JPH1123516A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH1123516A
JPH1123516A JP9190692A JP19069297A JPH1123516A JP H1123516 A JPH1123516 A JP H1123516A JP 9190692 A JP9190692 A JP 9190692A JP 19069297 A JP19069297 A JP 19069297A JP H1123516 A JPH1123516 A JP H1123516A
Authority
JP
Japan
Prior art keywords
heater
ceramic heater
lead
exposed
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9190692A
Other languages
Japanese (ja)
Inventor
Makoto Shirai
白井  誠
Masayuki Kobayashi
正幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9190692A priority Critical patent/JPH1123516A/en
Priority to US09/087,149 priority patent/US6073340A/en
Publication of JPH1123516A publication Critical patent/JPH1123516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic heater that is inexpensive, easy in its manufacture, and excellent in reliability. SOLUTION: A ceramic heater is made up by laminating a plurality of heater base plates 11, 12 comprising exothermic layers 110, 120 and lead layers 111, 121, 151, 152, and 161, 162 for electrifying the exothermic layers 110, 120. The respective lead layers 151, 152 in the respective heater base plates 11, 12 have an exposed part 171 exposed to the outside surface 19 of the ceramic heater 1, and further the respective exposed parts 171 are connected by the connecting/ conducting parts 17 provided to the outside surfaces 19 so that the respective exothermic layers 110, 120 are connected electrically in series.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,内燃機関に使用される空燃比セ
ンサ等に設けられるセラミックヒータに関する。
TECHNICAL FIELD The present invention relates to a ceramic heater provided in an air-fuel ratio sensor or the like used for an internal combustion engine.

【0002】[0002]

【従来技術】従来,自動車エンジン等の内燃機関の排気
系には,空燃比を検知する空燃比センサが設置され,該
空燃比センサにて検知された空燃比を元に上記自動車エ
ンジンの燃焼制御を行っている。これにより,上記自動
車エンジンの排気系に設けた三元触媒コンバータにおけ
る排気ガスの浄化効率を高めることができる。そして,
上記空燃比センサとしては,酸素イオン導電性を有する
固体電解質よりなる酸素センサ素子を内蔵した酸素セン
サが使用されている。
2. Description of the Related Art Conventionally, an air-fuel ratio sensor for detecting an air-fuel ratio is installed in an exhaust system of an internal combustion engine such as an automobile engine, and the combustion control of the automobile engine is performed based on the air-fuel ratio detected by the air-fuel ratio sensor. It is carried out. Thus, the purification efficiency of the exhaust gas in the three-way catalytic converter provided in the exhaust system of the automobile engine can be increased. And
As the air-fuel ratio sensor, an oxygen sensor having a built-in oxygen sensor element made of a solid electrolyte having oxygen ion conductivity is used.

【0003】上記酸素センサ素子にはセラミックヒータ
が内蔵されている。上記セラミックヒータを設けること
により,上記酸素センサ素子を活性化温度まで速やかに
加熱し,内燃機関起動時から酸素センサ素子が有効に働
くことにより燃焼制御が可能となるまでの時間,即ち活
性時間を短縮することができる。そして,上記セラミッ
クヒータとしては,断面略円形の丸棒状ヒータが広く使
用されていた。
The oxygen sensor element has a built-in ceramic heater. By providing the ceramic heater, the oxygen sensor element is quickly heated to the activation temperature, and the time from the start of the internal combustion engine until the oxygen sensor element works effectively to enable combustion control, that is, the activation time is reduced. Can be shortened. As the ceramic heater, a round bar heater having a substantially circular cross section has been widely used.

【0004】ところが,昨今はセラミックヒータの製造
コストをさげるために,積層板状型のセラミックヒータ
が特公平5−2101号,特開平7−35723号等に
おいて提案されている。上記積層板状型のセラミックヒ
ータは,例えば,発熱層と該発熱層に通電するためのリ
ード層とを形成してなるヒータ基板と,該ヒータ基板と
被覆する絶縁基板とよりなる。
However, recently, in order to reduce the manufacturing cost of the ceramic heater, a laminated plate type ceramic heater has been proposed in Japanese Patent Publication No. 5-2101, Japanese Patent Laid-Open No. 7-35723, and the like. The laminated plate-type ceramic heater includes, for example, a heater substrate having a heating layer and a lead layer for supplying electricity to the heating layer, and an insulating substrate covering the heater substrate.

【0005】しかしながら,このような積層板状型のセ
ラミックヒータは,従来の丸棒状ヒータと比較して発熱
層の形成可能な部分の面積が狭いという問題があった。
このため,耐久性を満足できる太い幅を有する発熱層を
設けた場合には,高いヒータ抵抗値を有する発熱層の設
計が困難であった。即ち,発熱層の長さを伸ばして高い
ヒータ抵抗値に対応するように発熱層を構成すると,セ
ラミックヒータが高温化した場合の信頼性の低下が予想
されるため,極端に長い発熱層の設計は困難であった。
[0005] However, such a laminated plate type ceramic heater has a problem that the area of a portion where a heat generating layer can be formed is smaller than that of a conventional round bar heater.
For this reason, when a heat generating layer having a large width that satisfies the durability is provided, it is difficult to design a heat generating layer having a high heater resistance value. In other words, if the length of the heating layer is increased to configure the heating layer so as to correspond to a high heater resistance value, the reliability of the ceramic heater is expected to decrease when the temperature becomes high. Was difficult.

