JPH11235580A - Restoring method of contaminated soil - Google Patents
Restoring method of contaminated soilInfo
- Publication number
- JPH11235580A JPH11235580A JP10351557A JP35155798A JPH11235580A JP H11235580 A JPH11235580 A JP H11235580A JP 10351557 A JP10351557 A JP 10351557A JP 35155798 A JP35155798 A JP 35155798A JP H11235580 A JPH11235580 A JP H11235580A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- microorganism
- contaminant
- freezing
- contaminated soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、汚染物質(例えば
炭化水素やハロゲン化炭化水素等)により汚染された環
境(例えば土壌および地下水等)を微生物を用いて修復
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for restoring an environment (for example, soil and groundwater) contaminated by pollutants (for example, hydrocarbons and halogenated hydrocarbons) using microorganisms.
【0002】[0002]
【従来の技術】近年、石油や芳香族炭化水素、パラフィ
ン、ナフテン等の炭化水素による土壌や地下水等の環境
の汚染が指摘されている。特にトリクロロエチレン、テ
トラクロロエチレン、テトラクロロエタン、ポリ塩化ビ
フェニル等の有機塩素化合物等による環境の汚染が指摘
されている。そのため、汚染の拡大を防止するととも
に、汚染された環境を修復するための技術の確立が強く
望まれている。2. Description of the Related Art In recent years, it has been pointed out that hydrocarbons such as petroleum, aromatic hydrocarbons, paraffins and naphthenes contaminate the environment such as soil and groundwater. In particular, environmental pollution due to organic chlorine compounds such as trichloroethylene, tetrachloroethylene, tetrachloroethane, and polychlorinated biphenyl has been pointed out. Therefore, it is strongly desired to establish a technique for preventing the spread of pollution and restoring the polluted environment.
【0003】例えば、汚染物質により汚染された土壌か
ら汚染物質を取り除くことにより土壌を元の状態に復帰
させる土壌浄化法としては、種々の方法が知られ、また
試みられている。例えば、真空抽出法、天日乾燥法、曝
気処理法、酸化処理法等の物理・化学的な手法を中心に
修復が行われている。[0003] For example, various methods have been known and attempted as soil remediation methods for returning soil to its original state by removing contaminants from soil contaminated with contaminants. For example, restoration is performed mainly on physical and chemical methods such as a vacuum extraction method, a solar drying method, an aeration treatment method, and an oxidation treatment method.
【0004】一方、汚染物質を分解する能力を有する微
生物を利用して、環境修復する方法(バイオレメディエ
ーション;Bio Remediation)も検討されている。バイオ
レメディエーションの代表的な方法の1つは、汚染土壌
中に棲息する汚染物質を分解可能な微生物の繁殖や分解
活性の発現を促進させて浄化を進める、いわゆる土着菌
活性化法であり[US4,401,569(Groundwate
r Technology Systems, Inc.) 等]、石油系汚染では既
に実用化されている。また、バイオレメディエーション
の他の代表的な方法は、汚染物質を分解可能な微生物を
単独で、あるいは該微生物の分解活性を発現させるイン
デューサおよび該微生物の増殖のための栄養の少なくと
も一方とともに汚染された環境中に投入する方法があ
る。このような浄化法は、従来の物理・化学的な手法と
比較すると、低エネルギーでの修復が可能となり、設備
も簡易で、さらに物理・化学的手法では困難な低濃度汚
染環境の修復も可能である。[0004] On the other hand, a method for remediating the environment using a microorganism capable of decomposing contaminants (bioremediation) has been studied. One of the typical methods of bioremediation is a so-called indigenous bacteria activation method that promotes the purification by promoting the growth of microorganisms capable of decomposing contaminants in contaminated soil and the development of decomposition activity [US4 , 401, 569 (Groundwate
r Technology Systems, Inc.), etc., and has already been put into practical use for petroleum-based pollution. Another typical method of bioremediation is to contaminate a microorganism capable of decomposing a contaminant alone, or together with an inducer that expresses the decomposing activity of the microorganism and / or nutrients for growing the microorganism. There is a method to put it in the environment where it was used. Compared with conventional physical and chemical methods, such a purification method can be repaired with lower energy, the equipment is simpler, and it is possible to repair low-concentration polluted environments that are difficult with physical and chemical methods It is.
【0005】ところでこのようなバイオレメディエーシ
ョンにおいては、微生物、インデューサ、栄養等を環境
中に注入する必要がある。そしてこのときに汚染環境中
に如何に均一にこれらの物質を注入できるかは、バイオ
レメディエーションの効率を左右する重要な要件の1つ
である。[0005] In such bioremediation, it is necessary to inject microorganisms, inducers, nutrients and the like into the environment. At this time, how uniformly these substances can be injected into the contaminated environment is one of the important requirements that determine the efficiency of bioremediation.
【0006】浄化に必要な物質等の注入については、こ
れまでにもいくつかの開示がなされている。例えば、米
国特許US5,133,625では、伸張可能な注入パ
イプを用いて注入圧力、流速および温度を測定して注入
圧力を制御する方法が述べられている。この方法は、注
入圧力により微生物濃度や栄養素濃度等を制御して微生
物の分解活性を最適に維持させるものであり、主として
微生物による浄化工程の制御を目的としている。また、
米国特許US4,442,895およびUS5,03
2,042は、注入井戸から土壌中へ気体や薬液を注入
して土壌のクラッキングを行うことを提案しており、そ
の際に微生物浄化に必要な酸素や栄養素等も供給できる
ことが述べられている。There have been several disclosures about injection of substances and the like necessary for purification. For example, US Pat. No. 5,133,625 describes a method for controlling injection pressure by measuring injection pressure, flow rate and temperature using an expandable injection pipe. This method controls the concentration of microorganisms, nutrients, and the like by injection pressure to maintain the activity of decomposing microorganisms optimally, and is mainly intended to control the purification step by microorganisms. Also,
US Patents US 4,442,895 and US 5,033
2,042 proposes injecting a gas or a chemical solution into the soil from an injection well to crack the soil, and states that oxygen and nutrients required for microbial purification can be supplied at that time. .
【0007】一方、短時間で効率的な微生物浄化を達成
することを目的として、高濃度汚染領域を集中的に浄化
する方法として、微生物や栄養素等の注入範囲を限定す
る方法が知られている。例えば米国特許5,111,8
83では、注入井戸と抽出井戸の相対位置により土壌水
平方向および垂直方向において所定の領域に薬液を注入
する方法が述べられている。これは、幾何学的方法によ
り土壌中の決められた位置へ薬液を注入することを目的
としており、微生物浄化においても修復領域を限定する
有効な方法と考えられる。On the other hand, as a method for intensively purifying a high-concentration contaminated region for the purpose of achieving efficient microorganism purification in a short time, there is known a method of limiting the injection range of microorganisms, nutrients and the like. . For example, US Pat. No. 5,111,8
No. 83 describes a method of injecting a chemical solution into a predetermined region in the horizontal and vertical directions of soil based on the relative positions of an injection well and an extraction well. This aims at injecting a chemical solution into a predetermined position in the soil by a geometric method, and is considered to be an effective method for limiting a repair area even in microbial purification.
【0008】また、注入井戸から限定された領域に微生
物あるいは分解活性を維持するための物質を注入する方
法として、注入井戸から所定距離の土壌位置に不透水層
を形成し、これをバリア壁として注入領域を限定する方
法も考えられている。例えば、地中にプラスチックシ−
トを敷いたり、アスファルト層を設ける方法、あるいは
セメント、水ガラス、ウレタン、アクリルアミド、アク
リル酸塩等の処理剤を土壌中に注入する方法が知られて
いる。具体的には特公平2−26662および特公平5
−27676では土壌中のイオンによって不溶化する水
溶性ポリマーを用いて土壌中の所定の位置に不透水層を
形成させる方法が述べられている。この方法は不透水層
をバリアとして物質移動を制御するものであり、土壌中
への微生物や栄養素等の注入工程においても、その注入
領域を限定する技術となり得る。このような領域の限定
する手段によって、特定領域へ効率的に、またその領域
内に均一に薬液を注入することが試みられてきている。Further, as a method of injecting a microorganism or a substance for maintaining a decomposing activity into a limited area from an injection well, an impermeable layer is formed at a soil position at a predetermined distance from the injection well, and this is used as a barrier wall. A method of limiting the implantation region has also been considered. For example, in the ground
There is known a method of laying a floor, providing an asphalt layer, or injecting a treatment agent such as cement, water glass, urethane, acrylamide, or acrylate into soil. Specifically, Japanese Patent Publication No. 2-266662 and Japanese Patent Publication No. 5
No. -27676 describes a method of forming an impermeable layer at a predetermined position in soil using a water-soluble polymer insolubilized by ions in soil. This method controls mass transfer using an impermeable layer as a barrier, and may be a technique for limiting the injection area in the step of injecting microorganisms, nutrients, and the like into soil. Attempts have been made to efficiently and uniformly inject a chemical solution into a specific region by means of limiting such a region.
【0009】[0009]
【発明が解決しようとする課題】本発明は上記したよう
な背景技術に鑑みなされたものであり、その目的は汚染
物質によって汚染された土壌をバイオレメディエーショ
ンによって修復する際に、土壌中に該汚染物質を分解可
能な微生物、該汚染物質を分解可能な微生物に該汚染物
質の分解能を発現させるためのインデューサおよび該汚
染物質を分解可能な微生物の栄養の少なくとも1つを土
壌中に普く行き渡らせることを目的とするものである。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above background art, and an object of the present invention is to repair soil contaminated with contaminants by bioremediation in the soil. A microorganism capable of decomposing the substance, an inducer for causing the microorganism capable of decomposing the contaminant to exhibit the resolution of the contaminant, and at least one nutrient of the microorganism capable of decomposing the contaminant is widely distributed in the soil. The purpose is to make
【0010】[0010]
【課題を解決するための手段】そしてこのような目的を
達成することのできる本発明の汚染物質で汚染された土
壌の修復方法の一実施態様は、該土壌を凍結させる工程
及び汚染物質で汚染された土壌中に、該汚染物質を分解
可能な微生物、汚染物質を分解する能力を備えた微生物
の該能力を発現させるインデューサ及び汚染物質を分解
可能な微生物の増殖のための栄養から選ばれる少なくと
も1つを投入する工程を有することを特徴とする。One embodiment of the method for repairing soil contaminated with a contaminant according to the present invention, which can achieve the above object, comprises a step of freezing the soil and a method of contaminating the soil with the contaminant. Selected from microorganisms capable of decomposing the contaminant, inducers expressing the ability of the microorganism having the ability to decompose the contaminant, and nutrients for the growth of the microorganism capable of decomposing the contaminant in the soil obtained. The method has a step of inputting at least one.
