JPH11236616A - Production of nickel-containing case hardening steel excellent in workability - Google Patents

Production of nickel-containing case hardening steel excellent in workability

Info

Publication number
JPH11236616A
JPH11236616A JP5615198A JP5615198A JPH11236616A JP H11236616 A JPH11236616 A JP H11236616A JP 5615198 A JP5615198 A JP 5615198A JP 5615198 A JP5615198 A JP 5615198A JP H11236616 A JPH11236616 A JP H11236616A
Authority
JP
Japan
Prior art keywords
weight
steel
cooling
workability
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5615198A
Other languages
Japanese (ja)
Inventor
Makoto Iguchi
誠 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5615198A priority Critical patent/JPH11236616A/en
Publication of JPH11236616A publication Critical patent/JPH11236616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for producing a case hardening steel excellent in workability by which the formation of residual austenite is evaded to form a ferritic-pearlitic structure, the treating time is shortened, and the industrial productivity is increased as a softening method for an Ni-contg. case hardening steel. SOLUTION: A steel having a compsn. contg., by weight, 0.10 to 0.35% C, 0.03 to 0.35% Si, 0.20 to 2.0% Mn, 0.003 to 0.30% S, 0.010 to 0.05% Al, 0.10 to 2.0% Cr, 0.03 to 0.8% Mo, 0.30 to 3.0% Ni and 0.010 to 0.025% N, and the balance Fe with inevitable impurities is heated at 830 to 900 deg.C in accordance with a temp. pattern shown in the fig. and is cooled at a cooling rate of <=35 deg.C/h with the temp. interval of 700 to 550 deg.C as a slow cooling temp. region to form a two phase structure of ferrite and pearlite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械構造用鋼とし
て使用される肌焼鋼で、冷問加工性あるいは切削加工性
に優れた肌焼鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a case hardened steel having excellent cold workability or cutting workability, which is used as steel for machine structural use.

【0002】[0002]

【従来の技術】肌焼鋼は、冷間で加工を行い、浸炭処理
を施し使用することが多い。そのため、従来より、加工
性を改善するために、圧延あるいは鍛造後に球状化処理
が多く行われる。この球状化処理は特開平4−3335
27号に記載のようにAc1 〜Ac3 の温度範囲に加熱
し、Ar1 以下の温度まで徐冷して行われる。しかし、
Ni含有肌焼鋼の場合、フェライト+トオーステナイト
の2相域からの徐冷では熱処理後に図2の顕微鏡写真に
見られるように残留オーステナイトが残り、このため加
工性が著しく阻害される。また、Ar3 以上に加熱し、
その後徐冷する焼鈍の場合、通常の徐冷速度は、工業生
産性の問題もあり、50℃〜100℃程度の冷却であ
る。しかし、この冷却速度では、Ni含有肌焼鋼の場
合、処理後の組織が図3の顕微鏡写真に見られるように
フェライト+パーライト+マルテンサイト組織となり、
このため加工性が著しく阻害される。
2. Description of the Related Art In many cases, case hardening steel is cold worked and carburized. Therefore, conventionally, in order to improve workability, spheroidizing treatment is often performed after rolling or forging. This spheroidizing process is disclosed in
As described in No. 27, the heating is performed by heating to a temperature range of Ac 1 to Ac 3 and gradually cooling to a temperature of Ar 1 or less. But,
In the case of Ni-containing case hardening steel, if the steel is gradually cooled from the two-phase region of ferrite and toustenite, residual austenite remains after heat treatment as seen in the micrograph of FIG. 2, which significantly impairs workability. In addition, heating to Ar 3 or more,
In the case of annealing in which cooling is performed gradually thereafter, the normal cooling rate is about 50 ° C. to 100 ° C. due to the problem of industrial productivity. However, at this cooling rate, in the case of the Ni-containing case hardening steel, the structure after the treatment becomes a ferrite + pearlite + martensite structure as seen in the micrograph of FIG.
For this reason, workability is significantly impaired.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明では、
Ni含有肌焼鋼の軟化処理方法として、830℃〜90
0℃に加熱し、700℃〜550℃の温度区間を徐冷温
度域として35℃/h以下の冷却速度で冷却することに
より、残留オーステナイトの生成を避け、図4の顕微鏡
写真に見られるようにフェライト+パーライト組織とす
る。そして、さらに、徐冷温度区間を定めることにより
処理時間の短縮化を図り、工業生産性を高め、加工性に
優れた肌焼鋼の製造を可能にすることである。
Therefore, in the present invention,
As a method for softening Ni-containing case hardening steel, 830 ° C. to 90 ° C.
By heating to 0 ° C. and cooling at a cooling rate of 35 ° C./h or less in a temperature range of 700 ° C. to 550 ° C. as a slow cooling temperature range, generation of residual austenite is avoided, as shown in the micrograph of FIG. Ferrite + pearlite structure. Further, it is another object of the present invention to reduce the processing time by defining the annealing temperature section, to increase industrial productivity, and to enable the production of case hardened steel having excellent workability.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めのこの発明の手段は、請求項1の発明では、C:0.
10〜0.35重量%、Si:0.03〜0.35重量
%、Mn:0.20〜2.0重量%、S:0.003〜
0,30重量%、Al:0.010〜0,05重量%、
Cr:0.15〜2.0重量%、Mo:0.03〜0.
8重量%、Ni:0.30〜3.0重量%、N:0.0
10〜0.025重量%を含有し、残部Feおよぴ不可
避的不純物よりなる鋼を、830℃〜900℃に加熱
し、700℃〜550℃の温度区間を徐冷温度域として
35℃/h以下の冷却速度で冷却することにより、フェ
ライトとパーライトの2相組織とすることを特徴とする
加工性に優れた肌焼鋼の製造方法である。
According to the first aspect of the present invention, there is provided a method for solving the above-mentioned problems.
10 to 0.35% by weight, Si: 0.03 to 0.35% by weight, Mn: 0.20 to 2.0% by weight, S: 0.003 to
0.30% by weight, Al: 0.010 to 0.05% by weight,
Cr: 0.15 to 2.0% by weight, Mo: 0.03 to 0.
8% by weight, Ni: 0.30 to 3.0% by weight, N: 0.0
A steel containing 10 to 0.025% by weight and the balance consisting of Fe and unavoidable impurities is heated to 830 ° C to 900 ° C, and the temperature range of 700 ° C to 550 ° C is set to 35 ° C / This is a method for producing a case hardened steel excellent in workability, characterized in that a two phase structure of ferrite and pearlite is obtained by cooling at a cooling rate of not more than h.

