JPH1123555A - Differential refraction factor detector for liquid chromatograph - Google Patents

Differential refraction factor detector for liquid chromatograph

Info

Publication number
JPH1123555A
JPH1123555A JP17731097A JP17731097A JPH1123555A JP H1123555 A JPH1123555 A JP H1123555A JP 17731097 A JP17731097 A JP 17731097A JP 17731097 A JP17731097 A JP 17731097A JP H1123555 A JPH1123555 A JP H1123555A
Authority
JP
Japan
Prior art keywords
cell
sample
sample cell
reference cell
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17731097A
Other languages
Japanese (ja)
Other versions
JP3785469B2 (en
Inventor
Bunya Nakada
文弥 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP17731097A priority Critical patent/JP3785469B2/en
Publication of JPH1123555A publication Critical patent/JPH1123555A/en
Application granted granted Critical
Publication of JP3785469B2 publication Critical patent/JP3785469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make stable measurement with no loss of a sample by inserting a stirring chamber with the capacity specific times the capacity of a sample cell between the sample cell and a reference cell, diluting the eluate from the sample cell, and utilizing it as a reference solution. SOLUTION: A sample injected from a sample injection port 6 is separated into components by a separation column 8, and the components are guided into the sample cell 10 of a differential refraction factor detector for detection. The components sent out from the sample cell 10 are branched at the ratio of about 99:1, for example, at a passage branch section 12, and the component concentration in one passage is set to about 1/100. This diluted component is further diluted and uniformalized by a stirring chamber 1 9 with the capacity about 10 times the capacity of the sample cell 10 and is sent to a reference cell 21. The component concentration in the reference cell 21 is largely diluted, and the component can be used as a reference solvent with no problem. When the sample cell 10 and the reference cell 21 are connected in series, the same stability can be obtained as the stability available when two liquid feed pumps 4 are used for a liquid feed, and a low-cost device structure can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体クロマトグラ
フ用示差屈折率検出器に関し、さらに詳細には単一送液
ポンプで試料セルと参照セルに溶媒を送り成分を検出す
るための液体クロマトグラフ用示差屈折率検出器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential refractive index detector for a liquid chromatograph, and more particularly to a liquid chromatograph for detecting a component by sending a solvent to a sample cell and a reference cell by a single liquid feed pump. The present invention relates to a differential refractive index detector for use.

【0002】[0002]

【従来の技術】試料セルと参照セルを有する液体クロマ
トグラフ用示差屈折率検出器では、試料セルと参照セル
に同一溶媒を流すことにより安定したベースラインが得
られ、安定した測定を行うことができる。しかし、試料
セルと参照セルに同一の溶媒を流すには、それぞれに送
液ポンプが必要であるため、クロマトグラフ装置が高価
になるばかりでなく、トラブル発生頻度の高いチェック
弁等の可動部品数が増えるため、頻繁なメンテナンスが
必要になる。
2. Description of the Related Art In a differential refractive index detector for a liquid chromatograph having a sample cell and a reference cell, a stable baseline can be obtained by flowing the same solvent through the sample cell and the reference cell, and stable measurement can be performed. it can. However, in order for the same solvent to flow through the sample cell and the reference cell, a liquid pump is required for each, which not only makes the chromatographic apparatus expensive, but also reduces the number of movable parts such as check valves that frequently cause trouble. Requires more frequent maintenance.

【0003】このため、1台の送液ポンプで送液した溶
媒を試料セルに至る前で分岐するとともに、参照セルの
前の配管に溶媒を満たしておき、分岐された溶媒(測定
されるべき成分の一部を含む)を該配管に送ることで満
たしておいた溶媒を参照セルに押し流す方式提案されて
いる。
For this reason, the solvent sent by one liquid sending pump is branched before reaching the sample cell, and the pipe in front of the reference cell is filled with the solvent, and the branched solvent (to be measured) (Including some of the components) to the piping to flush the filled solvent into a reference cell.