【0006】このような積層板状型セラミックヒータ独
自の問題に対し,特表平7−503550号において
は,以下に示す構造が提案されていた。即ち,図7,図
8に示すごとく,上記セラミックヒータ9は,発熱層9
10,920とリード層911,921とを設けたヒー
タ基板91,92と,両ヒータ基板91,92の間に挟
持配置した絶縁基板93を有してなる。
[0006] In order to solve such a problem peculiar to the laminated plate type ceramic heater, Japanese Patent Publication No. 7-503550 has proposed the following structure. That is, as shown in FIG. 7 and FIG.
It has heater substrates 91 and 92 provided with 10, 920 and lead layers 911 and 921, and an insulating substrate 93 sandwiched and arranged between the two heater substrates 91 and 92.

【0007】上記ヒータ基板91には発熱層910とリ
ード層911,そして上記ヒータ基板91の裏面側に設
けたリード線配線用の端子部913とが設けてあり,上
記リード層911の端部と端子部913との間は上記ヒ
ータ基板91に貫通形成された導体充填スルーホール9
12により電気的な導通が取られている。なお,上記ヒ
ータ基板92においても同様に,発熱層920,リード
層921,導体充填スルーホール922,端子部923
が設けてある。そして,図7,図8に示すごとく,上記
発熱層91と上記発熱層92との間は絶縁基板93に設
けた導体充填スルーホール930により電気的に直列に
接続されてなる。
The heater substrate 91 is provided with a heating layer 910, a lead layer 911, and a terminal portion 913 for lead wire wiring provided on the back side of the heater substrate 91. Between the terminal portion 913 and the conductor filling through hole 9 formed through the heater substrate 91.
12 establishes electrical continuity. Similarly, in the heater substrate 92, the heat generating layer 920, the lead layer 921, the conductor filling through hole 922, the terminal portion 923
Is provided. As shown in FIGS. 7 and 8, the heat generating layer 91 and the heat generating layer 92 are electrically connected in series by conductor filled through holes 930 provided in the insulating substrate 93.

【0008】次に,上記セラミックヒータ9の製造方法
について説明する。まず,後述する実施形態例1と同様
にしてヒータ基板用のグリーンシートを2枚作製する。
これらのグリーンシートに対し,図7に示すごとく,端
子部913,923とリード層912,922との間を
接続するためのスルーホール912,922を作製す
る。次いで,導電性ペーストを用いて,上記発熱層91
0,920,リード層911,921,端子部913,
923用の印刷部を作製する。この時,上記スルーホー
ル912,922に対しても導電性ペーストを充填す
る。
Next, a method of manufacturing the ceramic heater 9 will be described. First, two green sheets for a heater substrate are prepared in the same manner as in Embodiment 1 described later.
As shown in FIG. 7, through holes 912 and 922 for connecting between the terminal portions 913 and 923 and the lead layers 912 and 922 are formed on these green sheets. Next, the heat generating layer 91 is formed using a conductive paste.
0,920, lead layers 911, 921, terminal portion 913,
A printing part for 923 is prepared. At this time, the through holes 912 and 922 are also filled with the conductive paste.

【0009】次に,上記絶縁基板93用の成形体をグリ
ーンシートを積層して作製する。そして,上記成形体に
対しスルーホール93を設け,該スルーホール93内に
導電性ペーストを充填する。その後,上記スルーホール
93が上記発熱層910,920の端部となるA部及び
B部と重なり合うように,2枚のグリーンシートと成形
体とを積層し,圧着し,積層体となす。更に,上記積層
体を切断して,中間体となす。最後に上記中間体を焼成
し,上記端子部913,923に図示を略したリード線
を接合してセラミックヒータとなす。
Next, a green body for the insulating substrate 93 is formed by laminating green sheets. Then, a through-hole 93 is provided in the molded body, and the through-hole 93 is filled with a conductive paste. Thereafter, the two green sheets and the molded body are laminated and pressed together so that the through hole 93 overlaps the portions A and B, which are the ends of the heat generating layers 910 and 920, to form a laminate. Further, the laminate is cut into an intermediate. Finally, the intermediate body is fired, and a lead wire (not shown) is joined to the terminal portions 913 and 923 to form a ceramic heater.

【0010】[0010]

【解決しようとする課題】しかしながら,上記従来技術
におけるスルーホールを使用したセラミックヒータは,
実際の製造にあたって様々な問題が発生するおそれがあ
った。まず,上記セラミックヒータはスルーホールを設
ける分,製造工程が多くなる。このため,製造コストが
高くなるおそれがあった。
However, the ceramic heater using the through-hole in the above-mentioned prior art,
Various problems may occur in actual manufacturing. First, the ceramic heater requires more through-holes because of the provision of through holes. For this reason, the manufacturing cost may be increased.

【0011】また,製造時にヒータ基板となるグリーン
シートの積層ずれ,スルーホールにおける導体の充填不
足等により,従来技術にかかるセラミックヒータには,
断線には至らない接続不良が生じ易かった。
In addition, due to misalignment of the green sheet serving as a heater substrate at the time of manufacturing, insufficient filling of conductors in through holes, etc.
Connection failures that did not lead to disconnection were likely to occur.

【0012】この接続不良によるスルーホールの抵抗値
の増加量は,2つのヒータ基板の合成抵抗値と比べ非常
に小さいため,抵抗値検査では発見しずらい。従って,
この接続不良は製品製造時には見過ごされてしまうおそ
れが非常に高く,かつこの接続不良は,実使用時におい
てスルーホールでの局部発熱が発生し,該スルーホール
が断線することにより発覚する。
The amount of increase in the resistance value of the through hole due to the poor connection is very small as compared with the combined resistance value of the two heater substrates, and therefore, it is difficult to find out in the resistance value inspection. Therefore,
This connection failure is very likely to be overlooked at the time of product manufacture, and this connection failure is detected by local heat generation in the through-hole during actual use and disconnection of the through-hole.

