JPH11236296A - Bismuth-substituted garnet thick film material and its production - Google Patents

Bismuth-substituted garnet thick film material and its production

Info

Publication number
JPH11236296A
JPH11236296A JP10055830A JP5583098A JPH11236296A JP H11236296 A JPH11236296 A JP H11236296A JP 10055830 A JP10055830 A JP 10055830A JP 5583098 A JP5583098 A JP 5583098A JP H11236296 A JPH11236296 A JP H11236296A
Authority
JP
Japan
Prior art keywords
thick film
garnet
bismuth
film material
garnet thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10055830A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10055830A priority Critical patent/JPH11236296A/en
Publication of JPH11236296A publication Critical patent/JPH11236296A/en
Priority to JP2007274223A priority patent/JP2008074703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)
  • Soft Magnetic Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject garnet thick film material that is used as a substitute material for a Tb-Bi based garnet thick film material having essential absorption in an about >=1.6 μm wavelength band region and has improved insertion loss (improved transmissivity) and an improved θf/ T (temp. coefficient of Faraday rotation angle (θf ) value in a >=1.5 μm wavelength band region in which an unfavorable influence on the absorption spectrum due to Th ions is caused, and also to provide the production of this material. SOLUTION: This film material is a bismuth-substituted garnet thick film material which is produced by an LPE(liquid phase epitaxy) method with NGG (neodymium gallium garnet, Nd3 Ga5 O12 ) as the substrate and has a composition represented by the chemical formula Gd3-x-y-2 Yx Yby Biz Fe5-a Ala O12 (wherein: each of (x) and (y) is a numerical value of 0 to 0.2 and when any one of (x) and (y) is 0, the other is not 0; (z) is a numerical value of 0.8 to 1.4; and (a) is a numerical value of 0.2 to 0.7) and also contains 0 to 3.7 wt.% B2 O3 . The material is subjected to heat treatment while maintaining the material at 950 to 1,130 deg.C in an atmosphere having a >=5% oxygen concn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファラデー回転効
果を有する光学用ガーネット材料の中で、ビスマス置換
型ガーネット厚膜材料と、その製造方法に関し、とくに
液相エピタキシャルによって育成した(Gd,Y,Y
b,Bi)3(Fe,Al)512系ガーネット(以下、
GdYYbBi系ガーネットという)単結晶厚膜材料お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bismuth-substituted garnet thick film material and a method of manufacturing the same among optical garnet materials having a Faraday rotation effect, and more particularly, to a film grown by liquid phase epitaxy (Gd, Y, Gd). Y
b, Bi) 3 (Fe, Al) 5 O 12 garnet (hereinafter referred to as
GdYYbBi-based garnet) and a method for producing the same.

【0002】[0002]

【従来の技術】従来、光通信においては、ファラデー回
転を応用したデバイスが開発、実用化されている。半導
体レーザを使用した光通信では、光ファイバケーブルや
コネクタなどからの反射光が半導体レーザに戻ると発振
が不安定となったり、ノイズの原因となる。それゆえ、
半導体レーザへの戻り光を遮断し、安定した発振状態を
確保するために光アイソレータが使用されている。
2. Description of the Related Art Hitherto, in optical communications, devices utilizing Faraday rotation have been developed and put into practical use. In optical communication using a semiconductor laser, when reflected light from an optical fiber cable, a connector, or the like returns to the semiconductor laser, oscillation becomes unstable or causes noise. therefore,
2. Description of the Related Art An optical isolator is used to block return light to a semiconductor laser and secure a stable oscillation state.

【0003】大きなファラデー回転角を有するビスマス
置換型希土類鉄ガーネット(以下、Bi系ガーネットと
いう)は、液相エピタキシャル法(以下LPE法とい
う)、フラックス法等で育成され、近赤外線領域でのア
イソレータに使用されている。とくに,LPE法は生産
性に優れ、それゆえ、現在実用に供されているガーネッ
ト厚膜は、ほとんどこの方法で生産されている。
[0003] Bismuth-substituted rare earth iron garnet (hereinafter referred to as Bi-based garnet) having a large Faraday rotation angle is grown by a liquid phase epitaxial method (hereinafter referred to as an LPE method), a flux method or the like, and is used as an isolator in the near infrared region. in use. In particular, the LPE method is excellent in productivity, and therefore, most garnet thick films currently in practical use are produced by this method.

【0004】現在、ファイバケーブルを用いた長距離の
通信には、波長が1.31μmと1.55μmの帯域が使
用されている。また、光通信網の監視等には、約1.6
〜2μmの範囲にある波長が使用される。
At present, long-distance communication using fiber cables uses wavelength bands of 1.31 μm and 1.55 μm. In addition, about 1.6 for monitoring optical communication networks, etc.
Wavelengths in the range 〜2 μm are used.

