JPH11236435A - 生分解樹脂組成物およびその製造方法 - Google Patents

生分解樹脂組成物およびその製造方法

Info

Publication number
JPH11236435A
JPH11236435A JP4199098A JP4199098A JPH11236435A JP H11236435 A JPH11236435 A JP H11236435A JP 4199098 A JP4199098 A JP 4199098A JP 4199098 A JP4199098 A JP 4199098A JP H11236435 A JPH11236435 A JP H11236435A
Authority
JP
Japan
Prior art keywords
resin composition
lactic acid
biodegradable resin
metal salt
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4199098A
Other languages
English (en)
Inventor
Junzo Odera
純蔵 大寺
Toru Yano
徹 矢野
Nobuyuki Sakuta
信幸 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishikawa Rubber Co Ltd
Original Assignee
Nishikawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishikawa Rubber Co Ltd filed Critical Nishikawa Rubber Co Ltd
Priority to JP4199098A priority Critical patent/JPH11236435A/ja
Publication of JPH11236435A publication Critical patent/JPH11236435A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

(57)【要約】 【課題】 成形加工性と生分解性をより高めた新規のプ
ラスチック製品の提供をする。 【解決手段】 ポリヒドロキシカルボン酸の少なくとも
1種と金属塩とを減圧下にて加熱撹拌することにより得
られる生分解樹脂組成物であり、ポリヒドロキシカルボ
ン酸としては、ポリ乳酸、ポリグリコール酸、ポリカプ
ロラクトン、乳酸−多糖類共重合体、乳酸−金属酸化物
共重合体、ポリ[(R)−3−ヒドロキシブチレート]
が好ましく、金属塩としては、カルシウム化合物、リン
化合物、亜鉛化合物、アルミ化合物、ケイ素化合物等が
より好ましい。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、成形加工性が良
く、微生物により分解が容易な生分解樹脂組成物、およ
びその製造方法に関する。
【0002】
【従来の技術】従来から、軽量で安価、加工性にすぐ
れ、腐食、分解しにくい特性を利用した各種プラスチッ
ク製品の多くが市場に出まわり、その利便性から、人の
生活面や各種産業面のすみずみにまでゆきわたってきて
いる。これに対応して、使用後の環境への廃棄量が年々
増加していて、腐食、分解しにくい特性の物質であるこ
とから、これが大きな公害問題になってきている。
【0003】このような情勢に対処して、上記の腐食、
分解しにくいプラスチック製品に代わる、自然界に存在
する生物、特に微生物により容易に消化分解可能な各種
の生分解性プラスチックの開発がなされている。これら
生分解性プラスチックとして、例えば、微生物が生産す
る樹脂、天然高分子、および合成ポリマー等が挙げられ
る。微生物が生産する樹脂としては、ある種の水素細菌
が産生するヒドロキシブチレート系ポリエステルがあ
る。
【0004】天然高分子としては、植物由来(セルロー
ス、デンプンなど)や動物由来(エビやカニの甲羅に含
まれるキチンなど)の天然高分子がある。また、上記の
天然高分子を原料とした合成高分子、さらには、もとも
と生分解性を有する合成高分子ポリカプロラクトン、プ
ルラン、ならびに他の汎用プラスチック(非生分解性)
とのポリマーアロイなどがある。合成ポリマーとして
は、例えばポリ乳酸等のような、微生物が資化し、酵素
が基質として認識できる化学構造、官能基を有する、生
分解性樹脂がある。
【0005】
【発明が解決しようとする課題】従来から知られる、上
記の各種生分解性プラスチックは成形加工性が十分でな
く、また、これらのプラスチックで加工した製品にあっ
ては、土壌等の自然界に廃棄した場合の加水分解性・生
分解性が、なお不十分で分解になお長時間を要するとい
う問題があった。よって、成形加工性が良く、かつ、環
境保全の立場から、生分解がより容易に進行する、生分
解性プラスチックの開発が強く望まれている。本発明
は、このような事情に対処して、成形加工性と生分解性
をより高めた新規のプラスチック製品の提供を課題とし
てなされたものである。
【0006】
【課題を解決するための手段】上記の課題、成形加工性