【0013】更に,ヒータ基板を構成するセラミック材
料とスルーホールに充填した導体との間の熱膨張差が大
きいため,実使用時の冷熱衝撃によりスルーホールにク
ラックが生じ,酸化断線に至るという問題も抱えてい
る。
Furthermore, since the thermal expansion difference between the ceramic material forming the heater substrate and the conductor filled in the through hole is large, cracks are generated in the through hole due to thermal shock during actual use, leading to oxidative disconnection. I also have.

【0014】本発明は,かかる問題点に鑑み,安価,製
造容易で,信頼性に優れた,セラミックヒータを提供し
ようとするものである。
The present invention has been made in view of the above-mentioned problems, and is intended to provide a ceramic heater which is inexpensive, easy to manufacture, and excellent in reliability.

【0015】[0015]

【課題の解決手段】請求項1の発明は,発熱層と該発熱
層に通電するためのリード層とを形成してなるヒータ基
板を複数枚積層してなるセラミックヒータにおいて,上
記各ヒータ基板における各リード層はセラミックヒータ
の外部側面に露出する露出部を有してなり,更に,上記
各露出部は上記各発熱層が電気的に直列に接続されるよ
うに上記外部側面に設けた接続導体部により接続されて
いることを特徴とするセラミックヒータにある。
According to a first aspect of the present invention, there is provided a ceramic heater in which a plurality of heater substrates each having a heating layer and a lead layer for supplying a current to the heating layer are stacked. Each lead layer has an exposed portion exposed on the outer side surface of the ceramic heater, and each exposed portion has a connecting conductor provided on the outer side surface so that the heat generating layers are electrically connected in series. The ceramic heater is connected by a portion.

【0016】本発明の作用につき,以下に説明する。本
発明にかかるセラミックヒータは,外部側面に設けた接
続導体部により各リード層が電気的に直列に接続されて
いる。これにより,スルーホールを使用することなく,
各リード層及びこれを通じて各発熱層を電気的に直列に
接続することができる。
The operation of the present invention will be described below. In the ceramic heater according to the present invention, each lead layer is electrically connected in series by a connection conductor provided on the outer side surface. As a result, without using through holes,
Each lead layer and each heat generating layer can be electrically connected in series through the lead layer.

【0017】ここに本発明にかかるセラミックヒータ
は,上記接続導体部の厚みが0.010〜0.020m
mであれば充分に各リード層を接続することができる。
一方,従来技術にかかるセラミックヒータは,スルーホ
ールにおける局部的な発熱を避けるために,該スルーホ
ールの径が0.3〜0.5mmで,多数個の設置が必要
であることが要求されていた。そして,一般に熱衝撃に
よる断線は導体の厚みが薄いほど生じ難くなる。従っ
て,本発明にかかる接続導体部はクラックが生じ難く,
断線し難い。
Here, in the ceramic heater according to the present invention, the connection conductor has a thickness of 0.010 to 0.020 m.
If m, each lead layer can be sufficiently connected.
On the other hand, the ceramic heater according to the prior art is required to have a diameter of 0.3 to 0.5 mm and a large number of installations in order to avoid local heat generation in the through hole. Was. In general, disconnection due to thermal shock is less likely to occur as the thickness of the conductor is smaller. Therefore, the connection conductor according to the present invention is hardly cracked,
Hard to break.

【0018】また,スルーホール作製の工程と比較し
て,接続導体部を設ける工程は工程数も少なく,作業が
容易である。更に,積層されたリード層の接続に当た
り,精密な位置合わせをする必要もなく,位置ずれによ
る不良も生じ難い。このため,本発明にかかるセラミッ
クヒータは製造容易であり,この点から製造コストが安
価である。
In addition, the number of steps in the step of providing a connecting conductor is smaller than that in the step of forming a through hole, and the work is easy. Furthermore, when connecting the stacked lead layers, there is no need for precise alignment, and defects due to misalignment hardly occur. For this reason, the ceramic heater according to the present invention is easy to manufacture, and in this respect the manufacturing cost is low.

【0019】以上のように,本発明によれば,安価,製
造容易で,信頼性に優れた,セラミックヒータを提供す
ることができる。
As described above, according to the present invention, a ceramic heater which is inexpensive, easy to manufacture, and excellent in reliability can be provided.

【0020】次に,請求項2の発明のように,上記露出
部は,上記ヒータ基板の外部側面に設けた凹部内に形成
してあることが好ましい。本発明においては接続導体部
がセラミックヒータの本体の表面より凸でないので,酸
素センサ素子内にセラミックヒータを固定する部品(通
称ホルダー)による接続導体部への損傷を防止すること
ができる。また,接続導体部の表面積を広く取ることが
できるため,接続導体部とリード部にかかる露出部との
間の接着力が向上し,両者の接合信頼性を高めることが
できる。
Next, as in the second aspect of the present invention, it is preferable that the exposed portion is formed in a concave portion provided on an outer side surface of the heater substrate. In the present invention, since the connecting conductor is not convex from the surface of the main body of the ceramic heater, damage to the connecting conductor by a component (commonly called a holder) for fixing the ceramic heater in the oxygen sensor element can be prevented. In addition, since the surface area of the connection conductor can be made large, the adhesive force between the connection conductor and the exposed portion on the lead can be improved, and the joining reliability between the two can be increased.

