JPH11236601A - Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy member - Google Patents
Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy memberInfo
- Publication number
- JPH11236601A JPH11236601A JP10039924A JP3992498A JPH11236601A JP H11236601 A JPH11236601 A JP H11236601A JP 10039924 A JP10039924 A JP 10039924A JP 3992498 A JP3992498 A JP 3992498A JP H11236601 A JPH11236601 A JP H11236601A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- powder
- rapidly solidified
- alloy powder
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 125
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 22
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 22
- 239000006104 solid solution Substances 0.000 claims abstract description 18
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 5
- 239000011777 magnesium Substances 0.000 claims description 43
- 239000011575 calcium Substances 0.000 claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 238000009689 gas atomisation Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 claims description 2
- 238000009692 water atomization Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract 1
- 230000007704 transition Effects 0.000 abstract 1
- 238000005242 forging Methods 0.000 description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000013079 quasicrystal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 1
- 229910019092 Mg-O Inorganic materials 0.000 description 1
- 229910019395 Mg—O Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、押し出し法や粉末
鍛造法のような熱間塑性加工により、高強度・高靭性ア
ルミニウム合金部材を製造するための急冷凝固アルミニ
ウム合金粉末に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rapidly solidified aluminum alloy powder for producing a high-strength and high-toughness aluminum alloy member by hot plastic working such as extrusion or powder forging.
【0002】[0002]
【従来の技術】近年になって、アモルファス相、準結晶
相、準安定相、過飽和固溶体を含む急冷凝固アルミニウ
ム合金粉末を用いた高強度・高靭性アルミニウム合金部
材が実用化されている。2. Description of the Related Art In recent years, high strength and high toughness aluminum alloy members using a rapidly solidified aluminum alloy powder containing an amorphous phase, a quasicrystalline phase, a metastable phase, and a supersaturated solid solution have been put to practical use.
【0003】これら高強度・高靭性アルミニウム合金部
材の製造に用いる急冷凝固アルミニウム合金粉末は酸化
されやすく、その粉末表面に、安定したアルミナ(Al
2O3)酸化膜が形成されている。特に、安価なガスアト
マイズ粉末などの場合は、その粉末表面に厚い酸化膜が
形成されやすい。[0003] The rapidly solidified aluminum alloy powder used in the production of these high-strength and high-toughness aluminum alloy members is easily oxidized, and stable alumina (Al) is formed on the surface of the powder.
2 O 3 ) oxide film is formed. In particular, in the case of inexpensive gas atomized powder or the like, a thick oxide film is easily formed on the surface of the powder.
【0004】その結果、急冷凝固アルミニウム合金粉末
を固めてアルミニウム合金部材を製造するに際して、そ
の粉末同志の結合が不十分となり、アルミニウム合金部
材の機械的性質、特に靭性が不足することがあった。そ
こで、従来、粉末の成形体に各種の機械的圧縮変形を加
え、粉末を剪断変形させることにより粉末表面の酸化膜
を破壊し、粉末同志の結合を向上させてきた。機械的圧
縮変形の手段の一例として、押し出し法や粉末鍛造法が
挙げられる。As a result, when the aluminum alloy member is manufactured by solidifying the rapidly solidified aluminum alloy powder, the bonding between the powders is insufficient, and the mechanical properties, particularly toughness, of the aluminum alloy member are sometimes insufficient. Therefore, conventionally, various types of mechanical compressive deformation have been applied to the powder compact, and the powder has been subjected to shear deformation, thereby destroying an oxide film on the powder surface and improving the bonding between the powders. Examples of the means of mechanical compression deformation include an extrusion method and a powder forging method.
【0005】押し出し法の場合では、粉末の成形体を所
定の押し出し比に変形させることにより、粉末が剪断変
形し、その際に粉末表面の酸化膜が破壊される。その結
果、粉末同志を強固に結合させることができ、アルミニ
ウム合金部材の靭性等の機械的特性を向上させることが
できる。[0005] In the case of the extrusion method, the powder is deformed to a predetermined extrusion ratio so that the powder is sheared, and at this time, an oxide film on the surface of the powder is broken. As a result, the powders can be strongly bonded together, and the mechanical properties such as the toughness of the aluminum alloy member can be improved.
【0006】粉末鍛造法の場合では、機械部品の最終形
状に近い形(ニアネットシェイプ)にアルミニウム合金部
材を成形できるものの、複雑形状に成形するため粉末同
志の結合が不十分となる部分が生じ、アルミニウム合金
部材の靭性が不足する場合がある。In the case of the powder forging method, although an aluminum alloy member can be formed in a shape (near net shape) close to the final shape of a machine component, a portion where powder-to-powder bonding is insufficient due to the formation of a complicated shape occurs. In some cases, the toughness of the aluminum alloy member is insufficient.
【0007】そこで、粉末表面の酸化膜を十分に破壊す
るために、例えば、特開平1−215901号公報に
は、アトライターやボールミルのような粉末の撹拌装置
を用いて、コスト高になる前処理である冷間加工を粉末
表面に施して、粉末表面の酸化膜を破壊する方法が開示
されている。この前処理をした粉末を粉末鍛造すること
により、粉末同志の結合が不十分な部分が無くなり、靭
性に優れたアルミニウム合金部材を得ている。In order to sufficiently destroy the oxide film on the surface of the powder, for example, Japanese Patent Application Laid-Open No. 1-215901 discloses a method in which a powder agitator such as an attritor or a ball mill is used. A method is disclosed in which a cold work, which is a treatment, is performed on a powder surface to destroy an oxide film on the powder surface. By performing powder forging on the powder that has been subjected to the pretreatment, a portion where bonding between powders is insufficient is eliminated, and an aluminum alloy member having excellent toughness is obtained.