【0005】従来、近赤外線用ファラデー回転素子材料
として,LPE法で作製されたTbBi系ガーネット厚
膜とGdBi系(Ga,Al置換)ガーネット厚膜が実
用に供されてきた。TbBi系ガーネット厚膜は、ファ
ラデー回転角θf(以下単にθfという) の温度係数θ
f/T(以下単にθf/Tという)が約0.04〜0.06deg
(度)/℃と比較的小さいが、飽和磁界Hs は約800
〜1200Oeと高いため、強力な永久磁石を必要とす
る。TbBiガーネット厚膜は、また、磁化反転温度が
約−50℃以下であり、広い温度範囲で使用できる。
Conventionally, a TbBi-based garnet thick film and a GdBi-based (Ga, Al-substituted) garnet thick film manufactured by the LPE method have been put to practical use as a material for a Faraday rotator for near infrared rays. The TbBi-based garnet thick film has a temperature coefficient θ of Faraday rotation angle θ f (hereinafter simply referred to as θ f ).
f / T (hereinafter simply referred to as θ f / T ) is about 0.04 to 0.06 deg
(Degrees) / ° C., but the saturation magnetic field Hs is about 800
Since it is as high as ~ 1200 Oe, a strong permanent magnet is required. The TbBi garnet thick film has a magnetization reversal temperature of about −50 ° C. or less, and can be used in a wide temperature range.

【0006】他方、GdBi系(Ga,Al置換)ガー
ネット厚膜は、θf/Tは約0.08deg/℃と比較的大き
いが、飽和磁界Hs は約300Oeと低い。また、磁化反
転温度が約−10℃と高い。したがって、市場の要求
は、温度特性が良好なTbBi系ガーネット厚膜に多く
集まっている。
On the other hand, a GdBi-based (Ga, Al-substituted) garnet thick film has a relatively large θ f / T of about 0.08 deg / ° C. but a low saturation magnetic field Hs of about 300 Oe. Further, the magnetization reversal temperature is as high as about −10 ° C. Accordingly, market demands are concentrated on TbBi-based garnet thick films having good temperature characteristics.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、TbB
i系ガーネットに関して、ジャーナル・オブ・アプライ
ド・フィジックス(Jounal of Applied Physics )第3
8巻、第3号,1038頁には、波長が1.6μmを越
えた領域ではTbイオンに関係した吸収スペクトルが示
されている。このため、TbBi系ガーネット厚膜はこ
の波長帯域においては、光吸収によって実用的機能を失
う可能性も推定される。
However, TbB
Regarding i-based garnets, Journal of Applied Physics # 3
Vol. 8, No. 3, p. 1038, shows an absorption spectrum related to Tb ions in the region where the wavelength exceeds 1.6 μm. Therefore, it is estimated that the TbBi-based garnet thick film may lose its practical function due to light absorption in this wavelength band.

【0008】本発明の課題は、したがって、約1.6μ
m以上の波長帯域における本質的な吸収を示すTbBi
系ガーネット厚膜の代替材料として、Tbイオンによる
吸収スペクトルの影響があらわれる1.5μm以上の波
長帯域において、改善された挿入損失とθf /Tをもつガ
ーネット厚膜材料、およびその製造方法を提供すること
にある。
[0008] The object of the present invention is, therefore, to be about 1.6 μm.
TbBi showing intrinsic absorption in the wavelength band above m
Garnet thick film material with improved insertion loss and θ f / T in a wavelength band of 1.5 μm or more where the influence of the absorption spectrum by Tb ions appears as an alternative material to the system garnet thick film, and a method of manufacturing the same Is to do.

【0009】これにもとづいて、本発明では、さらに具
体的に、ガーネット厚膜材料に対する特性をつぎのとお
り設定した。
Based on this, in the present invention, more specifically, the characteristics for the garnet thick film material are set as follows.

【0010】(1)約1.6μmを越える波長帯域でも
高い透過率(低い挿入損失)を示すこと。 (2)θfが45度となる厚さにおける挿入損失が、0.
2dB以下であること。 (3)θf/Tが、従来のGdBi系ガーネット厚膜材料
の特性(約0.08deg/℃)よりも低いこと。 (4)室温における飽和磁化4πMSが500G以下で
あること。 (5)磁化反転温度Tcompが、0℃以下であること。
(1) High transmittance (low insertion loss) even in a wavelength band exceeding about 1.6 μm. (2) The insertion loss at a thickness where θ f is 45 degrees is 0.
2 dB or less. (3) θ f / T is lower than the characteristic (about 0.08 deg / ° C.) of the conventional GdBi-based garnet thick film material. (4) a saturation magnetization 4PaiM S is 500G or less at room temperature. (5) The magnetization reversal temperature T comp is 0 ° C. or less.

【0011】[0011]

【課題を解決するための手段】本発明は、ガーネット基
板上に、液相エピタキシャル成長法により育成した、G
d,Y,Yb,Bi,Fe,Alを主成分とする単結晶
厚膜からなるビスマス置換型ガーネット厚膜材料であっ
て、Y,およびYbのうち少なくとも1種類を含み、化
学式が、Gd3-x-y-zxYbyBizFe5-aAl
a12、ただしx=0〜0.2,y=0〜0.2で、かつ
xおよびyが同時には0ではなく、さらに、z=0.8
〜1.4,a=0.2〜0.7で示される組成を有するビ
スマス置換型ガーネット厚膜材料を提供する。
SUMMARY OF THE INVENTION The present invention provides a method for growing a garnet substrate on a garnet substrate by liquid phase epitaxial growth.
A bismuth-substituted garnet thick film material composed of a single crystal thick film containing d, Y, Yb, Bi, Fe, and Al as main components, containing at least one of Y and Yb, and having a chemical formula of Gd 3 -xyz Y x Yb y BizFe 5- a Al
a O 12 , provided that x = 0 to 0.2, y = 0 to 0.2, x and y are not simultaneously 0, and z = 0.8
A bismuth-substituted garnet thick-film material having a composition represented by the formula: -1.4, a = 0.2-0.7.