【0021】次に,請求項3の発明のように,上記各ヒ
ータ基板の間には絶縁基板が設けてあることが好まし
い。これにより,発熱層間を確実に絶縁することがで
き,両者の短絡を確実に防止することができる。
Next, it is preferable that an insulating substrate is provided between each of the heater substrates. As a result, the heat generating layers can be reliably insulated from each other, and a short circuit between them can be reliably prevented.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるセラミックヒータ及びその
製造方法につき,図1,図2を用いて説明する。図1に
示すごとく,本例のセラミックヒータ1は,発熱層11
0と該発熱層100に通電するためのリード層111,
121,151,152とを形成してなるヒータ基板1
1,12を2枚積層してなる。
Embodiment 1 A ceramic heater and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the ceramic heater 1 of the present embodiment has a heating layer 11
0 and a lead layer 111 for energizing the heating layer 100,
Heater substrate 1 formed with 121, 151, 152
It is formed by laminating two sheets 1 and 12.

【0023】そして,図2に示すごとく,上記各ヒータ
基板11,12における各リード層151,152はセ
ラミックヒータ1の外部側面19に露出する露出部17
1,172を有してなる。更に,上記各露出部171,
172は上記各発熱層110,120が電気的に直列に
接続されるように上記外部側面19に設けた接続導体部
17により接続されている。
As shown in FIG. 2, each of the lead layers 151 and 152 on each of the heater substrates 11 and 12 has an exposed portion 17 exposed on the outer side surface 19 of the ceramic heater 1.
1,172. Further, each of the exposed portions 171,
172 is connected by a connection conductor 17 provided on the outer side surface 19 so that the heat generating layers 110 and 120 are electrically connected in series.

【0024】以下,詳細に説明する。図1に示すごと
く,上記セラミックヒータ1は絶縁基板13の両面に,
上記ヒータ基板11,12を発熱層110,120を設
けた面を上記絶縁基板13の側に向けて積層することに
より構成されている。上記ヒータ基板11,12は,そ
の表面に発熱層110,120,リード層111,15
1,161,121,152,162が設けてある。こ
こに上記リード層151,152及び接続導体部17に
よって,二つの発熱層110,120は電気的に直列に
接続されている。
The details will be described below. As shown in FIG. 1, the ceramic heater 1 is provided on both sides of an insulating substrate 13.
The heater substrates 11 and 12 are formed by stacking the surfaces on which the heat generating layers 110 and 120 are provided toward the insulating substrate 13. The heater substrates 11 and 12 have heat generating layers 110 and 120 and lead layers 111 and 15 on their surfaces.
1, 161, 121, 152 and 162 are provided. Here, the two heating layers 110 and 120 are electrically connected in series by the lead layers 151 and 152 and the connection conductor 17.

【0025】また,上記リード層161,162につい
ても,上記セラミックヒータ1の外部側面19に露出す
る露出部181,182を有してなり,該露出部18
1,182を覆うようにリード線接続導体部18が設け
てある。そして,上記リード線接続導体部18に対し上
記発熱層110,120への電力供給用のリード線19
0が接続されている。
The lead layers 161 and 162 also have exposed portions 181 and 182 exposed on the outer side surface 19 of the ceramic heater 1.
A lead wire connecting conductor 18 is provided so as to cover 1 and 182. Then, a lead wire 19 for supplying power to the heating layers 110 and 120 is connected to the lead wire connecting conductor 18.
0 is connected.

【0026】次に,本例にかかるセラミックヒータ1の
製造方法について説明する。まず,Al2 3 92wt
%,SiO2 及びMgO8wt%よりなる原料粉末より
スラリーを作製した。上記スラリーをドクターブレード
法によって厚さ0.35mmのシートとした。上記シー
トに打ち抜きプレスを施し,120mm×120mmの
正方形状のグリーンシートを8枚作製した。なお,上記
グリーンシートの作製に当たっては,押出成形等の別製
法を利用することもできる。
Next, a method of manufacturing the ceramic heater 1 according to this embodiment will be described. First, Al 2 O 3 92wt
%, SiO 2 and MgO 8 wt% to prepare a slurry. The slurry was formed into a sheet having a thickness of 0.35 mm by a doctor blade method. The above sheet was subjected to a punching press to produce eight square green sheets of 120 mm × 120 mm. In the production of the green sheet, another manufacturing method such as extrusion molding can be used.

【0027】次に,WとReとを重量比にしてW/Re
=80/20の割合に混合した粉体を準備する。この粉
体にバインダ及び可塑材を添加し,三本ロールミル装置
により混練した。以上により導電性ペーストを得た。上
記導電性ペーストをスクリーン印刷して,上記1枚のグ
リーンシートに対し複数のヒータパターンを,図3
(a)にかかる形状に印刷形成した。なお,このヒータ
パターンの形成にはパッド印刷を利用することもでき
る。このようなヒータパターンを有するグリーンシート
は2枚準備し,これがヒータ基板用のグリーンシートと
なる。
Next, W / Re is defined as a weight ratio of W / Re.
= A powder mixed at a ratio of 80/20 is prepared. A binder and a plasticizer were added to the powder and kneaded with a three-roll mill. Thus, a conductive paste was obtained. The conductive paste is screen-printed to form a plurality of heater patterns for the one green sheet, as shown in FIG.
A print was formed in the shape shown in FIG. Note that pad printing can also be used to form the heater pattern. Two green sheets having such a heater pattern are prepared and used as a green sheet for a heater substrate.

【0028】ここに上記ヒータパターンとはセラミック
ヒータ一個分の発熱層及びリード層を示している。本例
にかかる製造方法においては,複数のセラミックヒータ
を一度に制作するため,セラミックヒータ複数個分のヒ
ータパターンをグリーンシートに作製する。
Here, the heater pattern indicates a heating layer and a lead layer for one ceramic heater. In the manufacturing method according to the present example, a heater pattern for a plurality of ceramic heaters is manufactured on a green sheet in order to manufacture a plurality of ceramic heaters at one time.