【0004】[0004]

【発明が解決しようとする課題】しかし、分岐の割合は
分岐配管の抵抗に依存しているため、溶媒粘度が変化す
れば分流比が変化することになる。特にサイズ排除クロ
マトグラフィーでは、測定される高分子物質はその重合
度によって粘度が異なるため、単に溶媒のみの場合と該
成分を含んだ溶媒、さらには含まれている種々成分の重
合度によって分流比が微妙に変化する。液体クロマトグ
ラフィーの手法では、クロマトグラムピークの溶出時間
により成分を同定し、該ピークの面積や高さに基づき各
成分の定量を行うため、分流比変化に起因する流量変化
は、測定精度に影響を与える。
However, since the ratio of branching depends on the resistance of the branch pipe, if the solvent viscosity changes, the diversion ratio will change. In particular, in size exclusion chromatography, since the viscosity of the polymer substance to be measured varies depending on the degree of polymerization, the flow separation ratio depends only on the solvent alone, the solvent containing the component, and the degree of polymerization of the various components contained. Changes subtly. In the liquid chromatography method, components are identified by the elution time of the chromatogram peak, and each component is quantified based on the area and height of the peak. give.

【0005】例えばサイズ排除クロマトグラフィーで
は、カラムからの流量(溶出容量)が1%変化すると、
測定結果(前記のようにして同定される、各種成分の平
均分子量)に20%以上の誤差を生むという報告もある
(D.D.Bly,H.J.Stoklosa,J.J.kirkland and W.W.Yau,An
al.Chem.47(11),181 0(1975))。
For example, in size exclusion chromatography, when the flow rate (elution volume) from a column changes by 1%,
There is also a report that an error of 20% or more occurs in the measurement results (average molecular weights of various components identified as described above) (DDBly, HJ Stoklosa, JJkirkland and WWYau, An
al. Chem. 47 (11), 1810 (1975)).

【0006】さらに、溶媒の分岐により、微量とはいえ
成分の1部を含む溶媒が参照セル側に流れるため、測定
に供した試料のすべてが検出に利用されないという課題
もある。
[0006] Furthermore, since the solvent branches, a small amount of a solvent containing a part of the components flows to the reference cell side, so that all of the samples used for the measurement are not used for detection.

【0007】この課題を解決するために、1台の送液ポ
ンプで送液した溶媒を試料セルの後で分岐し、参照セル
の前の配管に溶媒で満たしておき、試料セルを通過後の
溶媒を分岐させ、該配管内の溶媒を押し流すことも考え
られるが、十分に攪拌、希釈されない成分が分岐流路か
ら参照セルまでの配管容量と分流比に応じて参照セルに
送り込まれることになり、長時間測定を行うとクロマト
グラムのベースラインにドリフトまたは負ピークを生じ
ることになる。
[0007] In order to solve this problem, the solvent sent by one liquid sending pump is branched after the sample cell, a pipe in front of the reference cell is filled with the solvent, and after passing through the sample cell. It is conceivable that the solvent is branched and the solvent in the pipe is flushed.However, components that are not sufficiently stirred and not diluted will be sent to the reference cell in accordance with the pipe capacity and branch ratio from the branch flow path to the reference cell. If the measurement is performed for a long time, a drift or a negative peak occurs in the baseline of the chromatogram.

【0008】従って、前記2つの方式では、一定時間毎
に分岐配管以降の参照セル側の流路の溶媒を置換する必
要があるため、溶媒置換後のベ−スラインに乱れを生
じ、多数の試料を測定する場合、測定以外に安定化のた
めの時間を要していた。
[0008] Therefore, in the above two methods, it is necessary to replace the solvent in the flow path on the reference cell side after the branch pipe at regular time intervals. When measuring, time for stabilization was required in addition to the measurement.

【0009】かかる課題を解決するために、単に試料セ
ルと参照セルを直列に接続することも試みられている
が、試料セル側に参照セル及び接続配管、更には出口配
管等による背圧がかかり、ベースラインを安定化するこ
とは困難である。また、試料セルと参照セルとでは検出
信号が逆転するため、通常試料セルで検知されるピーク
と、両セルを接続する配管容量分遅れて参照セルで検知
される負ピークの2本の相反するピークが得られるた
め、測定結果の解析作業が複雑になる。このため、溶出
に要する時間が、溶媒が試料セル容量、両セルの接続配
管容量そして参照セル容量を通過するのに必要な時間以
上である成分では、測定に適するピーク形状として検出
することができない。
In order to solve this problem, it has been attempted to simply connect the sample cell and the reference cell in series. However, a back pressure is applied to the sample cell by the reference cell, the connection pipe, and the outlet pipe. It is difficult to stabilize the baseline. In addition, since the detection signals are inverted between the sample cell and the reference cell, there are two conflicting peaks, a normal peak detected by the sample cell and a negative peak detected by the reference cell delayed by the piping capacity connecting both cells. Since the peak is obtained, the analysis of the measurement result becomes complicated. For this reason, in the case where the time required for elution is longer than the time required for the solvent to pass through the sample cell volume, the connection piping volume of both cells, and the reference cell volume, it cannot be detected as a peak shape suitable for measurement. .