【0012】本発明によるビスマス置換型ガーネット厚
膜材料は、前記ビスマス置換型ガーネット厚膜材料に、
0〜3.7重量%のB23が含有されたことが特徴であ
る。
[0012] The bismuth-substituted garnet thick film material according to the present invention comprises:
0 to 3.7 wt% of B 2 O 3 is characterized in that which is contained.

【0013】本発明によれば、ビスマス置換型ガーネッ
ト厚膜材料は、NGG基板上に育成される。
According to the present invention, a bismuth-substituted garnet thick film material is grown on an NGG substrate.

【0014】また、本発明によれば、前記単結晶厚膜
を、950〜1130℃の温度範囲で保持する熱処理を
行うことによって、ファラデー回転素子として良好な特
性を有するビスマス置換型ガーネット厚膜材料が得られ
る。
According to the present invention, a bismuth-substituted garnet thick film material having good characteristics as a Faraday rotator is obtained by performing a heat treatment for maintaining the single crystal thick film in a temperature range of 950 to 1130 ° C. Is obtained.

【0015】さらに、本発明によれば、前記単結晶厚膜
を、酸素濃度が5%以上の雰囲気中で保持する熱処理を
行うことによって、前記課題を解決するビスマス置換型
ガーネット厚膜材料が得られる。
Further, according to the present invention, a bismuth-substituted garnet thick film material that solves the above problem is obtained by performing a heat treatment for maintaining the single crystal thick film in an atmosphere having an oxygen concentration of 5% or more. Can be

【0016】本発明において、B23の含有濃度を0〜
3.7重量%とした理由は、この濃度範囲で挿入損失が
低いことを見出したことによる。
In the present invention, the concentration of B 2 O 3 is set to 0 to
The reason why the content was 3.7% by weight was that the insertion loss was found to be low in this concentration range.

【0017】本発明において、ビスマス置換型ガーネッ
ト厚膜材料を、NGG基板上に育成する理由は、LPE
法においてよく用いられるSGGG基板に対比して、N
GGの格子定数が大きく、かつ、ビスマス置換型ガーネ
ット厚膜材料との適合性がよいからである。NGG基板
を用いると、LPE法によって育成されたガーネット厚
膜が500μm以上の厚さとなっても、割れが生じる割
合は低い。
In the present invention, the reason why the bismuth-substituted garnet thick film material is grown on the NGG substrate is as follows.
In contrast to the SGGG substrate often used in the
This is because GG has a large lattice constant and has good compatibility with the bismuth-substituted garnet thick film material. When an NGG substrate is used, even if the garnet thick film grown by the LPE method has a thickness of 500 μm or more, the rate of occurrence of cracks is low.

【0018】本発明において、ビスマス置換型ガーネッ
ト厚膜材料を対象とした理由は、1.6μm以上の波長
帯域で、GdYYbBi系(Ga,Al置換)ガーネッ
ト厚膜の吸収スペクトルが存在しないと見られるからで
ある。
In the present invention, the reason why the bismuth-substituted garnet thick film material is targeted is that the absorption spectrum of the GdYYbBi (Ga, Al-substituted) garnet thick film does not exist in the wavelength band of 1.6 μm or more. Because.

【0019】また、本発明において、単結晶厚膜の熱処
理温度範囲を950〜1130℃としたのは、950℃
未満の温度では結晶中の原子の均質化が十分でなく、挿
入損失の低減は認められず、1130℃を越える温度で
は、GdYYbBi系ガーネット厚膜材料で、とくにB
23の蒸発による分解のために、挿入損失が増大する
からである。
In the present invention, the heat treatment temperature range of the single crystal thick film is set to 950 to 1130 ° C.
When the temperature is lower than the above, the atoms in the crystal are not sufficiently homogenized, and the insertion loss is not reduced. When the temperature is higher than 1130 ° C., a GdYYbBi-based garnet thick film material, particularly B
This is because insertion loss increases due to decomposition due to evaporation of i 2 O 3 .

【0020】本発明において、単結晶厚膜の熱処理を、
5%以上の酸素濃度の雰囲気中としたのは、5%以上の
酸素濃度の雰囲気中での熱処理によって、ビスマス置換
型ガーネット厚膜材料の挿入損失が、熱処理前(非処
理)よりも減少したこと、および、5%未満の酸素濃度
では挿入損失が増加したことにもとづく。
In the present invention, the heat treatment of the single crystal thick film is performed by
The reason why the atmosphere was set to the atmosphere having the oxygen concentration of 5% or more was that the heat treatment in the atmosphere having the oxygen concentration of 5% or more reduced the insertion loss of the bismuth-substituted garnet thick film material as compared to before the heat treatment (untreated). And an increase in insertion loss at oxygen concentrations below 5%.