と、自然界に廃棄したプラスチック製品のより迅速な生
分解を解決するための本発明の構成は、以下のとおりで
ある。 (1)ポリヒドロキシカルボン酸の少なくとも1種と金
属塩とを減圧下にて加熱撹拌することにより得られるこ
とを特徴とする生分解樹脂組成物。 (2)ポリヒドロキシカルボン酸の少なくとも1種と金
属塩とを減圧下にて加熱撹拌することを特徴とする生分
解樹脂組成物の製造方法。
【0007】
【発明の実施の形態】次に、本発明を詳しく説明する。
本発明の生分解性樹脂組成物は、脂肪族ポリエステルに
属するポリヒドロキシカルボン酸の少なくとも1種と金
属塩を構成成分とすることに特徴があり、これらの選択
された両物質を減圧条件下で加熱撹拌して反応処理する
ことにより得られる。
【0008】上記において、ポリヒドロキシカルボン酸
としては、ポリヒドロキシカルボン酸の単一体それ自体
に属するもの、または、ポリヒドロキシカルボン酸を構
成成分の一つとして含む複合体である限りにおいては、
いずれのものでも使用でき、入手の容易性から、ポリ乳
酸、ポリグリコール酸、ポリカプロラクトン、乳酸−多
糖類共重合体、乳酸−金属酸化物共重合体、ポリ
[(R)−3−ヒドロキシブチレート]等の群の中か
ら、それぞれを単独で、または、1種以上の混合で好ま
しく使用できる。
【0009】金属塩としては、いずれの金属塩を使用し
ても差し支えないが、生分解性プラスチックによる加工
品の廃棄による環境への影響を考慮すると、カルシウム
化合物、リン化合物、亜鉛化合物、アルミ化合物、ケイ
素化合物等がより好ましく使用できる。選択されたポリ
ヒドロキシカルボン酸に対する金属塩の添加量は、0.
01重量部未満の場合には得られた樹脂組成物の顕著な
重量平均分子量の増加効果が得られず、成形加工性に劣
る。
【0010】一方、50重量部を超えると、得られた樹
脂組成物の溶融粘度が過剰に増大し、成形加工を困難に
する。このような現象から、ポリヒドロキシカルボン酸
に対する金属塩の添加量は、0.01〜50重量部の範
囲とするのが好ましく、発泡性も適度で加工性の良好な
樹脂組成物が得られる。
【0011】上記、金属塩の添加量範囲において、適宜
選択されたポリヒドロキシカルボン酸を反応器に入れ、
必要であれば触媒等の第三物質を添加し、減圧条件下、
温度160〜200℃範囲で2〜24時間加熱撹拌処理
して反応させることにより、本発明の生分解樹脂組成物
を得ることができる。
【0012】
【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこの実施例により制限されるものでは
ない。 実施例1 90%L−乳酸100g(1mol相当)、触媒として
1,3−ジクロロテトラブチルジスタノキサン50mg
(0.1mmol相当)を500ml容量の反応器(以
下、単に「反応器」と記す)に入れ、減圧下、170℃
で20時間加熱撹拌処理してポリ乳酸を調製した。
【0013】得られたポリ乳酸の重量平均分子量は、2
8,000であった。また、160℃における溶融粘度
は3.0×104 ポイズであった。次いで、上記で得た
ポリ乳酸65g(2.3mol相当)、炭酸カルシウム
0.12g(1.15mol相当)を反応器に入れ、減
圧下、170℃で4時間加熱撹拌処理して生分解樹脂組
成物65.0gを得た。この樹脂組成物の重量平均分子
量は35,000で、上記で得たポリ乳酸の重量平均分
子量の1.25倍であった。また、160℃における溶
融粘度は8.5×104 ポイズであった。
【0014】分子量の測定は、日本ミリポアリミテッド
(株)製高圧ポンプ(高速液体クロマトグラフ用510
型)と昭和電工(株)製示差屈折率検出器(Shode
xRI−71)およびカラムGPCK806Mによる。
また、分子量は、ポリスチレンを標準試料として、換算
した値である(以下、同じ)。また、溶融粘度の測定
は、(株)島津製作所製島津フローテスタCFT−50
0Cによる(以下、同じ)。
【0015】実施例2 90%L−乳酸100g(1mol相当)、コーンスタ
ーチ10g、1,3−ジクロロテトラブチルジスタノキ
サン50mg(0.1mmol相当)を反応器に入れ、
減圧下、170℃で20時間加熱撹拌処理して乳酸−多
糖類共重合体を調製した。この処理による反応で得られ
た乳酸−多糖類共重合体の重量平均分子量は、18,0
00であった。また、160℃における溶融粘度は4.
3×104 ポイズであった。
【0016】次いで、上記で得た乳酸−多糖類共重合体
70g(3.9mmol相当)と乳酸亜鉛0.95g
(3,9mol相当)を反応器を用いて、減圧下、17
0℃で4時間加熱撹拌して反応させ、生分解樹脂組成物
70gを得た。この樹脂組成物の重量平均分子量は3
6,000で、上記で得た乳酸−多糖類共重合体の2倍
であった。また、160℃における溶融粘度は9.3×
104 ポイズであった。
【0017】実施例3 90%L−乳酸100g(1mol相当)、コーンスタ
ーチ10g、1,3−ジクロロテトラブチルジスタノキ
サン50mg(0.1mmol相当)を反応器に入れ、
減圧下、170℃で20時間加熱撹拌処理して乳酸−多
糖類共重合体を調製した。得られた乳酸−多糖類共重合
体の重量平均分子量を測定したところ、18,000で
あった。