【0008】[0008]
【発明が解決しようとする課題】高強度・高靭性アルミ
ニウム合金の製造に用いるアモルファス相、準結晶相、
準安定相、過飽和固溶体のうち少なくとも1種の非平衡
相を含む急冷凝固アルミニウム合金粉末は、それらの非
平衡相を出現させるために、合金元素を多量に含有させ
る必要がある。このため、粉末表面に酸化膜が形成され
るだけでなく粉末自体の硬度が高くなる。SUMMARY OF THE INVENTION Amorphous phase, quasicrystalline phase,
A rapidly solidified aluminum alloy powder containing at least one non-equilibrium phase out of a metastable phase and a supersaturated solid solution needs to contain a large amount of alloying elements in order for the non-equilibrium phase to appear. For this reason, not only an oxide film is formed on the powder surface, but also the hardness of the powder itself increases.
【0009】従って、従来の押し出し法や粉末鍛造法な
どでは、粉末を剪断変形させて粉末表面の酸化膜を破壊
することは困難になる。よって、押し出し法や粉末鍛造
法などで製造された急冷凝固アルミニウム合金部材で
は、粉末同志の結合が悪く、その機械的性質は高強度で
あるが靭性が不足するという問題が存在する。Therefore, in the conventional extrusion method, powder forging method and the like, it becomes difficult to break the oxide film on the powder surface by shearing the powder. Therefore, in a rapidly solidified aluminum alloy member manufactured by an extrusion method, a powder forging method, or the like, there is a problem that bonding between powders is poor, and the mechanical properties thereof are high in strength but insufficient in toughness.
【0010】そこで、アモルファス相、準結晶相、準安
定相、過飽和固溶体のうち少なくとも1種の非平衡相を
含む急冷凝固アルミニウム合金粉末を固めたアルミニウ
ム合金部材の靭性を向上させるためには、これら粉末同
志の結合を強くすることが必要である。Therefore, in order to improve the toughness of an aluminum alloy member obtained by solidifying a rapidly solidified aluminum alloy powder containing at least one non-equilibrium phase among an amorphous phase, a quasicrystalline phase, a metastable phase, and a supersaturated solid solution, It is necessary to strengthen the bonding between powders.
【0011】本発明の目的は、上記のような課題を解決
し、工業的に生産可能でコスト高になるような前工程を
追加することなく、粉末同志が結合しやすい急冷凝固ア
ルミニウム合金粉末とその製造方法及び高強度・高靭性
アルミニウム合金部材を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a rapidly solidified aluminum alloy powder which can solve the above-mentioned problems and can easily combine powders without adding a pre-process which can be industrially produced and increases the cost. An object of the present invention is to provide a manufacturing method thereof and a high-strength and high-toughness aluminum alloy member.
【0012】[0012]
【課題を解決するための手段】アモルファス相、準結晶
相、準安定相、過飽和固溶体のうち少なくとも1種の非
平衡相と平均粒径が500nm以下のアルファアルミニ
ウム(α−Al)とからなるアルミニウム合金粉末に、
マグネシウム(Mg)、リチウム(Li)、カルシウム
(Ca)のうち少なくとも1種を含有させた急冷凝固ア
ルミニウム合金粉末であって、急冷凝固アルミニウム合
金粉末表面から1μm以内に、マグネシウム(Mg)、
リチウム(Li)、カルシウム(Ca)のうち少なくと
も1種が0.05重量%以上15重量%以下含有されて
いるものが有用である。Means for Solving the Problems Aluminum comprising at least one non-equilibrium phase among an amorphous phase, a quasi-crystal phase, a meta-stable phase, and a supersaturated solid solution and alpha aluminum (α-Al) having an average particle size of 500 nm or less. Alloy powder,
A rapidly solidified aluminum alloy powder containing at least one of magnesium (Mg), lithium (Li), and calcium (Ca), wherein magnesium (Mg),
It is useful that at least one of lithium (Li) and calcium (Ca) is contained at 0.05% by weight or more and 15% by weight or less.
【0013】準安定相が、アルミ3ジルコニウム(Al
3Zr)、アルミ3チタン(Al3Ti)、アルミ3ジル
コニウムチタン(Al3(Zr,Ti))のうち少なく
とも1種であるもの、過飽和固溶体が、遷移金属元素及
び希土類元素の、それぞれから選ばれた少なくとも1種
を含有しているものが有用である。The metastable phase is aluminum 3 zirconium (Al
3 Zr), at least one of aluminum 3 titanium (Al 3 Ti) and aluminum 3 zirconium titanium (Al 3 (Zr, Ti)), and a supersaturated solid solution selected from a transition metal element and a rare earth element. Those containing at least one of them are useful.
【0014】急冷凝固アルミニウム合金粉末が、アルミ
ニウム(Al)、マグネシウム(Mg)、リチウム(L
i)、カルシウム(Ca)のうち少なくとも1種の酸化
物を、粉末の表面に有するものも有用である。The rapidly solidified aluminum alloy powder is made of aluminum (Al), magnesium (Mg), lithium (L
Those having at least one oxide of i) and calcium (Ca) on the surface of the powder are also useful.
【0015】そして、急冷凝固アルミニウム合金粉末を
ガス、若しくは水アトマイズ法によリ形成する。さら
に、その急冷凝固アルミニウム合金粉末を熱間塑性加工
にて固めた高強度・高靭性アルミニウム合金部材が有用
である。Then, the rapidly solidified aluminum alloy powder is formed by gas or water atomization. Further, a high-strength and high-toughness aluminum alloy member obtained by solidifying the rapidly solidified aluminum alloy powder by hot plastic working is useful.