【0021】なお、ビスマス置換型ガーネット厚膜の特
性の変化は、結晶を構成する各イオンの磁気モーメント
等に起因する。
The change in the characteristics of the bismuth-substituted garnet thick film is caused by the magnetic moment of each ion constituting the crystal.

【0022】[0022]

【発明の実施の形態】以下、に本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0023】ビスマス置換型ガーネット厚膜は、以下に
述べるようにLPE法によって育成される。まず、白金
るつぼの中で、フラックス成分としてのPbO,Bi2
3,B23等、ガーネット成分としてGd23,Y2
3,Yb23,Fe23,Al23等を、約900〜1
100℃の温度で溶解して溶液を作製した後、降温し過
冷却状態(過飽和溶液状態)とする。その溶液にガーネ
ット基板を浸漬し、一定時間回転することにより、ビス
マス置換型ガーネット厚膜を育成する。
The bismuth-substituted garnet thick film is grown by the LPE method as described below. First, PbO, Bi 2 as a flux component in a platinum crucible
Gd 2 O 3 and Y 2 O as garnet components such as O 3 and B 2 O 3
3 , Yb 2 O 3 , Fe 2 O 3 , Al 2 O 3, etc.
After dissolving at a temperature of 100 ° C. to prepare a solution, the temperature is lowered to a supercooled state (supersaturated solution state). A garnet substrate is immersed in the solution and rotated for a certain time to grow a bismuth-substituted garnet thick film.

【0024】Bi系ガーネット厚膜の中でもGdBiY
系ガーネット厚膜は、比較的高いファラデー回転能を有
し、飽和磁界Hs が比較的低いという特徴がある。一般
に、Bi系ガーネット厚膜をファラデー回転子として使
う場合には、飽和磁界Hs またはこれを越える印加磁界
は、その周辺に配置した永久磁石によって供給される。
Bi系ガーネット厚膜の飽和磁化4πMSが低いと飽和
磁界Hsが低く、使用する永久磁石を小型にでき、ある
いは永久磁石の特性の自由度を広げるため、工業上有用
である。
Among the Bi-based garnet thick films, GdBiY
The system garnet thick film is characterized by having a relatively high Faraday rotation capability and a relatively low saturation magnetic field Hs. In general, when a Bi-based garnet thick film is used as a Faraday rotator, the saturation magnetic field Hs or an applied magnetic field exceeding the saturation magnetic field Hs is supplied by a permanent magnet disposed around the saturation magnetic field Hs.
Bi-based saturation magnetization 4PaiM S garnet thick film is low saturation field Hs is low, it can be a permanent magnet for use in smaller or order to increase the degree of freedom of the characteristics of the permanent magnet, is industrially useful.

【0025】[0025]

【実施例】以下に、実施例をもとにして、さらに本発明
を説明する。
The present invention will be further described below with reference to examples.

【0026】(実施例1)高純度の酸化ガドリニウム
(Gd23)、酸化イットリウム(Y23)、酸化イッ
テルビウム(Yb23)、酸化第二鉄(Fe23)、酸
化アルミニウム(Al23)、酸化ビスマス(Bi
23)、酸化鉛(PbO)および酸化ホウ素(B23
の粉末を使用した。これらの粉末を使って、PbO−B
23-23系をフラックスとするLPE法によっ
て、NGG[化学式Nd3Ga512、格子定数12.5
09 ]基板上に、Gd1.8Bi1.2Fe4.7Al
0.312,Gd1.60. 1Bi1.3Fe4.5Al0.312,お
よびGd1.4Yb0.2Bi1.4Fe4.3Al0.51 2で示さ
れる組成のGdYYbBi系ガーネット単結晶厚膜を厚
さ約700μm育成した。
Example 1 High-purity gadolinium oxide (Gd 2 O 3 ), yttrium oxide (Y 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), ferric oxide (Fe 2 O 3 ), oxide Aluminum (Al 2 O 3 ), bismuth oxide (Bi
2 O 3 ), lead oxide (PbO) and boron oxide (B 2 O 3 )
Was used. Using these powders, PbO-B
NGG [chemical formula: Nd 3 Ga 5 O 12 , lattice constant: 12.5] was obtained by an LPE method using i 2 O 3 -B 2 O 3 as a flux.
09] Gd 1.8 Bi 1.2 Fe 4.7 Al
0.3 O 12, Gd 1.6 Y 0. 1 Bi 1.3 Fe 4.5 Al 0.3 O 12, and Gd 1.4 Yb 0.2 Bi 1.4 Fe 4.3 Al 0.5 O 1 2 thickness of GdYYbBi garnet single crystal thick film composition represented by about 700μm Nurtured.

【0027】比較のために、酸化テルビウム(Tb
23)等の粉末を使用し、LPE法によって、同様に、
SGGG[化学式(GdCa)3(GaMgZr)
512、格子定数12.496 ]基板上に、Tb2.0
1.0Fe512なる組成のTbBi系ガーネット単結晶
厚膜を、厚さ約700μm育成した。
For comparison, terbium oxide (Tb
2 O 3 ) and the like, and similarly by the LPE method,
SGGG [Chemical formula (GdCa) 3 (GaMgZr)
5 O 12 , lattice constant 12.496] Tb 2.0 B
A TbBi-based garnet single crystal thick film having a composition of i 1.0 Fe 5 O 12 was grown to a thickness of about 700 μm.