【0011】本発明は、本発明者らが土壌中の汚染物質
を微生物を用いて分解させる実験の過程において、所定
の容器に充填した汚染土壌を凍結させた後に汚染物質を
分解可能な微生物を含む液体を注入したところ、土壌中
の汚染物質の分解効率が顕著に向上したという知見に基
づきなされたものである。なお本態様によって土壌修復
の効率が向上する理由は明らかでないが、考えられる理
由としては例えば以下のようなものが挙げられる。According to the present invention, in the course of experiments in which the present inventors decompose contaminants in soil using microorganisms, microorganisms capable of decomposing contaminants after freezing contaminated soil filled in a predetermined container are used. It was made based on the finding that the injection of a liquid containing water significantly improved the decomposition efficiency of pollutants in soil. The reason why the efficiency of soil restoration is improved by this embodiment is not clear, but possible reasons include the following.
【0012】このような特性の改善が得られた原因とし
て、地盤凍結により土壌粒子間の保持水を一旦凍結さ
せ、その後徐冷する工程を前処理とすることにより、土
壌粒子間の凍結膨張等の攪乱を起こし、分解微生物、栄
養素ならびに添加物等を含む注入薬液の拡散する土壌の
微細領域を拡大すること、ならびに凍結・解凍による土
壌粒子間の保持水のアジテーションにより注入薬液を保
持水の接触を促進することである。後述するように、土
木工事では、凍結工法が知られており、細粒分を含む地
盤では、凍結により凍結膨張が生じたり、また解凍時に
脱水圧密が起こる。このような地盤の変化は土木工事で
は克服すべき課題であるが、微生物の分布にはむしろ大
変適した変化であることが、本発明により明らかとなっ
た。すなわち本発明は、この工程を前処理とすることに
より、分解微生物が入り込む空間的余地を確保させ、汚
染物質と接触する頻度を高め、結果として浄化効率の上
昇や浄化期間の短縮を図ることを可能にしたものであ
る。[0012] The reason why such an improvement in characteristics is obtained is that the water retained between the soil particles is temporarily frozen by freezing the ground, and then the step of gradually cooling the water is performed as a pretreatment, so that the freezing and expansion between the soil particles is performed. To expand the fine area of the soil where the infused drug solution containing degrading microorganisms, nutrients and additives is diffused, and to contact the infused drug solution by agitation of the retained water between the soil particles by freezing and thawing Is to promote. As will be described later, a freezing method is known in civil engineering work. In the ground containing fine particles, freezing and expansion occur due to freezing, and dehydration and consolidation occur during thawing. The present invention has clarified that such a change in the ground is a problem to be overcome in civil engineering work, but is a very suitable change for the distribution of microorganisms. That is, the present invention, by performing this step as a pretreatment, secures a space for decomposed microorganisms to enter, increases the frequency of contact with contaminants, and consequently increases purification efficiency and shortens the purification period. It is made possible.
【0013】[0013]
【発明の実施の形態】図1は本発明の実施についてその
態様を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.
【0014】予めボーリング調査等の情報を元に設定し
た汚染土壌の修復領域7に、注入する薬液の容器1およ
びポンプ、流量計等からなる注入系2、冷媒供給源4お
よびその供給装置3を用意する。冷媒を供給する凍結管
ならびに薬液を注入する注入管を内蔵した管5を、修復
領域7に掘削した井戸8にそれぞれ建て込む。図に示す
ように注入管と凍結管を同じ井戸に建て込めば、凍結領
域6と注入領域を重ね合わせるのに便利であるが、両領
域が重なれば、別個の井戸で独立に建て込んでも構わな
い。また、後述するように注入口の深さを選択できる注
入管と、凍結管の深さ部位を変更できるように半固定し
ておくことにより、凍結ならびに注入部位の深さを任意
に選択でき、また深さ方向に位置を変えながら本浄化方
式を適応することができる。A container 1 for a chemical solution to be injected, an injection system 2 including a pump, a flow meter, and the like, a refrigerant supply source 4 and a supply device 3 thereof are placed in a contaminated soil restoration area 7 set in advance based on information such as a boring survey. prepare. A tube 5 containing a freezing tube for supplying a refrigerant and an injection tube for injecting a chemical solution is built in each of the wells 8 excavated in the restoration area 7. If the injection tube and the freezing tube are built in the same well as shown in the figure, it is convenient to overlap the freezing region 6 and the injection region. However, if both regions overlap, it is possible to build them independently in separate wells. I do not care. In addition, as described later, by setting the injection tube to be able to select the depth of the injection port and semi-fixed so that the depth of the cryotube can be changed, the depth of the freeze and the injection site can be arbitrarily selected, Further, the present purification method can be applied while changing the position in the depth direction.
【0015】土壌の凍結は、例えば土木工事等で用いら
れているブラインあるいは液体窒素を用いて土壌を凍結
させる方法が用いられる。具体的にはブラインと呼ばれ
る不凍液(塩化カルシウム水溶液)を−20〜−30℃
に冷却し、これを循環ポンプで凍結管に送り込み地盤を
冷却するブライン方式を利用できる。なお、地盤の凍結
で温度の上昇したブラインは、圧縮器、凝縮器、冷却器
からなる凍結システムへ戻し冷却することで連続的に凍
結することができる。For freezing the soil, for example, a method of freezing the soil using brine or liquid nitrogen used in civil engineering works or the like is used. Specifically, an antifreeze solution (aqueous calcium chloride solution) called brine is stored at -20 to -30 ° C.
Brine method of cooling the ground and cooling the ground by sending it to a freezing tube by a circulation pump can be used. The brine whose temperature has risen due to the freezing of the ground can be continuously frozen by returning to a freezing system including a compressor, a condenser, and a cooler and cooling.
【0016】液体窒素(気化温度−196℃)を用いる
場合には液体窒素を含むボンベまたはタンクローリ車で
準備し、直接凍結管に液体窒素を流し込んで窒素の気化
熱で冷却する液体窒素方式を利用することもできる。In the case of using liquid nitrogen (vaporization temperature -196 ° C.), a liquid nitrogen method is used in which a liquid nitrogen-containing cylinder or tank truck is used to prepare liquid nitrogen, and the liquid nitrogen is poured directly into a freezing tube and cooled by the heat of vaporization of nitrogen. You can also.
【0017】いずれの方式も土木工事で採用されている
凍結工法であり、同じ機材を転用することができるので
便利である。Each method is a freezing method employed in civil engineering works, and the same equipment can be diverted, which is convenient.
【0018】解凍工程は、自然放置で解凍し常温とさせ
る方法と、加熱工程で急激に解凍する方式どちらを用い
てもよい。図1には示してないが、加熱管を同様に建て
込んで解凍工程を加速することも有効である。また、注
入管から温水等を注入することで、解凍を行ってもよ
い。In the thawing step, either of a method of thawing by allowing it to stand naturally and bringing it to room temperature or a method of rapidly thawing in a heating step may be used. Although not shown in FIG. 1, it is also effective to similarly install a heating tube to accelerate the thawing process. Alternatively, thawing may be performed by injecting warm water or the like from an injection tube.
【0019】なお本態様においては地盤が凍結したまま
でも、微生物等を含む薬液を注入することは可能であ
り、また薬液の温度で凍結させながら注入することも可
能なので、解凍工程は必須ではなく、微生物の分解特性
が通常より低い温度領域にあれば、部分的に凍結してい
ることが好都合である。In this embodiment, even when the ground is frozen, it is possible to inject a drug solution containing microorganisms and the like, and it is also possible to inject while freezing at the temperature of the drug solution, so that the thawing step is not essential. If the degrading characteristics of the microorganism are in a lower temperature range than usual, it is advantageous that the microorganism is partially frozen.
【0020】また、上述した構成は井戸を掘削したもの
であるが、本発明はそのような態様に限定していない。
すなわち表層土壌で凍結さらには解凍の工程をすること
は、より容易であり、その場合にも浄化の効率化は当然
得られる。また凍結管等による地盤凍結以外にも、直接
冷媒を添加したり、噴霧しても構わないので、地盤の凍
結の方法を限定するものではない。Although the above-described configuration is obtained by excavating a well, the present invention is not limited to such an embodiment.
That is, it is easier to perform the freezing and thawing processes on the surface soil, and in this case, the purification efficiency can be naturally improved. In addition to the method of freezing the ground using a freezing tube or the like, the method of freezing the ground is not limited, since a refrigerant may be directly added or sprayed.
【0021】図1では省略してあるが、汚染地盤内に亀
裂を生じさせるために、亀裂を生じさせる地盤層まで、
水あるいは空気を突出させる注入管を建て込み、加圧後
開放することによりクラッキング形成を行うことができ
る。Although not shown in FIG. 1, in order to cause a crack in the contaminated ground, the ground layer causing the crack is
Cracking can be performed by installing an injection pipe for projecting water or air, and opening it after pressurization.
【0022】本発明の方法は、汚染の種類に特に特定し
たものではないが、土壌粒子間あるいは粒子間の水相に
存在する汚染物には大変有効である。そのような汚染物
質の例は、トリクロロエチレン、テトラクロロエチレ
ン、ジクロロエチレン、PCB等を有機塩素系化合物、
あるいは油や石油系の炭化水素、芳香族炭化水素等を含
む。The method of the present invention is not particularly limited to the type of contamination, but is very effective for contaminants present in the aqueous phase between soil particles or between particles. Examples of such contaminants include trichlorethylene, tetrachloroethylene, dichloroethylene, PCBs and the like with organochlorine compounds,
Alternatively, oils, petroleum hydrocarbons, aromatic hydrocarbons and the like are included.