【0016】[0016]
【発明の実施の形態】上記課題を克服するために、粉末
作製時、粉末表面のAl2O3酸化膜の形成防止、及び同
酸化膜の破壊に関して冶金学的見地から検討した。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to overcome the above-mentioned problems, the prevention of the formation of an Al 2 O 3 oxide film on the surface of the powder and the destruction of the oxide film during the production of the powder were examined from a metallurgical point of view.
【0017】その結果、Alより酸素との親和力が強い
元素であるMg、Li、Caを、予め粉末を製造する原
料のAl中に添加することに注目した。これらの元素
は、酸素との親和力が強い故に、添加した量が少ない場
合は、これらの元素は、粉末の内部のAl中に固溶す
る。また、一方で、量が多い場合は、粉末の表面に脆い
酸化物を形成する。As a result, attention was paid to the fact that Mg, Li, and Ca, which are elements having a higher affinity for oxygen than Al, were previously added to Al as a raw material for producing powder. Since these elements have a strong affinity for oxygen, if the added amount is small, these elements form a solid solution in Al inside the powder. On the other hand, when the amount is large, a brittle oxide is formed on the surface of the powder.
【0018】そこで、前者の場合は、熱間塑性加工を施
す時の温度上昇によって、Alより酸素との親和力が強
い元素であるMg、Li、Caが粉末の表面方向に拡散
し、Al2O3の酸化膜を分断することによって酸化膜が
破壊され、その隙間から活性に富むアルミニウム面を露
呈する。そして、熱間塑性加工を施した時の機械的な圧
縮によって、その活性な面にて粉末同志が結合する。Therefore, in the former case, Mg, Li, and Ca, which are elements having a higher affinity for oxygen than Al, are diffused in the surface direction of the powder due to an increase in temperature during hot plastic working, and Al 2 O By dividing the oxide film of No. 3, the oxide film is destroyed, and an active aluminum surface is exposed from the gap. Then, due to mechanical compression when hot plastic working is performed, the powders are bonded to each other on the active surface.
【0019】一方、後者の場合は、Al2O3の酸化膜よ
り優先的に形成された酸化膜であって、脆い酸化膜が、
熱間塑性加工を施した時の機械的な圧縮によって粉末表
面から剥離することによって破壊され、その後、活性に
富むAl面を露呈することにより、その活性な面にて粉
末が結合する。On the other hand, in the latter case, the oxide film formed preferentially over the Al 2 O 3 oxide film, and the brittle oxide film is
It is destroyed by peeling off from the powder surface by mechanical compression when hot plastic working is performed, and thereafter, by exposing the active Al surface, the powder is bonded on the active surface.
【0020】しかし、広く使用されている溶製Al合金
(溶解鋳造によるAl合金)の中にもAl−Cu−M
g、Al−Zn−MgなどのAlより酸素との親和力が
強い元素を含む溶製Al合金が存在し、その溶製Al合
金を例えば機械的に粉砕した粉末を用いたアルミニウム
合金が得られている。However, among the widely used ingot Al alloys (Al alloys by melt casting), Al-Cu-M
g, there is an ingot Al alloy containing an element having a higher affinity for oxygen than Al such as Al-Zn-Mg, and an aluminum alloy using a powder obtained by mechanically pulverizing the ingot Al alloy is obtained. I have.
【0021】これらの場合は、Mgは固溶強化の役割を
担うため、粉末表面のアルミナ酸化膜の破壊にMgを消
費すると、アルミニウム合金の引張り強度などの低下を
招くことになる。In these cases, Mg plays a role of solid solution strengthening. Therefore, if Mg is consumed to destroy the alumina oxide film on the powder surface, the tensile strength of the aluminum alloy will be reduced.
【0022】一方、アモルファス相、準結晶相、準安定
相、過飽和固溶体などを含む高硬度の粉末を押し出し法
や粉末鍛造法のような熱間塑性加工により製造した高強
度・高靭性アルミニウム合金では、α−Alの結晶粒が
平均結晶粒径500nm以下であるような超微細な組織
を形成する。従って、添加したMg、Li、Caは固溶
しにくく、上記固溶強化の役割は期待できない。On the other hand, in a high-strength and high-toughness aluminum alloy produced by hot plastic working such as an extrusion method or a powder forging method, a high-hardness powder containing an amorphous phase, a quasi-crystal phase, a metastable phase, a supersaturated solid solution, and the like. , An ultra-fine structure in which α-Al crystal grains have an average crystal grain size of 500 nm or less. Therefore, the added Mg, Li, and Ca hardly form a solid solution, and the role of solid solution strengthening cannot be expected.
【0023】ここで、高強度・高靭性アルミニウム合金
を押し出し法や粉末鍛造法のような熱間塑性加工により
製造するための急冷凝固アルミニウム合金粉末として、
このMg、Li、Caを予め添加した急冷凝固アルミニ
ウム合金粉末を用いて、粉末同志の結合を改善すること
は有効であると考えられる。Here, as a rapidly solidified aluminum alloy powder for producing a high-strength and high-toughness aluminum alloy by hot plastic working such as an extrusion method or a powder forging method,
It is considered effective to improve the bonding between the powders by using the rapidly solidified aluminum alloy powder to which Mg, Li, and Ca are added in advance.
【0024】[0024]
【実施例】本発明の実施例を比較例とともに説明し、本
発明の効果を明らかにする。 実施例1〜22) ガスアトマイズ装置を用いて、表
1、2に示す組成である実施例1〜22及び比較例1、
2の急冷凝固アルミニウム合金粉末を作製した。製法と
しては、直径が1.5mmのノズル(穴)から落下させ
た該当組成のアルミニウム合金の溶湯に、加圧(100
kgf/cm2)した窒素ガスを衝突させることによる
方法を用いた。作製した各急冷凝固アルミニウム合金粉
末を最大粉末粒径75μm以下に篩い分け処理を行なっ
た。EXAMPLES Examples of the present invention will be described together with comparative examples to clarify the effects of the present invention. Examples 1 to 22) Using a gas atomizer, Examples 1 to 22 and Comparative Examples 1 and 2 having compositions shown in Tables 1 and 2.