【0018】次いで、上記で得た乳酸−多糖類共重合体
70g(3.9mmol相当)とリン酸アルミニウム
0.16g(1.3mmol相当)を反応器を用いて、
減圧下、170℃で4時間加熱撹拌して反応せしめ、生
分解樹脂組成物70gを得た。この樹脂組成物の重量平
均分子量は27,000で、上記で得た乳酸−多糖類共
重合体の1.5倍であった。また、160℃における溶
融粘度は8.2×10 4 ポイズであった。
【0019】〔比較例〕本発明を、より明確にするた
め、生分解樹脂組成物の構成成分の一つである金属塩の
添加時期を変えた場合と、添加を削除した場合に得られ
る生成物の性状を比較例で示す。
【0020】比較例1 反応当初から金属塩を添加した場合 90%L−乳酸100g(1mol相当)、1,3−ジ
クロロテトラブチルジスタノキサン50mg(0.1m
mol相当)と炭酸カルシウム0.12g(1.15m
ol相当)を反応器を用いて、減圧下、170℃で24
時間加熱撹拌して反応せしめ、共重合物75.0gを得
た。得られた共重合物の重量平均分子量を測定したとこ
ろ、18,000で加工性に劣り、160℃における溶
融粘度も1.3×104 ポイズで、本発明の生分解樹脂
組成物の数値を大きく下回る結果であった。
【0021】比較例2 金属塩の添加を削除した場合 90%L−乳酸100g(1mol相当)、1,3−ジ
クロロテトラブチルジスタノキサン50mg(0.1m
mol相当)を反応器を用いて、減圧下、170℃で2
0時間加熱撹拌して反応せしめて乳酸ホモポリマー7
5.0gを得た。得られた乳酸ホモポリマーの重量平均
分子量を測定したところ、28,000であった。次い
で、この乳酸ホモポリマーを、更に170℃で4時間加
熱撹拌して反応せしめ、樹脂状物を得た。この樹脂状物
の重量平均分子量を測定したところ、30,000を示
し、増加は僅少であった。また、160℃における溶融
粘度は3.0×104 ポイズであった。
【0022】〔試験例〕本発明の生分解樹脂組成物の加
水分解性をより明確にするため、従来の生分解性プラス
チックに相当するポリ乳酸ホモポリマー(比較例2)と
本発明の生分解樹脂組成物(実施例1)について、それ
ぞれ加水分解試験を行なった。
【0023】試験は、ポリ乳酸ホモポリマーと生分解樹
脂組成物のそれぞれから、50×50×2mmサイズの
試験片を採取し、30℃に保持した0.1N−NaOH
溶液中に100時間漬浸して加水分解処理して、それぞ
れの重量の減少を測定した。結果は、生分解樹脂組成物
から採取した試験片については、当初重量を100とし
て処理後の重量は75であった。これに対し、ポリ乳酸
ホモポリマーから採取した試験片については、当初重量
を100として処理後の重量は95であった。
【0024】ポリ乳酸などのポリヒドロキシカルボン酸
は、加水分解によって分子量が低下したのち、微生物に
よる分解・資化を受け、最終的に炭酸ガスと水に分解す
るといわれている。このことからすれば、上記の加水分
解の結果は、本発明の生分解樹脂組成物が従来のポリ乳
酸ホモポリマーに比べてより加水分解・生分解性に優れ
ているということができる。
【0025】
【発明の効果】本発明の生分解樹脂組成物は、従来のポ
リ乳酸ホモポリマーや乳酸−多糖類共重合体等に比べて
分子量が大きくなることにより、成形加工性が向上し、
また上記の加水分解試験の結果からも明らかなように、
より生分解が高いものとなる。その上、溶融粘度も同様
に高いことから、より高い発泡性を有し、この生分解樹
脂組成物による各種の加工、成形品が使用後、土壌等の
環境に廃棄処分された場合でも、水分の浸透性をよくし
て、より早期の加水分解・生分解がなされることにな
る。
【0026】従って、廃棄処分が困難であった従来のプ
ラスチック製品に代えて、本発明の生分解樹脂組成物に
よる各種の加工、成形品を日常生活に利用することによ
り、使用後の廃棄による環境阻害が大きく緩和するの
で、環境保全に貢献するところ大である。本発明の生分
解樹脂組成物は、特に、回収困難な農業・漁業用資材等
としての使用が最も適している。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 ポリヒドロキシカルボン酸の少なくとも
    1種と金属塩とを減圧下にて加熱撹拌することにより得
    られることを特徴とする生分解樹脂組成物。
  2. 【請求項2】 ポリヒドロキシカルボン酸の少なくとも
    1種と金属塩とを減圧下にて加熱撹拌することを特徴と
    する生分解樹脂組成物の製造方法。
JP4199098A 1998-02-24 1998-02-24 生分解樹脂組成物およびその製造方法 Pending JPH11236435A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199098A JPH11236435A (ja) 1998-02-24 1998-02-24 生分解樹脂組成物およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199098A JPH11236435A (ja) 1998-02-24 1998-02-24 生分解樹脂組成物およびその製造方法