【0023】添加する薬液は、分解微生物および分解微
生物の増殖・活性維持に必要な炭素、リン、窒素等を含
む栄養素、分解酵素のインデューサ、酸素その他の微量
化学物質や、界面活性剤、その他の添加物の一部または
全部からなる。また分解微生物として、特に好気あるい
は嫌気であることを要しないので、分解微生物の種類を
限定するものでもなく、土着の微生物であるか外来の微
生物であるかにもよらない。The chemicals to be added include decomposed microorganisms, nutrients including carbon, phosphorus, nitrogen, etc. necessary for maintaining the growth and activity of the decomposed microorganisms, inducers of decomposing enzymes, oxygen and other trace chemical substances, surfactants, and others. Consists of a part or all of the additives. In addition, since it is not required that the decomposed microorganism is aerobic or anaerobic, the type of the decomposed microorganism is not limited, and it does not depend on whether it is an indigenous microorganism or an exogenous microorganism.
【0024】注入時の外来微生物は休止菌体でも増殖菌
体いずれの状態でも構わない。また使用する分解微生物
は分解能力を持てばいかなるものでもよく、単離・同定
されたものに限定されることは全くなく、混合状態の培
養液、汚染物質を含む培養液で集積培養したものでもな
んら問題はない。The exogenous microorganism at the time of injection may be either a quiescent cell or a growing cell. The degrading microorganisms used may be any as long as they have a degrading ability, and are not limited to those isolated and identified. There is no problem at all.
【0025】具体的なTCE分解菌として単離された報
告としては、Welchia alkenophilasero 5 (USP 487773
6, ATCC 53570), Welchia alkenophila sero 33 (USP 4
877736, ATCC 53571), Methylocystis sp. strain M (A
gric. Biol. Chemi., 53, 2903 (1998), Biosci. Biote
ch. Biochem., 56, 486 (1992), 56, 736 (1992), Meth
ylosnus trichosprium OB3b (Am. Chem. Soc. Natl. Me
et. Dev. Environ. Mictrbiol., 29, 365 (1989), App
l. Environ. Microbiol., 55, 3155 (1989), Appl. Bio
chem. Biotechnol., 28, 877 (1991), 特開平02−9
2274号公報、特開平03−292970号公報)、
Methylomonas sp. MM2 (Appl. Eviron. Microbiol., 5
7, 236 (1991), Alcaligenes denitrificans ssp. xylo
soxidans JE75 (Arch. Microbiol., 154, 410 (1990)),
Alcaligenes eutrophus JMP134 (Appl. Environ. Micr
obiol., 56, 1179 (1990), Mycobacterium vaccae JOB5
(J.Gen. Microbiol., 82, 163 (1974), Appl. Enviro
n. Microbiol., 54, 2960 (1989), ATCC 29678), Pseud
omonas putida BH (下水道協会誌、24, 27 (1987), Ps
eudomonas sp. strain G4 (Appl. Environ. Microbio
l., 52, 383 (1986),同53, 949 (1987), 同58, 951 (19
89), 同56, 279 (1990), 同57, 193 (1991), USP492580
2, ATCC 53617,この菌は初めPseudomonas cepacia と分
類されていたが、Pseudomonas sp. に変更された)、Ps
eudomonas medocina KR-1 (Bio/Techol.,7, 282 (198
9)), Pseudomonas putida F1 (Appl. Eviron. Microbio
l., 54, 1703 (1988), 同54, 2578 (1988)), Pseudomon
as fluorescens PFL12 (Appl. Environ. Microbiol., 5
4, 2578 (1988)), Pseudomonas putida KW1-9(特開平
06−70753号公報)、Pseudomanas cepacia KK01
(特開平06−227769号公報)、Nitrosomonas e
uropaea (Appl. Environ. Microbiol., 56, 1169 (199
0)), Lactobacillus vaginalis sp. nov (Int. J. Sys
t. Bacteriol. 39, 368 (1989), ATCC 49540) 等が知ら
れている。As a report isolated as a specific TCE-degrading bacterium, welchia alkenophilasero 5 (USP 487773)
6, ATCC 53570), Welchia alkenophila sero 33 (USP 4
877736, ATCC 53571), Methylocystis sp.strain M (A
gric. Biol. Chemi., 53, 2903 (1998), Biosci. Biote
ch. Biochem., 56, 486 (1992), 56, 736 (1992), Meth
ylosnus trichosprium OB3b (Am. Chem. Soc. Natl. Me
et. Dev. Environ. Mictrbiol., 29, 365 (1989), App
l. Environ. Microbiol., 55, 3155 (1989), Appl. Bio
Chem. Biotechnol., 28, 877 (1991), JP-A-02-9
2274, Japanese Patent Application Laid-Open No. 03-292970),
Methylomonas sp. MM2 (Appl. Eviron. Microbiol., 5
7, 236 (1991), Alcaligenes denitrificans ssp.xylo
soxidans JE75 (Arch.Microbiol., 154, 410 (1990)),
Alcaligenes eutrophus JMP134 (Appl.Environ.Micr
obiol., 56, 1179 (1990), Mycobacterium vaccae JOB5
(J. Gen. Microbiol., 82, 163 (1974), Appl. Enviro
n. Microbiol., 54, 2960 (1989), ATCC 29678), Pseud
omonas putida BH (Sewerage Association Journal, 24, 27 (1987), Ps
eudomonas sp.strain G4 (Appl.Environ.Microbio
l., 52, 383 (1986), 53, 949 (1987), 58, 951 (19
89), 56, 279 (1990), 57, 193 (1991), USP492580
2, ATCC 53617, which was originally classified as Pseudomonas cepacia, but was changed to Pseudomonas sp.), Ps
eudomonas medocina KR-1 (Bio / Techol., 7, 282 (198
9)), Pseudomonas putida F1 (Appl.Eviron.Microbio
l., 54, 1703 (1988), 54, 2578 (1988)), Pseudomon
as fluorescens PFL12 (Appl.Environ.Microbiol., 5
4, 2578 (1988)), Pseudomonas putida KW1-9 (JP-A-06-70753), Pseudomanas cepacia KK01
(Japanese Unexamined Patent Publication No. 06-227770), Nitrosomonas e
uropaea (Appl.Environ.Microbiol., 56, 1169 (199
0)), Lactobacillus vaginalis sp.nov (Int.J. Sys
t. Bacteriol. 39, 368 (1989), ATCC 49540) and the like.
【0026】これ以外には、例えばトリクロロエチレン
等の有機塩素化合物を分解する微生物であるJ1株(ブ
タベスト条約に基づく国際寄託の番号:FERM BP-5102)
、その変位株であり有機塩素化合物の分解の際に必要
とされる誘導物質(インデューサー)が不要になった株
であるJM1株(同:FERM BP-5352) 等を用いることが
できる。In addition, strain J1 which is a microorganism that decomposes organochlorine compounds such as trichloroethylene (an international deposit number based on the Butabest Treaty: FERM BP-5102)
A strain JM1 (FERM BP-5352) which is a strain of the strain and which does not require an inducer (inducer) required for the decomposition of an organochlorine compound can be used.
【0027】また、石油系の炭化水素、芳香族炭化水素
分解菌としては、Pseudomonas; Flavobacterium; Alcal
iqenes; and Achromobacter;またはgram-positibe rods
やcocci 例えば;Brevibacterium; Corynebacterium; A
rthrobacter; Bacillus; andMicrococcus; 等がある。
他にはMycobacterium; Nocardia; Streptomyces.があ
る。また、海洋酵母カンジタ種(Candida sp.) S1EW1株
(FERM P-13871) 、商用菌としては、PETROBAC (POLYBA
C CORPORATION), HYDROBAG (POLYBAC CORPORATION)、 MI
CRO PRO “TPH ”(POLYTBAC CORPORATION), BI-CHEM DC
2000GL (SYBRONCHEMICALS INC.), BI-CHEM DC 2001 LN
(SYBRON CHEMICALS INC.), ABR (SYBRONCHEMICALS IN
C.), H-10 (Bio-Rem), BioGEE (BioGEE), LRC-1 (LRC T
echnologies), ERS Formula (Environmental Bio-Remed
iation Intertnational Corp.) 等がある。これらの微
生物を本発明に用いることができる。[0027] Examples of petroleum hydrocarbon and aromatic hydrocarbon degrading bacteria include Pseudomonas; Flavobacterium;
iqenes; and Achromobacter; or gram-positibe rods
And cocci eg; Brevibacterium; Corynebacterium; A
rthrobacter; Bacillus; and Micrococcus;
Others include Mycobacterium; Nocardia; Streptomyces. In addition, marine yeast Candida sp. (Candida sp.) S1EW1 strain (FERM P-13871), and commercial bacteria such as PETROBAC (POLYBA
C CORPORATION), HYDROBAG (POLYBAC CORPORATION), MI
CRO PRO “TPH” (POLYTBAC CORPORATION), BI-CHEM DC
2000GL (SYBRONCHEMICALS INC.), BI-CHEM DC 2001 LN
(SYBRON CHEMICALS INC.), ABR (SYBRONCHEMICALS IN
C.), H-10 (Bio-Rem), BioGEE (BioGEE), LRC-1 (LRC T
echnologies), ERS Formula (Environmental Bio-Remed
iation International Corp.). These microorganisms can be used in the present invention.
【0028】また、微生物によっては、メタン等を資化
する場合があり、メタンガスを注入することも有効であ
る。好気微生物であれば、空気を送り、酸素補給するこ
とも有効である。Further, depending on the microorganism, methane or the like may be assimilated, and it is effective to inject methane gas. For aerobic microorganisms, it is also effective to supply air and supplement oxygen.
【0029】井戸により注入する場合には、注入管から
加圧することにより容易に薬液を送り込むことができ
る。When injecting through a well, a chemical solution can be easily fed by applying pressure from an injection tube.
【0030】図2は本発明の実施についての別の態様を
示す概略図である。FIG. 2 is a schematic diagram showing another embodiment of the implementation of the present invention.
【0031】図1の場合と同様に予めボーリング調査等
の情報を元に設定した汚染土壌の修復領域7に、注入す
る薬液の容器1、水あるいは空気および薬液を送るポン
プ、流量計等からなる注入系2、および空気あるいは水
の加圧注入管23を用意する。さらに、冷媒供給源25
およびその供給装置24を用意し、冷媒を供給する凍結
管26ならびに薬液を注入する注入管23を、修復領域
7に掘削した井戸にそれぞれ建て込む。また、後述する
ように注入口の深さを選択できる注入管と、凍結管の深
さ部位を変更できるように半固定にしておくことによ
り、凍結ならびに注入部位の深さを任意に選択でき、ま
た深さ方向に位置を変えながら本浄化方式を適応するこ
とができる。この図では、亀裂形成用の加圧注入管と、
微生物活性化の薬液注入管を同一の注入管で示している
が、別個に容易しても構わない。As in the case of FIG. 1, the apparatus comprises a container 1 for a chemical solution to be injected, a pump for sending water or air and a chemical solution, a flow meter, etc., to a contaminated soil restoration area 7 set in advance based on information such as a boring survey. An injection system 2 and a pressurized injection tube 23 of air or water are prepared. Further, the coolant supply source 25
And a supply device 24 thereof, and a freezing tube 26 for supplying a refrigerant and an injection tube 23 for injecting a chemical solution are erected in the well drilled in the restoration area 7, respectively. In addition, as described below, by setting the injection tube to be able to select the depth of the injection port and semi-fixed so that the depth portion of the freezing tube can be changed, the depth of the freeze and the injection site can be arbitrarily selected, Further, the present purification method can be applied while changing the position in the depth direction. In this figure, a pressure injection tube for crack formation,
Although the chemical injection tube for activating the microorganism is shown by the same injection tube, it may be easily separated separately.
【0032】また、図2に示すように注入深度を設定で
きるパッカー10を有し、ダブルパッカー管からゴムス
リーブ11を突出孔として注入できる注入管を用いれば
注入位置を選択でき、また亀裂形成と薬液注入も兼ねる
ので便利である。薬液の注入量や、注入圧は注入する地
盤の土質、所望の注入領域に応じて設定すれば構わな
い。Further, as shown in FIG. 2, a packer 10 capable of setting the injection depth is provided, and the injection position can be selected by using an injection pipe capable of injecting the rubber sleeve 11 as a projecting hole from the double packer pipe. It is convenient because it also serves as a drug solution injection. The injection amount and injection pressure of the chemical solution may be set according to the soil properties of the ground to be injected and a desired injection region.
【0033】[0033]
【実施例】以下、実施例により本発明を詳説するが、こ
れらは本発明をなんら限定するものではない。The present invention will be described in detail with reference to the following Examples, which do not limit the present invention in any way.
【0034】[実施例1]ガラスバイアル瓶(68m
l)に、細砂100gを入れ上部からガラス棒で圧密
し、初期濃度10ppm程度になるようにトリクロロエ
チレン(TCE)飽和水を加えた。テフロンライナ−ブ
チルゴム栓およびアルミキャップで密栓したのち、約2
週間保存した。同様な土壌サンプルを10本用意した。
容器にアセトンとドライアイスを入れ、その中に10本
のうち5本の土壌サンプルのバイアル瓶を土壌が凍結す
るまで漬けた。その後ドライアイス・アセトンから土壌
サンプルを取り出し、室温で十分放置した。JM1株
(FERM BP-5352) を、0.5%グルタミン酸ナトリウム
を含むM9培地(1リットル中、Na2 HPO4 ,6.
2g;KH2 PO4 ,3.0g;NaCl,0.5
g;:NH4 Cl,1.0g)、15℃で振盪培養す
る。Example 1 Glass vial (68 m
In l), 100 g of fine sand was placed, compacted from above with a glass rod, and trichlorethylene (TCE) saturated water was added to an initial concentration of about 10 ppm. After sealing with Teflon liner-butyl rubber stopper and aluminum cap, about 2
Saved for a week. Ten similar soil samples were prepared.
Acetone and dry ice were placed in a container, and vials of 5 out of 10 soil samples were immersed in the container until the soil was frozen. Thereafter, a soil sample was taken out from the dry ice / acetone and left at room temperature. The JM1 strain (FERM BP-5352) was transformed with an M9 medium containing 0.5% sodium glutamate (Na 2 HPO 4 , 6.
2 g; KH 2 PO 4 , 3.0 g; NaCl, 0.5
g ;: NH 4 Cl, 1.0 g) at 15 ° C. with shaking.
【0035】凍結、未凍結の土壌サンプル10本全て
に、培養した菌液10mlをシリンジにとり、各バイア
ル瓶の圧密土壌内にシリンジを差し込み同量注入する。
各土壌サンプル・バイアルのヘッドスペースの気相TC
Eをガスタイトシリンジでサンプリングし、ガスクロマ
トグラフ(島津ガスクロマトグラフGC−14B:FI
D検出器)で、TCE濃度を菌液注入直後から1時間お
きに測定した(ヘッドスペース法)。凍結、未凍結の各
5本それぞれについてTCE残量が0.1ppm以下と
なった時間を求めその平均をとると、凍結サンプルは
9.2時間、未凍結サンプルは13.8時間となった。
この結果から、凍結土壌サンプルは、未凍結サンプルと
比較し分解時間が早まることが示された。To all of the 10 frozen and unfrozen soil samples, 10 ml of the cultured bacterial solution is placed in a syringe, and the same amount of syringe is inserted into the compacted soil of each vial and injected.
Gas phase TC in the headspace of each soil sample vial
E was sampled with a gas tight syringe, and the sample was subjected to gas chromatography (Shimadzu Gas Chromatograph GC-14B: FI
D detector), the TCE concentration was measured every hour immediately after the injection of the bacterial solution (headspace method). The time when the TCE remaining amount was 0.1 ppm or less for each of the five frozen and unfrozen samples was determined and averaged. The average was 9.2 hours for the frozen sample and 13.8 hours for the unfrozen sample.
The results showed that the decomposition time of the frozen soil sample was faster than that of the unfrozen sample.
【0036】[実施例2]実施例1と同様にしてTCE
で汚染された土壌を充填し、圧密した土壌サンプル10
本を用意し、その内の5本を実施例1と同様にして凍結
サンプルとした。[Embodiment 2] TCE was performed in the same manner as in Embodiment 1.
Soil sample 10 filled with soil contaminated with
Books were prepared, and five of them were used as frozen samples in the same manner as in Example 1.
【0037】次に、JMC1株(FERM BP-5960) を実施
例1で用いたJM1株と同様に培養し、得られた菌液1
0mlを各々の凍結サンプルに、土壌が凍結状態にある
ときにシリンジを用いて注入した。また未凍結サンプル
の各々にもJMC1株を含む菌液10mlをシリンジを
用いて注入した。Next, the JMC1 strain (FERM BP-5960) was cultured in the same manner as the JM1 strain used in Example 1, and the resulting bacterial solution 1
0 ml was injected into each frozen sample using a syringe when the soil was frozen. 10 ml of the bacterial solution containing the JMC1 strain was injected into each of the unfrozen samples using a syringe.
【0038】菌液を注入した全ての土壌サンプルを5℃
に維持された容器内に保存し、1時間毎に各々土壌サン
プル中のTCE量をヘッドスペース法を用いて測定し
た。そして各々の土壌サンプルのTCE濃度が0.1p
pm以下となるのに要した時間を求め、凍結サンプルお
よび未凍結サンプルの平均値を算出したところ、凍結サ
ンプルにおいては19.4時間、未凍結サンプルにおい
ては24.8時間となった。このことからも凍結サンプ
ルにおける土壌修復効率が高いことが明らかである。All soil samples injected with the bacterial solution were kept at 5 ° C.
And the amount of TCE in each soil sample was measured every hour using the headspace method. And the TCE concentration of each soil sample is 0.1p
The time required to reach pm or less was obtained, and the average value of the frozen sample and the unfrozen sample was calculated. The result was 19.4 hours for the frozen sample and 24.8 hours for the unfrozen sample. From this, it is clear that the soil repair efficiency in the frozen sample is high.
【0039】[実施例3]含水比12%の細砂にフェノ
ールをその濃度が200ppm程度になるように加え、
その細砂を100mlのビーカー10個に50gずつ充
填する。このうち5個を実施例1と同様にして土壌凍結
し、その後室温で十分放置した。イーストエクストラス
ト0.05%を添加したM9培地で培養したフェノール
分解菌Pseudomonas cepacia KK01 (FERM BP-4235) の菌
液(菌濃度約108 cfμ/ml)20mlを上記土壌
サンプルのビーカーに加え、1時間毎に、砂のフェノー
ル濃度をJIS法(JIS K012−1933,2
8.1)準拠して求めた。それぞれフェノール濃度が
0.05ppmとなるのに要した時間を求め平均をとる
と、凍結サンプルで21.4時間、未凍結サンプルで2
3.8時間となった。この場合にも凍結により分解効率
が上昇したことが示された。Example 3 Phenol was added to fine sand having a water content of 12% to a concentration of about 200 ppm.
The fine sand is filled into 10 beakers of 100 ml each in an amount of 50 g. Five of these were soil-frozen in the same manner as in Example 1, and then allowed to stand at room temperature. 20 ml of a phenol-degrading bacterium Pseudomonas cepacia KK01 (FERM BP-4235) cultured in an M9 medium supplemented with 0.05% yeast extra (a bacterial concentration of about 10 8 cfμ / ml) was added to the soil sample beaker, Every hour, the phenol concentration of the sand is determined by the JIS method (JIS K012-1933, 2).
8.1) Determined in accordance with The time required for the phenol concentration to reach 0.05 ppm was determined and averaged. The average was 21.4 hours for the frozen sample and 2 for the unfrozen sample.
It was 3.8 hours. Also in this case, it was shown that the decomposition efficiency was increased by freezing.