A rapidly solidified aluminum alloy powder of No. 2 was produced. As a manufacturing method, a molten metal of an aluminum alloy having a corresponding composition dropped from a nozzle (hole) having a diameter of 1.5 mm is pressurized (100 mm).
kgf / cm 2 ) was used. Each rapidly solidified aluminum alloy powder produced was sieved to a maximum powder particle size of 75 μm or less.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】なお、表1(実施例1〜11)は、粉末を
製造する原料のAl中に予め添加した、Alより酸素と
の親和力が強い元素であるMg、Li、Caが少ない場
合の急冷凝固アルミニウム合金粉末の組成(上段は原子
%、下段は重量%である。表2も同じ。)で、その粉末
の主な金属組織、添加元素及びその状態を表3に示す。
表2(実施例12〜22)は、原料のAl中に添加した
Mg、Li、Caが多い場合の急冷凝固アルミニウム合
金の組成で、その粉末の主な金属組織、添加元素及びそ
の状態を表4に示す。Table 1 (Examples 1 to 11) shows that quenching is performed when Mg, Li, or Ca, which is an element having a higher affinity for oxygen than Al, is preliminarily added to Al as a raw material for producing powder. Table 3 shows the composition of the solidified aluminum alloy powder (the upper part is atomic%, the lower part is weight%, and Table 2 is the same).
Table 2 (Examples 12 to 22) shows the composition of the rapidly solidified aluminum alloy when the amount of Mg, Li, and Ca added to the raw material Al is large, and shows the main metallographic structure, the added elements, and the state of the powder. It is shown in FIG.
【0028】[0028]
【表3】 [Table 3]
【0029】[0029]
【表4】 [Table 4]
【0030】粉末を製造する原料のAl中に予め添加し
た、Alより酸素との親和力が強い元素であるMg、L
i、Caが少ない場合である実施例1について、粉末表
面の酸化膜の実験結果を示す。Mg, L, which are elements which have a higher affinity for oxygen than Al and are previously added to Al as a raw material for producing powder.
The experimental results of the oxide film on the powder surface are shown for Example 1 where i and Ca are small.
【0031】図1はHR−SEM(High Reso
lutionーScanningElectron M
icroscopeの略称で高性能走査型電子顕微
鏡。)を用いた急冷凝固アルミニウム合金粉末粒子の組
織観察の結果である。HR−SEMによる2次電子像に
示すように、その表面(室温)にはマグネシウムの酸化
物(Mg−Al−Oスピネル等)の存在は確認できなか
った。FIG. 1 shows an HR-SEM (High Reso).
lution-ScanningElectron M
High-performance scanning electron microscope. 2) is a result of microscopic observation of rapidly solidified aluminum alloy powder particles using the method of FIG. As shown in the secondary electron image by HR-SEM, the presence of magnesium oxide (Mg-Al-O spinel or the like) was not confirmed on the surface (room temperature).
【0032】Alより酸素との親和力が強い元素である
Mgの添加した量が少ないので、Mg元素は、粉末の内
部のAl中に固溶しており、粉末表面にはマグネシウム
の酸化物は存在せず、Al2O3が存在している。Since the amount of added Mg, which is an element having a higher affinity for oxygen than Al, is small, the Mg element is dissolved in Al inside the powder and there is no magnesium oxide on the powder surface. No, Al 2 O 3 is present.
【0033】SEM−EDX(Scanning El
ectron Microscope−nergy D
ispersion Xray Spectrosco
pyの略称でエネルギー分散型X線分析法。)による定
性及び定量分析の結果、粉末粒子表面から1μm以内
に、添加相当のMgの存在を確認した。そして、Mgの
添加を0.05重量%以上5重量%以下にした場合、粉
末粒子表面から1μm以内に、0.05重量%以上5重
量%以下のMgが存在することを別途確認した。SEM-EDX (Scanning El)
electron Microscope-ergy D
ission Xray Spectrosco
Energy dispersive X-ray analysis method. As a result of the qualitative and quantitative analyses, the presence of Mg equivalent to the addition was confirmed within 1 μm from the surface of the powder particles. When the addition of Mg was set to 0.05% by weight or more and 5% by weight or less, it was separately confirmed that 0.05% by weight or more and 5% by weight or less of Mg were present within 1 μm from the surface of the powder particles.
【0034】実施例1の粉末表面の昇温による組織変化
の例を図2から図5に示す。ここで図2は638Kの急
冷凝固アルミニウム合金粉末の表面の2次電子像、図3
は、753Kの同2次電子像、図4は、753Kから室
温に自然冷却した直後の同2次電子像、図5は、753
Kから室温に冷却して、1時間経過後の同2次電子像で
ある。FIGS. 2 to 5 show examples of the structure change of the powder surface in Example 1 due to the temperature rise. Here, FIG. 2 is a secondary electron image of the surface of a rapidly solidified aluminum alloy powder of 638K, and FIG.
Is the secondary electron image of 753K, FIG. 4 is the secondary electron image immediately after cooling from 753K to room temperature, and FIG.
It is the same secondary electron image after 1 hour after cooling from K to room temperature.