【0029】次に,上記グリーンシートの6枚を積層・
圧着して絶縁基板13用の成形体を得た。なお,この成
形体を押出成形等を利用して作製することもできる。次
に,上記絶縁基板用の成形体に対し,ヒータ基板用のグ
リーンシートを,ヒータパターンを設けた面が成形体と
当接するように積層し,圧着接合させ,積層体とした。
その後,この積層体を乾燥させた。
Next, six green sheets are laminated and
This was pressed to obtain a molded body for the insulating substrate 13. In addition, this molded body can also be manufactured by using extrusion molding or the like. Next, a green sheet for a heater substrate was laminated on the molded body for an insulating substrate so that the surface on which the heater pattern was provided was in contact with the molded body, and was bonded by pressure bonding to form a laminated body.
Thereafter, the laminate was dried.

【0030】次いで,上記積層体を,後述の図3(a)
に示すような一点鎖線にて切断,後述の図3(b)に示
すごとき,中間体を作製した。ここに,上記中間体の外
部側面にはリード層151,152用の印刷部が露出
し,露出部171,172を形成している。同様に上記
リード層161,162用の印刷部が露出し,露出部1
81,182を形成している。
Next, the above-mentioned laminated body is connected to FIG.
As shown in FIG. 3B, an intermediate was prepared. Here, printed portions for the lead layers 151 and 152 are exposed on the outer side surface of the intermediate body, and exposed portions 171 and 172 are formed. Similarly, the printed portions for the lead layers 161, 162 are exposed, and the exposed portions 1
81 and 182 are formed.

【0031】そして,図2に示すごとく,上記露出部1
71及び172を覆うように,導電性ペーストを用いて
印刷部を作製する。また,上記露出部181,182を
それぞれ覆うような印刷部も同様に作製する。
Then, as shown in FIG.
A printed part is formed using a conductive paste so as to cover 71 and 172. In addition, a printed portion that covers the exposed portions 181 and 182, respectively, is similarly manufactured.

【0032】次に,上記中間体を還元雰囲気炉の窒素/
水素雰囲気にて,温度1580℃で焼成した。なお,本
例では発熱層及びリード層等にWを使用したため還元雰
囲気にて焼成したが,同材料にPt等を使用した場合に
は通常の大気雰囲気で焼成することができる。
Next, the above intermediate was replaced with nitrogen /
It was fired at a temperature of 1580 ° C. in a hydrogen atmosphere. In this example, since W was used for the heat generating layer and the lead layer, the firing was performed in a reducing atmosphere. However, when Pt or the like is used for the same material, the firing can be performed in a normal atmosphere.

【0033】その後,焼成された接続導体部17,リー
ド線接続導体部18に対し無電解Niめっきを施した。
そして,上記リード線接続導体部18にリード線190
をCuローを用いて接続した。その後,再度,上記リー
ド線接続導体部18に無電解Niめっきを施した。以上
により本例にかかるセラミックヒータ1を得た。
Thereafter, electroless Ni plating was applied to the fired connection conductor 17 and lead wire connection conductor 18.
Then, the lead wire 190 is connected to the lead wire connecting conductor 18.
Were connected using a Cu low. Thereafter, the lead wire connecting conductor 18 was again subjected to electroless Ni plating. Thus, the ceramic heater 1 according to this example was obtained.

【0034】次に,本例における作用効果につき説明す
る。本例にかかるセラミックヒータ1は,外部側面19
に設けた接続導体部17によりリード層151及び15
2とが電気的に直列に接続されている。これにより,ス
ルーホールを使用することなく,各リード層151,1
52及びこれを通じて各発熱層110,120とを電気
的に直列に接続することができる。
Next, the operation and effect of this embodiment will be described. The ceramic heater 1 according to this embodiment has an outer side surface 19.
Of the lead layers 151 and 15
2 are electrically connected in series. Thereby, each lead layer 151, 1 can be used without using a through hole.
52 and the heat generating layers 110 and 120 can be electrically connected in series.

【0035】そして,本例にかかるセラミックヒータ1
は,上記接続導体部17の厚みが0.010〜0.02
0mmと薄い。そして,一般に熱衝撃による断線は導体
の厚みが薄いほど生じ難くなることから,本例にかかる
接続導体部17はクラックが生じ難く,断線し難い構造
である。このため,本例にかかるセラミックヒータ1は
信頼性が高い。
The ceramic heater 1 according to the present embodiment
Means that the thickness of the connection conductor 17 is 0.010 to 0.02
It is as thin as 0 mm. In general, disconnection due to thermal shock is less likely to occur as the thickness of the conductor is smaller. Therefore, the connecting conductor portion 17 according to this example has a structure in which cracks are less likely to occur and disconnection is less likely. For this reason, the ceramic heater 1 according to the present example has high reliability.

【0036】また,本例にかかる接続導体部17の作製
にかかる工程は工程数も少なく,印刷という容易な作業
により行うことができる。更に,幅広な導体接続部17
を用いてリード層151,152の接続を行うため,ヒ
ータ基板11,12の積層に当たり,精密な位置合わせ
をする必要もなく,位置ずれによる不良も生じ難い。以
上により,本例にかかるセラミックヒータ1は製造容易
であり,この点から製造コストが安価である。また,本
例においては,複数個のセラミックヒータ1を一度に製
作するため,この点からも製造コストが安価である。
In addition, the number of steps involved in manufacturing the connection conductor portion 17 according to the present embodiment is small, and it can be performed by an easy operation of printing. Furthermore, the wide conductor connection portion 17
Is used to connect the lead layers 151 and 152, so that when the heater substrates 11 and 12 are laminated, there is no need to perform precise alignment, and defects due to misalignment hardly occur. As described above, the ceramic heater 1 according to the present embodiment is easy to manufacture, and in this respect, the manufacturing cost is low. Further, in this example, since a plurality of ceramic heaters 1 are manufactured at one time, the manufacturing cost is low in this respect as well.