【0040】[実施例4] (試験槽)図3に示すように、円柱状の試験槽13(ド
ラム缶:半径約300mm、高さ約850mm)の下層
(0.1m)に砂礫層19を設け、その上にトリクロロ
エチレン10ppmを有する細砂とシルトの混合土壌
(混合比:細砂:シルト=8:2)を充填し、汚染土壌
層14とした。土壌充填と同時に、液体窒素を流し込め
る凍結管15と、横面4カ所が開口しその周囲をゴムス
リーブで被覆した注入管16の両者を、凍結部および注
入部が試験槽の中心部になるように建て込んだ。また、
先端をステンレスメッシュで被覆した内径1/16イン
チのステンレス製の管2本17,18を、槽側壁から1
0cmの箇所に建て込み、土壌内の気相サンプリング管
とした。試験槽上部は砂礫層19を設け蓋をする。蓋に
内圧の逃がし用の弁を設け凍結時や菌液注入時に開放す
る。なお、凍結管15を建て込まない以外は上記試験槽
と全く同じ槽を用意し、対照槽とする。Example 4 (Test Tank) As shown in FIG. 3, a gravel layer 19 was provided in a lower layer (0.1 m) of a cylindrical test tank 13 (drum: about 300 mm in radius, about 850 mm in height). Then, a mixed soil of fine sand and silt containing 10 ppm of trichlorethylene (mixing ratio: fine sand: silt = 8: 2) was filled thereon to form a contaminated soil layer 14. Simultaneously with the filling of the soil, the freezing tube 15 into which the liquid nitrogen can be poured and the injection tube 16 which is opened at four lateral surfaces and whose periphery is covered with a rubber sleeve are both provided. So built. Also,
Two stainless steel tubes 17 and 18 having an inner diameter of 1/16 inch covered with a stainless mesh at the tip were placed 1 mm from the side wall of the tank.
It was built at 0 cm and used as a gas phase sampling tube in the soil. The upper part of the test tank is provided with a gravel layer 19 and covered. The lid is provided with a valve for releasing internal pressure, and is opened at the time of freezing or injection of the bacterial solution. Except that the freezing tube 15 is not built, a tank exactly the same as the above-mentioned test tank is prepared and used as a control tank.
【0041】試験槽の凍結管に液体窒素を流し試験土の
凍結を行ったのち、放置して土壌の解凍を行う。After the test soil is frozen by flowing liquid nitrogen through the freezing tube of the test tank, the soil is left to thaw.
【0042】(菌液の注入および測定)JM1株を実施
例1と同様の培養条件となるように設定し、50リット
ルのジャーファメンター(ミツワバイオシステム:KM
J−501MGU−FPMI1)で培養した。対数増殖
後期45時間目に菌体を遠心分離操作で集菌し、等量の
炭素源を含まないM9培地に再懸濁し休止菌体からなる
注入菌液とした。(Injection and Measurement of Bacterial Solution) The JM1 strain was set to have the same culture conditions as in Example 1, and a 50-liter jar fermenter (Mitsuwa Biosystems: KM) was used.
J-501MGU-FPMI1). The cells were collected by centrifugation at the 45th hour of the late logarithmic growth, and resuspended in an M9 medium without an equivalent amount of carbon source to obtain an inoculated bacterial solution comprising resting cells.
【0043】試験槽および対照槽に、菌液を送液ポンプ
を介して注入管から1〜10リットル/分の範囲内で総
量20リットル注入する。その後トリクロロエチレンは
気相サンプリング管を介して検知管(ガステック社製、
132L)で土壌内ガスのサンプリングによって測定し
た。結果を図5に示した。この図では、○は凍結試験槽
の2個所のサンプリング値の平均を、□は対照試験槽の
2個所のサンプリング値の平均を示している。この結果
から、凍結した試験槽の方が早くTCEを分解し分解効
率が上昇したことが明らかとなった。A total of 20 liters of the bacterial solution is injected into the test tank and the control tank from the injection tube via the liquid sending pump within a range of 1 to 10 liter / min. After that, trichlorethylene is supplied to the detector tube (Gastec,
132L) by sampling the gas in the soil. The results are shown in FIG. In this figure, ○ indicates the average of the sampling values at two locations in the freezing test tank, and □ indicates the average of the sampling values at two locations in the control test tank. From this result, it became clear that the frozen test tank decomposed TCE earlier and the decomposition efficiency increased.
【0044】[実施例5]この実施例は、地中に残留さ
れた汚染土として石油系の汚染による汚染土を対象とし
たもので、液体窒素を流し込める凍結管と、横面4個所
が開口しその周囲をゴムスリーブで被覆した加圧注入管
の両者を汚染土中に導入した。液体窒素を流し試験土の
凍結を行った後、加圧注入管から圧搾空気を瞬間的に繰
り返し送った。その後、放置して土壌の自然解凍を待っ
た。[Embodiment 5] This embodiment is intended for a contaminated soil caused by petroleum pollution as the contaminated soil remaining in the ground, and has a freezing tube into which liquid nitrogen can be poured and four lateral surfaces. Both pressurized injection tubes, which were open and covered with a rubber sleeve, were introduced into the contaminated soil. After the test soil was frozen by flowing liquid nitrogen, compressed air was instantaneously and repeatedly sent from the pressure injection tube. Then, it was left to wait for natural thawing of the soil.
【0045】石油分解微生物製剤HYDROBAG (POLYBAC CO
RP.)を水1リットルに100gの割合となるようにし
C:N:Pが100:10:1となるよう栄養源を調整
した。この微生物液を加圧注入管から800リットル注
入した。また、毎日5時間程度、加圧注入管から空気を
送った。1ケ月後に、対象汚染土壌内の10個所から土
壌サンプリングし、そのTPH値(Total petroleum hy
drocarbon concentrations) をEPA8015Mにした
がって測定した。The petroleum-degraded microbial preparation HYDROBAG (POLYBAC CO
RP.) Was adjusted to 100 g per liter of water, and the nutrient source was adjusted so that C: N: P was 100: 10: 1. 800 liters of this microorganism liquid was injected from a pressure injection tube. In addition, air was sent from the pressure injection tube for about 5 hours every day. One month later, soil sampling was performed from 10 sites in the target contaminated soil, and their TPH values (Total petroleum hy
drocarbon concentrations) were measured according to EPA8015M.
【0046】汚染土の浄化前の対象土のTPH値は12
200ppmであったが、この発明の汚染土の浄化方法
によって、石油系の汚染による汚染土を、97.8〜9
9.5%、平均で約99%除去することが判明した。The TPH value of the target soil before purification of the contaminated soil is 12
Although it was 200 ppm, the contaminated soil due to petroleum-based contamination was reduced to 97.8 to 9 by the method for purifying contaminated soil according to the present invention.
It was found to remove 9.5%, on average about 99%.
【0047】[比較例1]実施例5と同様な汚染土層
に、横面4個所が開口しその周囲をゴムスリーブで被覆
した加圧注入管のみを汚染土中に導入した。[Comparative Example 1] In a contaminated soil layer similar to that in Example 5, only a pressurized injection pipe whose four side surfaces were opened and whose periphery was covered with a rubber sleeve was introduced into the contaminated soil.
【0048】石油分解微生物製剤HYDROBAG (POLYBAC CO
RP.)を水1リットルに100gの割合となるようにし
C:N:Pが100:10:1となるよう栄養源を調整
した。この微生物液を加圧注入管から800リットル注
入した。また、毎日5時間程度、加圧注入管から空気を
送った。1ケ月後に、対象汚染土壌内の10個所から土
壌サンプリングし、そのTPH値(Total petroleum hy
drocarbon concentrations) をEPA8015Mにした
がって測定した。The petroleum-degraded microbial preparation HYDROBAG (POLYBAC CO
RP.) Was adjusted to 100 g per liter of water, and the nutrient source was adjusted so that C: N: P was 100: 10: 1. 800 liters of this microorganism liquid was injected from a pressure injection tube. In addition, air was sent from the pressure injection tube for about 5 hours every day. One month later, soil sampling was performed from 10 sites in the target contaminated soil, and their TPH values (Total petroleum hy
drocarbon concentrations) were measured according to EPA8015M.
【0049】汚染土の浄化前の対象土のTPH値は13
200ppmであったが、この発明の汚染土の浄化方法
によって、石油系の汚染による汚染土を、77.8〜9
6.5%、平均で約92%除去することが判明した。The TPH value of the target soil before purification of the contaminated soil is 13
Although it was 200 ppm, the contaminated soil due to petroleum-based contamination was reduced to 77.8 to 9 by the method for purifying contaminated soil according to the present invention.
It was found to remove 6.5%, on average about 92%.
【0050】実施例5、比較例1の結果から明らかなよ
うに、この発明の汚染土の浄化方法によって、石油系の
汚染土を99%以上浄化できること、特に均一な浄化が
可能なことがわかる。As is evident from the results of Example 5 and Comparative Example 1, the method for purifying contaminated soil according to the present invention can purify petroleum-based contaminated soil by 99% or more, and in particular, enables uniform purification. .
【0051】[実施例6] (試験土壌)細砂とシルトの混合土壌(混合比;細砂:
シルト=8:2)100gに対して汚染物質としてのN
−ヘキサデカンを0.2gの割合で混合し、汚染土壌の
モデルを調製した。この汚染土壌にイーストエクトラク
ト50mgを加えて常温で1ケ月放置した。対照として
イーストエキトラクトを添加しない汚染土壌も用意し同
様に常温で1ケ月放置した。各々の汚染土壌中のN−ヘ
キサデカンをN−ヘキサンを用いて抽出し、TCD法に
よってガスクロマトグラフィーを用いて汚染土壌中のN
−ヘキサデカン量を測定した。その結果、イーストエク
ストラクトを添加した汚染土壌の方がN−ヘキサデカン
が早く分解されることがわかった。このことから本実験
に用いた土壌中にはN−ヘキサデカンを分解する微生物
が存在することがわかった。Example 6 (Test soil) Mixed soil of fine sand and silt (mixing ratio; fine sand:
Silt = 8: 2) N as a pollutant for 100 g
Hexadecane was mixed at a rate of 0.2 g to prepare a model of contaminated soil. To this contaminated soil was added 50 mg of yeast ectolact and left at room temperature for one month. As a control, a contaminated soil to which no yeast extract was added was also prepared and similarly left at room temperature for one month. N-hexadecane in each contaminated soil was extracted using N-hexane, and N-hexadecane was extracted from the contaminated soil using gas chromatography by the TCD method.
-The amount of hexadecane was measured. As a result, it was found that N-hexadecane was decomposed earlier in the contaminated soil to which yeast extract was added. This indicates that microorganisms that degrade N-hexadecane exist in the soil used in this experiment.
【0052】(試験槽)次に図4に示すように、円柱状
の試験槽13(ドラム缶:半径約300mm、高さ約8
50mm)の下層(0.1m)に砂礫層19を設け、そ
の上に上記と同様に調製した汚染土壌を充填し、モデル
の汚染土壌層14とした。土壌充填と同時に、液体窒素
を流し込める凍結管15と、横面4カ所が開口しその周
囲をゴムスリーブで被覆した注入管16の両者を、凍結
部および注入部が試験槽の中心部になるように建て込ん
だ。また、凍結管15を建て込まない以外は上記試験槽
と全く同じ槽を用意し、対照槽とした。(Test tank) Next, as shown in FIG. 4, a cylindrical test tank 13 (drum: about 300 mm in radius, about 8 in height)
A gravel layer 19 was provided in the lower layer (0.1 m) of 50 mm), and the contaminated soil prepared in the same manner as described above was filled thereon to obtain a contaminated soil layer 14 of the model. Simultaneously with the filling of the soil, the freezing tube 15 into which the liquid nitrogen can be poured and the injection tube 16 which is opened at four lateral surfaces and whose periphery is covered with a rubber sleeve are both provided. So built. Except that the freezing tube 15 was not built, the same tank as the above-mentioned test tank was prepared and used as a control tank.
【0053】試験槽の凍結管に液体窒素を流し試験土の
凍結を行ったのち、放置して土壌の解凍を行った。さら
に試験槽には、加圧注入管から圧搾空気を瞬間的に繰り
返し送った。After the test soil was frozen by flowing liquid nitrogen through a freezing tube of the test tank, the soil was thawed by leaving it to stand. Furthermore, compressed air was repeatedly and instantaneously sent from the pressurized injection tube to the test tank.
【0054】(薬液の注入および測定)水1リットルに
イーストエトキストラスト50mgの割合となる栄養源
を調製する。試験槽、対照槽ともに、この栄養液5リッ
トルを加圧注入管から注入する。その後、槽下部のドレ
イン20から底に溜った水に流す。毎日5時間程度、加
圧注入管から空気を送る。これを30日間繰り返した
後、試験槽および対照槽から土壌をサンプリングし、そ
の土壌内の残留N−ヘキサデカンを上記の方法と同様に
して測定した。試験槽、対照槽のほぼ同位置10個所か
らサンプリングした土壌内の残量を以下の表1に示す。
測定値は土壌100g内の残量相当で示す。(Injection and Measurement of Chemical Solution) A nutrient source having a ratio of 50 mg of yeast ethoxtrast in 1 liter of water is prepared. In each of the test tank and the control tank, 5 liters of this nutrient solution is injected from a pressure injection tube. Thereafter, the water is poured from the drain 20 at the bottom of the tank to the water collected at the bottom. Air is sent from the pressurized injection tube for about 5 hours every day. After repeating this for 30 days, soil was sampled from the test tank and the control tank, and residual N-hexadecane in the soil was measured in the same manner as described above. Table 1 below shows the remaining amount in the soil sampled from approximately 10 locations in the test tank and control tank.
The measured value is shown as the remaining amount in 100 g of soil.
【0055】(試験結果)(Test results)
【0056】[0056]
【表1】 残油量(g) 以上の結果から汚染土壌を凍結し、解凍された後に栄養
を注入することによって汚染物質の分解効率が向上する
ことがわかる。[Table 1] Residual oil amount (g) From the above results, it can be seen that the efficiency of decomposing contaminants is improved by injecting nutrients after freezing and thawing the contaminated soil.
【0057】[実施例7]処理対象汚染土壌をサンプル
し、この100gに対してイーストエキストラクト50
mgを加えて、1ケ月放置した。栄養源であるイースト
エキストラクトを添加しないサンプルも同時に作り、両
土壌とも、土壌中のTPH値(Total petroleum hydroc
arbon concentrations) をEPA8015Mにしたがっ
て測定した。両土壌のTPH値の対比から、栄養源を加
えた土壌の石油系汚染がより早く減少することを確認し
た。このことから処理対照汚染土壌には土壌中の石油系
汚染物質を分解可能な微生物が存在することが確認され
た。Example 7 A contaminated soil to be treated was sampled, and 100 g of the soil was treated with 50% yeast extract.
mg was added and left for one month. At the same time, samples without the addition of yeast extract, a nutrient source, were prepared. In both soils, the TPH value (Total petroleum hydroc
arbon concentrations) were measured according to EPA8015M. From the comparison of the TPH values of both soils, it was confirmed that the petroleum contamination of the soil to which the nutrient was added was reduced more quickly. This confirmed that microorganisms capable of decomposing petroleum pollutants in the soil were present in the treated control contaminated soil.
【0058】次に、実施例5と同様に凍結管と加圧注入
管の両者を汚染土壌中に導入した。液体窒素を流し土壌
を凍結させるとともに加圧注入管から圧搾空気を瞬間的
に繰り返し送った。その後土壌を自然解凍させた。Next, as in Example 5, both the freezing tube and the pressure injection tube were introduced into the contaminated soil. Liquid nitrogen was flown to freeze the soil, and compressed air was instantaneously and repeatedly sent from the pressure injection pipe. Thereafter, the soil was naturally thawed.
【0059】次いで水1リットルにイーストエキストラ
クト50mgの割合となるよう栄養源を調製した。この
栄養液を加圧注入管から800リットル注入した。ま
た、毎日5時間程度の加圧注入管から空気を送った。1
ケ月後に、対象汚染土壌内の10個所から土壌サンプリ
ングし、そのTPH値(Total petroleum hydrocarbonc
oncentrations) をEPA8015Mにしたがって測定
した。Next, a nutrient source was prepared so that the ratio of yeast extract was 50 mg per liter of water. 800 liters of this nutrient solution was injected from a pressure injection tube. Air was sent from the pressurized injection tube for about 5 hours every day. 1
After a month, soil sampling was performed at 10 sites in the target contaminated soil, and their TPH values (Total petroleum hydrocarbonc
oncentrations) were measured according to EPA8015M.
【0060】汚染土の浄化前の対象土のTPH値は32
00ppmであったが、この発明の汚染土の浄化方法に
よって、石油系の汚染による汚染土を、92.8〜9
7.5%、平均で約96%除去することが判明した。The TPH value of the target soil before purification of the contaminated soil is 32.
Although it was 00 ppm, the contaminated soil due to petroleum-based contamination was reduced to 92.8 to 9 by the method for purifying contaminated soil according to the present invention.
It was found to remove 7.5%, on average about 96%.
【0061】[比較例2]実施例7と同様な汚染土層
に、横面4個所が開口しその周囲をゴムスリーブで被覆
した加圧注入管のみを汚染土中に導入した。[Comparative Example 2] In a contaminated soil layer similar to that of Example 7, only a pressurized injection pipe with four lateral sides opened and the periphery thereof covered with a rubber sleeve was introduced into the contaminated soil.
【0062】水1リットルにイーストエキストラクト5
0mgの割合となるよう栄養源を調整し、この栄養液を
加圧注入管から800リットル注入した。また、毎日5
時間程度、加圧注入管から空気を送った。1ケ月後に、
対照汚染土壌内の10個所から土壌サンプリングし、そ
のTPH値(Total petroleum hydrocarbon concentrat
ions) をEPA8015Mにしたがって測定した。Yeast extract 5 in 1 liter of water
The nutrient source was adjusted to be 0 mg, and 800 liters of this nutrient solution was injected from a pressure injection tube. Also, every day 5
Air was sent from the pressure injection tube for about an hour. One month later,
Soil was sampled from 10 sites in the control contaminated soil, and its TPH value (Total petroleum hydrocarbon concentrat
ions) was measured according to EPA8015M.
【0063】汚染土の浄化前の対象土のTPH値は31
80ppmであったが、この比較実験の浄化方法によれ
ば、石油系の汚染による汚染土を、77.6〜97.3
%、平均で約83%除去することが判明した。The TPH value of the target soil before purification of the contaminated soil is 31.
Although it was 80 ppm, according to the purification method of this comparative experiment, the contaminated soil due to petroleum-based contamination was reduced to 77.6 to 97.3.
%, On average about 83%.
【0064】実施例7、比較例2の結果から明らかなよ
うに、この発明の汚染土の浄化方法によって、石油系の
汚染土を90%以上浄化できること、特に均一な浄化が
可能なことがわかる。As is clear from the results of Example 7 and Comparative Example 2, it is understood that the method for purifying contaminated soil of the present invention can purify 90% or more of petroleum-based contaminated soil, and in particular, uniform purification. .
【0065】[実施例8]トリクロロエチレン(TC
E)の汚染による処理対象土壌をサンプルし、この処理
対象汚染土壌を1ケ月にわたり2%のメタンガス雰囲気
下に放置した。また、メタンガスを添加しないサンプル
も同時に作り、1ケ月後、両土壌とも土壌中のTCE濃
度を測定した。両土壌のTCE濃度の対比から、メタン
が存在する土壌の方がTCE汚染が早く減少することを
確認した。このことから処理対象汚染土壌には土壌中の
トリクロロエチレンを分解可能な微生物が存在すること
が確認された。Example 8 Trichloroethylene (TC
The soil to be treated due to the contamination of E) was sampled, and the soil to be treated was left under a 2% methane gas atmosphere for one month. Further, a sample to which methane gas was not added was also prepared at the same time, and after one month, the TCE concentration in the soil was measured for both soils. From the comparison of the TCE concentrations in both soils, it was confirmed that the soil in which methane was present reduced TCE contamination more quickly. This confirmed that microorganisms capable of decomposing trichlorethylene in the soil were present in the contaminated soil to be treated.
【0066】次に実施例5と同様に凍結管と加圧注入管
の両者を汚染土壌中に導入した。液体窒素を流し土壌を
凍結させるとともに加圧注入管から圧搾空気を瞬間的に
繰り返し送った。その後土壌を自然解凍させた。Next, as in Example 5, both the freezing tube and the pressure injection tube were introduced into the contaminated soil. Liquid nitrogen was flown to freeze the soil, and compressed air was instantaneously and repeatedly sent from the pressure injection pipe. Thereafter, the soil was naturally thawed.
【0067】この土壌に毎日5時間程度、加圧注入管か
ら2%のメタンガスを50リットル/minで送った。
3ケ月後に、対象汚染土壌内の10個所から土壌水をサ
ンプリングした。サンプリングした液は直ちにn-hexane
5mlの入った容器に入れ、3分間攪拌した後n-hexane
層を分取し、ECDガスクロマトグラフィーにてTCE
量を測定した。To this soil, 2% methane gas was sent at a rate of 50 liter / min from the pressurized injection tube for about 5 hours every day.
Three months later, soil water was sampled from 10 sites in the target contaminated soil. The sampled liquid is immediately n-hexane
Put into a 5ml container and stir for 3 minutes, then n-hexane
Separate the layers and use TCD by ECD gas chromatography.
The amount was measured.
【0068】汚染土の浄化前の対象土のTCE値は1.
2ppmであったが、この発明の汚染土の浄化方法によ
って、TCEの汚染による汚染土を、92.8〜98.
5%、平均で約96%除去することが判明した。The TCE value of the target soil before purification of the contaminated soil is 1.
Although it was 2 ppm, by the method for purifying contaminated soil according to the present invention, 92.8 to 98.
It was found to remove 5%, on average about 96%.
【0069】[比較例3]実施例8と同様な汚染土層
に、横面4個所が開口しその周囲をゴムスリーブで被覆
した加圧注入管のみを汚染土中に導入した。[Comparative Example 3] In the same contaminated soil layer as in Example 8, only a pressurized injection pipe whose four side surfaces were opened and whose periphery was covered with a rubber sleeve was introduced into the contaminated soil.
【0070】毎日5時間程度、加圧注入管から2%のメ
タンガスを50リットル/minで送った。3ケ月後
に、対象汚染土壌内の10個所から土壌水をサンプリン
グした。サンプリングした液は直ちにn-hexane5mlの
入った容器に入れ、3分間攪拌した後n-hexane層を分取
し、ECDガスクロマトグラフィーにてTCE量を測定
した。About 2 hours each day, 2% methane gas was fed at a rate of 50 liter / min from the pressure injection tube. Three months later, soil water was sampled from 10 sites in the target contaminated soil. The sampled liquid was immediately placed in a container containing 5 ml of n-hexane, stirred for 3 minutes, and the n-hexane layer was separated, and the TCE amount was measured by ECD gas chromatography.
【0071】汚染土の浄化前の対象土のTCE値は1.
2ppmであったが、この比較実験の浄化方法によれ
ば、TCEの汚染による汚染土を、82.6〜97.3
%、平均で約89%除去することが判明した。The TCE value of the target soil before purification of the contaminated soil is 1.
Although it was 2 ppm, according to the purification method of this comparative experiment, the contaminated soil due to TCE contamination was 82.6 to 97.3.
%, About 89% removal on average.
【0072】実施例8、比較例3の結果から明らかなよ
うに、この発明の汚染土の浄化方法によって、TCEの
汚染土を90%以上浄化できること、特に均一な浄化が
可能なことがわかる。As is clear from the results of Example 8 and Comparative Example 3, it can be understood that the method for purifying contaminated soil according to the present invention can purify 90% or more of the contaminated soil of TCE, and in particular, can uniformly purify the soil.
【0073】[実施例9]細砂とシルトの混合土壌(細
砂:シルト=2:8)を用いた以外は実施例1と同様の
実験を行い、凍結サンプルおよび未凍結サンプルの各5
本それぞれについてTCE残量が0.1ppm以下とな
った時間を求めその平均値を算出した。その結果、凍結
サンプル14.3時間、未凍結サンプルは20.5時間
となった。このことから、凍結土壌サンプルは、未凍結
サンプルと比較し分解時間が早まることが示された。Example 9 The same experiment as in Example 1 was carried out except that a mixed soil of fine sand and silt (fine sand: silt = 2: 8) was used.
The time when the remaining amount of TCE became 0.1 ppm or less was determined for each of these, and the average value was calculated. The result was 14.3 hours for the frozen sample and 20.5 hours for the unfrozen sample. This indicated that the decomposition time of the frozen soil sample was faster than that of the unfrozen sample.
【0074】[実施例10]細砂とシルトの混合土壌
(細砂:シルト=2:8)を用いた以外は、実施例2と
同様の実験を行い、凍結サンプルおよび未凍結サンプル
の各々についてTCE濃度が0.1ppm以下となるの
に要した時間を求め、その平均値を算出した。その結
果、凍結サンプル21.4時間、未凍結サンプルは2
8.6時間であった。この場合も凍結サンプルの方が分
解時間が早まることが示された。Example 10 The same experiment as in Example 2 was carried out except that a mixed soil of fine sand and silt (fine sand: silt = 2: 8) was used. The time required for the TCE concentration to become 0.1 ppm or less was determined, and the average value was calculated. As a result, the frozen sample was 21.4 hours and the unfrozen sample was 2
It was 8.6 hours. Also in this case, it was shown that the decomposition time was shorter for the frozen sample.
【0075】[実施例11]細砂とシルトの混合土壌
(細砂:シルト=2:8)を用いた以外は、実施例3と
同様の実験を行い、凍結サンプルおよび未凍結サンプル
の各々において、フェノール濃度が0.5ppmとなる
のに要した時間を求め、その平均値を算出した。その結
果、凍結サンプルで31.5時間、未凍結サンプルで3
8.2時間となった。この場合にも凍結により分解効率
が上昇したことが示された。Example 11 The same experiment as in Example 3 was carried out except that a mixed soil of fine sand and silt (fine sand: silt = 2: 8) was used, and a frozen sample and an unfrozen sample were used. The time required for the phenol concentration to reach 0.5 ppm was determined, and the average value was calculated. As a result, the frozen sample was 31.5 hours, and the unfrozen sample was 31.5 hours.
8.2 hours. Also in this case, it was shown that the decomposition efficiency was increased by freezing.
【0076】[実施例12]細砂とシルトとの混合比を
2:8とした以外、実施例4と同様にして実験を行っ
た。トリクロロエチレン10ppmを有する細砂とシル
トの混合土壌(混合比;細砂:シルト=2:8)を充填
し、モデルの汚染土壌層として、実施例4と同様の測定
を行った。その結果を図6に示した。同図において、○
は凍結試験槽の2個所のサンプリング値の平均を、□は
対照試験槽の2個所のサンプリング値の平均を示してい
る。この結果から、シルトの多い粘土質の土壌であって
も、凍結工程を経た後に微生物を注入することで、微生
物を均一に分布させることができ、TCEを効率よく分
解できることが明らかとなった。Example 12 An experiment was conducted in the same manner as in Example 4 except that the mixing ratio of fine sand and silt was set to 2: 8. A mixed soil of fine sand and silt containing 10 ppm of trichlorethylene (mixing ratio; fine sand: silt = 2: 8) was filled, and the same measurement as in Example 4 was performed as a contaminated soil layer of the model. FIG. 6 shows the result. In FIG.
Indicates the average of the sampling values of two places in the freezing test tank, and □ indicates the average of the sampling values of two places in the control test tank. From these results, it has been clarified that even in clay soil with a lot of silt, by injecting the microorganism after the freezing step, the microorganism can be distributed uniformly and TCE can be decomposed efficiently.
【0077】[実施例13]実施例6で用いた混合土壌
の細砂とシルトの混合割合を、細砂:シルト=2:8と
なるように調整した以外は実施例6と同様の実験を行っ
た。その結果を、下記表2に示す。Example 13 An experiment similar to that of Example 6 was performed except that the mixing ratio of fine sand and silt in the mixed soil used in Example 6 was adjusted so that fine sand: silt = 2: 8. went. The results are shown in Table 2 below.
【0078】[0078]
【表2】 残油量 (g) 以上の結果から粘土質の土壌であっても、栄養の注入に
先立って土壌を凍結させることによって汚染物質の分解
効率を向上させられることがわかる。[Table 2] Residual oil amount (g) From the above results, it can be seen that even in the case of clay soil, the decomposition efficiency of contaminants can be improved by freezing the soil before injecting nutrients.
【0079】[0079]
【発明の効果】本発明によって、汚染地盤領域を凍結す
る工程の後に、汚染物質を分解する微生物あるいは/お
よび微生物の分解に必要な薬液または気体を注入するこ
とにより、微生物浄化の効率が上昇し、工法の効率化な
らびに工期の短縮を実現することが可能となった。According to the present invention, after the step of freezing the contaminated ground area, the microorganisms for decomposing the contaminants and / or a chemical solution or gas necessary for decomposing the microorganisms are injected to increase the efficiency of the microbial purification. In addition, it has become possible to increase the efficiency of the construction method and shorten the construction period.
【0080】また、本発明によって、汚染地盤領域を凍
結する工程、その凍結地盤を解凍する工程、および該地
盤に圧力印加により地盤内に亀裂を発生させる工程を行
う等により、該領域内に注入した分解活性を高める薬液
または気体の効果が顕著となり、微生物浄化の効率が上
昇し、工法の効率化ならびに工期の短縮を実現すること
が可能となった。Further, according to the present invention, a step of freezing a contaminated ground area, a step of thawing the frozen ground, and a step of generating a crack in the ground by applying pressure to the ground are performed. The effect of the chemical solution or gas that enhances the decomposition activity has become remarkable, the efficiency of purification of microorganisms has increased, and it has become possible to realize more efficient construction methods and shorter construction periods.
【図1】本発明に係る第1の実施態様の概略説明図であ
る。FIG. 1 is a schematic explanatory view of a first embodiment according to the present invention.
【図2】本発明に係る土壌修復方法の第2の実施態様の
概略説明図である。FIG. 2 is a schematic explanatory view of a second embodiment of the soil repair method according to the present invention.
【図3】実施例4で用いた試験槽の概略断面図である。FIG. 3 is a schematic sectional view of a test tank used in Example 4.
【図4】実施例6で用いた試験槽の概略断面図である。FIG. 4 is a schematic sectional view of a test tank used in Example 6.
【図5】実施例4における試験槽および対照槽中のトリ
クロロエチレン濃度の経時的変化を示すグラフである。FIG. 5 is a graph showing the change over time in the concentration of trichlorethylene in a test tank and a control tank in Example 4.
【図6】図6は実施例12における試験槽および対照槽
中のトリクロロエチレン濃度の経時的変化を示すグラフ
である。FIG. 6 is a graph showing changes over time in trichlorethylene concentrations in a test tank and a control tank in Example 12.
1 容器 2 注入系 3,24 供給装置 4,25 冷媒供給源 5 管 6 凍結領域 7 修復領域 8 井戸 9 スリーブ管 10 パッカー 11 ゴムスリーブ 12,23 注入管 13 試験槽 14 汚染土壌層 15,26 凍結管 16 注入管 17,18 管 19 砂礫層 20 ドレイン 23 加圧注入管 26 凍結管 DESCRIPTION OF SYMBOLS 1 Container 2 Injection system 3,24 Supply device 4,25 Refrigerant supply source 5 Tube 6 Freezing area 7 Repair area 8 Well 9 Sleeve tube 10 Packer 11 Rubber sleeve 12,23 Injection tube 13 Test tank 14 Contaminated soil layer 15,26 Freezing Pipe 16 Injection pipe 17, 18 Pipe 19 Gravel layer 20 Drain 23 Pressure injection pipe 26 Freezing pipe
Claims (12)
あって、(i)該土壌を凍結させるステップ;及び(i
i)該汚染物質を分解可能な微生物、汚染物質を分解す
る能力を備えた微生物の該能力を発現させるインデュー
サおよび汚染物質を分解可能な微生物の増殖のための栄
養から選ばれる少なくとも1つを投入するステップを有
することを特徴とする土壌修復のための方法。1. A method for repairing soil contaminated with contaminants, comprising: (i) freezing the soil;
i) at least one selected from a microorganism capable of decomposing the contaminant, an inducer expressing the ability of the microorganism having the ability to decompose the contaminant, and a nutrient for growing the microorganism capable of decomposing the contaminant; A method for soil remediation comprising the step of dosing.
先立って行う請求項1に記載の方法。2. The method according to claim 1, wherein said step (i) is performed prior to step (ii).
との間に、凍結した土壌を解凍する工程をさらに有する
請求項2記載の方法。3. The step (i) and the step (ii)
3. The method of claim 2, further comprising the step of thawing the frozen soil between.
凍結した土壌に圧力を印加する工程を有する請求項2記
載の方法。4. Between said steps (i) and (ii),
3. The method of claim 2, further comprising the step of applying pressure to the frozen soil.
導的に備えた土着微生物を含み、且つ該ステップ(i
i)が該土着微生物に該汚染物質分解能を発現させるイ
ンデューサおよび該土着微生物を増殖させる栄養を少な
くとも一方を該土壌中に投入するステップである請求項
1記載の方法。5. The method according to claim 1, wherein the soil comprises an indigenous microorganism inducibly provided with the ability to degrade the contaminant, and the step (i)
The method according to claim 1, wherein i) is a step of introducing at least one of an inducer for causing the indigenous microorganisms to express the contaminant decomposability and a nutrient for growing the indigenous microorganisms into the soil.
物質を分解する能力を構成的に発現している微生物であ
る請求項1に記載の方法。6. The method according to claim 1, wherein the microorganism capable of decomposing the contaminant is a microorganism constitutively expressing the ability to decompose the contaminant.
脂肪族炭化水素化合物であって、また該微生物がJM1
株(FERM BP-5352) である請求項6に記載の方法。7. The contaminant is an aromatic compound or a chlorinated aliphatic hydrocarbon compound, and the microorganism is JM1
The method according to claim 6, which is a strain (FERM BP-5352).
脂肪族炭化水素化合物であって、また該微生物がJMC
1株(FERM BP-5960) である請求項6に記載の方法。8. The method according to claim 8, wherein the contaminant is an aromatic compound or a chlorinated aliphatic hydrocarbon compound, and the microorganism is JMC.
7. The method according to claim 6, wherein the strain is one strain (FERM BP-5960).
またはクレゾールである請求項7または8に記載の方
法。9. The method according to claim 7, wherein the aromatic compound is phenol, toluene or cresol.
クロロエチレンまたはトリクロロエチアレンである請求
項7または8に記載の方法。10. The method according to claim 7, wherein the chlorinated aliphatic hydrocarbon compound is dichloroethylene or trichloroethialen.
源である請求項1記載の方法。11. The method according to claim 1, wherein the nutrient is a carbon source that can be assimilated by the microorganism.
方法。12. The method of claim 1, wherein said nutrient is a gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35155798A JP3673662B2 (en) | 1997-12-11 | 1998-12-10 | How to repair contaminated soil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-341524 | 1997-12-11 | ||
JP34152497 | 1997-12-11 | ||
JP35155798A JP3673662B2 (en) | 1997-12-11 | 1998-12-10 | How to repair contaminated soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11235580A true JPH11235580A (en) | 1999-08-31 |
JP3673662B2 JP3673662B2 (en) | 2005-07-20 |
Family
ID=26576987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35155798A Expired - Fee Related JP3673662B2 (en) | 1997-12-11 | 1998-12-10 | How to repair contaminated soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3673662B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003245649A (en) * | 2002-02-22 | 2003-09-02 | Toda Constr Co Ltd | Pollution purification method |
JP2013145121A (en) * | 2012-01-13 | 2013-07-25 | Kan Tekkusu Kk | Decontamination treatment method for decontamination object attached with radioactive material and toxic substance |
CN109238807A (en) * | 2018-11-14 | 2019-01-18 | 南京信息工程大学 | Soil incubation and high-resolution original position gas-liquid sampling apparatus and its test method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07229138A (en) * | 1993-02-16 | 1995-08-29 | Canon Inc | Recovery method for contaminated soil |
JPH08173947A (en) * | 1994-12-21 | 1996-07-09 | Hitachi Plant Eng & Constr Co Ltd | Method and device for purifying soil |
JPH08243536A (en) * | 1995-03-13 | 1996-09-24 | Chiyoda Corp | Method of concentrating contaminant in soil |
JPH09225450A (en) * | 1995-12-19 | 1997-09-02 | Raito Kogyo Co Ltd | Soil purifying method |
JPH09267083A (en) * | 1996-04-01 | 1997-10-14 | Canon Inc | Biologically restoring and purifying method for contaminated soil |
JPH09271750A (en) * | 1996-04-09 | 1997-10-21 | Canon Inc | Method of injecting chemical into soil |
-
1998
- 1998-12-10 JP JP35155798A patent/JP3673662B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07229138A (en) * | 1993-02-16 | 1995-08-29 | Canon Inc | Recovery method for contaminated soil |
JPH08173947A (en) * | 1994-12-21 | 1996-07-09 | Hitachi Plant Eng & Constr Co Ltd | Method and device for purifying soil |
JPH08243536A (en) * | 1995-03-13 | 1996-09-24 | Chiyoda Corp | Method of concentrating contaminant in soil |
JPH09225450A (en) * | 1995-12-19 | 1997-09-02 | Raito Kogyo Co Ltd | Soil purifying method |
JPH09267083A (en) * | 1996-04-01 | 1997-10-14 | Canon Inc | Biologically restoring and purifying method for contaminated soil |
JPH09271750A (en) * | 1996-04-09 | 1997-10-21 | Canon Inc | Method of injecting chemical into soil |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003245649A (en) * | 2002-02-22 | 2003-09-02 | Toda Constr Co Ltd | Pollution purification method |
JP2013145121A (en) * | 2012-01-13 | 2013-07-25 | Kan Tekkusu Kk | Decontamination treatment method for decontamination object attached with radioactive material and toxic substance |
CN109238807A (en) * | 2018-11-14 | 2019-01-18 | 南京信息工程大学 | Soil incubation and high-resolution original position gas-liquid sampling apparatus and its test method |
Also Published As
Publication number | Publication date |
---|---|
JP3673662B2 (en) | 2005-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Englert et al. | Bioremediation of petroleum products in soil | |
EP2390234B1 (en) | Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments | |
US6331300B1 (en) | Compositions for providing a chemical to a microorganism | |
US5814514A (en) | Biodegradation of the gasoline oxygenates | |
US5508194A (en) | Nutrient medium for the bioremediation of polycyclic aromatic hydrocarbon-contaminated soil | |
US4385121A (en) | Medium and process for disposing of hydrocarbon wastes | |
Gruiz et al. | In situ bioremediation of hydrocarbon in soil | |
EP0922507B1 (en) | Process for remediation of contaminated soil | |
Höhener et al. | Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study | |
McCarty | Engineering concepts for in situ bioremediation | |
JP4767472B2 (en) | Purification method of contaminated soil by microorganisms | |
JPH11277045A (en) | Soil remediation | |
JP3673662B2 (en) | How to repair contaminated soil | |
Ward et al. | In situ technologies | |
Walter et al. | Surfactant enhances biodegradation of hydrocarbons: microcosm and field study | |
Brown et al. | The evolution of a technology: hydrogen peroxide in in situ bioremediation | |
Fiorenza et al. | Decision making—is bioremediation a viable option? | |
JP2000229279A (en) | Method for pouring microorganism into soil | |
JP3458688B2 (en) | Method and apparatus for repairing groundwater contamination | |
KR101198103B1 (en) | Novel microorganisms having biodegradation ability for oil and bioremediation method for oil-contaminated sites by using the same | |
JPH11216457A (en) | Purification of contaminated soil | |
JPH1080676A (en) | Method for purification of polluted soil | |
JPH09276842A (en) | Method for transporting bacteria into soil and method for purifying contaminated soil environment using the same | |
JPH09276840A (en) | Purification of contaminated soil | |
Kastánek et al. | Biodegradation of petroleum hydrocarbons after the departure of the Soviet army |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050322 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050425 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |