0003】[0003]

【発明が解決しようとする課題】このように、従来X線
を用いて凹凸を測定しようとした場合、組成変動と凹凸
とを区別することができないため、試料表面或いは屈折
率が異なる領域間界面の凹凸を正確に測定することがで
きないという問題があった。
As described above, when it is attempted to measure unevenness using conventional X-rays, it is not possible to distinguish between composition fluctuation and unevenness, so that the interface between the sample surface and the region having a different refractive index is not possible. However, there was a problem that it was not possible to measure the irregularities of the sample accurately.

【0004】本発明は上記従来の課題に対してなされた
ものであり、測定対象領域に組成変動があっても、試料
表面或いは屈折率が異なる領域間界面の凹凸を正確に測
定することが可能な測定方法及び測定装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is possible to accurately measure unevenness of a sample surface or an interface between regions having different refractive indices even if there is a composition variation in a measurement target region. It is an object to provide a simple measuring method and a measuring device.

【0005】[0005]

【課題を解決するための手段】本発明に係る表面・ 界面
粗さ測定方法は、干渉性を有するX線を単色化し、単色
化された互いに異なる波長のX線を被測定試料の表面又
は厚み方向で屈折率が異なる領域間の界面で選択的に反
射するように視斜角を調整して同一の視斜角でそれぞれ
照射し、被測定試料で反射した各波長のX線によって得
られる像を記録手段にそれぞれ記録し、記録手段に記録
された各波長のX線に対応した各像の相関から前記被測
定試料の表面又は界面の凹凸を求めることを特徴とす
る。
According to the surface / interface roughness measuring method of the present invention, a monochromatic X-ray having coherence is converted into monochromatic X-rays having different wavelengths, and the surface or thickness of the sample is measured. The oblique angle is adjusted so that the light is selectively reflected at the interface between the regions having different refractive indices in the directions. Is recorded in the recording means, and the corrugation of each image corresponding to the X-rays of each wavelength recorded in the recording means is used to obtain the surface or interface irregularities of the sample to be measured.

【0006】本発明に係る表面・ 界面粗さ測定装置は、
干渉性を有するX線を単色化して所望の波長を選択する
波長選択手段と、この波長選択手段で選択された波長の
X線を被測定試料に所望の視斜角で照射するための視斜
角調整手段と、この視斜角調整手段によって調整された
視斜角で被測定試料に照射され被測定試料の表面又は厚
み方向で屈折率が異なる領域間の界面で選択的に反射し
たX線によって得られる像を記録する記録手段と、この
記録手段に記録された互いに異なる波長のX線に対応し
た各像の相関から被測定試料の表面又は界面の凹凸を求
める手段とを有することを特徴とする。
[0006] The surface / interface roughness measuring apparatus according to the present invention comprises:
Wavelength selecting means for monochromaticizing the X-ray having coherence to select a desired wavelength, and a viewing angle for irradiating the sample to be measured with the X-ray of the wavelength selected by the wavelength selecting means at a desired viewing angle. Angle adjusting means, and X-rays radiated on the sample at the oblique angle adjusted by the oblique angle adjusting means and selectively reflected at an interface between surfaces of the sample or regions having different refractive indices in the thickness direction. Recording means for recording an image obtained by the method, and means for determining the surface or interface unevenness of the sample to be measured from the correlation between the images corresponding to X-rays of different wavelengths recorded on the recording means. And