【0028】つぎに、これらのガーネット単結晶厚膜か
ら基板を除去し、両面を鏡面研磨し、厚さ約600μm
とした。図1は、LPE法によって育成したこれらGd
YYbBi系ガーネット単結晶厚膜、およびTbBi系
ガーネット単結晶厚膜について、透過率の波長依存性を
示す図である。図1から明らかなように、約1.2〜2.
2μmの波長範囲で、GdYYbBi系ガーネット単結
晶厚膜は、高い透過率をもっている。
Next, the substrate was removed from the garnet single crystal thick film, and both surfaces were mirror-polished to a thickness of about 600 μm.
And FIG. 1 shows these Gd grown by the LPE method.
It is a figure which shows the wavelength dependence of a transmittance | permeability about a YYbBi-system garnet single crystal thick film and a TbBi-system garnet single crystal thick film. As is clear from FIG.
In the wavelength range of 2 μm, the GdYYbBi-based garnet single crystal thick film has a high transmittance.

【0029】他方、TbBi系ガーネット単結晶厚膜が
高い透過率を示す波長範囲は約1.2〜1.5μmにすぎ
ない。この結果から、1.5μm以上の波長帯域におい
ては、GdYYbBi系ガーネット単結晶厚膜が有用で
ある。なお、これらのガーネット厚膜材料組成は、EP
MA分析によって、予め確認した。
On the other hand, the wavelength range in which the TbBi-based garnet single crystal thick film shows a high transmittance is only about 1.2 to 1.5 μm. From this result, a GdYYbBi-based garnet single crystal thick film is useful in a wavelength band of 1.5 μm or more. The composition of these garnet thick film materials is EP
Confirmed beforehand by MA analysis.

【0030】(実施例2)実施例1と同様の方法で、N
GG基板上に、それぞれ、Gd2.0Bi1.8Fe4. 7Al
0.312、Gd1.70.1Bi1.2Fe4.5Al0.512、お
よびGd1.5Yb0. 2Bi1.3Fe4.4Al0.612の化学
式で表され、B23が、0,0.05,1.0,1.5,
2.0,2.5,3.0,3.5,および4.0wt%含む
ガーネット厚膜を、厚さ約600〜800μm育成し
た。
(Embodiment 2) In the same manner as in Embodiment 1, N
GG on the substrate, respectively, Gd 2.0 Bi 1.8 Fe 4. 7 Al
0.3 O 12, Gd 1.7 Y 0.1 Bi 1.2 Fe 4.5 Al 0.5 O 12, and represented by the chemical formula of Gd 1.5 Yb 0. 2 Bi 1.3 Fe 4.4 Al 0.6 O 12, the B 2 O 3, 0,0.05, 1.0, 1.5,
Garnet thick films containing 2.0, 2.5, 3.0, 3.5, and 4.0 wt% were grown to a thickness of about 600 to 800 μm.

【0031】実施例1と同様の方法で基板を除去し、波
長1.62μmにおいてファラデー回転角が約45度と
なるように厚さを調整し、両面にSiO2反射防止膜を
つけた。これらのガーネット厚膜材料について、波長
1.62μmにおける、600Oeの印加磁界のもとで
の挿入損失、ファラデー回転能、および室温付近におけ
るθf/ Tを求めた。また、振動型磁力計(VSM)を用
いて、飽和磁化も測定した。
The substrate was removed in the same manner as in Example 1, the thickness was adjusted so that the Faraday rotation angle was about 45 degrees at a wavelength of 1.62 μm, and SiO 2 antireflection films were provided on both surfaces. With respect to these garnet thick film materials, the insertion loss at a wavelength of 1.62 μm under an applied magnetic field of 600 Oe, the Faraday rotation capability, and θ f / T near room temperature were determined. The saturation magnetization was also measured using a vibrating magnetometer (VSM).

【0032】これらの試料の飽和磁化(4πMs)は、
約300〜450G(ガウス)、ファラデー回転能は約
950〜1250deg/cm、θf/T は約0.05〜
0.07deg/℃であった。
The saturation magnetization (4πMs) of these samples is
Approximately 300 to 450 G (Gauss), Faraday rotational ability is approximately 950 to 1250 deg / cm, θ f / T is approximately 0.05 to
0.07 deg / ° C.

【0033】図2は、本実施例におけるGdYYbBi
系ガーネット厚膜材料について、挿入損失に対する、B
23の含有濃度依存性を示す図である。図2から、B2
3の含有濃度0〜3.7wt%の範囲で、挿入損失の低
減効果があることがわかる。
FIG. 2 shows GdYYbBi in this embodiment.
Garnet thick film material, insertion loss, B
Is a diagram illustrating the content concentration dependence of 2 O 3. From FIG. 2, B 2
It can be seen that there is an effect of reducing the insertion loss when the content of O 3 is in the range of 0 to 3.7 wt%.

【0034】(実施例3)実施例2と同様の方法で、N
GG基板上に、B23を約0.5wt%含有する、Gd
1.7Bi1.3Fe4.6Al0.412、Gd1.40.2Bi1.4
Fe4.3Al0.71 2、およびGd1.7Yb0.1Bi1.2
4.6Al0.412の化学式で表されるガーネット単結晶
厚膜を、厚さ約500〜800μm育成した。
(Embodiment 3) In the same manner as in Embodiment 2, N
Gd containing about 0.5 wt% of B 2 O 3 on a GG substrate
1.7 Bi 1.3 Fe 4.6 Al 0.4 O 12 , Gd 1.4 Y 0.2 Bi 1.4
Fe 4.3 Al 0.7 O 1 2, and Gd 1.7 Yb 0.1 Bi 1.2 F
A garnet single crystal thick film represented by the chemical formula of e 4.6 Al 0.4 O 12 was grown to a thickness of about 500 to 800 μm.

【0035】つぎに、実施例2と同様に、これらのガー
ネット単結晶厚膜から基板を除去し、酸素濃度40%の
雰囲気中で、950℃、1000℃、1100℃、11
30℃、および1150℃の各温度で、20時間保持す
る熱処理を行った。その後、波長1.62μmにおいて
ファラデー回転角が約45度となるように厚さを調整
し、両面にSiO2反射防止膜を付け、各特性を測定し
た。
Next, in the same manner as in Example 2, the substrate was removed from the garnet single crystal thick film, and 950 ° C., 1000 ° C., 1100 ° C., 11
Heat treatment was performed at 30 ° C. and 1150 ° C. for 20 hours. Thereafter, the thickness was adjusted so that the Faraday rotation angle was about 45 degrees at a wavelength of 1.62 μm, and an SiO 2 antireflection film was provided on both surfaces, and each characteristic was measured.

【0036】これらのガーネット単結晶厚膜の飽和磁化
(4πMs)は、約250〜450G、ファラデー回転
能は約1000〜1300deg/cm、θf/Tは約0.
05〜0.07deg/℃であった。
The garnet single crystal thick film has a saturation magnetization (4πMs) of about 250 to 450 G, a Faraday rotator of about 1000 to 1300 deg / cm, and a θ f / T of about 0.3.
It was from 0.05 to 0.07 deg / ° C.

【0037】図3は、本実施例におけるGdYYbBi
系ガーネット厚膜材料について、挿入損失と熱処理温度
との関係を示す図である。図3から、950〜1130
℃の温度範囲では、熱処理によって、挿入損失が、熱処
理前(非処理)よりも減少し、それ以上の温度では、挿
入損失は急激に増加することがわかる。
FIG. 3 shows GdYYbBi in this embodiment.
FIG. 4 is a diagram showing the relationship between insertion loss and heat treatment temperature for a system garnet thick film material. From FIG.
It can be seen that in the temperature range of ° C., the insertion loss is reduced by the heat treatment as compared with that before the heat treatment (non-treatment), and at a temperature higher than that, the insertion loss sharply increases.

【0038】(実施例4)実施例2と同様の方法で、N
GG基板上に、B23を約0.5wt%含有する、Gd
2.2Bi0.8Fe4.8Al0.212、Gd1.50.2Bi1.3
Fe4.4Al0.61 2、およびGd1.8Yb0.1Bi1.1
4.6Al0.512の化学式で表されるガーネット単結晶
厚膜を、厚さ約600〜900μm育成した。
(Embodiment 4) In the same manner as in Embodiment 2, N
Gd containing about 0.5 wt% of B 2 O 3 on a GG substrate
2.2 Bi 0.8 Fe 4.8 Al 0.2 O 12 , Gd 1.5 Y 0.2 Bi 1.3
Fe 4.4 Al 0.6 O 1 2, and Gd 1.8 Yb 0.1 Bi 1.1 F
A garnet single crystal thick film represented by the chemical formula of e 4.6 Al 0.5 O 12 was grown to a thickness of about 600 to 900 μm.

【0039】つぎに、実施例2と同様に、これらのガー
ネット単結晶厚膜から基板を除去し、温度1050℃
で、酸素濃度が0,10,20,40,60,80,お
よび100%の雰囲気中で、10時間保持する熱処理を
行った。その後、波長1.62μmにおいてファラデー
回転角が約45度となるように厚さを調整し、両面にS
iO2反射防止膜を付け、各特性を測定した。
Next, in the same manner as in Example 2, the substrate was removed from the garnet single crystal thick film, and the temperature was changed to 1050 ° C.
Then, heat treatment was performed for 10 hours in an atmosphere having an oxygen concentration of 0, 10, 20, 40, 60, 80, and 100%. Then, the thickness was adjusted so that the Faraday rotation angle was about 45 degrees at a wavelength of 1.62 μm, and S
An iO 2 antireflection film was provided, and each characteristic was measured.

【0040】これらの試料の飽和磁化(4πMs)は、
約250〜450G、ファラデー回転能は約700〜1
200deg/cm、θf/T は約0.05〜0.07d
eg/℃であった。
The saturation magnetization (4πMs) of these samples is
Approximately 250-450G, Faraday rotation ability is approximately 700-1
200 deg / cm, θ f / T is about 0.05 to 0.07d
eg / ° C.