【0035】徐々に昇温していくと、図2から図5の変
化で判明するように、温度753Kを越すと、粉末の内
部のAl中に固溶していたMgが粉末表面方向に拡散
し、Al2O3酸化膜を分断して、この粉末の表面に活性
アルミニウム面(図3、4の、矢印で示す白い部分)を
出現させる。しかし、図5に示すように1時間後には再
び大気中の酸素と反応し、Al2O3の酸化膜を形成す
る。As the temperature is gradually increased, as can be seen from the changes in FIGS. 2 to 5, when the temperature exceeds 753K, Mg dissolved in Al inside the powder diffuses toward the powder surface. Then, the Al 2 O 3 oxide film is divided, and an active aluminum surface (white portions indicated by arrows in FIGS. 3 and 4) appears on the surface of the powder. However, as shown in FIG. 5, after one hour, it reacts again with oxygen in the atmosphere to form an Al 2 O 3 oxide film.
【0036】Mg、Li、Caを含んだ表1に示す実施
例1〜11及び比較例1、2の粉末を、断面が縦9.5
mm、横29mmで、高さが9.5mmの角型金型に挿
入して面圧6ton/cm2で冷間成形した。その成形
体を、加熱脱ガス処理を行い、そして、断面が縦11m
m、横31mmで、高さが11mmの角型金型に挿入し
て面圧8ton/cm2で熱間塑性加工である粉末鍛造
(鍛造温度は、773Kで、この温度への昇温速度は毎
秒4Kである。)を行った。Each of the powders of Examples 1 to 11 and Comparative Examples 1 and 2 shown in Table 1 containing Mg, Li and Ca was prepared by measuring 9.5 in section.
mm and 29 mm in width, and inserted into a square mold having a height of 9.5 mm and cold-formed at a surface pressure of 6 ton / cm 2 . The molded body is subjected to a heat degassing treatment, and the cross section is 11 m in length.
m, 31 mm in width, and inserted into a square mold having a height of 11 mm and hot forging at a surface pressure of 8 ton / cm 2 by powder forging (forging temperature is 773K, and the temperature rising rate to this temperature is 4K per second).
【0037】鍛造体である高強度アルミニウム合金をイ
ンストロン引張試験機を用いて引張試験と、計装化シャ
ルピー衝撃試験機(JIS B 7722)を用いてシ
ャルピー衝撃試験を行った。なお、引張試験の用いる試
験片の形状は、図6に示すように、長さ30mm、直径
6mmの円柱の両端末から9mm(表面にM8のねじ転
造した。但し図示せず。)を残して、中央部に長さ5m
m、直径3mmの円柱を削り込んだもので、直径6mm
と直径3mmとの境界部は、半径5mmの円弧に沿った
ものである。シャルピー衝撃試験片の形状は、縦、横が
10mmで長さが30mmの角柱で、切り欠き部は設定
していない。また、両試験片の表面は、平滑仕上を施し
た。The forged aluminum alloy was subjected to a tensile test using an Instron tensile tester and a Charpy impact test using an instrumented Charpy impact tester (JIS B7722). As shown in FIG. 6, the shape of the test piece used in the tensile test is 9 mm (M8 thread rolling on the surface, not shown) from both ends of a cylinder having a length of 30 mm and a diameter of 6 mm. 5m in the center
m, a cylinder with a diameter of 3 mm cut into a cylinder with a diameter of 6 mm
Is 3 mm along a circular arc having a radius of 5 mm. The shape of the Charpy impact test specimen was a prism having a length and width of 10 mm and a length of 30 mm, and no cutout portion was set. The surfaces of both test pieces were subjected to a smooth finish.
【0038】粉末鍛造により製造されたアルミニウム合
金の機械的性質を表5に各実施例と比較例毎に示す。実
施例1、2と比較例の機械的性質を比較すると、Mg添
加された実施例の方は、伸びの値(%)、シャルピー衝
撃値(J/cm2)共に良好で、500MPa以上とい
う十分な引張強度も保たれている。実施例3〜9につい
ても、引張強度、伸びの値、シャルピー衝撃値共に良好
な特性を示す。また、実施例10、11にLi、Caの
添加した例を示すように、Mgと同様に、その添加が有
効であることが示される。Table 5 shows the mechanical properties of the aluminum alloy manufactured by powder forging for each of the examples and comparative examples. Comparing the mechanical properties of Examples 1 and 2 and the comparative example, the Mg-added Example has a good elongation value (%) and a good Charpy impact value (J / cm 2 ). High tensile strength is also maintained. Examples 3 to 9 also show good properties in tensile strength, elongation, and Charpy impact value. Further, as shown in the examples in which Li and Ca were added to Examples 10 and 11, it is shown that the addition is effective similarly to Mg.
【0039】[0039]
【表5】 [Table 5]
【0040】次に、Mgの添加した実施例1〜9につい
て、各急冷凝固アルミニウム合金粉末の組織の考察、及
びその酸化膜の状況について考察する。Li及びCaに
おける実施例10、11もMgと同様であると考える。Next, in Examples 1 to 9 to which Mg was added, the structure of each rapidly solidified aluminum alloy powder was considered, and the state of the oxide film was considered. It is considered that Examples 10 and 11 in Li and Ca are similar to Mg.
【0041】実施例1、2、10、11は、急冷凝固ア
ルミニウム合金粉末中にアモルファス相を含む場合であ
って、アモルファス相を形成する代表的な合金系である
Al−Ni−Mm系合金に、Mg、Li、Caを添加し
た場合である。X線回折測定の結果、アモルファス相の
単相ではなく、超微細なα−Alの結晶粒が点在してい
た。Examples 1, 2, 10, and 11 are cases in which an amorphous phase is contained in a rapidly solidified aluminum alloy powder, and an Al-Ni-Mm-based alloy which is a typical alloy system for forming an amorphous phase is used. , Mg, Li, and Ca were added. As a result of X-ray diffraction measurement, ultrafine α-Al crystal grains were scattered, not a single phase of the amorphous phase.