【0007】前記発明によれば、干渉性を有するX線を
単色化し(波長および位相がそろった単波長化したX線
が得られる)、視斜角(試料面と入射するX線とのなす
角)を調整して(全反射条件近傍の視斜角になるように
調整することが好ましい)試料表面或いは屈折率が異な
る領域間界面で選択的にX線を反射させることにより、
測定対象領域に組成変動があっても、凹凸に基づくX線
の干渉性を反映したパターンを散乱像として得ることが
できる。ただし、単一波長のX線だけでは干渉によるパ
ターンが得られるだけで、凹凸そのものに対応したパタ
ーンは得られないため、少なくとも2以上の異なる波長
のX線を別々に照射して得られる各散乱像をそれぞれ記
録手段に記録し、各散乱像の相関から凹凸を求めること
になる。このような方法により、測定対象領域となる試
料表面近傍或いは界面近傍に組成変動があっても、組成
変動と区別して表面或いは界面のオングストロームオー
ダーの微小な凹凸を正確に測定することが可能となる。
According to the invention, the coherent X-ray is monochromatic (obtained as a single-wavelength X-ray having the same wavelength and phase), and the viewing angle (between the sample surface and the incident X-ray). Angle) (preferably adjusted to a viewing angle near the total reflection condition) by selectively reflecting X-rays at the sample surface or at the interface between regions having different refractive indices.
Even if there is a composition variation in the measurement target area, a pattern reflecting the X-ray coherence based on the unevenness can be obtained as a scattered image. However, since only a single wavelength X-ray can obtain a pattern due to interference but cannot obtain a pattern corresponding to the unevenness itself, each scattering obtained by separately irradiating X-rays of at least two or more different wavelengths can be obtained. The images are respectively recorded in the recording means, and irregularities are obtained from the correlation of each scattered image. According to such a method, even if there is a composition variation near the sample surface or the interface which is the measurement target area, it is possible to accurately measure minute irregularities on the surface or the interface in the angstrom order, distinguished from the composition variation. .

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明に係る表面・ 界面粗
さ測定装置の概略構成を示した説明図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a surface / interface roughness measuring apparatus according to the present invention.

【0009】1は蓄積リングであり、干渉性を有するX
線2を発生するものである。なお、蓄積リング1は半干
渉性光源として作用するが、自由電子レーザーなどの干
渉性光源を蓄積リング1の代わりに用いることも可能で
ある。3a及び3bは例えば(111)シリコンを対称
に配置した結晶単色器であり、X線2を所望の波長のX
線4に単色化するものである。5a及び5bはスリット
であり、結晶単色器3a及び3bからのX線4の中心部
分のみを取り出してより指向性及び干渉性の高いX線ビ
ーム6にするためのものである。7は被測定試料8を載
置するホルダであり、ゴニオメータ(図示せず)によっ
て載置面の角度を調整することにより、載置面とX線ビ
ーム6のなす角(試料面と入射するX線とのなす角(視
斜角))を所望の角度に調整するものである。10は記
録媒体であり、被測定試料8から散乱反射したX線9を
散乱像として記録するものである。11は演算手段であ
り、記録媒体10に記録された互いに異なる波長のX線
による二つの散乱像の相関から被測定試料8の表面領域
の凹凸を求めるものである。
Reference numeral 1 denotes a storage ring, which has a coherent X
To generate line 2. Although the storage ring 1 acts as a semi-coherent light source, a coherent light source such as a free electron laser can be used instead of the storage ring 1. Reference numerals 3a and 3b denote crystal monochromators in which, for example, (111) silicon is symmetrically arranged.
The line 4 is made monochromatic. Reference numerals 5a and 5b denote slits for extracting only a central portion of the X-rays 4 from the crystal monochromators 3a and 3b to form an X-ray beam 6 having higher directivity and coherence. Reference numeral 7 denotes a holder on which the sample 8 to be measured is mounted. The holder 7 adjusts the angle of the mounting surface with a goniometer (not shown) to thereby form an angle between the mounting surface and the X-ray beam 6 (X incident on the sample surface and X-ray beam). The angle formed by the line (oblique angle) is adjusted to a desired angle. A recording medium 10 records the X-rays 9 scattered and reflected from the sample 8 to be measured as a scattered image. Numeral 11 denotes an arithmetic unit for obtaining the unevenness of the surface area of the sample 8 to be measured from the correlation between two scattered images by X-rays having different wavelengths recorded on the recording medium 10.