【0041】図4は、本実施例におけるGdYYbBi
系ガーネット厚膜材料について、挿入損失と熱処理時の
酸素濃度との関係を示す図である。図4から、酸素濃度
が5%以上では、熱処理によって、挿入損失が、熱処理
前(非処理)よりも減少することがわかる。これらの結
果から、GdYYbBi系ガーネット厚膜には、酸素濃
度5%以上の雰囲気中での熱処理が有用であるといえ
る。
FIG. 4 shows GdYYbBi in this embodiment.
FIG. 4 is a graph showing the relationship between insertion loss and oxygen concentration during heat treatment for a system garnet thick film material. FIG. 4 shows that when the oxygen concentration is 5% or more, the insertion loss is reduced by the heat treatment as compared with before the heat treatment (non-treatment). From these results, it can be said that a heat treatment in an atmosphere having an oxygen concentration of 5% or more is useful for a GdYYbBi-based garnet thick film.

【0042】さらに、前述した実施例1〜実施例4で対
象としたすべてのGdYYbBi系ガーネット厚膜材料
について、磁化反転温度Tcompは、すべて−40℃以下
であった。
Further, all of the GdYYbBi-based garnet thick film materials targeted in Examples 1 to 4 described above had magnetization reversal temperatures T comp of −40 ° C. or less.

【0043】なお、実施例1〜実施例4では、YとYb
とをともに含むガーネット厚膜材料を扱っていない。し
かし、YとYbは互いに類似した化学的、物理的性質を
有し、また、ガーネット厚膜材料においても、互いに置
換し、かつ類似した特性を示す。これらの事実から、Y
とYbとをともに含むガーネット厚膜材料においても、
実施例1〜実施例4に記述した事項が肯定されることは
容易に推定されるところである。
In the first to fourth embodiments, Y and Yb
It does not deal with garnet thick film materials containing both. However, Y and Yb have similar chemical and physical properties to each other, and also substitute for each other and show similar properties in garnet thick film materials. From these facts, Y
And a garnet thick film material containing both Yb and
It is easily presumed that the items described in the first to fourth embodiments are affirmed.

【0044】[0044]

【発明の効果】以上、説明したように、本発明によれ
ば、約1.6μm以上の波長帯域における本質的な吸収
を示すTbBi系ガーネット厚膜の代替材料として、
1.5μm以上の波長帯域において、改善された挿入損
失とθf /Tをもつガーネット厚膜材料が得られる。
As described above, according to the present invention, as a substitute material of a TbBi-based garnet thick film which shows essential absorption in a wavelength band of about 1.6 μm or more,
In a wavelength band of 1.5 μm or more, a garnet thick film material having improved insertion loss and θ f / T can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における、GdYYbBi系ガーネッ
ト単結晶厚膜について、透過率の波長依存性を示す図。
FIG. 1 is a diagram showing the wavelength dependence of transmittance of a GdYYbBi-based garnet single crystal thick film in Example 1.

【図2】実施例2における、GdYYbBi系ガーネッ
ト厚膜材料について、挿入損失に対するB23の含有濃
度依存性を示す図。
FIG. 2 is a graph showing the dependency of the insertion loss on the concentration of B 2 O 3 in a GdYYbBi-based garnet thick film material in Example 2.

【図3】実施例3における、GdYYbBi系ガーネッ
ト厚膜材料について、挿入損失と熱処理温度との関係を
示す図。
FIG. 3 is a diagram showing the relationship between insertion loss and heat treatment temperature for a GdYYbBi-based garnet thick film material in Example 3.

【図4】実施例4における、GdYYbBi系ガーネッ
ト厚膜材料について、挿入損失と熱処理時の酸素濃度と
の関係を示す図。
FIG. 4 is a diagram showing the relationship between insertion loss and oxygen concentration during heat treatment for a GdYYbBi-based garnet thick film material in Example 4.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガーネット基板上に、液相エピタキシャ
ル成長法により育成した、Gd,Bi,Fe,Alを主
成分とする単結晶厚膜からなるビスマス置換型ガーネッ
ト厚膜材料であって、化学式が、Gd3-x-y-zxYby
BizFe5-aAla12、ただしx=0〜0.2,y=0
〜0.2で、かつxおよびyが同時には0ではなく、さ
らに、z=0.8〜1.4,a=0.2〜0.7で示される
組成を有することを特徴とするビスマス置換型ガーネッ
ト厚膜材料。
1. A bismuth-substituted garnet thick film material comprising a single crystal thick film mainly composed of Gd, Bi, Fe, and Al grown on a garnet substrate by a liquid phase epitaxial growth method, wherein the chemical formula is: Gd 3-xyz Y x Yb y
Bi z Fe 5-a Al a O 12, except x = 0~0.2, y = 0
Bismuth characterized by having a composition expressed by z = 0.8 to 1.4, a = 0.2 to 0.7, and x and y are not 0 at the same time. Substitution type garnet thick film material.
【請求項2】 請求項1記載のビスマス置換型ガーネッ
ト厚膜材料に、B23が0〜3.7重量%含有されたこ
とを特徴とするビスマス置換型ガーネット厚膜材料。
Wherein the bismuth-substituted garnet thick film material of claim 1, wherein, bismuth-substituted garnet thick film material, characterized in that B 2 O 3 is contained 0 to 3.7 wt%.
【請求項3】 前記単結晶厚膜を、950〜1130℃
の温度範囲で保持する熱処理を行うことを特徴とする請
求項1または請求項2記載のビスマス置換型ガーネット
厚膜材料の製造方法。
3. The method according to claim 1, wherein the single-crystal thick film is heated to 950 to 1130 °
3. The method for producing a bismuth-substituted garnet thick film material according to claim 1, wherein the heat treatment is performed at a temperature in the range described above.
【請求項4】 前記単結晶厚膜からなるビスマス置換型
ガーネット厚膜材料をNGG基板上に育成することを特
徴とする請求項1記載ないし請求項3のいずれか記載の
ビスマス置換型ガーネット厚膜材料の製造方法。
4. The bismuth-substituted garnet thick film according to claim 1, wherein the bismuth-substituted garnet thick film material comprising the single crystal thick film is grown on an NGG substrate. Material manufacturing method.
【請求項5】 前記単結晶厚膜を、酸素濃度が5%以上
の雰囲気中で保持する熱処理を行うことを特徴とする請
求項1ないし請求項4のうちいずれか記載のビスマス置
換型ガーネット厚膜材料の製造方法。
5. The bismuth-substituted garnet thickness according to claim 1, wherein a heat treatment for maintaining the single-crystal thick film in an atmosphere having an oxygen concentration of 5% or more is performed. Manufacturing method of membrane material.
JP10055830A 1998-02-20 1998-02-20 Bismuth-substituted garnet thick film material and its production Pending JPH11236296A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10055830A JPH11236296A (en) 1998-02-20 1998-02-20 Bismuth-substituted garnet thick film material and its production
JP2007274223A JP2008074703A (en) 1998-02-20 2007-10-22 Bismuth substituted-type garnet thick-film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055830A JPH11236296A (en) 1998-02-20 1998-02-20 Bismuth-substituted garnet thick film material and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007274223A Division JP2008074703A (en) 1998-02-20 2007-10-22 Bismuth substituted-type garnet thick-film material

Publications (1)

Publication Number Publication Date
JPH11236296A true JPH11236296A (en) 1999-08-31

Family

ID=13009902

Family Applications (2)

Application Number Title Priority Date Filing Date
JP10055830A Pending JPH11236296A (en) 1998-02-20 1998-02-20 Bismuth-substituted garnet thick film material and its production
JP2007274223A Pending JP2008074703A (en) 1998-02-20 2007-10-22 Bismuth substituted-type garnet thick-film material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007274223A Pending JP2008074703A (en) 1998-02-20 2007-10-22 Bismuth substituted-type garnet thick-film material

Country Status (1)

Country Link
JP (2) JPH11236296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128399A1 (en) 2000-02-22 2001-08-29 TDK Corporation Magnetic garnet material and magnetooptical device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113026A (en) * 1984-11-07 1986-05-30 Agency Of Ind Science & Technol Medium for magnetooptic element
JPH0677081A (en) * 1991-12-25 1994-03-18 Tdk Corp Manufacture of magneto-optical element
JPH07157400A (en) * 1993-12-06 1995-06-20 Namiki Precision Jewel Co Ltd Magnetic garnet and faraday rotation element using the same
JPH09202698A (en) * 1996-01-26 1997-08-05 Shin Etsu Chem Co Ltd Production of laser material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128399A1 (en) 2000-02-22 2001-08-29 TDK Corporation Magnetic garnet material and magnetooptical device using the same
US6527973B2 (en) * 2000-02-22 2003-03-04 Tdk Corporation Magnetic garnet material and magnetooptical device using the same

Also Published As

Publication number Publication date
JP2008074703A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
US6641751B1 (en) Magnetic garnet single crystal and faraday rotator using the same
JPH11236296A (en) Bismuth-substituted garnet thick film material and its production
JP2000086396A (en) Bismuth-substituted type garnet thick-film material and its production
JPH09202697A (en) Production of bismuth-substituted type garnet
JP3864185B2 (en) Faraday rotator manufacturing method
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP2009013059A (en) Bismuth substitution type garnet thick film material and method for production thereof
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP3698933B2 (en) Magneto-optic garnet single crystal
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
JPH11236297A (en) Bismuth-substituted garnet thick film material and its production
JP2874320B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH1031112A (en) Faraday rotator which shows square hysteresis
JP2001348298A (en) Bismuth substituted-type garnet thick film material and method of producing the same
JP2003034596A (en) Bismuth substituted-type garnet thick film material, its manufacturing method, and faraday rotator
JPH11268992A (en) Bismuth substitution type garnet thick membrane material and its production
JP2001142039A (en) Hard magnetic garnet thick film material and method for manufacturing the same
JP2000095598A (en) Bismuth substitution type garnet thick film material and its production
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH11268993A (en) Bismuth substitution type garnet thick membrane material and its production
JPH11116396A (en) Bismuth-substituted type garnet material and its production
JP2000086395A (en) Bismuth-substituted type garnet thick-film material and its production
JP2009016548A (en) Method of manufacturing bismuth-substituted iron garnet single crystal
JPH10101492A (en) Bismuth-substituted garnet material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104