JPH1123591A - Scanning type magnetic microscope - Google Patents

Scanning type magnetic microscope

Info

Publication number
JPH1123591A
JPH1123591A JP17841997A JP17841997A JPH1123591A JP H1123591 A JPH1123591 A JP H1123591A JP 17841997 A JP17841997 A JP 17841997A JP 17841997 A JP17841997 A JP 17841997A JP H1123591 A JPH1123591 A JP H1123591A
Authority
JP
Japan
Prior art keywords
sample
magnetic
cantilever
probe
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17841997A
Other languages
Japanese (ja)
Inventor
Tsukasa Tomita
司 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17841997A priority Critical patent/JPH1123591A/en
Publication of JPH1123591A publication Critical patent/JPH1123591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a scanning type magnetic microscope capable of measuring the micro-magnetic distribution on the surface of a magnetic material and the surface construction by high spatial resolution and high sensitivity. SOLUTION: This scanning type magnetic microscope is provided with a flexible cantilever 1 having a probe 1a on the extreme end, a superconducting quantum interference element (SQUID) 2 for detecting the intensity of the magnetic field on the extreme end position of the cantilever 1, and the cooling device 10, and by scanning the probe 1a along the surface of a sample S while holding the distance between the probe 1a of the cantilever 1 and the surface of the sample S, the construction information of the surface of the sample is detected through observation using interatomic force and tunnel current, and the magnetic information on the sample of the same place is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気試料表面の微
小な磁気分布及び表面構造を、高空間分解能でかつ高感
度に測定するのに適した走査型磁気顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning magnetic microscope suitable for measuring minute magnetic distribution and surface structure of a magnetic sample surface with high spatial resolution and high sensitivity.

【0002】[0002]

【従来の技術】磁気力顕微鏡としては、磁性体からなる
探針を用い、この磁性探針と磁性試料の表面に漏洩した
磁界の間に発生する磁気力を利用して試料の磁化状態を
調べる構造の装置が知られている。
2. Description of the Related Art As a magnetic force microscope, a probe made of a magnetic material is used, and a magnetization state of a sample is examined by using a magnetic force generated between the magnetic probe and a magnetic field leaking to the surface of a magnetic sample. Structured devices are known.

【0003】従来、この種の磁性探針と試料との接近に
より得られる磁気力を利用した、走査型磁気力顕微鏡に
用いられている試料の磁気情報の取得方法については、
文献;アプライド フィジックス レターズ 第50巻
(1987年)第1455頁から1457頁、において
論じられている。その代表的な磁気情報検出方法は、カ
ンチレバー先端の磁性探針を試料表面に磁気力の作用す
る領域(表面から数十nm以下)で走査し、カンチレバ
ーに働く力の変化を検出して試料表面の形態や磁気力分
布を計測するものである。
Conventionally, a method of acquiring magnetic information of a sample used in a scanning magnetic force microscope using a magnetic force obtained by approaching a magnetic probe of this type and a sample has been described.
Literature; Applied Physics Letters, Vol. 50 (1987), pp. 1455-1457. A typical method for detecting magnetic information is to scan the sample surface with a magnetic probe at the tip of the cantilever in a region where the magnetic force acts on the sample surface (several tens of nm or less from the surface), and detect a change in the force acting on the cantilever. And the distribution of magnetic force.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したよ
うな磁気情報検出方法を採用した従来の磁気力顕微鏡で
は、磁性探針に働く磁気力または磁気力勾配を一定に保
つように磁性探針の位置を制御することにより、試料表
面の漏洩磁界の分布を計測できるが、磁気分布と表面形
状の情報が混在して計測されるため、真の磁気情報の測
定は困難である。
By the way, in the conventional magnetic force microscope employing the above-described magnetic information detection method, the magnetic probe acting on the magnetic probe is maintained so that the magnetic force or the magnetic force gradient acting on the magnetic probe is kept constant. By controlling the position, the distribution of the stray magnetic field on the sample surface can be measured. However, since the magnetic distribution and the information of the surface shape are measured together, it is difficult to measure true magnetic information.

【0005】すなわち、磁性探針と試料の間に作用する
磁気力が小さいため、試料近傍まで磁性探針を近づけな
ければならず、原子間力の作用による試料の表面構造と
の分離が困難であった。
That is, since the magnetic force acting between the magnetic probe and the sample is small, the magnetic probe must be brought close to the sample, and it is difficult to separate from the surface structure of the sample by the action of the atomic force. there were.

【0006】本発明はそのような実情に鑑みてなされた
もので、原子間力やトンネル電流を用いた観察により試
料表面の形態情報を正確に検出することができ、しかも
同一場所の試料上の磁気情報を正確に計測することが可
能な走査型磁気顕微鏡の提供を目的とする。
The present invention has been made in view of such circumstances, and it is possible to accurately detect the morphological information of a sample surface by observation using an atomic force or a tunnel current, and furthermore, it is possible to detect the morphological information on a sample at the same place. It is an object of the present invention to provide a scanning magnetic microscope capable of accurately measuring magnetic information.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の走査型磁気顕微鏡は、図1に例示するよう
に、先端に探針1aを有する可撓性のカンチレバー1
と、このカンチレバー1の先端位置における磁界の強さ
を検出するための超伝導量子干渉素子2(以下、SQU
ID2と称する)と、カンチレバー1の探針1aと試料
S表面との距離を一定に保持しながら、探針1aを試料
S表面上に沿って走査する手段(例えば位置検出器5、
非磁性ステージ7、Z軸圧電素子8及びサーボ制御装置
6等)と、SQUID2を超伝導転移温度以下に冷却す
る手段10を備えていることによって特徴づけられる。
In order to achieve the above object, a scanning magnetic microscope according to the present invention comprises a flexible cantilever 1 having a probe 1a at a tip end as shown in FIG.
And a superconducting quantum interference device 2 (hereinafter, SQUI) for detecting the strength of the magnetic field at the tip position of the cantilever 1.
ID2) and means for scanning the probe 1a along the surface of the sample S while maintaining a constant distance between the probe 1a of the cantilever 1 and the surface of the sample S (for example, the position detector 5,
(Non-magnetic stage 7, Z-axis piezoelectric element 8, servo controller 6, etc.), and means 10 for cooling SQUID 2 to a superconducting transition temperature or lower.

【0008】以上の構成において、可撓性のカンチレバ
ー1の先端に設けた探針1aを試料S表面に近づける
と、まず引力が発生し、さらに接近させると今度は斥力
が発生する。この原子間力の作用によりカンチレバー1
が撓む。
In the above configuration, when the probe 1a provided at the tip of the flexible cantilever 1 is brought close to the surface of the sample S, an attractive force is first generated, and when the probe 1a is further approached, a repulsive force is generated. By the action of this atomic force, cantilever 1
Bends.

【0009】このカンチレバー1の撓みによる変位を、
レーザー光等を利用した変位検出手段(位置検出器5
等)により計測し、その計測情報に基づいて探針1aに
作用する力が一定になるように、すなわちカンチレバー
1の撓みが一定量となるように試料Sあるいは探針1a
のZ軸(試料面に垂直な軸)の位置を制御することによ
り、試料Sの表面構造の計測を行うことができるととも
に、探針1aを試料Sの表面から一定の高さに保持する
ことが可能となる。
The displacement due to the bending of the cantilever 1 is
Displacement detecting means using laser light (position detector 5
And the like, so that the force acting on the probe 1a is constant based on the measurement information, that is, the deflection of the cantilever 1 is constant.
By controlling the position of the Z axis (the axis perpendicular to the sample surface), the surface structure of the sample S can be measured, and the probe 1a can be held at a constant height from the surface of the sample S. Becomes possible.

【0010】また、カンチレバー1の探針1aと試料S
表面の間のトンネル電流が一定になるように試料Sある
いは試料SのZ軸の位置を制御することにより、試料S
の表面構造を計測でき、さらにこの場合も、探針1aを
試料S表面から一定の高さに保持することが可能とな
る。
Further, the probe 1a of the cantilever 1 and the sample S
By controlling the position of the sample S or the Z axis of the sample S so that the tunnel current between the surfaces becomes constant, the sample S
Can be measured, and also in this case, the probe 1a can be held at a constant height from the surface of the sample S.

【0011】そして、以上のようにカンチレバー1の変
位を一定に保つように試料Sあるいは探針1aのZ軸の
位置を制御しつつ、カンチレバー1aの先端位置の磁界
の強さをSQUID2で計測することで、試料Sの表面
情報に加えて、試料S表面から一定距離の位置における
磁気情報を同時に計測することが可能となる。
As described above, while controlling the position of the sample S or the Z-axis of the probe 1a so as to keep the displacement of the cantilever 1 constant, the strength of the magnetic field at the tip position of the cantilever 1a is measured by SQUID2. Thus, in addition to the surface information of the sample S, it is possible to simultaneously measure the magnetic information at a position at a certain distance from the surface of the sample S.

【0012】[0012]

【発明の実施の形態】図1は本発明の実施の形態の構成
を示すブロック図である。本実施の形態の走査型磁気顕
微鏡は、先端に曲率半径の小さな探針1aを有する可撓
性のカンチレバー1と、このカンチレバー1の先端の変
位を検出する位置検出装置13を備えている。この位置
検出装置13は、カンチレバー1の先端にレーザ光を照
射するレーザ光源3、その反射光を検出する位置センサ
4及び位置検出器5からなる、光てこ方式の検出装置で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. The scanning magnetic microscope according to the present embodiment includes a flexible cantilever 1 having a tip 1a having a small radius of curvature at the tip, and a position detecting device 13 for detecting displacement of the tip of the cantilever 1. The position detection device 13 is an optical lever type detection device including a laser light source 3 that irradiates the tip of the cantilever 1 with laser light, a position sensor 4 that detects reflected light thereof, and a position detector 5.

【0013】また、カンチレバー1には、先端に配置さ
れたSQUID2と、これを超伝導転移温度以下に冷却
するための冷却装置10を備えており、そのSQUID
2によって計測された磁気情報はSQUID制御回路1
1に入力される。
Further, the cantilever 1 is provided with a SQUID 2 disposed at the tip and a cooling device 10 for cooling the SQUID 2 to a temperature below the superconducting transition temperature.
The magnetic information measured by the SQUID control circuit 1
1 is input.

【0014】一方、カンチレバー1の下方には非磁性ス
テージ7が配置されている。この非磁性ステージ7はX
Y駆動回路12によってXY方向に移動され、ステージ
上に置かれた試料Sをカンチレバー1の探針1aに対し
て走査するように構成されている。また、非磁性ステー
ジ7には、試料SにZ軸方向(試料Sの表面に垂直な
軸)の変位を与えるZ軸圧電素子8が設けられている。
On the other hand, a non-magnetic stage 7 is disposed below the cantilever 1. This non-magnetic stage 7 is X
The sample S, which is moved in the XY directions by the Y drive circuit 12 and placed on the stage, scans the probe 1 a of the cantilever 1. Further, the non-magnetic stage 7 is provided with a Z-axis piezoelectric element 8 that applies a displacement to the sample S in the Z-axis direction (an axis perpendicular to the surface of the sample S).

【0015】そして、以上の構成において、位置検出装
置13の位置検出器5の出力(カンチレバー1の変位検
出信号)がサーボ制御装置6に入力され、その変位検出
信号に応じてサーボ制御装置6がZ軸圧電素子8を駆動
制御するとともに、このZ軸の制御信号が解析・表示装
置9に入力される。
In the above configuration, the output of the position detector 5 of the position detecting device 13 (displacement detection signal of the cantilever 1) is input to the servo control device 6, and the servo control device 6 responds to the displacement detection signal. The drive control of the Z-axis piezoelectric element 8 and the control signal of the Z-axis are input to the analysis / display device 9.

【0016】また、解析・表示装置9には、SQUID
制御回路11からの磁界情報が入力され、それらの情報
と、XY駆動回路12からの位置情報(XY軸)に基づ
いて試料Sの各点での表面構造と磁気構造を求め、それ
らの各構造情報を表示するように構成されている。
The analysis / display device 9 has a SQUID
The magnetic field information from the control circuit 11 is input, and the surface structure and the magnetic structure at each point of the sample S are obtained based on the information and the position information (XY axis) from the XY drive circuit 12, and the respective structures are obtained. It is configured to display information.

【0017】次に、本実施の形態の作用を動作とともに
説明する。探針1aを有する可撓性のカンチレバー1を
試料Sの表面に接近させると、カンチレバー1の探針1
aと試料Sの間に作用した原子間力によりカンチレバー
1が撓む。この撓みよるカンチレバー1の変位を変位検
出装置13で検出し、その装置出力(位置検出器5の出
力)をサーボ制御装置6に入力し、非磁性ステージ7の
Z軸圧電素子8にフィードバックすることにより、カン
チレバー1の変位が一定すなわちカンチレバー1と試料
Sとの距離が一定となるように制御する。
Next, the operation of this embodiment will be described together with the operation. When the flexible cantilever 1 having the probe 1a is brought close to the surface of the sample S, the probe 1 of the cantilever 1 is moved.
The cantilever 1 bends due to the interatomic force acting between a and the sample S. The displacement of the cantilever 1 caused by the bending is detected by the displacement detecting device 13, and the output of the device (output of the position detector 5) is input to the servo control device 6 and fed back to the Z-axis piezoelectric element 8 of the nonmagnetic stage 7. Thus, the displacement of the cantilever 1 is controlled to be constant, that is, the distance between the cantilever 1 and the sample S is kept constant.

【0018】その際、サーボ制御装置6の出力を解析・
表示装置9に採り込むことにより、試料Sの表面構造を
計測することができる。また、以上のようにカンチレバ
ー1と試料Sとの距離を一定に保持した状態で、カンチ
レバー1の先端のSQUID2を冷却装置10によって
超伝導転移温度以下に冷却し、そのSQUID2の出力
をSQUID制御回路11を介して解析・表示装置9に
採り込むことにより、試料Sの表面の磁界の強さを計測
・表示することができる。
At this time, the output of the servo controller 6 is analyzed and
By incorporating the sample S into the display device 9, the surface structure of the sample S can be measured. While the distance between the cantilever 1 and the sample S is kept constant as described above, the SQUID 2 at the tip of the cantilever 1 is cooled to a temperature lower than the superconducting transition temperature by the cooling device 10 and the output of the SQUID 2 is controlled by the SQUID control circuit. By taking it into the analysis / display device 9 via the interface 11, the intensity of the magnetic field on the surface of the sample S can be measured and displayed.

【0019】そして、XY駆動回路12により、非磁性
ステージ7をX,Y方向に走査するしつつ、サーボ制御
装置6及びSQUID制御回路11の各出力信号を順次
に採り込んでゆくことにより、試料Sの各点での表面構
造と、磁気構造を同時に計測することができる。
The XY drive circuit 12 scans the non-magnetic stage 7 in the X and Y directions while sequentially taking in the output signals of the servo controller 6 and the SQUID control circuit 11, thereby obtaining a sample. The surface structure at each point of S and the magnetic structure can be measured simultaneously.

【0020】ここで、以上の実施の形態では、カンチレ
バーの変位検出装置として、光てこ方式の装置を適用し
た例を示したが、これに限られることなく、光干渉方
式、静電容量方式、トンネル電流検出方式等の、他の方
式の変位検出装置を用いても本発明は実施可能である。
Here, in the above-described embodiment, an example in which an optical lever type device is applied as the cantilever displacement detecting device has been described. However, the present invention is not limited to this. The present invention can be implemented using a displacement detection device of another method such as a tunnel current detection method.

【0021】以上の実施の形態においては、非磁性ステ
ージ7の移動により試料S側を変位(XY軸とZ軸)さ
せているが、本発明はこれに限られることなく、カンチ
レバー1側を変位させて、探針1aの試料S表面上での
走査と、Z軸の位置制御を行う方式を採用してもよい。
In the above embodiment, the sample S side is displaced (XY axis and Z axis) by the movement of the non-magnetic stage 7. However, the present invention is not limited to this, and the cantilever 1 side is displaced. Then, a method of scanning the probe 1a on the surface of the sample S and controlling the position of the Z axis may be adopted.

【0022】本発明において、カンチレバーの先端位置
における磁界の強さの検出方法としては、図1に示した
ように、カンチレバー1の先端に微小なSQUID2を
設けるといった構成のほかに、カンチレバー1の先端に
は微小なピックアップコイルのみを設けておき、その磁
気検出用のSQUIDをカンチレバーの根元等に設ける
という構成を採用してもよい。その場合、ピックアップ
コイルの形状としては、マグネトメータでもよいし、様
々な形状のグラジオメータでも良い。
In the present invention, as a method of detecting the strength of the magnetic field at the position of the tip of the cantilever, as shown in FIG. May be provided with only a small pickup coil, and a SQUID for its magnetic detection provided at the base of the cantilever or the like. In this case, the shape of the pickup coil may be a magnetometer or a gradiometer of various shapes.

【0023】さらに、SQUID2(SQUID+ピッ
クアップコイル)の冷却方法としては、図1に示したよ
うに伝熱体(カンチレバー1)を通じて冷却するという
方法のほかに、試料Sを含めた装置全体を液体ヘリウム
等の冷媒中に配置するという方法を採ってもよい。
Further, as a method of cooling the SQUID 2 (SQUID + pickup coil), in addition to the method of cooling through the heat transfer body (cantilever 1) as shown in FIG. Alternatively, a method of arranging in a refrigerant may be adopted.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
先端に探針を有する可撓性のカンチレバーと、このカン
チレバーの先端位置における磁界の強さを検出するため
のSQUID及びその冷却手段を設け、そのカンチレバ
ーの探針と試料表面との距離を一定に保持しながら、探
針を試料表面上に沿って走査する構造としたから、原子
間力やトンネル電流を利用した観察により試料表面の構
造を正確に計測することができ、しかも同一の場所にお
ける磁界の強さをSQUIDを用いて検出するので、試
料の表面構造に加えて磁気情報を正確に計測することが
できる。
As described above, according to the present invention,
A flexible cantilever having a tip at the tip, a SQUID for detecting the strength of the magnetic field at the tip of the cantilever and its cooling means are provided, and the distance between the tip of the cantilever and the sample surface is kept constant. Since the probe is scanned along the surface of the sample while holding it, the structure of the surface of the sample can be accurately measured by observation using atomic force and tunnel current. Is detected using the SQUID, so that magnetic information can be accurately measured in addition to the surface structure of the sample.

【0025】従って、磁気試料表面の微小な磁気分布及
び表面構造を、高空間分解能でかつ高感度に測定するの
に適した走査型磁気顕微鏡を実現することができる。
Therefore, it is possible to realize a scanning magnetic microscope suitable for measuring a minute magnetic distribution and a surface structure on the surface of a magnetic sample with high spatial resolution and high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 カンチレバー 1a 探針 2 超伝導量子干渉素子(SQUID) 3 レーザ光源 4 位置センサ 5 位置検出器 6 サーボ制御装置 7 非磁性ステージ 8 Z軸圧電素子 9 解析・表示装置 10 冷却装置 11 SQUID制御回路 12 XY駆動回路 13 変位検出装置 S 試料 REFERENCE SIGNS LIST 1 cantilever 1 a probe 2 superconducting quantum interference device (SQUID) 3 laser light source 4 position sensor 5 position detector 6 servo controller 7 nonmagnetic stage 8 Z-axis piezoelectric element 9 analysis / display device 10 cooling device 11 SQUID control circuit 12 XY drive circuit 13 Displacement detector S sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 先端に探針を有する可撓性のカンチレバ
ーと、このカンチレバーの先端位置における磁界の強さ
を検出するための超伝導量子干渉素子と、上記カンチレ
バーの探針と試料表面との距離を一定に保持しながら、
探針を試料表面上に沿って走査する手段と、上記超伝導
量子干渉素子を超伝導転移温度以下に冷却する手段を備
えてなる走査型磁気顕微鏡。
1. A flexible cantilever having a probe at a tip thereof, a superconducting quantum interference device for detecting the intensity of a magnetic field at the tip of the cantilever, and a probe between the cantilever and the sample surface. While keeping the distance constant,
A scanning magnetic microscope comprising: means for scanning a probe along the surface of a sample; and means for cooling the superconducting quantum interference device to a superconducting transition temperature or lower.
JP17841997A 1997-07-03 1997-07-03 Scanning type magnetic microscope Pending JPH1123591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17841997A JPH1123591A (en) 1997-07-03 1997-07-03 Scanning type magnetic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17841997A JPH1123591A (en) 1997-07-03 1997-07-03 Scanning type magnetic microscope

Publications (1)

Publication Number Publication Date
JPH1123591A true JPH1123591A (en) 1999-01-29

Family

ID=16048181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17841997A Pending JPH1123591A (en) 1997-07-03 1997-07-03 Scanning type magnetic microscope

Country Status (1)

Country Link
JP (1) JPH1123591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812317B1 (en) 2006-08-25 2008-03-10 한국표준과학연구원 flux-gradient distribution measurement equipment
CN111811939A (en) * 2020-07-21 2020-10-23 上海交通大学 High-precision nano-mechanics detection system in ultralow temperature environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812317B1 (en) 2006-08-25 2008-03-10 한국표준과학연구원 flux-gradient distribution measurement equipment
CN111811939A (en) * 2020-07-21 2020-10-23 上海交通大学 High-precision nano-mechanics detection system in ultralow temperature environment

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
JP2516292B2 (en) Atomic force microscope
US6167753B1 (en) Detecting fields with a single-pass, dual-amplitude-mode scanning force microscope
US20130278363A1 (en) Device comprising a cantilever and scanning system
JPH06213910A (en) Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
US6817231B2 (en) Scanning probe microscope for ultra sensitive electro-magnetic field detection and probe thereof
US6211673B1 (en) Apparatus for use in magnetic-field detection and generation devices
US20110061139A1 (en) Method to measure 3 component of the magnetic field vector at nanometer resolution using scanning hall probe microscopy
JP4245951B2 (en) Electrical property evaluation equipment
EP2680012A1 (en) High throughput scanning probe microscopy device
US20140096293A1 (en) Method and apparatus for inspecting thermal assist type magnetic head
Sandhu et al. Room temperature sub-micron magnetic imaging by scanning Hall probe microscopy
JPH05187864A (en) Surface microscope and method for examining object under it
JPH1123591A (en) Scanning type magnetic microscope
JP3522222B2 (en) Scanning AC Hall microscope and its measuring method
Gibson et al. A high‐sensitivity alternating‐gradient magnetometer for use in quantifying magnetic force microscopy
US6507017B1 (en) Near-field optical inspection apparatus
Sulania et al. Atomic and magnetic force studies of co thin films and nanoparticles: understanding the surface correlation using fractal studies
JP3647818B2 (en) Near-field optical excitation squid microscope
JP5662041B2 (en) A program for causing a computer to scan a scanning probe microscope
Volodin et al. Imaging of vortices in conventional superconductors by magnetic force microscopy
EP0449221A2 (en) Scanning probe microscope
KR100474844B1 (en) Lorentz force microscope and method of measuring magnetic domain utilizing lorentz force
JP2869508B2 (en) Scanning probe microscope with magnetic field control
JPH11101862A (en) Minute region observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A02 Decision of refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A02