【0010】次に、図1等を参照して、本実施形態の動
作について説明する。まず、蓄積リング1から生じた干
渉性を有するX線2は、結晶単色器3a及び3bによっ
て所望の波長λ1(例えば0.5オングストローム)に
単色化される。すなわち、波長及び位相がそろった単色
化されたX線が得られることになる。結晶単色器3aと
入射X線2とのなす角をθとし、結晶単色器を構成する
(111)シリコンの結晶格子面間隔をdとすると、結
晶単色器からのX線4の波長λ1は、 λ1=2dsinθ となる。したがって、入射X線2の入射角度を適当な角
度にすれば、結晶単色器からのX線4の波長λ1を所望
の値にすることができる。結晶単色器3a及び3bから
のX線4は、スリット5a及び5bを通すことによりX
線4の中心部分のみが取り出され、より指向性及び干渉
性の高いX線ビーム6となる。
Next, the operation of this embodiment will be described with reference to FIG. First, the coherent X-rays 2 generated from the storage ring 1 are monochromatized to a desired wavelength λ1 (for example, 0.5 Å) by the crystal monochromators 3a and 3b. In other words, monochromatic X-rays having the same wavelength and phase can be obtained. Assuming that the angle between the crystal monochromator 3a and the incident X-ray 2 is θ and the crystal lattice spacing of (111) silicon constituting the crystal monochromator is d, the wavelength λ1 of the X-ray 4 from the crystal monochromator is λ1 = 2d sin θ. Therefore, by setting the incident angle of the incident X-ray 2 to an appropriate angle, the wavelength λ1 of the X-ray 4 from the crystal monochromator can be set to a desired value. X-rays 4 from the crystal monochromators 3a and 3b pass through the slits 5a and 5b,
Only the central portion of the line 4 is extracted, and the X-ray beam 6 has higher directivity and coherence.

【0011】このようにして得られたX線6は、ホルダ
7上に載置された被測定試料8の表面領域に照射され
る。ここでは、図2に示すように、シリコン基板上に異
なる物質によって第1の領域8a(屈折率n1)及び第
2の領域8b(屈折率n2)が形成されているものを被
測定試料8として用いるものとする。
The X-ray 6 obtained in this way is applied to the surface area of the sample 8 to be measured placed on the holder 7. Here, as shown in FIG. 2, a sample in which a first region 8a (refractive index n1) and a second region 8b (refractive index n2) are formed of different substances on a silicon substrate is defined as a sample 8 to be measured. Shall be used.

【0012】被測定試料8の表面とX線ビーム6とのな
す角(言い換えると、ホルダ7の載置面とX線ビーム6
のなす角)をゴニオメータによって所望の角度に調整す
ることにより、被測定試料8の第1の領域8a表面の凹
凸又は第1の領域8aと第2の領域8bとの界面の凹凸
のいずれかを測定することができる。すなわち、図2に
示すように、第1の領域8aの表面の凹凸を測定する場
合には、X線ビームと第1の領域8aの表面とのなす角
(ホルダの載置面とX線ビームのなす角)が第1の領域
8aの全反射条件近傍の角度となるように視斜角を調整
する。また、第1の領域8aと第2の領域8bとの界面
の凹凸を測定する場合には、X線ビームが第1の領域8
aを透過し、かつ第1の領域8aと第2の領域8bとの
界面とX線ビームとのなす角(ホルダの載置面とX線ビ
ームのなす角)が第2の領域8bの全反射条件近傍の角
度となるように視斜角を調整する。
The angle between the surface of the sample 8 to be measured and the X-ray beam 6 (in other words, the mounting surface of the holder 7 and the X-ray beam 6
Angle) is adjusted to a desired angle by a goniometer, so that the unevenness on the surface of the first region 8a of the sample 8 to be measured or the unevenness at the interface between the first region 8a and the second region 8b is adjusted. Can be measured. That is, as shown in FIG. 2, when measuring the unevenness of the surface of the first region 8a, the angle between the X-ray beam and the surface of the first region 8a (the mounting surface of the holder and the X-ray beam The angle of the viewing angle is adjusted so that the angle formed by the first region 8a is close to the total reflection condition of the first region 8a. When measuring the unevenness of the interface between the first region 8a and the second region 8b, the X-ray beam is applied to the first region 8a.
a and the angle between the X-ray beam and the interface between the first region 8a and the second region 8b (the angle between the mounting surface of the holder and the X-ray beam) is equal to the entire angle of the second region 8b. The viewing angle is adjusted so that the angle is close to the reflection condition.

【0013】なお、被測定試料8表面のX線によって照
射される範囲は、X線のビーム形状及び大きさ並びに視
斜角によって決められるが、一般的に視斜角は数度以下
であるため、縦長の範囲がX線によって照射されること
になる。
The range irradiated by the X-rays on the surface of the sample 8 to be measured is determined by the beam shape and the size of the X-rays and the viewing angle, but since the viewing angle is generally several degrees or less. , A vertically long range is irradiated with X-rays.

【0014】このようにして、被測定試料8の表面領域
で散乱反射したX線9は、記録媒体10上に照射され、
凹凸に基づくX線の干渉性を反映した散乱像が形成され
る。したがって、測定対象領域に組成変動があっても、
組成変動と区別された散乱像が記録されることになる。
記録媒体10としてイメージングプレートを用いる場合
には、散乱像はリーダによって読み取られる。記録媒体
10としてX線フィルムを用いる場合には、散乱像は現
像された後マイクロデンシトメータによってその黒化度
が読み取られる。
Thus, the X-rays 9 scattered and reflected on the surface area of the sample 8 to be measured are irradiated onto the recording medium 10,
A scattered image reflecting the X-ray coherence based on the unevenness is formed. Therefore, even if there is a composition variation in the measurement target area,
A scatter image distinct from the composition variation will be recorded.
When an imaging plate is used as the recording medium 10, the scattered image is read by a reader. When an X-ray film is used as the recording medium 10, the scattered image is developed, and the degree of blackening is read by a microdensitometer.

【0015】このようにして、被測定試料8表面のX線
6によって照射された範囲の凹凸に応じた散乱像の強度
分布が得られる。図3は、記録媒体10上の散乱強度分
布(X線6によって照射された縦長の範囲の長手方向の
強度分布)の一例を示したものである。
In this manner, the intensity distribution of the scattered image corresponding to the unevenness in the range irradiated with the X-rays 6 on the surface of the sample 8 to be measured is obtained. FIG. 3 shows an example of the scattering intensity distribution on the recording medium 10 (the intensity distribution in the longitudinal direction of the vertically long range irradiated by the X-ray 6).

【0016】波長λ1のX線による散乱強度分布を求め
た後、結晶単色器3a及び3bの角度を調整して今度は
波長λ2(例えば0.7オングストローム)のX線を選
択し、今度はこの波長λ2のX線による散乱強度分布を
上記と同様の手順によって求める。このとき、ホルダ7
の載置面の角度(視斜角)は波長λ1の場合と同一にし
ておく。この波長λ2のX線の照射によって得られる散
乱強度分布は、波長λ1のX線によって得られる散乱強
度分布とわずかに異なったものとなる。
After obtaining the scattering intensity distribution by the X-rays of the wavelength λ1, the angles of the crystal monochromators 3a and 3b are adjusted to select the X-rays of the wavelength λ2 (for example, 0.7 Å). The scattering intensity distribution by the X-ray of the wavelength λ2 is obtained by the same procedure as above. At this time, the holder 7
Of the mounting surface (viewing angle) is the same as in the case of the wavelength λ1. The scattering intensity distribution obtained by the irradiation of the X-ray of the wavelength λ2 is slightly different from the scattering intensity distribution obtained by the X-ray of the wavelength λ1.

【0017】以上のようにして、波長λ1のX線による
散乱強度分布と波長λ2のX線による散乱強度分布が得
られる。これら二つの散乱強度分布の相関を演算手段1
1によって求めることにより、図4に示すように、被測
定試料8の表面領域の凹凸(第1の領域8a表面の凹
凸、或いは第1の領域8a と第2の領域8b との界面の
凹凸)を測定することができる。
As described above, the scattering intensity distribution by the X-ray of the wavelength λ1 and the scattering intensity distribution by the X-ray of the wavelength λ2 are obtained. Calculation means 1 calculates the correlation between these two scattering intensity distributions
As shown in FIG. 4, the unevenness of the surface area of the sample 8 to be measured (the unevenness of the surface of the first area 8a, or the unevenness of the interface between the first area 8a and the second area 8b) is obtained as shown in FIG. Can be measured.

【0018】なお、界面の凹凸を求める場合、試料表面
に凹凸があるとこの凹凸によって界面に到達するX線の
位相がずれることがあり得るため、界面の凹凸を正確に
測定することが難しい。したがって、このような場合に
は、予め測定した表面の凹凸情報を利用して界面の凹凸
を求めることが好ましい。
When determining the unevenness of the interface, if the sample surface has unevenness, the phase of the X-rays reaching the interface may be shifted due to the unevenness, so that it is difficult to accurately measure the unevenness of the interface. Therefore, in such a case, it is preferable to obtain the interface unevenness using the surface unevenness information measured in advance.