【0042】添加元素であるMgは、アモルファス相だ
けでなく、この点在するα−Alの結晶粒に固溶して含
有されている。ガスアトマイズ装置の噴霧化により当初
形成された粉末表面のアルミナ酸化膜は、熱間塑性加工
である粉末鍛造の鍛造温度への加熱時のアルミナ酸化膜
の分断により破壊される。その破壊は、α−Alの結晶
粒に固溶しているMg、及びアモルファス相の結晶化に
よってα−Al結晶粒に濃縮されて固溶していたMg
が、粉末粒子表面へ拡散するためと考えられる。Mg, which is an additional element, is contained not only in the amorphous phase but also in the dispersed α-Al crystal grains. The alumina oxide film on the powder surface formed initially by atomization of the gas atomizing device is destroyed by the separation of the alumina oxide film during heating to the forging temperature of powder forging, which is hot plastic working. The destruction is caused by Mg dissolved in α-Al crystal grains and Mg dissolved in α-Al crystal grains by crystallization of the amorphous phase to form a solid solution.
However, it is considered to be due to diffusion to the surface of the powder particles.
【0043】粉末中に過飽和固溶体を含む場合として、
実施例3、4を示す。遷移金属元素と希土類元素を含む
アルミニウムを主成分とする過飽和固溶体であって、変
調組織を形成する合金系であるAl−Mo−Mm、Al
−Cr−Mm系合金に対して、添加元素としてMgを入
れた場合である。熱間塑性加工である粉末鍛造の鍛造温
度への加熱時のAl2O3酸化膜の分断による破壊は、他
の遷移金属元素や希土類元素と同様に、α−Al結晶粒
中に固溶していたMgの粉末表面への拡散によるものと
考えられる。When the powder contains a supersaturated solid solution,
Examples 3 and 4 will be described. Al-Mo-Mm, Al which is a supersaturated solid solution containing aluminum as a main component containing a transition metal element and a rare earth element and which forms a modulated structure
In this case, Mg was added as an additive element to the Cr-Mm alloy. Destruction of the Al 2 O 3 oxide film due to fragmentation during heating to the forging temperature of powder forging, which is hot plastic working, causes solid solution in α-Al crystal grains like other transition metal elements and rare earth elements. This is probably due to the diffusion of Mg into the powder surface.
【0044】粉末中に準結晶相を含む場合として、実施
例5、6を示す。準結晶相を形成する代表的な合金系で
あるAl−Mn−Mm、Al−Cr−Mm系合金に対し
て、添加元素としてMgを入れた場合である。同様に、
加熱時のアルミナ酸化膜の分断による破壊は、主にα−
Alに固溶していたMgの拡散によるものと考えられ
る。Examples 5 and 6 show the case where the powder contains a quasicrystalline phase. This is a case where Mg is added as an additive element to Al-Mn-Mm and Al-Cr-Mm alloys, which are typical alloys that form a quasicrystalline phase. Similarly,
Destruction of the alumina oxide film due to fragmentation during heating is mainly due to α-
This is probably due to the diffusion of Mg dissolved in Al.
【0045】粉末中に準安定相を含む場合として、実施
例7、8、9を示す。α−Al結晶粒の核としての役割
を果たすAl3Zr、Al3Ti、Al3(Zr,Ti)
準安定相を形成するAl−Zr−Mm、Al−Ti−M
m、Al−Zr−Ti−Mm系合金に対して、添加元素
としてMgを入れた場合である。Mgの多くは、各準安
定相を取り囲んでいるα−Alに固溶している。同様
に、加熱時のAl2O3酸化膜の分断による破壊は、α−
Alに固溶しているMgの拡散によるものが主であると
考えられる。Examples 7, 8, and 9 show cases in which the powder contains a metastable phase. Al 3 Zr, Al 3 Ti, Al 3 (Zr, Ti) serving as nuclei of α-Al crystal grains
Al-Zr-Mm, Al-Ti-M forming a metastable phase
m, Al-Zr-Ti-Mm alloy in which Mg is added as an additional element. Most of Mg is dissolved in α-Al surrounding each metastable phase. Similarly, the destruction of the Al 2 O 3 oxide film due to the separation during heating is caused by α-
It is considered that the main cause is the diffusion of Mg dissolved in Al.
【0046】次に、予め粉末を製造する原料のAl中に
添加した、Alより酸素との親和力が強い元素であるM
g、Li、Caが多い場合の表2に示す実施例12〜2
0について、HR−SEMを用いた組織観察とSEM−
EDXによる定性分析の結果、急冷凝固アルミニウム合
金粉末表面でのAl−Mg−O等のマグネシウムの酸化
物の存在を確認した。なお、Al2O3酸化膜は存在して
いる。Next, M, which is an element having a higher affinity for oxygen than Al, was previously added to Al as a raw material for producing powder.
Examples 12 to 2 shown in Table 2 when g, Li, and Ca are large.
About 0, microstructure observation using HR-SEM and SEM-
As a result of qualitative analysis by EDX, the presence of a magnesium oxide such as Al-Mg-O on the surface of the rapidly solidified aluminum alloy powder was confirmed. Note that an Al 2 O 3 oxide film exists.
【0047】実施例12〜20に示すような、表面にM
gの酸化膜を形成した急冷凝固アルミニウム合金粉末を
実施例1〜11と同様に冷間成形後、加熱脱ガス処理を
行い、熱間塑性加工である粉末鍛造(鍛造温度は、77
3Kで、この温度への昇温速度は毎秒4Kである。)を
行った。得られた鍛造体である高強度アルミニウム合金
をインストロン引張試験機を用いて引張試験と、計装化
シャルピー衝撃試験機を用いてシャルピー衝撃試験を行
った。試験片の形状も実施例1〜11と同様である。As shown in Examples 12 to 20, M
g of the rapidly solidified aluminum alloy powder on which an oxide film was formed was cold-formed in the same manner as in Examples 1 to 11, and then heated and degassed to obtain powder forging (forging temperature of 77).
At 3K, the rate of temperature rise to this temperature is 4K per second. ) Was done. The obtained high strength aluminum alloy as a forged body was subjected to a tensile test using an Instron tensile tester and a Charpy impact test using an instrumented Charpy impact tester. The shape of the test piece is the same as in Examples 1 to 11.
【0048】急冷凝固アルミニウム合金粉末の組成は表
2に、その主な金属組織、添加元素及びその元素の状態
を表4に、粉末鍛造により製造された高強度アルミニウ
ム合金の機械的性質を表5に、実施例12〜20毎に示
す。伸び、シャルピー衝撃値共に良好で、引張強度も十
分に高い。また、Li及びCaを含む実施例21、22
においてもMgと同様であると考えられる。Table 2 shows the composition of the rapidly solidified aluminum alloy powder, Table 4 shows its main metal structure, added elements and the states of the elements, and Table 5 shows the mechanical properties of the high-strength aluminum alloy produced by powder forging. Examples are shown for each of Examples 12 to 20. Both elongation and Charpy impact value are good, and tensile strength is sufficiently high. Examples 21 and 22 containing Li and Ca
Is considered to be similar to Mg.
【0049】Al2O3の酸化膜より優先的に形成された
これらの元素の酸化膜は脆いため、熱間塑性加工を施し
た時の機械的な圧縮によって粉末表面から剥離すること
によって破壊され、その後、活性に富むAl面を露呈す
ることにより、その活性な面にて粉末が結合し、表5の
ような良好な機械的性質を示すと考えられる.Oxide films of these elements formed preferentially over oxide films of Al 2 O 3 are brittle, and are broken by peeling off from the powder surface by mechanical compression during hot plastic working. Then, by exposing the highly active Al surface, it is considered that the powder is bonded on the active surface and exhibits good mechanical properties as shown in Table 5.
【0050】なお、予め粉末を製造する原料のAl中に
添加した、Alより酸素との親和力が強い元素であるM
g、Li、Caが少ない場合と、原料のAl中に添加し
たMg、Li、Caが多い場合との添加成分重量%の境
界値は、5重量%近傍であると考えられる。また、添加
成分の少ない場合の最小値は0.05重量%で、多い場
合の最大値は、状態図を検討した結果から、15重量%
である。It is to be noted that M, which is an element having a higher affinity for oxygen than Al, is added in advance to Al as a raw material for producing powder.
It is considered that the boundary value of the added component weight% between the case where the amount of g, Li and Ca is small and the case where the amount of Mg, Li and Ca added to the raw material Al is large is around 5% by weight. The minimum value when the amount of the added component is small is 0.05% by weight, and the maximum value when the added component is large is 15% by weight based on the result of examining the phase diagram.
It is.
【0051】[0051]
【発明の効果】本発明による急冷凝固アルミニウム粉末
を用いれば、押し出し法及びニアネットシェイプの機械
部品の製造のために有効な方法である通常の粉末鍛造法
において、その粉末表面の酸化膜を破壊することがで
き、粉末同志の結合を強くすることにより、引張強度
(UTS)、伸び、及びシャルピー衝撃値に優れた高強
度・高靭性アルミニウム合金を製造できる。By using the rapidly solidified aluminum powder according to the present invention, an oxide film on the surface of the powder is destroyed in an ordinary powder forging method which is an effective method for manufacturing an extrusion method and a near-net-shape mechanical part. By increasing the bond between powders, a high-strength and high-toughness aluminum alloy having excellent tensile strength (UTS), elongation, and Charpy impact value can be manufactured.
【図1】本発明の粉末表面(室温)の2次電子像の図で
ある。FIG. 1 is a diagram of a secondary electron image of the powder surface (room temperature) of the present invention.
【図2】本発明の粉末表面(638K)の2次電子像の
図である。FIG. 2 is a view of a secondary electron image of the powder surface (638K) of the present invention.
【図3】本発明の粉末表面(753K)の2次電子像の
図である。FIG. 3 is a view of a secondary electron image of the powder surface (753K) of the present invention.
【図4】本発明の粉末表面(753Kから室温に冷却直
後)の2次電子像の図である。FIG. 4 is a view of a secondary electron image of the powder surface of the present invention (immediately after cooling from 753K to room temperature).
【図5】本発明の粉末表面(753Kから室温に冷却
後、1時間経過)の2次電子像の図である。FIG. 5 is a view of a secondary electron image of the powder surface of the present invention (one hour after cooling from 753K to room temperature).
【図6】張り試験片を示す図である。FIG. 6 is a view showing a tension test piece.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 21/00 C22C 21/00 N (72)発明者 武田 義信 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 21/00 C22C 21/00 N (72) Inventor Yoshinobu Takeda 1-1-1, Kunyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Inside the Itami Works
Claims (7)
過飽和固溶体のうち少なくとも1種の非平衡相と平均粒
径が500nm以下のアルファアルミニウム(α−A
l)とからなるアルミニウム合金粉末に、マグネシウム
(Mg)、リチウム(Li)、カルシウム(Ca)のう
ち少なくとも1種を含有させたことを特徴とする急冷凝
固アルミニウム合金粉末。An amorphous phase, a quasicrystalline phase, a metastable phase,
At least one non-equilibrium phase of the supersaturated solid solution and alpha aluminum having an average particle size of 500 nm or less (α-A
1) A rapidly solidified aluminum alloy powder characterized in that at least one of magnesium (Mg), lithium (Li), and calcium (Ca) is contained in the aluminum alloy powder of (1).
から1μm以内に、マグネシウム(Mg)、リチウム
(Li)、カルシウム(Ca)のうち少なくとも1種が
0.05重量%以上15重量%以下含有されていること
を特徴とする請求項1記載の急冷凝固アルミニウム合金
粉末。2. At least one of magnesium (Mg), lithium (Li) and calcium (Ca) is contained in an amount of 0.05% by weight or more and 15% by weight or less within 1 μm from the surface of the rapidly solidified aluminum alloy powder. The rapidly solidified aluminum alloy powder according to claim 1, wherein
(Al3Zr)、アルミ3チタン(Al3Ti)、アルミ
3ジルコニウムチタン(Al3(Zr,Ti))のうち
少なくとも1種であることを特徴とする請求項1記載の
急冷凝固アルミニウム合金粉末。3. The metastable phase is at least one of aluminum 3 zirconium (Al 3 Zr), aluminum 3 titanium (Al 3 Ti), and aluminum 3 zirconium titanium (Al 3 (Zr, Ti)). The rapidly solidified aluminum alloy powder according to claim 1, characterized in that:
希土類元素の、それぞれから選ばれた少なくとも1種を
含有していることを特徴とする請求項1記載の急冷凝固
アルミニウム合金粉末。4. The rapidly solidified aluminum alloy powder according to claim 1, wherein the supersaturated solid solution contains at least one selected from a transition metal element and a rare earth element.
アルミニウム(Al)、マグネシウム(Mg)、リチウ
ム(Li)、カルシウム(Ca)のうち少なくとも1種
の酸化物を、該急冷凝固アルミニウム合金粉末の表面に
有することを特徴とする請求項1記載の急冷凝固アルミ
ニウム合金粉末。5. The rapidly solidified aluminum alloy powder,
2. The quenching according to claim 1, wherein at least one oxide selected from aluminum (Al), magnesium (Mg), lithium (Li), and calcium (Ca) is provided on the surface of the rapidly solidified aluminum alloy powder. Solidified aluminum alloy powder.
成することを特徴とする請求項1記載の急冷凝固アルミ
ニウム合金粉末の製造法。6. The method for producing a rapidly solidified aluminum alloy powder according to claim 1, wherein the powder is formed by a gas or water atomization method.
金粉末を熱間塑性加工にて固めたことを特徴とする高強
度・高靭性アルミニウム合金部材。7. A high-strength and high-toughness aluminum alloy member obtained by solidifying the rapidly solidified aluminum alloy powder according to claim 1 by hot plastic working.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10039924A JPH11236601A (en) | 1998-02-23 | 1998-02-23 | Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10039924A JPH11236601A (en) | 1998-02-23 | 1998-02-23 | Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11236601A true JPH11236601A (en) | 1999-08-31 |
Family
ID=12566494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10039924A Pending JPH11236601A (en) | 1998-02-23 | 1998-02-23 | Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11236601A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0997546A1 (en) * | 1998-10-30 | 2000-05-03 | Sumitomo Electric Industries, Ltd. | Aluminum alloy and method for manufacturing aluminum-alloy member |
JP2010126740A (en) * | 2008-11-25 | 2010-06-10 | Nissan Motor Co Ltd | Aluminum alloy and method for manufacturing the same |
-
1998
- 1998-02-23 JP JP10039924A patent/JPH11236601A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0997546A1 (en) * | 1998-10-30 | 2000-05-03 | Sumitomo Electric Industries, Ltd. | Aluminum alloy and method for manufacturing aluminum-alloy member |
US6402860B2 (en) | 1998-10-30 | 2002-06-11 | Sumitomo Electric Industries, Ltd. | Aluminum alloy and method for manufacturing aluminum-alloy member |
JP2010126740A (en) * | 2008-11-25 | 2010-06-10 | Nissan Motor Co Ltd | Aluminum alloy and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6471797B1 (en) | Quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability and method of making the same | |
US5593515A (en) | High strength aluminum-based alloy | |
JP5239022B2 (en) | High strength and high toughness magnesium alloy and method for producing the same | |
US5304260A (en) | High strength magnesium-based alloys | |
WO2010122960A1 (en) | High-strength copper alloy | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
EP0821072B1 (en) | Highly wear-resistant aluminium-based composite alloy and wear-resistant parts | |
JPH04231435A (en) | Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation | |
IL125681A (en) | Magnesium alloy for high temperature applications | |
US5607523A (en) | High-strength aluminum-based alloy | |
JPWO2019013226A1 (en) | Magnesium-based alloy wrought material and method for producing the same | |
JP2007039748A (en) | HEAT RESISTANT Al-BASED ALLOY | |
JP2749761B2 (en) | Powder forging method for high yield strength and high toughness aluminum alloy powder | |
Ajith Kumar et al. | Microstructure and mechanical property correlation of Mg-Si alloys | |
JP2807374B2 (en) | High-strength magnesium-based alloy and its solidified material | |
Oshida | Magnesium Materials: From Mountain Bikes to Degradable Bone Grafts | |
US5344507A (en) | Wear-resistant aluminum alloy and method for working thereof | |
JP5665037B2 (en) | Binary aluminum alloy powder sintered material and method for producing the same | |
JPH11236601A (en) | Rapidly solidified aluminum alloy powder, its production, and high strength and high toughness aluminum alloy member | |
JPH10237607A (en) | Aluminum alloy with high strength and high ductility | |
JP3485961B2 (en) | High strength aluminum base alloy | |
JP2582027B2 (en) | Manufacturing method of magnesium alloy casting | |
Blaz et al. | Structure and properties of 6061+ 26 mass% Si aluminum alloy produced via coupled rapid solidification and KOBO-extrusion of powder | |
Boyko | Characterization of the structure and precipitation process in Al-Mg-Si and Al-Mg-Ge casting alloys | |
SEETHARAMAN | Synthesis and characterization of new titanium containing magnesium materials |