【0005】請求項2の発明では、請求項1の手段にお
ける鋼の化学成分に加え、さらにNb:0.01〜0.
10重量%を含有し、残部Feおよび不可避的不純物よ
りなる鋼において、830℃〜900℃に加熱し、70
0℃〜550℃の温度区間を徐冷温度域として35℃/
h以下の冷却速度で冷却することにより、フェライトと
パーライトの2相組織とすることを特徴とする加工性に
優れた肌焼鋼の製造方法である。
[0005] In the invention of claim 2, in addition to the chemical composition of steel in the means of claim 1, Nb: 0.01-0.
In steel containing 10% by weight, the balance being Fe and unavoidable impurities, the steel was heated to 830 ° C. to 900 ° C.
A temperature range of 0 ° C to 550 ° C is set as a slow cooling temperature range of 35 ° C /
This is a method for producing a case hardened steel excellent in workability, characterized in that a two phase structure of ferrite and pearlite is obtained by cooling at a cooling rate of not more than h.

【0006】請求項3の発明では、請求項1手段の鋼の
化学成分に加え、さらにPb:0.01〜0.30重量
%、Bi:0.01〜0.20重量%、Te:0.00
1〜0.05重量%、Ca:0,001〜0.003重
量%、Se:0.0O3〜0.05重量%の1種または
2種以上を含有し、残部Feおよび不可避不純物よりな
る鋼において、830℃〜900℃に加熱し、700℃
〜550℃の温度区間を徐冷温度域として35℃/h以
下の冷却速度で冷却することにより、フェライトとパー
ライトの2相組織とすることを特徴とする加工性に優れ
た肌焼鋼の製造方法である。
According to the third aspect of the present invention, in addition to the chemical composition of the steel of the first aspect, Pb: 0.01 to 0.30% by weight, Bi: 0.01 to 0.20% by weight, Te: 0% .00
Steel containing 1 to 0.05% by weight, Ca: 0.001 to 0.003% by weight, Se: 0.03 to 0.05% by weight, the balance being Fe and unavoidable impurities At 830 ° C. to 900 ° C., 700 ° C.
Production of case hardening steel excellent in workability characterized by having a two-phase structure of ferrite and pearlite by cooling at a cooling rate of 35 ° C./h or less in a temperature range of up to 550 ° C. as an annealing temperature range. Is the way.