【0019】また、上記実施形態では波長の異なるX線
を同一視斜角で試料に照射するようにしたが、同一波長
のX線を異なる視斜角で照射するようにしてもよい。以
上のような方法を用いることにより、試料表面近傍或い
は界面近傍に組成変動があっても、組成変動と区別し
て、表面或いは界面の凹凸を選択的に測定することがで
きる。
In the above embodiment, the sample is irradiated with X-rays having different wavelengths at the same oblique angle. However, X-rays having the same wavelength may be irradiated at different oblique angles. By using the above method, even if there is a composition variation near the sample surface or the interface, it is possible to selectively measure the unevenness of the surface or the interface in distinction from the composition variation.

【0020】以上、本発明の実施形態について説明した
が、本発明は上記実施形態に限定されるものではない。
上記実施形態では、屈折率が異なる領域として二つの領
域(第1及び第2の領域)を仮定したが、三つ以上の領
域に対しても同様に本発明を適用することが可能であ
る。また、本発明の方法により試料表面或いは界面の凹
凸を求める一方、従来技術で述べたように波長や位相が
そろっていないX線を用いて凹凸と組成変動とを一体と
して測定しておけば、組成変動の測定を行うことも可能
である。その他、本発明は、その要旨を逸脱しない範囲
内において、種々変形して実施することが可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
In the above embodiment, two regions (first and second regions) are assumed as regions having different refractive indices. However, the present invention can be similarly applied to three or more regions. In addition, while the unevenness of the sample surface or interface is determined by the method of the present invention, if the unevenness and the composition fluctuation are integrally measured using X-rays having different wavelengths and phases as described in the related art, It is also possible to measure composition variations. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0021】[0021]

【発明の効果】本発明によれば、測定対象領域となる試
料表面或いは界面近傍に組成変動があっても、組成変動
と区別して表面或いは界面の微小な凹凸を正確に測定す
ることが可能となる。
According to the present invention, it is possible to accurately measure minute irregularities on a surface or an interface, distinguished from the composition variation, even if there is a composition variation near a sample surface or an interface serving as a measurement target area. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る表面・ 界面粗さ測定装
置の一例ついて示した概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of a surface / interface roughness measuring device according to an embodiment of the present invention.

【図2】被測定試料でのX線の反射状態を示した図。FIG. 2 is a diagram showing an X-ray reflection state on a sample to be measured.

【図3】記録媒体上の散乱強度分布の一例について示し
た図。
FIG. 3 is a diagram illustrating an example of a scattering intensity distribution on a recording medium.

【図4】記録媒体上の散乱強度分布に基づいて得られた
被測定試料の凹凸の一例について示した図。
FIG. 4 is a view showing an example of unevenness of a sample to be measured obtained based on a scattering intensity distribution on a recording medium.

【符号の説明】[Explanation of symbols]

1…蓄積リング 2、4、6、9…X線 3a、3b…結晶単色器 5a、5b…スリット 7…ホルダ 8…被測定試料 10…記録媒体 11…演算手段 DESCRIPTION OF SYMBOLS 1 ... Storage ring 2, 4, 6, 9 ... X-ray 3a, 3b ... Crystal monochromator 5a, 5b ... Slit 7 ... Holder 8 ... Sample to be measured 10 ... Recording medium 11 ... Calculation means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】干渉性を有するX線を単色化し、単色化さ
れた互いに異なる波長のX線を被測定試料の表面又は厚
み方向で屈折率が異なる領域間の界面で選択的に反射す
るように視斜角を調整して同一の視斜角でそれぞれ照射
し、被測定試料で反射した各波長のX線によって得られ
る像を記録手段にそれぞれ記録し、記録手段に記録され
た各波長のX線に対応した各像の相関から前記被測定試
料の表面又は界面の凹凸を求めることを特徴とする表面
・ 界面粗さ測定方法。
An X-ray having coherence is monochromated, and monochromatic X-rays having different wavelengths are selectively reflected at an interface between regions having different refractive indices in the surface or thickness direction of a sample to be measured. The oblique angle is adjusted to irradiate at the same oblique angle, and the images obtained by the X-rays of each wavelength reflected by the sample to be measured are respectively recorded in the recording means, and the respective wavelengths recorded in the recording means are recorded. A method for measuring surface / interface roughness, comprising determining unevenness of a surface or an interface of the sample to be measured from a correlation between images corresponding to X-rays.
【請求項2】干渉性を有するX線を単色化して所望の波
長を選択する波長選択手段と、この波長選択手段で選択
された波長のX線を被測定試料に所望の視斜角で照射す
るための視斜角調整手段と、この視斜角調整手段によっ
て調整された視斜角で被測定試料に照射され被測定試料
の表面又は厚み方向で屈折率が異なる領域間の界面で選
択的に反射したX線によって得られる像を記録する記録
手段と、この記録手段に記録された互いに異なる波長の
X線に対応した各像の相関から被測定試料の表面又は界
面の凹凸を求める手段とを有することを特徴とする表面
・ 界面粗さ測定装置。
2. A wavelength selecting means for monochromaticizing an X-ray having coherence to select a desired wavelength, and irradiating the sample to be measured with the X-ray having the wavelength selected by the wavelength selecting means at a desired viewing angle. Oblique angle adjusting means for irradiating the sample to be measured with the oblique angle adjusted by the oblique angle adjusting means, and selectively at the interface between the surfaces of the sample to be measured or regions having different refractive indexes in the thickness direction. Recording means for recording an image obtained by X-rays reflected on the recording means, and means for determining the unevenness of the surface or interface of the sample to be measured from the correlation of each image corresponding to X-rays of different wavelengths recorded on the recording means. A surface / interface roughness measuring device characterized by having:
JP10037479A 1998-02-19 1998-02-19 Surface-interface roughness measuring method and measuring equipment Pending JPH11237229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037479A JPH11237229A (en) 1998-02-19 1998-02-19 Surface-interface roughness measuring method and measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037479A JPH11237229A (en) 1998-02-19 1998-02-19 Surface-interface roughness measuring method and measuring equipment

Publications (1)

Publication Number Publication Date
JPH11237229A true JPH11237229A (en) 1999-08-31

Family

ID=12498664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037479A Pending JPH11237229A (en) 1998-02-19 1998-02-19 Surface-interface roughness measuring method and measuring equipment

Country Status (1)

Country Link
JP (1) JPH11237229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133741A (en) * 2008-12-02 2010-06-17 Fujitsu Ltd Sample analyzer and sample analysis method
JP2010230481A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Sample analyzer and sample analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133741A (en) * 2008-12-02 2010-06-17 Fujitsu Ltd Sample analyzer and sample analysis method
JP2010230481A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Sample analyzer and sample analysis method

Similar Documents

Publication Publication Date Title
US10151713B2 (en) X-ray reflectometry apparatus for samples with a miniscule measurement area and a thickness in nanometers and method thereof
US5619548A (en) X-ray thickness gauge
US6512815B2 (en) Apparatus for analyzing samples using combined thermal wave and X-ray reflectance measurements
US11408837B2 (en) Analysis method for fine structure, and apparatus and program thereof
US4236823A (en) Diffractometer for measuring signal depth and width
US11131637B2 (en) Analysis method for fine structure, apparatus, and program
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH11237229A (en) Surface-interface roughness measuring method and measuring equipment
JP4367820B2 (en) X-ray reflectivity measuring device
JP2001033406A (en) X-ray phase difference image pickup method and device
JP2001284424A (en) Modeling method of pattern, film thickness measuring method, process state judging method, thickness measuring equipment, process state judging equipment, grinding equipment and manufacturing method of semiconductor device
JPH04318433A (en) Radiograph stress measuring apparatus
JP2953735B2 (en) Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus
JP2952284B2 (en) X-ray optical system evaluation method
JP3816954B2 (en) Apparatus for optically scanning an object on a scanning surface and method for operating the apparatus
JP3113700B2 (en) Polar figure measurement method
JP2988995B2 (en) Storage phosphor, X-ray diffraction apparatus and X-ray diffraction method
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
JP3816954B6 (en) Apparatus for optically scanning an object on a scanning surface and method for operating the apparatus
JP3380921B2 (en) How to measure strain in crystals
JP3448111B2 (en) X-ray evaluation device
JPH10260030A (en) Nondestructive thin film thickness/mass measuring method and device
JPS6353457A (en) 2-d scan type state analyzer
JPH1183766A (en) X-ray reflectivity measurement device
RU2128820C1 (en) Process of timely test of roughness of supersmooth large- sized surfaces by method of x-ray scanning and device for its implementation