Publications (1)

Publication Number Publication Date
JPH11236435A true JPH11236435A (ja) 1999-08-31

Family

ID=12623642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199098A Pending JPH11236435A (ja) 1998-02-24 1998-02-24 生分解樹脂組成物およびその製造方法

Country Status (1)

Country Link
JP (1) JPH11236435A (ja)

Similar Documents

Publication Publication Date Title
Manfra et al. Biodegradable polymers: A real opportunity to solve marine plastic pollution?
Mostafa et al. Production of biodegradable plastic from agricultural wastes
Bher et al. Biodegradation of biodegradable polymers in mesophilic aerobic environments
Gioia et al. End of life of biodegradable plastics: composting versus Re/upcycling
US5545485A (en) Biodegradable resin molded article
TWI303258B (en) Biodegradable resin composition, filler therefor and molded article thereof
RU2480495C2 (ru) Новая биоразлагаемая полимерная композиция, пригодная для получения биоразлагаемого пластика, и способ получения указанной композиции
Müller et al. Architecture of biodegradable copolyesters containing aromatic constituents
KR100958855B1 (ko) 생분해성 플라스틱 조성물, 그것의 성형물, 및 생분해율을조절하는 방법
US5434238A (en) Copolyesters having repeat units derived from succinic acid
EP2576653A1 (en) Aliphatic-aromatic copolyesters and their mixtures
Varyan et al. Biodegradability of polyolefin-based compositions: Effect of natural rubber
JP3377844B2 (ja) 電気回路基板
Boneberg et al. Biorefinery of lignocellulosic biopolymers
Singh et al. Bioplastics: A green approach toward sustainable environment
JP2987580B1 (ja) 生分解樹脂およびその製造方法
JPH11236435A (ja) 生分解樹脂組成物およびその製造方法
JP4811772B2 (ja) ポリd−ヒドロキシ酪酸の生分解方法
CN112625414B (zh) 一种海水降解复合材料及其制备方法
JP3086851B2 (ja) ポリヒドロキシカルボン酸樹脂の製造方法
JP2000201606A (ja) 生分解性プラスチック樹脂を使用した釣具用重錘
JP3729794B2 (ja) 生分解性プラスチック成形物
KR100255116B1 (ko) 생분해성 고분자의 제조방법
GB2315453A (en) Biodegradable resin molded article
JP2001040079A (ja) 生分解樹脂およびその製造方法