【0010】本発明は、かかる従来技術の課題に鑑み、
単一送液ポンプで試料セル、参照セルに溶媒を送液する
ことを可能とし、注入した試料をロスすることなく検知
でき、さらに安定した連続測定が行える液体クロマトグ
ラフ用示差屈折率検出器を提供することにある。
The present invention has been made in view of the problems of the prior art,
A liquid chromatography differential refractive index detector that enables the solvent to be sent to the sample cell and reference cell with a single liquid sending pump, detects the injected sample without loss, and enables more stable continuous measurement. To provide.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記のごと
き従来課題を解決すべく検討を行った結果、本発明を完
成するに至った。即ち本発明は、試料セルからの溶出液
を希釈し、参照溶液として利用するために試料セルと参
照セルの間に少なくとも試料セル容積の10倍以上の容
積を有する攪拌チャンバーを挿入した液体クロマトグラ
フ用示差屈折率検出器である。
Means for Solving the Problems The present inventor has conducted studies to solve the conventional problems as described above, and as a result, has completed the present invention. That is, the present invention provides a liquid chromatograph in which a stirring chamber having a volume of at least 10 times the sample cell volume is inserted between the sample cell and the reference cell in order to dilute the eluate from the sample cell and use it as a reference solution. Differential refractive index detector.

【0012】本発明の示差屈折率検出器では、試料セル
の後に設けられた分岐流路の一方は廃液槽に接続されて
いるため、試料セル内の圧力は、接続配管による背圧と
廃液槽内の大気圧で決まり、ほぼ一定に保たれる。ま
た、該分岐流路の他方は参照セル側へ流れる試料成分を
減ずるための希釈効果も担っている。例えば、廃液槽側
と参照セル側とで99:1の分岐を行えば、参照セル側
へは試料セルで検知した成分の1/100の濃度しか流
れないことになる。
In the differential refractive index detector according to the present invention, since one of the branch flow paths provided after the sample cell is connected to the waste liquid tank, the pressure in the sample cell is controlled by the back pressure by the connection pipe and the waste liquid tank. It is determined by the atmospheric pressure inside and is kept almost constant. Further, the other of the branch channels also has a diluting effect for reducing sample components flowing to the reference cell side. For example, if a 99: 1 branch is performed between the waste liquid tank side and the reference cell side, only the concentration of 1/100 of the component detected in the sample cell flows to the reference cell side.

【0013】分岐流路で参照セル側に分岐された溶媒中
の成分は、適当容積を有する攪拌チャンバーに送られ、
該攪拌チャンバーで更に希釈及び均一化される。攪拌チ
ャンバーは、瞬時にしかも均一に攪拌できることが好ま
しいため、動的に撹拌(希釈)を行うダイナミックミキ
サーが特に好ましい。
The components in the solvent branched to the reference cell side in the branch channel are sent to a stirring chamber having an appropriate volume,
It is further diluted and homogenized in the stirring chamber. Since it is preferable that the stirring chamber can stir instantaneously and uniformly, a dynamic mixer that dynamically stirs (dilutes) is particularly preferable.

【0014】ここで、攪拌チャンバーより参照セルに送
られる溶媒中の成分濃度について考えると、瞬時にチャ
ンバー内成分濃度が均一に攪拌される場合、参照セルに
送られる成分濃度と攪拌チャンバー内の濃度は等しくな
り、その濃度変化は以下の式により計算できる。
Here, considering the component concentration in the solvent sent from the stirring chamber to the reference cell, when the component concentration in the chamber is uniformly stirred instantaneously, the component concentration sent to the reference cell and the concentration in the stirring chamber are considered. Are equal, and the concentration change can be calculated by the following equation.

【0015】[0015]

【数1】 (Equation 1)

【0016】ここで、x(t)は時間tにおける攪拌チ
ャンバー内の成分濃度でありかつ攪拌チャンバーから流
出する成分濃度、x0は攪拌チャンバー内の初期成分濃
度(従って測定開始時は0となる)である。V0は攪拌
チャンバーの容積、vは流入溶媒量、aは流入溶媒中の
成分濃度を示し、「exp 」はエクスポネンシャルであ
る。例えば、攪拌チャンバーの容積を1mlとし、水で
満たし、送液ポンプから有機溶媒を1ml/分で流し、
廃液側と参照セル側の分岐比を99:1つまり攪拌チャ
ンバーには毎分10μlの有機溶媒が流れ込んでくると
仮定した場合、60分後の攪拌チャンバー内の有機溶媒
濃度は、以下のように計算できる。
Here, x (t) is the component concentration in the stirring chamber at time t and the component concentration flowing out of the stirring chamber, and x0 is the initial component concentration in the stirring chamber (accordingly, it becomes 0 at the start of measurement). It is. V0 is the volume of the stirring chamber, v is the amount of the inflowing solvent, a is the component concentration in the inflowing solvent, and "exp" is exponential. For example, the volume of the stirring chamber is set to 1 ml, filled with water, and the organic solvent is flowed at 1 ml / min from the liquid sending pump.
Assuming that the branching ratio between the waste liquid side and the reference cell side is 99: 1, that is, 10 μl of the organic solvent per minute flows into the stirring chamber, the organic solvent concentration in the stirring chamber after 60 minutes is as follows. Can be calculated.

【0017】[0017]

【数2】 (Equation 2)

【0018】即ち、60分で攪拌チャンバー内の溶媒
(水)が45.12 %(451.2 μl)置換されることにな
る。
That is, the solvent (water) in the stirring chamber is replaced by 45.12% (451.2 μl) in 60 minutes.

【0019】同様の条件で、1%の試料濃度を50μ
l、その成分が10分の広がりをもってカラムから溶出
すると仮定し、10分毎に6回注入した後、つまり60
分後の攪拌チャンバー内の成分濃度を計算する。まず、
カラムから溶出した時点での成分濃度は、1%、50μ
lの成分が10分、つまり10mlに広がるので、0.
05mg/mlと計算できる。さらにその後1/100
に分岐されるので0.5μg/mlとなる。上記計算式
により攪拌チャンバーの置換率は45.12%なので
0.2256μg/mlと計算できる。つまり60分後
の攪拌チャンバー内の成分濃度は、0.0000225
6%と計算される。これをGPCで多用されている標準
ポリスチレンの屈折率濃度係数dn/dc=0.195
ml/gより、RI信号に換算すると4.4×10-8
IUとなる。実際のクロマトグラフィーでは成分が含ま
れている領域と含まれていない領域があるため、ベース
ラインへの影響はこの計算値よりもさらに小さくなる。
ベースラインへの影響がこの程度に抑えられるため十分
参照溶液としても使用できることがわかる。
Under the same conditions, the 1% sample concentration was 50 μm.
l, assuming that the component elutes from the column with a spread of 10 minutes, and after 6 injections every 10 minutes, ie 60
Calculate the component concentration in the stirring chamber after one minute. First,
The component concentration at the time of elution from the column was 1%, 50μ
1 component spreads for 10 minutes, that is, 10 ml.
It can be calculated as 05 mg / ml. And then 1/100
To 0.5 μg / ml. According to the above formula, the replacement rate of the stirring chamber is 45.12%, so it can be calculated as 0.2256 μg / ml. That is, the component concentration in the stirring chamber after 60 minutes is 0.00002225.
Calculated as 6%. This is compared with the refractive index concentration coefficient dn / dc of standard polystyrene frequently used in GPC = 0.195.
When converted to an RI signal from ml / g, 4.4 × 10 -8 R
IU. In actual chromatography, there are regions where the components are contained and regions where the components are not contained, so that the influence on the baseline is even smaller than this calculated value.
It can be seen that the influence on the baseline can be suppressed to this extent, so that it can be sufficiently used as a reference solution.

【0020】なお、上記計算は分流比を99:1、攪拌
チャンバー容積を1mlつまり試料セル(通常は10μ
l)の100倍として計算したが、攪拌チャンバー容積
を100μlつまり試料セルの10倍とするとベースラ
イン信号への影響は4.4×10-7RIUと計算でき
る。この様に、攪拌チャンバーの溶液容積を試料セルの
10倍以上とすることが好ましく、特に100倍以上と
することが好ましい。
In the above calculation, the split flow ratio was 99: 1, the volume of the stirring chamber was 1 ml, that is, the sample cell (usually 10 μm).
l) was calculated as 100 times, but if the volume of the stirring chamber is 100 μl, that is, 10 times that of the sample cell, the effect on the baseline signal can be calculated as 4.4 × 10 −7 RIU. As described above, it is preferable that the volume of the solution in the stirring chamber be at least 10 times the volume of the sample cell, and more preferably at least 100 times.

【0021】攪拌チャンバーからの溶媒は参照セルに送
られた後、廃液槽に送られるため、参照セル内の圧力は
廃液槽への接続配管による背圧と廃液槽内の大気圧でほ
ぼ一定に保たれる。なお、試料セルと廃液槽、参照セル
と廃液槽への接続に同一サイズ(管径)の配管を用いれ
ば、試料セルと参照セルの背圧を等しくするすることが
できる。
Since the solvent from the stirring chamber is sent to the reference cell and then to the waste liquid tank, the pressure in the reference cell is almost constant by the back pressure by the connecting pipe to the waste liquid tank and the atmospheric pressure in the waste liquid tank. Will be kept. The back pressure of the sample cell and the reference cell can be made equal by using pipes of the same size (diameter) for connection between the sample cell and the waste liquid tank and between the reference cell and the waste liquid tank.

【0022】分岐流路における分流比及び攪拌チャンバ
ーの溶液容積を変えることにより、希釈及び均一化の度
合いを自由にコントロールすることができる。
The degree of dilution and homogenization can be freely controlled by changing the branching ratio in the branch channel and the solution volume in the stirring chamber.

【0023】[0023]

【発明の実施の形態】以下、本発明を、図面に示した実
施の形態に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

【0024】図1は、本発明の液体クロマトグラフ用示
差屈折率検出器を有する液体クロマトグラフ装置の概略
図を示すものである。溶媒だめ1中の溶媒2は配管3を
経て送液ポンプ4に吸引され、配管5、試料注入口(六
方バルブ)6、配管7を経て分離カラム8に供される。
カラム8からの溶出液は配管9を経て示差屈折率検出器
の試料セル10に入り、配管11を経て流路分岐部12
で2流路に分岐される。 流路分岐部12で分岐された
溶媒の一方は、配管13、電磁弁14、配管15を経て
廃液槽23に廃液される。他方の流路に分岐された溶媒
は、配管16、ニードルバルブ17、配管18、攪拌チ
ャンバー19、配管20を経て示差屈折率検出器の参照
セル21に入る。電磁弁14は測定時には開放の状態に
なっており、流路分岐部12での分岐の割合はニードル
バルブ17の絞り具合に依存する。参照セル21からの
溶媒は配管22を経て廃液槽23に廃液される。
FIG. 1 is a schematic view of a liquid chromatograph apparatus having a differential refractive index detector for a liquid chromatograph according to the present invention. The solvent 2 in the solvent reservoir 1 is sucked into the liquid sending pump 4 via the pipe 3, and supplied to the separation column 8 via the pipe 5, the sample inlet (six-way valve) 6, and the pipe 7.
The eluate from the column 8 enters the sample cell 10 of the differential refractive index detector via the pipe 9, and passes through the pipe 11 to the flow path branching section 12.
Branch into two flow paths. One of the solvents branched in the flow path branching section 12 is discharged into a waste liquid tank 23 via a pipe 13, an electromagnetic valve 14, and a pipe 15. The solvent branched to the other flow path enters the reference cell 21 of the differential refractive index detector via the pipe 16, the needle valve 17, the pipe 18, the stirring chamber 19, and the pipe 20. The electromagnetic valve 14 is open at the time of measurement, and the ratio of branching at the flow path branching portion 12 depends on the degree of throttle of the needle valve 17. The solvent from the reference cell 21 is drained to a waste tank 23 via a pipe 22.

【0025】試料注入口6から注入された試料は分離カ
ラム8で各成分に分離され、示差屈折率検出器の試料セ
ル10に導入され検出される。試料セル10から出た成
分は配管11を経て流路分岐部12で一定の割合に分岐
される。例えば、99:1の割合で分岐された場合、一
方の流路での成分濃度は試料セルで検出された時の1/
100に希釈されることになる。この希釈された成分は
攪拌チャンバー19にてさらに希釈、均一化され、配管
20を経て、参照セル21に送られる。
The sample injected from the sample injection port 6 is separated into each component in the separation column 8 and introduced into the sample cell 10 of the differential refractive index detector and detected. The components that have come out of the sample cell 10 are branched at a constant ratio in a flow path branching section 12 via a pipe 11. For example, when branched at a ratio of 99: 1, the component concentration in one of the flow paths is 1 / the value of that detected in the sample cell.
It will be diluted to 100. The diluted components are further diluted and homogenized in the stirring chamber 19 and sent to the reference cell 21 via the pipe 20.

【0026】この結果、参照セル21を流れる成分濃度
は流路分岐部での希釈と攪拌チャンバーでの希釈によ
り、通常測定される試料濃度における参照溶媒として使
用するに際して悪影響を与えない濃度にすることができ
る。また、測定対象成分濃度に較べて非測定対象成分濃
度が高い場合には、当然参照セル側で非対象成分に起因
する濃度勾配が発生し、クロマトグラム上においてドリ
フトとして観測される恐れがあるが、ニードルバルブ1
7を絞り込み、流路分岐部12から攪拌チャンバー側に
分流する溶媒量を減ずることによりドリフトを低減させ
ることが可能となる。
As a result, the concentration of the components flowing through the reference cell 21 is adjusted to a concentration that does not adversely affect the use of the sample concentration as a reference solvent when the sample concentration is normally measured, by dilution in the branch part of the flow path and dilution in the stirring chamber. Can be. When the concentration of the non-target component is higher than the concentration of the target component, a concentration gradient due to the non-target component may naturally occur on the reference cell side, and may be observed as a drift on the chromatogram. , Needle valve 1
By narrowing down 7 and reducing the amount of the solvent diverted from the flow path branching section 12 to the stirring chamber side, it is possible to reduce the drift.

【0027】電磁バルブ14は、溶媒交換用に設けたも
ので、電磁バルブ14を閉じ、ニードルバルブ17を開
放することにより、送液ポンプ4からの溶媒すべてが攪
拌チャンバー19、参照セル21に流れ込むため、溶媒
交換を容易に行うことができる。
The electromagnetic valve 14 is provided for solvent exchange. When the electromagnetic valve 14 is closed and the needle valve 17 is opened, all the solvent from the liquid feed pump 4 flows into the stirring chamber 19 and the reference cell 21. Therefore, solvent exchange can be easily performed.

【0028】図2及び図3は、THF溶媒を1.0ml/
分の流速で流した時の示差屈折率検出器の出力を記録し
たものであり、図2は試料セルと参照セルを直接接続し
た場合の出録記録を、図3は本発明の示差屈折率検出器
による出力記録である。図2及び図3から、本発明の流
路により安定したベースラインが得られていることがわ
かる。
FIGS. 2 and 3 show that the THF solvent was 1.0 ml / ml.
2 is a record of the output of the differential refractive index detector when flowing at a flow rate of 1 min. FIG. 2 is a recording record when the sample cell and the reference cell are directly connected, and FIG. 3 is a differential refractive index of the present invention. It is an output record by a detector. 2 and 3 that a stable baseline was obtained by the flow channel of the present invention.

【0029】図4及び5は、液体クロマトグラフ装置に
示差屈折率検出器を組み込み測定した標準ポリスチレン
のクロマトグラムを示すものであり、図4は試料セルと
参照セルを直接接続した場合のクロマトグラムを、図5
は本発明の示差屈折率検出器によるクロマトグラムであ
る。図4及び5から、試料セルと参照セルを直接接続し
ただけでは測定に適したクロマトグラムが得られないこ
とがわかる。
FIGS. 4 and 5 show chromatograms of standard polystyrene measured by incorporating a differential refractive index detector into a liquid chromatograph. FIG. 4 shows a chromatogram when a sample cell and a reference cell are directly connected. And FIG.
Is a chromatogram obtained by the differential refractive index detector of the present invention. FIGS. 4 and 5 show that a chromatogram suitable for measurement cannot be obtained only by directly connecting the sample cell and the reference cell.

【0030】本発明において、0.001%濃度の標準
ポリスチレン50μlを繰り返し注入した際の測定結果
は重量平均分子量の再現性でCV値で0.5%前後、ベ
ースラインドリフトで5×10-7RIU/h程度が得ら
れ、2台の送液ポンプを用いた構成と同等の測定安定性
が得られた。
In the present invention, when 50 μl of standard polystyrene having a concentration of 0.001% was repeatedly injected, the measurement result was that the reproducibility of the weight average molecular weight was around 0.5% in CV value and 5 × 10 −7 in baseline drift. About RIU / h was obtained, and measurement stability equivalent to the configuration using two liquid feeding pumps was obtained.

【0031】[0031]

【発明の効果】本発明によれば、試料セルでは測定に供
した試料のすべてがカラムで分離された分離能を保ちな
がら通過するが、参照セルでは検出に影響を及ぼさな
い、同一液性の溶媒により希釈された試料成分が通過す
ることになる。従来方法のように別のカラムもしくは分
岐を通過した液性を参照セルに導く場合、カラムまたは
分岐等の問題で同一の液性にならないことが経験的に認
識されているが、本発明では、この問題が回避できるば
かりでなく、試料セルと参照セルを直列に接続した構成
でも、2台のポンプで試料セル、参照セルにそれぞれ溶
媒を送液するのと同等の安定性が得られるため、安価な
装置構成が可能となる。また、参照セルに別途溶媒を送
液する必要がないので溶媒消費量が抑えられる。
According to the present invention, in the sample cell, all of the sample subjected to the measurement passes while maintaining the separation ability separated by the column, but the reference cell does not affect the detection and has the same liquidity. The sample components diluted by the solvent will pass through. It is empirically recognized that, when a liquid having passed through another column or branch is led to the reference cell as in the conventional method, the liquid does not have the same liquid property due to a problem such as a column or branch. Not only this problem can be avoided, but also in a configuration in which the sample cell and the reference cell are connected in series, the same stability as sending the solvent to each of the sample cell and the reference cell with two pumps can be obtained. An inexpensive device configuration becomes possible. Further, since it is not necessary to separately send a solvent to the reference cell, the amount of solvent consumption can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による液体クロマトグラフ用示
差屈折率検出器を示す図である。
FIG. 1 is a view showing a differential refractive index detector for a liquid chromatograph according to the present invention.

【図2】図2は、試料セルと参照セルを直列に接続した
だけの時のベースライン信号の様子を示す図である。
FIG. 2 is a diagram illustrating a state of a baseline signal when a sample cell and a reference cell are simply connected in series.

【図3】図3は、図1に示した示差屈折率検出器でのベ
ースライン信号の様子を示す図である。
FIG. 3 is a diagram illustrating a state of a baseline signal in a differential refractive index detector illustrated in FIG. 1;

【図4】図4は、試料セルと参照セルを直列に接続して
測定した標準ポリスチレンのクロマトグラムを示す図で
ある。
FIG. 4 is a diagram showing a chromatogram of standard polystyrene measured by connecting a sample cell and a reference cell in series.

【図5】図5は、図1に示した示差屈折率検出器により
測定した標準ポリスチレンのクロマトグラムを示す図で
ある。
FIG. 5 is a diagram showing a chromatogram of standard polystyrene measured by the differential refractive index detector shown in FIG. 1.

【符合の説明】[Description of sign]

1溶媒だめ 2溶媒 3配管 4送液ポンプ 5配管 6試料注入口 7配管 8分離カラム 9配管 10試料セル 11配管 12流路分岐部 13配管 14電磁弁 15配管 16配管 17ニードルバルブ 18配管 19攪拌チャンバー 20配管 21参照セル 22配管 23廃液槽 1 Solvent reservoir 2 Solvent 3 Piping 4 Liquid sending pump 5 Piping 6 Sample injection port 7 Piping 8 Separation column 9 Piping 10 Sample cell 11 Piping 12 Flow branch 13 Piping 14 Solenoid valve 15 Piping 16 Piping 17 Needle valve 18 Piping 19 Stirring Chamber 20 piping 21 reference cell 22 piping 23 waste liquid tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料セルと参照セルの屈折率差の変化を検
知する示差屈折率検出器において、試料セルからの溶出
液を希釈し、参照溶液として利用するために試料セルと
参照セルの間に少なくとも試料セル容積の10倍以上の
容積を有する攪拌チャンバーを挿入した液体クロマトグ
ラフ用示差屈折率検出器。
1. A differential refractive index detector for detecting a change in a refractive index difference between a sample cell and a reference cell, wherein an eluate from the sample cell is diluted and used for use as a reference solution between the sample cell and the reference cell. A differential refractive index detector for a liquid chromatograph, in which a stirring chamber having a volume at least 10 times the sample cell volume is inserted.
【請求項2】試料セルと参照セル内の圧力差を同一にす
るための分岐流路、空気ダンパーを有する請求項1の液
体クロマトグラフ用示差屈折率検出器。
2. The differential refractive index detector for a liquid chromatograph according to claim 1, further comprising a branch flow path for equalizing the pressure difference between the sample cell and the reference cell, and an air damper.
【請求項3】攪拌チャンバー内の温度を溶媒だめまたは
カラム恒温槽の温度と一致させるための温度調節機構を
有する請求項1の液体クロマトグラフ用示差屈折率検出
器。
3. The differential refractive index detector for a liquid chromatograph according to claim 1, further comprising a temperature adjusting mechanism for adjusting the temperature in the stirring chamber to the temperature in the solvent sump or the column thermostat.
【請求項4】攪拌チャンバー内溶液容積が試料セル容積
の100倍以上であることを特徴とする請求項1の液体
クロマトグラフ用示差屈折率検出器。
4. The differential refractive index detector for a liquid chromatograph according to claim 1, wherein the volume of the solution in the stirring chamber is at least 100 times the volume of the sample cell.
JP17731097A 1997-07-02 1997-07-02 Differential refractive index detector for liquid chromatography Expired - Fee Related JP3785469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17731097A JP3785469B2 (en) 1997-07-02 1997-07-02 Differential refractive index detector for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17731097A JP3785469B2 (en) 1997-07-02 1997-07-02 Differential refractive index detector for liquid chromatography