【0007】請求項4の発明では、請求項2手段の鋼の
化学成分に加え、さらにPb:0.01〜0.30重量
%、Bi:0.01〜0.20重量%、Te:0.00
1〜0.05重量%、Ca:0,001〜0.003重
量%、Se:0.0O3〜0.05重量%の1種または
2種以上を含有し、残部Feおよび不可避不純物よりな
る鋼において、830℃〜900℃に加熱し、700℃
〜550℃の温度区間を徐冷温度域として35℃/h以
下の冷却速度で冷却することにより、フェライトとパー
ライトの2相組織とすることを特徴とする加工性に優れ
た肌焼鋼の製造方法である。
According to a fourth aspect of the present invention, in addition to the chemical composition of the steel of the second aspect, Pb: 0.01 to 0.30% by weight, Bi: 0.01 to 0.20% by weight, Te: 0. .00
Steel containing 1 to 0.05% by weight, Ca: 0.001 to 0.003% by weight, Se: 0.03 to 0.05% by weight, the balance being Fe and unavoidable impurities At 830 ° C. to 900 ° C., 700 ° C.
Production of case hardening steel excellent in workability characterized by having a two-phase structure of ferrite and pearlite by cooling at a cooling rate of 35 ° C./h or less in a temperature range of up to 550 ° C. as an annealing temperature range. Is the way.

【0008】本発明は、上記のように、従来のNiを含
有した機械構造用鋼を圧延または熱間鍛造後に830℃
〜900℃に加熱し、700℃〜550℃の温度区間を
徐冷温度域として35℃/h以下の冷却速度で冷却する
ことにより、フェライトとバーライトの2相組織とする
ことができ、加工性に優れた肌焼鋼が製造できる。
According to the present invention, as described above, the conventional Ni-containing steel for machine structural use is rolled or hot forged at 830 ° C.
By heating to about 900 ° C. and cooling at a cooling rate of 35 ° C./h or less in a temperature range of 700 ° C. to 550 ° C., a two-phase structure of ferrite and barite can be obtained. Can produce case hardened steel with excellent properties.

【0009】本発明における鋼の化学成分の限定理由を
述べる。ただし、添加量を示す単位は、重量%とする。
The reasons for limiting the chemical composition of steel in the present invention will be described. However, the unit indicating the amount of addition is% by weight.

【0010】Cは、機械構造用部品として浸炭処理後の
芯部強度を確保するために必要な元素であり、0.10
%未満ではその効果が充分に得られず、反対に0.35
%を超えると芯部の靭性を低下させる。そのため、Cの
含有量を0.10〜0.35%とした。
[0010] C is an element necessary for securing the core strength after carburizing as a component for a mechanical structure.
%, The effect is not sufficiently obtained.
%, The toughness of the core decreases. Therefore, the content of C is set to 0.10 to 0.35%.

【0011】Siは、脱酸のために添加されるが0.0
3%未満では脱酸効果が十分に得られず、過剰に含有さ
せると加工性を低下させると共に浸炭時の粒界酸化層の
形成を助長し疲労特性についても低下させるため上限を
0.35%をとした。
[0011] Si is added for deoxidation, but 0.0
If the content is less than 3%, a sufficient deoxidizing effect cannot be obtained. If the content is excessive, the workability is reduced, and the formation of a grain boundary oxide layer during carburization is promoted, and the fatigue characteristics are also reduced. And

【0012】Mnは、焼入性を確保するのに必要な元素
であるが、0.20%未満ではその効果が充分に得られ
ず、また2.0%を超えると鋼中で偏析し加工性を低下
させる。そのため、Siの含有量を0.20〜2.0%
とした。
Mn is an element necessary for ensuring hardenability, but if it is less than 0.20%, its effect cannot be sufficiently obtained. Reduce the nature. Therefore, the content of Si is set to 0.20 to 2.0%.
And

【0013】Sは、MnSとなり、被削性を改善する元
素であるが0.003%未満ではその効果が十分に得ら
れず、0.30を超えると冷間加工性を著しく低下させ
る。そのためSの含有量を0.003〜0.30%とし
た。
S becomes MnS and is an element for improving machinability. However, if it is less than 0.003%, its effect cannot be sufficiently obtained, and if it exceeds 0.30, cold workability is remarkably reduced. Therefore, the content of S is set to 0.003 to 0.30%.

【0014】Alは、脱酸剤であると共にAlN析出物
を形成し、浸炭時の結晶粒度の粗大化を防ぐ効果がある
が、0.010%未満ではその効果は十分ではなく、
0.05%を超えると熱間加工性を著しく低下させる。
そのためAlの含有量を0.010〜0.05%とし
た。
Although Al is a deoxidizing agent and forms AlN precipitates, it has the effect of preventing coarsening of the crystal grain size during carburization, but if it is less than 0.010%, the effect is not sufficient.
If it exceeds 0.05%, the hot workability is significantly reduced.
Therefore, the content of Al is set to 0.010 to 0.05%.

【0015】Crは、焼入性を向上させる元素である
が、0.10%未満ではその効果が十分ではなく、2.
0%を超えて含有させると浸炭層で炭化物を形成し、機
械的性質、疲労特性を低下させる。そのためCrの含有
量を0.10〜2.01%とした。
Cr is an element that improves hardenability, but its effect is not sufficient if it is less than 0.10%.
When the content exceeds 0%, carbides are formed in the carburized layer, and mechanical properties and fatigue properties are reduced. Therefore, the content of Cr is set to 0.10 to 2.01%.

【0016】Moは、焼入性および靭性を向上させる元
素であるが、0.03%未満ではその効果は十分ではな
く、0.8%を超えて含有させると圧延あるいは鍛造後
にベーナイトやマルテンサイト組織となり加工性を著し
く低下させる。そのためMoを含有量を0.8%以下と
した。
Mo is an element which improves the hardenability and toughness, but its effect is not sufficient if it is less than 0.03%, and if it exceeds 0.8%, the content of bainite or martensite after rolling or forging is increased. It becomes a structure and significantly reduces workability. Therefore, the content of Mo is set to 0.8% or less.

【0017】Niは、焼入性および靭性を向上させる元
素であり、0.30%未満ではその効果は十分ではな
く、3.0%を超えて含有させてもその効果の増加は小
さい。そのためNiの含有量を0.30〜3.0%とし
た。
Ni is an element that improves the hardenability and toughness, and if its content is less than 0.30%, its effect is not sufficient, and even if it exceeds 3.0%, its effect is small. Therefore, the content of Ni is set to 0.30 to 3.0%.

【0018】Nは、AlやNbとの炭窒化物を形成し、
浸炭時の結晶粒の粗大化を防ぐ効果があり、0.010
%未満では、その効果が十分でなく、0.025%以上
含有させると熱間加工性を著しく低下させる。そのため
Nの含有量を0.010%〜0.025%とした。
N forms a carbonitride with Al and Nb,
It has the effect of preventing the crystal grains from becoming coarse during carburization.
%, The effect is not sufficient, and if it is contained at 0.025% or more, the hot workability is significantly reduced. Therefore, the content of N is set to 0.010% to 0.025%.

【0019】Nbは、炭化物あるいは窒化物を形成し、
Ti同様にオーステナイト結晶粒度の粗大化を抑制する
効果があるが、0.01%未満ではその効果が得られ
ず、0.10%を超えて含有させると析出物の量が過剰
となり加工性を低下させる。そのためNbの含有量を
0.02〜0.10%とした。
Nb forms carbide or nitride,
Like Ti, it has the effect of suppressing coarsening of austenite grain size, but if it is less than 0.01%, the effect cannot be obtained. If it exceeds 0.10%, the amount of precipitates becomes excessive and workability becomes poor. Lower. Therefore, the content of Nb is set to 0.02 to 0.10%.

【0020】Pbは、0.01〜0.30%、Bi:
0.01〜0.20%、Te:0.00l〜0.05
%、Ca:0,001〜0.003%、Se:0.00
3〜0.05%とするこれらの元素は、切削性を改善す
る元素であり、切削性を要求される場合には上記成分範
囲で添加することが可能である。それぞれの元素の下限
未満では効果が不十分であり、上限を超えると冷間加工
性を著しく低下させるために上記の成分範囲とした。
Pb is 0.01 to 0.30%, Bi:
0.01 to 0.20%, Te: 0.001 to 0.05
%, Ca: 0.001 to 0.003%, Se: 0.00
These elements, which are contained in an amount of 3 to 0.05%, are elements that improve machinability, and can be added in the above component range when machinability is required. The effect is insufficient when the content is less than the lower limit of each element, and when the content is more than the upper limit, the cold workability is remarkably reduced.

【0021】加熱温度は、830℃未満であるとフェラ
イト+オーステナイトの2相域となり、冷却後に残留オ
ーステナイトが残り、900℃を超えるとAlあるいは
Nbの窒化物、炭化物、炭窒化物が大きくなり、浸炭時
のオーステナイト粒の粗大化が起こりやすくなる。その
ため、加熱温度を830℃〜900℃とした。
If the heating temperature is lower than 830 ° C., a two-phase region of ferrite + austenite is obtained, and residual austenite remains after cooling. If it exceeds 900 ° C., nitrides, carbides and carbonitrides of Al or Nb increase, Austenite grains are likely to become coarse during carburization. Therefore, the heating temperature was set to 830 ° C to 900 ° C.

【0022】徐冷区間は、700℃で多くのフェライト
が生成し始め、35℃/h以下の冷却速度では550℃
でパーライト変態が終了する。そのため、処理時間をで
きる限り短くするために、最も有効な700℃〜550
℃の温度範囲を徐冷区間をとした。また、徐冷温度区間
以外の区間、すなわち上記の加熱温度から700℃まで
の問の区間、あるいは550℃から常温までの間の区
間、の冷却速度は規定するものでなく任意の速度で良い
が、工業生産性の問題から、できる限り速くした方が好
ましい。
In the slow cooling section, a large amount of ferrite starts to be formed at 700 ° C., and at a cooling rate of 35 ° C./h or less, 550 ° C.
Then the pearlite transformation ends. Therefore, in order to shorten the processing time as much as possible, the most effective 700 ° C. to 550 ° C.
The temperature range of ° C. was defined as a slow cooling section. Further, the cooling rate in a section other than the slow cooling temperature section, that is, a section between the above-mentioned heating temperature and 700 ° C. or a section between 550 ° C. and normal temperature is not specified and may be an arbitrary rate. From the viewpoint of industrial productivity, it is preferable to increase the speed as much as possible.

【0023】徐冷区間の徐冷速度は、遅いほどフェライ
トの生成量が増え、硬さが低下し、加工性が良好になる
が、35℃を超えると、マルテンサイト組織が生成し、
加工性を著しく低下させる。そのため、冷却速度は35
℃/h以下とした。
The slower the cooling rate in the slow cooling section, the slower the amount of ferrite produced, the lower the hardness and the better the workability. However, if the cooling rate exceeds 35 ° C., a martensite structure is formed,
It significantly reduces workability. Therefore, the cooling rate is 35
° C / h or less.

【0024】[0024]

【発明の実施の形態】表1に示す化学成分組成の供試鋼
を真空溶解炉で溶製し、鋳片をφ167mmの鋼片に圧
延して次いで、φ30mmに圧延した。
BEST MODE FOR CARRYING OUT THE INVENTION Test steels having the chemical composition shown in Table 1 were melted in a vacuum melting furnace, cast pieces were rolled into 16167 mm steel slabs, and then rolled to 3030 mm.

【0025】[0025]

【表1】 [Table 1]

【0026】表1における各鋼は、Niを含有する機械
構造用鋼で、 No.1は、SNCM420の鋼 No.2は、SNCM420にNbを0.03%添加し
た鋼 No.3は、SNCM415にPbを0.15%添加し
た鋼 No.4は、SNCM415にBiを0.04%添加し
た鋼 No.5は、SNCM220にTeを0.0015%添
加した鋼 No.6は、SNCM220にCaを0.0023%添
加した鋼 No.7は、SNCM220にSeを0.08%添加し
た鋼 である。
Each steel in Table 1 is a steel for machine structural use containing Ni. No. 1 is a steel No. of SNCM420. No. 2 is a steel obtained by adding 0.03% of Nb to SNCM420. No. 3 is a steel obtained by adding 0.15% of Pb to SNCM415. No. 4 is a steel obtained by adding 0.04% of Bi to SNCM415. No. 5 is a steel obtained by adding 0.0015% of Te to SNCM220. No. 6 is a steel obtained by adding 0.0023% of Ca to SNCM220. No. 7 is a steel obtained by adding 0.08% of Se to SNCM220.

【0027】これらの鋼を上記のとおり圧延し、得られ
たφ30mmの鋼を、図1に示す温度パターンで、83
0℃〜900℃に加熱しその温度域に保持した後、この
加熱温度から700℃までは冷却速度は限定しないがで
きるだけ速く冷却して、生産性を向上させる。次いで7
00℃から550℃を徐冷区間として35℃/h以下の
冷却速度で冷却する。ついで、550℃からは空冷によ
り冷却する。かくして、残留オーステナイトの生成を避
け、フェライトとパーライトの2相組織の加工性に優れ
た肌焼鋼を得る。
These steels were rolled as described above, and the obtained φ30 mm steel was subjected to a temperature pattern shown in FIG.
After heating to 0 ° C. to 900 ° C. and holding in that temperature range, the cooling rate is not limited from this heating temperature to 700 ° C., but is cooled as fast as possible to improve productivity. Then 7
Cooling is performed at a cooling rate of 35 ° C./h or less by setting a slow cooling section from 00 ° C. to 550 ° C. Then, it is cooled by air cooling from 550 ° C. Thus, the formation of retained austenite is avoided, and a case hardened steel excellent in workability of the two-phase structure of ferrite and pearlite is obtained.

【0028】[0028]

【実施例】表1に示す化学成分組成の供試鋼を真空溶解
炉で溶製し、鋳片をφ167mmの鋼片に圧延し、次い
で、φ30mmに圧延し、焼鈍を行った。まず、No.
1の化学成分の鋼を用い、850℃で1時間保持後、8
50℃から700℃までの温度区間を冷却速度150℃
/hで冷却し、700℃から500℃までを100℃/
h、50℃/h、40℃/h、35℃/h、20℃/h
および10℃/hで冷却した後、500℃より空冷し
た。そして、これらのミクロ組織と硬さを調べた。その
結果を表2に示す。冷却速度35℃/h以下では、マル
テンサイト組織は認められず、フェライト+パーライト
組織となっており、硬さも低くなっている。
EXAMPLES Test steels having the chemical composition shown in Table 1 were melted in a vacuum melting furnace, cast pieces were rolled into φ167 mm steel pieces, then rolled to φ30 mm, and annealed. First, no.
After holding at 850 ° C. for 1 hour using steel of chemical composition 1
Cooling rate 150 ° C in the temperature range from 50 ° C to 700 ° C
/ H, and cool from 700 ° C to 500 ° C at 100 ° C /
h, 50 ° C / h, 40 ° C / h, 35 ° C / h, 20 ° C / h
After cooling at 10 ° C./h, air cooling was performed from 500 ° C. Then, these microstructures and hardness were examined. Table 2 shows the results. At a cooling rate of 35 ° C./h or less, no martensite structure is observed, the structure is a ferrite + pearlite structure, and the hardness is low.

【0029】[0029]

【表2】 [Table 2]

【0030】次に、No.1の化学成分の鋼を用い、8
50℃で1時間保持後、850℃から700℃までの温
度区間を冷却速度150℃/hで冷却し、徐冷終了温度
を500℃、550℃、600℃と変化させ、次いで空
冷し、得られた鋼のミクロ組織と硬さを調べた。ただ
し、700℃から各徐冷終了温度までの冷却速度は、3
5℃/hとし、それ以降は上記のとおり空冷とした。そ
の結果を表3に示す。徐冷終了温度550℃以下ではマ
ルテンサイト組織は認められずフェライト+パーライ組
織となっており、硬さも低くなっている。
Next, No. Using steel of chemical composition of 1, 8
After holding at 50 ° C. for 1 hour, the temperature range from 850 ° C. to 700 ° C. was cooled at a cooling rate of 150 ° C./h, the slow cooling end temperature was changed to 500 ° C., 550 ° C., 600 ° C., and then air-cooled. The microstructure and hardness of the obtained steel were examined. However, the cooling rate from 700 ° C. to each slow cooling end temperature is 3
The temperature was set to 5 ° C./h, and thereafter, air cooling was performed as described above. Table 3 shows the results. At the annealing end temperature of 550 ° C. or lower, no martensite structure is observed, and a ferrite + pearly structure is obtained, and the hardness is low.

【0031】[0031]

【表3】 [Table 3]

【0032】次に、No.1〜7の化学成分の鋼を用
い、850℃で1時間保持後、850℃から700℃ま
での温度区間を冷却速度150℃/hで冷却し、700
℃から550℃の温度区間を35℃/hで冷却した後、
空冷し、得られた鋼のミクロ組織と硬さを調べた。その
結果を表4に示す。No.1〜7の鋼の全てにおいて、
マルテンサイト組織は認められず、図4の顕微鏡写真に
見られるとおりフェライト+パーライト組織となってい
る。
Next, No. After using steel having a chemical composition of 1 to 7 and holding at 850 ° C. for 1 hour, the temperature range from 850 ° C. to 700 ° C. is cooled at a cooling rate of 150 ° C./h, and 700
After cooling the temperature section from 35 ° C to 550 ° C at 35 ° C / h,
After air cooling, the microstructure and hardness of the obtained steel were examined. Table 4 shows the results. No. In all of the steels 1-7,
No martensite structure was observed, and a ferrite + pearlite structure was observed as seen in the micrograph of FIG.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】以上説明したとおり、本発明は、Niを
含有する機械構造用鋼を圧延または熱間鍛造した後に、
830℃〜900℃に加熱し、700℃〜550℃を冷
却速度35℃/hの徐冷区間として徐冷したので、残留
オーステナイトの生成を避け、フェライトとパーライト
の2相組織としたので、冷間加工性あるいは切削加工性
に優れた鋼を得ることができる。
As described above, according to the present invention, after rolling or hot forging a steel for machine structural use containing Ni,
Since it was heated to 830 ° C. to 900 ° C. and gradually cooled from 700 ° C. to 550 ° C. as a slow cooling section at a cooling rate of 35 ° C./h, the formation of a retained austenite was avoided and the two-phase structure of ferrite and pearlite was formed. It is possible to obtain steel excellent in workability or cutting workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における熱処理パターンを示す図であ
る。
FIG. 1 is a view showing a heat treatment pattern according to the present invention.

【図2】残留オーステナイトが認められる鋼の顕微鏡写
真組織写真である。
FIG. 2 is a micrograph of a steel in which retained austenite is observed.

【図3】マルテンサイト組織が認められる鋼の顕微鏡写
真組織写真である。
FIG. 3 is a micrograph of a steel in which a martensite structure is observed.

【図4】本発明のフェライト+パーライト組織が認めら
れる本発明の方法による鋼の顕微鏡組織写真である。
FIG. 4 is a micrograph of a steel according to the method of the present invention in which the ferrite + pearlite structure of the present invention is recognized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.10〜0.35重量%、Si:
0.03〜0.35重量%、Mn:0.20〜2.0重
量%、S:0.003〜0.30重量%、Al:0.0
10〜0.05重量%、Cr:0.10〜2.0重量
%、Mo:0.03〜0.8重量%、Ni:0.30〜
3.0重量%、N:0.010〜0.025重量%、残
部Feおよぴ不可避的不純物よりなる鋼を、830℃〜
900℃に加熱し、700℃〜550℃の温度区間を徐
冷温度域として35℃/h以下の冷却速度で冷却するこ
とにより、フェライトとパーライトの2相組織とするこ
とを特徴とする加工性に優れた肌焼鋼の製造方法。
1. C: 0.10 to 0.35% by weight, Si:
0.03 to 0.35% by weight, Mn: 0.20 to 2.0% by weight, S: 0.003 to 0.30% by weight, Al: 0.0
10 to 0.05% by weight, Cr: 0.10 to 2.0% by weight, Mo: 0.03 to 0.8% by weight, Ni: 0.30 to 0%
3.0% by weight, N: 0.010-0.025% by weight, balance of Fe and unavoidable impurities,
Workability characterized by forming a two-phase structure of ferrite and pearlite by heating to 900 ° C. and cooling at a cooling rate of 35 ° C./h or less in a temperature range of 700 ° C. to 550 ° C. in a slow cooling temperature range. Method for producing case hardened steel that is excellent.
【請求項2】 請求項1の鋼の化学成分に、さらにN
b:0.01〜0.10重量%を含有する鋼を830℃
〜900℃に加熱し、700℃〜550℃の温度区間を
徐冷温度域として35℃/h以下の冷却速度で冷却する
ことにより、フェライトとパーライトの2相組織とする
ことを特徴とする加工性に優れた肌焼鋼の製造方法。
2. The steel of claim 1, further comprising N
b: steel containing 0.01 to 0.10% by weight at 830 ° C.
To a 900 ° C. to 550 ° C. temperature range and gradually cooling at a cooling rate of 35 ° C./h or less to form a two-phase structure of ferrite and pearlite. Method for producing case hardened steel with excellent heat resistance.
【請求項3】 請求項1の鋼の化学成分に、さらに、P
b:0.01〜0.30重量%、Bi:0.01〜0.
20重量%、Te:0.001〜0.05重量%、C
a:0.001〜0.003重量%、Se:0.003
〜0.05重量%の1種または2種以上を含有する鋼
を、830℃〜900℃に加熱し、700℃〜550℃
の温度区間を徐冷温度域として35℃/h以下の冷却速
度で冷却することにより、フェライトとパーライトの2
相組織とすることを特徴とする加工性に優れた肌焼鋼の
製造方法。
3. The steel of claim 1 further comprising P
b: 0.01-0.30% by weight, Bi: 0.01-0.
20% by weight, Te: 0.001 to 0.05% by weight, C
a: 0.001 to 0.003% by weight, Se: 0.003
A steel containing at least one of two or more of -0.05% by weight to 830 ° C to 900 ° C;
By cooling at a cooling rate of 35 ° C./h or less with the temperature zone of
A method for producing a case hardened steel having excellent workability, characterized by having a phase structure.
【請求項4】 請求項2の鋼の化学成分に、さらに、P
b:0.01〜0.30重量%、Bi:0.01〜0.
20重量%、Te:0.001〜0.05重量%、C
a:0.001〜0.003重量%、Se:0.003
〜0.05重量%の1種または2種以上を含有する鋼
を、830℃〜900℃に加熱し、700℃〜550℃
の温度区間を徐冷温度域として35℃/h以下の冷却速
度で冷却することにより、フェライトとパーライトの2
相組織とすることを特徴とする加工性に優れた肌焼鋼の
製造方法。
4. The steel of claim 2 further comprising P
b: 0.01-0.30% by weight, Bi: 0.01-0.
20% by weight, Te: 0.001 to 0.05% by weight, C
a: 0.001 to 0.003% by weight, Se: 0.003
A steel containing at least one of two or more of -0.05% by weight to 830 ° C to 900 ° C;
By cooling at a cooling rate of 35 ° C./h or less with the temperature zone of
A method for producing a case hardened steel having excellent workability, characterized by having a phase structure.
JP5615198A 1998-02-21 1998-02-21 Production of nickel-containing case hardening steel excellent in workability Pending JPH11236616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5615198A JPH11236616A (en) 1998-02-21 1998-02-21 Production of nickel-containing case hardening steel excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5615198A JPH11236616A (en) 1998-02-21 1998-02-21 Production of nickel-containing case hardening steel excellent in workability

Publications (1)

Publication Number Publication Date
JPH11236616A true JPH11236616A (en) 1999-08-31

Family

ID=13019101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5615198A Pending JPH11236616A (en) 1998-02-21 1998-02-21 Production of nickel-containing case hardening steel excellent in workability

Country Status (1)

Country Link
JP (1) JPH11236616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033258A (en) * 2014-07-28 2016-03-10 Jfeスチール株式会社 Case hardened steel
JP2022024978A (en) * 2020-07-16 2022-02-09 セントラル アイアン アンド スティール リサーチ インスティテュート Carburized bearing steel and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033258A (en) * 2014-07-28 2016-03-10 Jfeスチール株式会社 Case hardened steel
JP2018028149A (en) * 2014-07-28 2018-02-22 Jfeスチール株式会社 Case hardened steel
JP2022024978A (en) * 2020-07-16 2022-02-09 セントラル アイアン アンド スティール リサーチ インスティテュート Carburized bearing steel and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4729135B2 (en) Nitriding steel and nitriding parts
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
CN105671458A (en) Non-quenched and tempered medium carbon steel wire having excellent surface hardening thermal treatment performance and manufacturing method thereof
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP5477248B2 (en) Nitriding steel and nitriding parts with excellent machinability
JP4488228B2 (en) Induction hardening steel
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP5206911B1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JPH08199309A (en) Stainless steel excellent in workability and its production
JPH08199310A (en) Production of high strength martensitic stainless steel member
JP2006009150A (en) Steel for carburizing and its production method
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP2002146438A (en) Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JPH11236616A (en) Production of nickel-containing case hardening steel excellent in workability
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JP6477614B2 (en) Steel for soft nitriding and parts and method for manufacturing them
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method