【0037】なお,本例にかかるセラミックヒータはヒ
ータ基板を2枚積層した構造であるが,これを3枚以上
積層することもできる。また,ヒータ基板の積層に際し
て接着剤を塗布して積層接合することもできる。
Although the ceramic heater according to the present embodiment has a structure in which two heater substrates are stacked, three or more heater substrates can be stacked. In addition, when laminating the heater substrates, an adhesive may be applied and laminated.

【0038】実施形態例2 本例は,図3に示すごとく,2枚のヒータ基板とこれを
被覆する被覆基板とよりなるセラミックヒータである。
図3(c)に示すごとく,本例にかかるセラミックヒー
タ1はヒータ基板11にヒータ基板12を積層し,更に
その上に被覆基板14を積層してなる。
Embodiment 2 As shown in FIG. 3, this embodiment is a ceramic heater comprising two heater substrates and a covering substrate for covering the same.
As shown in FIG. 3C, the ceramic heater 1 according to the present embodiment is configured by laminating a heater substrate 12 on a heater substrate 11 and further laminating a covering substrate 14 thereon.

【0039】本例にかかるセラミックヒータ1の製造方
法について説明する。実施形態例1と同様にして,ヒー
タ基板11,12用のグリーンシート211,212,
被覆基板14用のグリーンシート22を準備する。そし
て,上記ヒータ基板11,12用のグリーンシート21
1,212に対し,実施形態例1と同様にして,1枚の
グリーンシート211,212に対し5個のヒータパタ
ーンを201,202を,図3(a)にかかる形状に印
刷形成した。
A method for manufacturing the ceramic heater 1 according to this embodiment will be described. Similarly to the first embodiment, green sheets 211 and 212 for heater substrates 11 and 12 are provided.
A green sheet 22 for the covering substrate 14 is prepared. Then, the green sheets 21 for the heater substrates 11 and 12 are formed.
In the same manner as in the first embodiment, five heater patterns 201 and 202 were formed on one green sheet 211 and 212 by printing in the shape shown in FIG.

【0040】その後,図3(a)に示すごとく,上記グ
リーンシート211,212を二枚積層し,更にその上
に被覆基板14用のグリーンシート22を積層し,積層
体23とした。次いで,上記積層体23を図3(a)に
示す一点鎖線に沿って切断する。これにより図3(b)
に示すごとき中間体24を得た。ここに,上記中間体2
4の外部側面にはリード層用の印刷部であるn部の一部
が露出し,露出部を形成している。同様にm部の一部が
露出し,露出部を形成している。
Thereafter, as shown in FIG. 3A, two green sheets 211 and 212 were laminated, and a green sheet 22 for the covering substrate 14 was further laminated thereon to form a laminate 23. Next, the laminate 23 is cut along the dashed line shown in FIG. As a result, FIG.
As a result, an intermediate 24 was obtained. Here, the intermediate 2
A part of the n portion, which is a printed portion for the lead layer, is exposed on the outer side surface of No. 4 to form an exposed portion. Similarly, a part of the m portion is exposed to form an exposed portion.

【0041】そして,図3(b)に示すごとく,上記露
出部に対しそれぞれ印刷部283,284,285を設
ける。その後,上記中間体24を焼成し,印刷部28
3,284,285を焼きつける。これにより接続導体
部17及びリード線接続導体部18を得る。そして,図
3(c)に示すごとく,上記リード線接続導体部17に
リード線190を取り付けてセラミックヒータ1とし
た。その他は,実施形態例1と同様である。また,本例
のセラミックヒータにおいても,実施形態例1と同様の
作用効果を有する。
Then, as shown in FIG. 3B, printing sections 283, 284 and 285 are provided for the above-mentioned exposed sections, respectively. Thereafter, the intermediate body 24 is fired, and the printing unit 28 is fired.
Bake 3,284,285. Thereby, the connection conductor 17 and the lead wire connection conductor 18 are obtained. Then, as shown in FIG. 3C, a lead wire 190 was attached to the lead wire connecting conductor 17 to obtain the ceramic heater 1. Other configurations are the same as those of the first embodiment. In addition, the ceramic heater of this embodiment also has the same operation and effect as the first embodiment.

【0042】実施形態例3 本例は,図4〜図6に示すごとく,外部側面19に設け
た凹部16内に露出部171,172が形成されたセラ
ミックヒータ1及びその製造方法について示すものであ
る。即ち,図4,図5に示すごとく,本例にかかるセラ
ミックヒータ1は実施形態例1と同様の構造を有し,2
枚のヒータ基板11,12とその間に挟持された絶縁基
板13よりなる。
Embodiment 3 In this embodiment, as shown in FIGS. 4 to 6, a ceramic heater 1 having exposed portions 171 and 172 formed in a concave portion 16 provided on an outer side surface 19 and a method of manufacturing the ceramic heater 1 will be described. is there. That is, as shown in FIGS. 4 and 5, the ceramic heater 1 according to the present embodiment has the same structure as that of the first embodiment.
It is composed of a plurality of heater substrates 11 and 12 and an insulating substrate 13 sandwiched therebetween.

【0043】そして,上記セラミックヒータ1の外部側
面19には凹部16が設けてあり,該凹部16に面する
よう露出部171,172が形成されている。そして,
図5に示すごとく,本例にかかる接続導体部160は上
記凹部16に形成されてある。なお,上記凹部16はそ
の断面が半楕円状となるように構成されている。
A concave portion 16 is provided on the outer side surface 19 of the ceramic heater 1, and exposed portions 171 and 172 are formed so as to face the concave portion 16. And
As shown in FIG. 5, the connection conductor 160 according to the present embodiment is formed in the recess 16. The recess 16 is configured so that its cross section is semi-elliptical.

【0044】本例にかかるセラミックヒータ1の製造方
法について説明する。まず,実施形態例1と同様にし
て,ヒータ基板11,12用のヒータパターンを設けた
グリーンシート211,212を準備した。また,絶縁
基板13用の成形体213をグリーンシートを6枚積層
して準備した。なお,この成形体213は押出成形等を
利用して作製することもできる。次に,上記成形体21
3に対し,グリーンシート211,212をヒータパタ
ーンを設けた面が成形体213と当接するように積層
し,圧着接合させ,積層体23とした。
A method for manufacturing the ceramic heater 1 according to this embodiment will be described. First, green sheets 211 and 212 provided with heater patterns for the heater substrates 11 and 12 were prepared in the same manner as in the first embodiment. Also, a green body 213 for the insulating substrate 13 was prepared by laminating six green sheets. The molded body 213 can also be manufactured by using extrusion molding or the like. Next, the molded body 21
Green sheets 211 and 212 were laminated on 3 so that the surface on which the heater pattern was provided was in contact with the molded body 213, and were bonded by pressure bonding to form a laminated body 23.

【0045】次に,図6(a)に示すごとく,打ち抜き
機により上記積層体23に対し所望の形状の凹部16用
の貫通穴269を形成した。次に,図6(a)に示す一
点鎖線にて上記積層体23を切断し,図6(b)にかか
る中間体24を作製した。
Next, as shown in FIG. 6A, a through hole 269 for the concave portion 16 having a desired shape was formed in the laminate 23 by a punching machine. Next, the laminate 23 was cut along a dashed line shown in FIG. 6A to produce an intermediate 24 shown in FIG. 6B.

【0046】次に,図6(c)に示すごとく,上記中間
体24の側面に形成された凹部16に対し,パッド印刷
法を利用して接続導体部160用の印刷部260を設け
た。その後は,実施形態例1と同様に,中間体24を焼
成し,リード線190を接続し,本例にかかるセラミッ
クヒータ1を得た。その他は,実施形態例1と同様であ
る。
Next, as shown in FIG. 6C, a printed portion 260 for the connection conductor 160 was provided in the recess 16 formed on the side surface of the intermediate body 24 by using a pad printing method. Thereafter, as in the case of the first embodiment, the intermediate body 24 was fired and the lead wires 190 were connected to obtain the ceramic heater 1 according to the present example. Other configurations are the same as those of the first embodiment.

【0047】本例のセラミックヒータ1においては,接
続導体部160がセラミックヒータ1の本体の表面より
凸でないので,酸素センサ素子内にセラミックヒータ1
を固定する部品(通称ホルダー)による接続導体部16
0への損傷を防止することができる。また,接続導体部
160の表面積を広く取ることができるため,接続導体
部160とリード部にかかる露出部171,172との
間の接着力が向上し,両者の接合信頼性を高めることが
できる。その他は実施形態例1と同様の作用効果を有す
る。
In the ceramic heater 1 of this embodiment, since the connecting conductor 160 is not convex from the surface of the main body of the ceramic heater 1, the ceramic heater 1 is provided in the oxygen sensor element.
Connecting part 16 by a component (commonly known holder) for fixing
0 can be prevented. Further, since the surface area of the connection conductor 160 can be made large, the adhesive force between the connection conductor 160 and the exposed portions 171 and 172 on the lead portions can be improved, and the joint reliability between them can be increased. . Others have the same operation and effects as the first embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1にかかる,セラミックヒータの斜
視展開図。
FIG. 1 is a perspective developed view of a ceramic heater according to a first embodiment.

【図2】実施形態例1にかかる,セラミックヒータの斜
視図。
FIG. 2 is a perspective view of a ceramic heater according to the first embodiment.

【図3】実施形態例2にかかる,セラミックヒータの製
造工程を示す説明図。
FIG. 3 is an explanatory view showing a manufacturing process of the ceramic heater according to the second embodiment.

【図4】実施形態例3にかかる,セラミックヒータの外
部側面に設けた凹部を示す斜視図。
FIG. 4 is a perspective view showing a concave portion provided on an outer side surface of a ceramic heater according to a third embodiment.

【図5】実施形態例3にかかる,セラミックヒータの斜
視図。
FIG. 5 is a perspective view of a ceramic heater according to a third embodiment.

【図6】実施形態例3にかかる,セラミックヒータの製
造工程を示す説明図。
FIG. 6 is an explanatory view showing a manufacturing process of the ceramic heater according to the third embodiment.

【図7】従来例にかかる,セラミックヒータの斜視展開
図。
FIG. 7 is a perspective development view of a ceramic heater according to a conventional example.

【図8】従来例にかかる,セラミックヒータの発熱層と
リード部と導体充填スルーホールとの位置関係を示す説
明図。
FIG. 8 is an explanatory diagram showing a positional relationship among a heating layer, a lead portion, and a conductor-filled through hole of a ceramic heater according to a conventional example.

【符号の説明】[Explanation of symbols]

1...セラミックヒータ, 11,12...ヒータ基板, 110,120...発熱層, 111,121,151,152,161,16
2...リード層, 13...絶縁基板, 16...凹部, 17...接続導体部, 171,172...露出部, 19...外部側面,
1. . . Ceramic heater, 11,12. . . Heater substrate, 110,120. . . Heat generation layer, 111, 121, 151, 152, 161, 16
2. . . 12. Lead layer, . . 15. insulating substrate; . . Recess, 17. . . Connecting conductor part, 171, 172. . . Exposed part, 19. . . External aspect,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発熱層と該発熱層に通電するためのリー
ド層とを形成してなるヒータ基板を複数枚積層してなる
セラミックヒータにおいて,上記各ヒータ基板における
各リード層はセラミックヒータの外部側面に露出する露
出部を有してなり,更に,上記各露出部は上記各発熱層
が電気的に直列に接続されるように上記外部側面に設け
た接続導体部により接続されていることを特徴とするセ
ラミックヒータ。
1. A ceramic heater in which a plurality of heater substrates each having a heat generating layer and a lead layer for supplying a current to the heat generating layer are stacked, wherein each lead layer of each of the heater substrates is provided outside the ceramic heater. It has an exposed portion exposed on the side surface, and further, each of the exposed portions is connected by a connection conductor provided on the outer side surface so that the heat generating layers are electrically connected in series. Characteristic ceramic heater.
【請求項2】 請求項1において,上記露出部は,上記
ヒータ基板の外部側面に設けた凹部内に形成してあるこ
とを特徴とするセラミックヒータ。
2. The ceramic heater according to claim 1, wherein said exposed portion is formed in a concave portion provided on an outer side surface of said heater substrate.
【請求項3】 請求項1または2において,上記各ヒー
タ基板の間には絶縁基板が設けてあることを特徴とする
セラミックヒータ。
3. The ceramic heater according to claim 1, wherein an insulating substrate is provided between the heater substrates.
JP9190692A 1997-05-29 1997-06-30 Ceramic heater Pending JPH1123516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9190692A JPH1123516A (en) 1997-06-30 1997-06-30 Ceramic heater
US09/087,149 US6073340A (en) 1997-05-29 1998-05-29 Method of producing lamination type ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9190692A JPH1123516A (en) 1997-06-30 1997-06-30 Ceramic heater

Publications (1)

Publication Number Publication Date
JPH1123516A true JPH1123516A (en) 1999-01-29

Family

ID=16262283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9190692A Pending JPH1123516A (en) 1997-05-29 1997-06-30 Ceramic heater

Country Status (1)

Country Link
JP (1) JPH1123516A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338782B1 (en) 1998-11-04 2002-01-15 Denso Corporation Gas sensor
JP2003227810A (en) * 2002-02-05 2003-08-15 Kyocera Corp Oxygen sensor element
JP2003315303A (en) * 2002-04-24 2003-11-06 Kyocera Corp Oxygen sensor element
JP2004226310A (en) * 2003-01-24 2004-08-12 Kyocera Corp Oxygen sensor
US7628900B2 (en) 2002-01-03 2009-12-08 Robert Bosch Gmbh Sensor element
JP2012204161A (en) * 2011-03-25 2012-10-22 Kyocera Corp Heater
JP2016180696A (en) * 2015-03-24 2016-10-13 日本特殊陶業株式会社 Gas sensor element
JP2017119073A (en) * 2015-12-31 2017-07-06 コンエアー・コーポレーションConair Corporation Hair styling apparatus
CN109565908A (en) * 2016-06-17 2019-04-02 罢漏株式会社 Electric cooker plane heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338782B1 (en) 1998-11-04 2002-01-15 Denso Corporation Gas sensor
US7628900B2 (en) 2002-01-03 2009-12-08 Robert Bosch Gmbh Sensor element
JP2003227810A (en) * 2002-02-05 2003-08-15 Kyocera Corp Oxygen sensor element
JP2003315303A (en) * 2002-04-24 2003-11-06 Kyocera Corp Oxygen sensor element
JP2004226310A (en) * 2003-01-24 2004-08-12 Kyocera Corp Oxygen sensor
JP2012204161A (en) * 2011-03-25 2012-10-22 Kyocera Corp Heater
JP2016180696A (en) * 2015-03-24 2016-10-13 日本特殊陶業株式会社 Gas sensor element
JP2017119073A (en) * 2015-12-31 2017-07-06 コンエアー・コーポレーションConair Corporation Hair styling apparatus
CN109565908A (en) * 2016-06-17 2019-04-02 罢漏株式会社 Electric cooker plane heater

Similar Documents

Publication Publication Date Title
EP0134709B1 (en) An oxygen sensor element
US8012324B2 (en) Sensor element, method of manufacturing a sensor element, and gas sensor
WO2007097059A1 (en) Thermoelectric conversion module and method for manufacturing same
US20130048627A1 (en) Ceramic heater and gas sensor element
KR20160115798A (en) Electrically-heated catalytic converter
JP4032459B2 (en) Hybrid integrated circuit substrate and method of manufacturing the same
JPH1123516A (en) Ceramic heater
JP5093833B2 (en) Single cell for fuel cell
US20020174938A1 (en) Laminated co-fired sandwiched element for non-thermal plasma reactor
JP2013051070A (en) Ceramic heater and gas sensor element
US10895186B2 (en) Electrically heatable honeycomb body for exhaust gas treatment having a plurality of heating elements
KR0140266B1 (en) An electrically heated catalytic converter for an engine
JP3935017B2 (en) Ceramic heater
JP5126518B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
EP0685893A1 (en) Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter
JP2015005595A (en) Thermoelectric conversion module and method for manufacturing the same
JP2792012B2 (en) Multilayer capacitor and manufacturing method thereof
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JPH11242989A (en) Ceramic heater
JP2000077171A (en) Ceramic heater
US5828010A (en) Connection of electrically conducting layers with ceramic prominences
JP2019003796A (en) Plasma reactor
JPH08148260A (en) Ceramic heater
JP5524780B2 (en) Solid oxide fuel cell
CN108538451A (en) Lightweight busbar for high-tension battery application