Publications (2)

Publication Number Publication Date
JPH1123555A true JPH1123555A (en) 1999-01-29
JP3785469B2 JP3785469B2 (en) 2006-06-14

Family

ID=16028756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17731097A Expired - Fee Related JP3785469B2 (en) 1997-07-02 1997-07-02 Differential refractive index detector for liquid chromatography

Country Status (1)

Country Link
JP (1) JP3785469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209156A (en) * 2007-02-23 2008-09-11 Tosoh Corp Change preventing method for ri back pressure
WO2015118668A1 (en) * 2014-02-07 2015-08-13 株式会社島津製作所 Measurement method using differential refractometer, differential refractometer using said measurement method, and liquid chromatograph

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209156A (en) * 2007-02-23 2008-09-11 Tosoh Corp Change preventing method for ri back pressure
WO2015118668A1 (en) * 2014-02-07 2015-08-13 株式会社島津製作所 Measurement method using differential refractometer, differential refractometer using said measurement method, and liquid chromatograph
JP6037057B2 (en) * 2014-02-07 2016-11-30 株式会社島津製作所 Measuring method using differential refractometer, differential refractometer and liquid chromatograph using the measuring method
US10024789B2 (en) 2014-02-07 2018-07-17 Shimadzu Corporation Measurement method using differential refractometer, differential refractometer using the measurement method, and liquid chromatograph

Also Published As

Publication number Publication date
JP3785469B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Scott et al. Use of microbore columns for the separation of substances of biological origin
US5530540A (en) Light scattering measurement cell for very small volumes
US20130319945A1 (en) Device and Method for Field Flow Fractionation
JP2009080012A (en) Liquid chromatograph and sample introducing apparatus
US7594428B2 (en) Apparatus and method for eliminating the breakthrough peak in differential detectors
JP3865119B2 (en) Mobile phase gradient apparatus and high-performance liquid chromatograph using the same
JP2012511723A (en) Solvent supply system for chromatography system and method of manufacture and use thereof
JPH1123555A (en) Differential refraction factor detector for liquid chromatograph
JP3536074B2 (en) Liquid chromatograph and analysis system
US8658034B1 (en) Mobile phase preparation device for liquid chromatography
JP2000146932A (en) Device for introducing gas sample for gas chromatograph
US5183604A (en) Size separation of particles contained within a material by the use of nonaqueous hydrodynamic chromatography
JP6162154B2 (en) Bandwidth control between detectors
US20240011957A1 (en) Testing a sampling unit fluidically coupled to a source
EP1219962B1 (en) Liquid homogenizing unit and high speed liquid chromatograph equipped with the same
CN1620609A (en) Flow regulator device for analyzing loop and its application in chromatography
RU2213948C2 (en) Method to take samples of liquid from pipe-line and device for its implementation
CN212586318U (en) Pressure stabilizing device, glycosylated hemoglobin analysis system and multifunctional all-in-one machine
Berry et al. Review of sub-microliter (nanoliter) injection techniques in liquid chromatography
JPH04115158A (en) Liquid chromatograph
JP2561231B2 (en) High Performance Liquid Chromatograph for Preparative
RU2258210C2 (en) Method of sampling fluid from pipeline
JPH0718997Y2 (en) Process gas chromatograph
JPH1130609A (en) Differential refractometer detector for liquid chromatography with passage selector valve
JP2003014594A (en) Diluting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees