JPH11233148A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11233148A
JPH11233148A JP10037494A JP3749498A JPH11233148A JP H11233148 A JPH11233148 A JP H11233148A JP 10037494 A JP10037494 A JP 10037494A JP 3749498 A JP3749498 A JP 3749498A JP H11233148 A JPH11233148 A JP H11233148A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
leads
electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10037494A
Other languages
Japanese (ja)
Other versions
JP4359941B2 (en
Inventor
Junichi Shigetomi
潤一 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03749498A priority Critical patent/JP4359941B2/en
Publication of JPH11233148A publication Critical patent/JPH11233148A/en
Application granted granted Critical
Publication of JP4359941B2 publication Critical patent/JP4359941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress collecting resistance in a low level even in the case of a long electrode, and to provide high output. SOLUTION: At least either of the number of leads 12a, 12b, 12c connected to a negative electrode 3 or the number of leads 13a, 13b connected to a positive electrode 6 satisfies the conditional expression Xa>=[(1.72×10<4> ×La)/(Wa×ta]<1/2> (where La represents a length of the negative electrode, Wa reresents a width of the negative electrode, and ta represents a thickness of a negative electrode collector. The number corresponding to an integer out of the Xa is the number of the leads in the negative electrode), or the conditional expression Xc>=[(2.75×10<-4> ⊗Lc)/(Wc×tc)]<1/2> (where Lc represents a length of the positive electrode, Wc represents a width of the positive electrode, and tc pepresents a thickness of a positive electrode collector. The number corresponding to an integer out of the Xc is the number of the leads in the positive electrode).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、特にハイブリッド型電気自動車用の電源のよう
な大きな出力密度で用いられる電源として好適な非水電
解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery suitable as a power source used at a high output density such as a power source for a hybrid electric vehicle.

【0002】[0002]

【従来の技術】ニッケルカドミウム電池等の水溶液二次
電池に代わるものとして、エネルギー密度が高く、また
軽量であることから非水電解液二次電池の開発が進めら
れている。
2. Description of the Related Art As an alternative to an aqueous secondary battery such as a nickel cadmium battery, a non-aqueous electrolyte secondary battery has been developed because of its high energy density and light weight.

【0003】この非水電解液二次電池は、リチウムをド
ープ・脱ドープすることが可能な負極と正極、及び非水
溶媒に電解質塩を溶解させた非水電解液を用いる電池で
ある。負極の材料としては例えば炭素材料等が用いら
れ、正極の材料としては例えばLiCoO2等のリチウ
ム遷移金属複合酸化物が用いられる。
This non-aqueous electrolyte secondary battery is a battery using a negative electrode and a positive electrode capable of doping and undoping lithium, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent. As a material for the negative electrode, for example, a carbon material or the like is used, and as a material for the positive electrode, for example, a lithium transition metal composite oxide such as LiCoO 2 is used.

【0004】この非水電解液二次電池には、コイン型や
円筒型等、各種形態のものがあり、電極の形状はその電
池形態に応じて選択される。例えば、円筒型の非水電解
液二次電池の場合には、負極集電体の両面または片面に
負極合剤層が形成されてなる帯状の負極と、正極集電体
の両面または片面に正極合剤層が形成されてなる帯状の
正極とを、セパレータを介して積層し、この積層体を巻
回した巻回電極体が用いられる。ここで、負極集電体,
正極集電体にはそれぞれ負極リード,正極リードが1箇
所に取り付けられ、これらリードを通じて電流が取り出
されるようになっている。
There are various types of non-aqueous electrolyte secondary batteries such as a coin type and a cylindrical type, and the shape of the electrode is selected according to the type of the battery. For example, in the case of a cylindrical nonaqueous electrolyte secondary battery, a strip-shaped negative electrode in which a negative electrode mixture layer is formed on both sides or one side of a negative electrode current collector, and a positive electrode on both sides or one side of a positive electrode current collector A wound electrode body is used in which a band-shaped positive electrode on which a mixture layer is formed is laminated via a separator, and the laminate is wound. Here, the negative electrode current collector,
A negative electrode lead and a positive electrode lead are respectively attached to the positive electrode current collector at one location, and current is taken out through these leads.

【0005】ところで、電池の容量や出力密度は電極の
形状によって異なる。例えば電極合剤層の厚さを厚くす
れば、電池内に充填される活物質量が増えるため、電池
容量は大きくなる。しかし、電極合剤層の厚さを厚くす
ると、電池内に収容できる電極の長さが短くなるため反
応表面積は小さくなり、出力密度は小さくなる。
[0005] The capacity and output density of a battery differ depending on the shape of the electrode. For example, when the thickness of the electrode mixture layer is increased, the amount of active material charged in the battery increases, and the battery capacity increases. However, when the thickness of the electrode mixture layer is increased, the length of the electrode that can be accommodated in the battery becomes shorter, so that the reaction surface area becomes smaller and the output density becomes smaller.

【0006】ここで、これまでの円筒型非水電解液二次
電池では、片面での正極合剤層の厚さが80〜90μm
と比較的厚めとされている。これは、非水電解液二次電
池が、主にポータブル機器の電源として用いられている
ためである。ポータブル機器に用いられる電源として
は、使用時間が長いこと、すなわち放電容量が大きいこ
とが重視される。
Here, in the conventional cylindrical nonaqueous electrolyte secondary battery, the thickness of the positive electrode mixture layer on one side is 80 to 90 μm.
And it is relatively thick. This is because non-aqueous electrolyte secondary batteries are mainly used as power supplies for portable devices. As a power source used in a portable device, it is important to use the battery for a long time, that is, to have a large discharge capacity.

【0007】これに対して、最近、非水電解液二次電池
の軽量性に着目して、ハイブリッド型電気自動車用やエ
ンジン始動用の電源に、非水電解液二次電池を利用する
ことが検討されている。これらに用いられる電源は、放
電・充電がともに数秒程度の短時間で且つ大電力で行わ
れることが多く、容量よりも出力密度が大きいことが重
要になる。したがって、この場合には、反応表面積が大
きくなるように、電極合剤層の厚さを薄くして電池内に
収容される電極の長さを長くすることが必要である。
On the other hand, recently, attention has been paid to the lightness of the non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery has been used as a power source for a hybrid electric vehicle or an engine start. Are being considered. The power source used in these devices is often capable of discharging and charging both in a short time of about several seconds and with high power, and it is important that the power density is larger than the capacity. Therefore, in this case, it is necessary to reduce the thickness of the electrode mixture layer and increase the length of the electrode housed in the battery so as to increase the reaction surface area.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ような巻回電極体において、電極の長さをそのまま長く
した場合、集電体での電気抵抗が増加し、出力が低下す
るといった問題が生じてしまう。集電体の電気抵抗を低
減する方法として集電体の厚さを厚くすることも考えら
れるが、そうすると、電池内に充填できる活物質量が減
少して電池容量が小さくなったり、電池重量が増加する
等の不都合を招いてしまう。
However, in the above-mentioned wound electrode body, if the length of the electrode is directly increased, there arises a problem that the electric resistance in the current collector increases and the output decreases. Would. As a method of reducing the electric resistance of the current collector, it is conceivable to increase the thickness of the current collector. Inconveniences such as an increase are caused.

【0009】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、集電抵抗が低く抑えら
れ、高い出力が得られる非水電解液二次電池を提供する
ことを目的とする。
Accordingly, the present invention has been proposed in view of such a conventional situation, and has as its object to provide a non-aqueous electrolyte secondary battery in which current collecting resistance is suppressed low and high output is obtained. And

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液二次電池は、Cuよりなる帯
状負極集電体上に、負極合剤層が形成されてなる負極
と、Alよりなる帯状正極集電体上に、正極合剤層が形
成されてなる正極とを有し、これら負極と正極の長手方
向に並列してリードが接続され、これらリードの本数
が、式1または式2の少なくともいずれかの条件を満た
すことを特徴とするものである。
In order to achieve the above-mentioned object, a nonaqueous electrolyte secondary battery of the present invention comprises a negative electrode mixture layer formed on a strip-shaped negative electrode current collector made of Cu. It has a negative electrode and a positive electrode in which a positive electrode mixture layer is formed on a strip-shaped positive electrode current collector made of Al, and leads are connected in parallel in the longitudinal direction of the negative electrode and the positive electrode. , Or at least one of the following conditions:

【0011】 Xa≧〔(1.72×10-4×La)/(Wa×ta)〕1/2・・・式1 (但し、Laは負極の長さ(cm)、Waは負極の幅
(cm)、taは負極集電体の厚さ(cm)である。ま
た、Xaのうち整数に対応する数が負極のリードの本数
である。) Xc≧〔(2.75×10-4×Lc)/(Wc×tc)〕1/2・・・式2 (但し、Lcは正極の長さ(cm)、Wcは正極の幅
(cm)、tcは正極集電体の厚さ(cm)である。ま
た、Xcのうち整数に対応する数が正極のリードの本数
である。) 非水電解液二次電池において、負極,正極に接続するリ
ードの本数を、式1または式2を満たすように負極,正
極の寸法や集電体の厚さに応じて規定すると、集電抵抗
が低く抑えられ、高い出力が得られるようになる。
Xa ≧ [(1.72 × 10 −4 × La) / (Wa × ta)] 1/2 Equation 1 (where La is the length (cm) of the negative electrode, and Wa is the width of the negative electrode) (Cm) and ta are the thickness (cm) of the negative electrode current collector, and the number corresponding to an integer in Xa is the number of negative electrode leads.) Xc ≧ [(2.75 × 10 −4 × Lc) / (Wc × tc)] 1/2 Equation 2 (where Lc is the length (cm) of the positive electrode, Wc is the width (cm) of the positive electrode, and tc is the thickness of the positive electrode current collector ( In addition, the number corresponding to an integer in Xc is the number of leads of the positive electrode.) In the nonaqueous electrolyte secondary battery, the number of leads connected to the negative electrode and the positive electrode is expressed by Equation 1 or Equation 2. If it is determined according to the dimensions of the negative electrode and the positive electrode and the thickness of the current collector so as to satisfy the condition, the current-collecting resistance can be suppressed low, and a high output can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明の具体的な実施の形
態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0013】本発明にかかる非水電解液二次電池の一例
を図1に示す。
FIG. 1 shows an example of the non-aqueous electrolyte secondary battery according to the present invention.

【0014】この非水電解液二次電池は、図1に示すよ
うに、負極集電体1の両面に負極合剤層2を形成してな
る負極3と、正極集電体4の両面に正極合剤層5を形成
してなる正極6とを、ポリプロピレンやポリエチレン等
よりなる微多孔膜セパレータ7を介して巻回し、この巻
回体の上下に絶縁体8を載置した状態で電池缶9に収納
してなるものである。
As shown in FIG. 1, this non-aqueous electrolyte secondary battery has a negative electrode 3 in which a negative electrode mixture layer 2 is formed on both surfaces of a negative electrode current collector 1 and a positive electrode current collector 4 having both surfaces. The positive electrode 6 formed with the positive electrode mixture layer 5 is wound through a microporous membrane separator 7 made of polypropylene, polyethylene, or the like, and the battery can is placed in a state where the insulator 8 is placed above and below the wound body. 9.

【0015】前記電池缶9には、電池蓋10が封口ガス
ケット11を介してかしめることによって取付けられ、
それぞれ負極リード12及び正極リード13を介して負
極あるいは正極と電気的に接続され、電池の負極あるい
は正極として機能するように構成されている。
A battery cover 10 is attached to the battery can 9 by caulking through a sealing gasket 11,
Each of them is electrically connected to a negative electrode or a positive electrode via a negative electrode lead 12 and a positive electrode lead 13, and is configured to function as a negative electrode or a positive electrode of a battery.

【0016】但し、この電池では、安全装置として電流
遮断用薄板が設けられ、上記正極リード13は、この電
流遮断用薄板14に溶接されて取り付けられ、この電流
遮断用薄板14を介して電池蓋10との電気的接続が図
られている。
However, in this battery, a current interrupting thin plate is provided as a safety device, and the positive electrode lead 13 is welded to the current interrupting thin plate 14 and attached thereto. The electrical connection with 10 is achieved.

【0017】このような構成を有する電池においては、
電池内部の圧力が上昇すると、前記電流遮断等薄板14
が押し上げられて変形する。すると、正極リード13が
電流遮断用薄板14と溶接された部分を残して切断さ
れ、電流が遮断される。
In the battery having such a configuration,
When the pressure inside the battery rises, the thin plate
Is pushed up and deformed. Then, the positive electrode lead 13 is cut leaving a portion welded to the current interrupting thin plate 14, and the current is interrupted.

【0018】ここで、上記負極3及び正極6の展開図を
図2に示す。上記負極3及び正極6には、上述の如く電
流を取り出すための負極リード12a,12b,12
c、正極リード13a,13bがそれぞれ接続されてい
る。この負極リード12a,12b,12c、正極リー
ド13a,13bの接続部分は、合剤層が形成されずに
集電体が露出しており、この露出している集電体に負極
リード12a,12b,12c、正極リード13a,1
3bは直接溶接されている。
FIG. 2 is a development view of the negative electrode 3 and the positive electrode 6. As described above, the negative electrode 3 and the positive electrode 6 have negative electrode leads 12a, 12b, 12
c, the positive electrode leads 13a and 13b are connected respectively. At the connection portions of the negative electrode leads 12a, 12b, 12c and the positive electrode leads 13a, 13b, a current collector is exposed without forming a mixture layer, and the exposed current collectors are connected to the negative electrode leads 12a, 12b. , 12c, positive electrode lead 13a, 1
3b is directly welded.

【0019】そして、この非水電解液二次電池では特
に、負極リード12a,12b,12cは式1で示され
るXaのうち整数に対応する本数で負極の長手方向に並
列に接続され、 Xa≧〔(1.72×10-4×La)/(Wa×ta)〕1/2・・・式1 (但し、Laは負極の長さ(cm)、Waは負極の幅
(cm)、taは負極集電体の厚さ(cm)である。) また、正極リード13a,13bは、次式で示されるX
cのうち整数に対応する本数で正極の長手方向に並列し
て接続されている。
In this non-aqueous electrolyte secondary battery, in particular, the negative electrode leads 12a, 12b, and 12c are connected in parallel in the longitudinal direction of the negative electrode in a number corresponding to an integer of Xa represented by the formula 1, Xa ≧ [(1.72 × 10 −4 × La) / (Wa × ta)] 1/2 Formula 1 (where, La is the length (cm) of the negative electrode, Wa is the width (cm) of the negative electrode, ta Is the thickness (cm) of the negative electrode current collector.) Further, the positive electrode leads 13a and 13b have X
The number corresponding to the integer of c is connected in parallel in the longitudinal direction of the positive electrode.

【0020】 Xc≧〔(2.75×10-4×Lc)/(Wc×tc)〕1/2・・・式2 (但し、Lcは正極の長さ(cm)、Wcは正極の幅
(cm)、tcは正極集電体の厚さ(cm)である。) このように電極の寸法や集電体の厚さに応じた本数で負
極リード12a,12b,12c、正極リード13a,
13bが接続されていると、電極の長さを長くした場合
でも集電抵抗が5mΩ以下に低減し、電流密度の向上を
図りながら大きな出力を得ることができる。なお、この
ような負極リード12a,12b,12cと正極リード
13a,13bの接続条件は、いずれか一方が満たされ
ていても効果は得られるが、両方の条件が満たされてい
るとより効果が高い。
Xc ≧ [(2.75 × 10 −4 × Lc) / (Wc × tc)] 1/2 Equation 2 (where Lc is the length (cm) of the positive electrode, and Wc is the width of the positive electrode (Cm) and tc are the thickness (cm) of the positive electrode current collector.) As described above, the number of the negative electrode leads 12a, 12b, 12c, and the positive electrode leads 13a, 13a,
When 13b is connected, the current collecting resistance is reduced to 5 mΩ or less even when the electrode length is increased, and a large output can be obtained while improving the current density. The effect can be obtained even if any one of the connection conditions of the negative electrode leads 12a, 12b, 12c and the positive electrode leads 13a, 13b is satisfied, but the effect is more improved if both conditions are satisfied. high.

【0021】ここで、集電抵抗を5mΩ以下にすること
は、特に動力源としてガソリンと電気を用いるハイブリ
ッド型車両に使用する電池において必要条件となる。
Here, it is a necessary condition for the battery used in a hybrid vehicle that uses gasoline and electricity as a power source to make the current collecting resistance 5 mΩ or less.

【0022】すなわち、ハイブリッド型車両に使用する
電池は、できる限り小型且つ高出力であることが望まし
い。ここで、一般的に小型車の場合、車両として20k
W程度の出力が必要とされる。また、必要とされる電圧
は、モーターの動作電圧から決まり、このことと電流効
率や安全性などを考慮するとセルの直列数は約100セ
ルとなる。したがって、車両に使用する電池は、セルあ
たりで約200Wの出力が必要となる。
That is, it is desirable that the battery used in the hybrid vehicle be as small as possible and have a high output. Here, in general, in the case of a small car, 20 k
An output of about W is required. Also, the required voltage is determined by the operating voltage of the motor, and considering this, current efficiency, safety, etc., the number of series cells is about 100 cells. Therefore, a battery used for a vehicle needs an output of about 200 W per cell.

【0023】一方、電池の開放電圧は約3.8Vであ
り、この場合200Wの出力を得るためには、内部抵抗
が16mΩ以下であることが必要である。
On the other hand, the open-circuit voltage of the battery is about 3.8 V. In this case, in order to obtain an output of 200 W, the internal resistance must be 16 mΩ or less.

【0024】ここで、電池の内部抵抗は、電池反応に係
る反応抵抗と、電解液やセパレータに由来する抵抗と、
集電抵抗に分けられ、このうち反応抵抗は約7〜8m
Ω、電解液やセパレータに由来する抵抗は約4mΩであ
り、これらを変えずに電池の内部抵抗を16mΩ以下に
するためには集電抵抗はおおよそ5mΩ以下であること
が必要である。このように、ハイブリッド型車両に使用
する電池では、集電抵抗が5mΩ以下であることが必要
である。
Here, the internal resistance of the battery is defined as the reaction resistance related to the battery reaction, the resistance derived from the electrolyte or the separator,
It is divided into current collecting resistors, of which the reaction resistance is about 7-8m
Ω, the resistance derived from the electrolytic solution and the separator is about 4 mΩ, and the current collecting resistance must be about 5 mΩ or less in order to keep the internal resistance of the battery at 16 mΩ or less without changing them. Thus, a battery used in a hybrid vehicle needs to have a current collecting resistance of 5 mΩ or less.

【0025】負極リード12a,12b,12c、正極
リード13a,13bはこのように所定の本数で接続さ
れるが、この場合、これらの接続位置も重要になる。例
えば、負極のリード本数を正極のリード本数よりも1本
多くし、図2に示すように、負極では負極リード12
a,12b,12cを等間隔で接続し、そのうち2本は
電極端部3a,3bに接続する。一方、正極リード13
a,13bは、負極リード同士の間の中点Ca,Cbに
対応する位置に接続すれば良い。この場合、隣り合った
正極13a,13b同士の間の中点Ccと正極リード1
3aまたは13bとの距離、及び電極端部6aまたは6
bと前記正極リード13aまたは13bとの距離が等し
いことになる。
The negative leads 12a, 12b and 12c and the positive leads 13a and 13b are connected in a predetermined number as described above. In this case, the connection positions thereof are also important. For example, the number of leads of the negative electrode is increased by one from the number of leads of the positive electrode, and as shown in FIG.
a, 12b, and 12c are connected at equal intervals, and two of them are connected to the electrode ends 3a and 3b. On the other hand, the positive electrode lead 13
a and 13b may be connected to positions corresponding to the middle points Ca and Cb between the negative electrode leads. In this case, the midpoint Cc between the adjacent positive electrodes 13a and 13b and the positive electrode lead 1
Distance from 3a or 13b, and electrode end 6a or 6
b and the distance between the positive electrode lead 13a and 13b are equal.

【0026】なお、ここでは負極リードを3本、正極リ
ードを2本接続した場合を例にしているが、上記条件を
満たす範囲であれば、この他のリード数にした場合でも
同様である。
Here, the case where three negative electrode leads and two positive electrode leads are connected is taken as an example, but the same applies to other numbers of leads as long as the above conditions are satisfied.

【0027】本発明では、このような条件で負極3,正
極6にそれぞれ負極リード12と正極リード13を接続
するが、負極3,正極6を構成する合剤層や集電体には
通常用いられている材料がいずれも使用可能である。
In the present invention, the negative electrode lead 12 and the positive electrode lead 13 are connected to the negative electrode 3 and the positive electrode 6, respectively, under such conditions. Any of the known materials can be used.

【0028】まず、負極合剤層は、リチウムイオンをド
ープ・脱ドープすることが可能な負極材料と結着剤を含
有して構成される。
First, the negative electrode mixture layer contains a negative electrode material capable of doping and undoping lithium ions and a binder.

【0029】負極材料としては、例えば、炭素質材料等
が用いられる。この炭素質材料としては、熱分解炭素
類、コークス類(ピッチコークス、ニードルコークス、
石油コークス等)、黒鉛類、ガラス状炭素類、有機高分
子を前駆体とした炭素類(フラン樹脂などを適当な温度
で焼成したもの等)、炭素繊維、活性炭等が挙げられ
る。
As the negative electrode material, for example, a carbonaceous material or the like is used. As the carbonaceous material, pyrolytic carbons, cokes (pitch coke, needle coke,
Petroleum coke, etc.), graphites, glassy carbons, carbons using an organic polymer as a precursor (such as those obtained by firing a furan resin or the like at an appropriate temperature), carbon fibers, activated carbon, and the like.

【0030】負極材料を正極集電体に保持するための結
着剤及び正極集電体としては通常用いられているものが
使用できる。例えば、結着剤としてはポリフッ化ビニリ
デン等のフッ素系樹脂、集電体としては銅箔等が使用さ
れる。
As the binder for holding the negative electrode material on the positive electrode current collector and the positive electrode current collector, those commonly used can be used. For example, a fluorine-based resin such as polyvinylidene fluoride is used as the binder, and a copper foil or the like is used as the current collector.

【0031】また、正極合剤層は、リチウムイオンをド
ープ・脱ドープすることが可能な正極材料と導電剤及び
結着剤を含有して構成される。
The positive electrode mixture layer contains a positive electrode material capable of doping and undoping lithium ions, a conductive agent and a binder.

【0032】正極材料としては、例えばLixMO2(但
し、Mは1種以上の遷移金属、好ましくはMn、Co、
Ni、Feの少なくとも1種である。また、0.05≦
x≦1.10である)で表されるリチウム遷移金属複合
酸化物が使用される。
As the positive electrode material, for example, Li x MO 2 (where M is one or more transition metals, preferably Mn, Co,
At least one of Ni and Fe. Also, 0.05 ≦
x ≦ 1.10) is used.

【0033】正極に導電性を付与するための導電剤、正
極材料を正極集電体に保持するための結着剤及び正極集
電体としては通常用いられているものが使用できる。
As a conductive agent for imparting conductivity to the positive electrode, a binder for holding the positive electrode material on the positive electrode current collector, and a positive electrode current collector, those commonly used can be used.

【0034】例えば導電剤としてはグラファイト,カー
ボンブラック、結着剤としてはポリフッ化ビニリデン等
のフッ素系樹脂、正極集電体としてはアルミニウム箔が
それぞれ使用される。
For example, graphite and carbon black are used as the conductive agent, fluorine resin such as polyvinylidene fluoride as the binder, and aluminum foil as the positive electrode current collector.

【0035】また、この電池では、非水溶媒に電解質塩
を溶解させた非水電解液が用いられる。
In this battery, a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent is used.

【0036】非水溶媒としては、炭酸プロピレン,炭酸
エチレン,炭酸ブチレン等の環状カーボネート、炭酸ジ
メチル,炭酸ジエチル,炭酸ジプロピル,炭酸エチルメ
チル等の鎖状カーボネート、ジメトキシエタン,テトラ
ヒドロフラン等のエーテル化合物、γ−ブチロラクトン
等の環状エステル類、スルホラン類等が単独もしくは混
合して用いられる。
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate and ethyl methyl carbonate; ether compounds such as dimethoxyethane and tetrahydrofuran; -Cyclic esters such as butyrolactone, sulfolane and the like are used alone or in combination.

【0037】また、電解質塩としてはLiPF6、Li
BF4、LiCF3SO3、LiClO4、LiAsF6
のリチウム塩が使用される。
As the electrolyte salt, LiPF 6 , LiPF
Lithium salts such as BF 4 , LiCF 3 SO 3 , LiClO 4 and LiAsF 6 are used.

【0038】[0038]

【実施例】本発明の実施例について実験結果に基づいて
説明する。
EXAMPLES Examples of the present invention will be described based on experimental results.

【0039】〔実験例1〕実施例1 この実施例1は、負極の長さLa:485.5cm、負
極の幅Wa:7.65cm、負極集電体の厚さta:
0.0015cmとし、負極に負極リードを3本取り付
け、正極の長さLc:470.0cm、正極の幅Wc:
7.25cm、正極集電体の厚さtc:0.0020c
mとし、正極に正極リードを2本取付けた非水電解液二
次電池の例である。
Experimental Example 1 Example 1 In Example 1, the length La of the negative electrode was 485.5 cm, the width Wa of the negative electrode was 7.65 cm, and the thickness ta of the negative electrode current collector was ta:
0.0015 cm, three negative electrode leads were attached to the negative electrode, the positive electrode length Lc: 470.0 cm, and the positive electrode width Wc:
7.25 cm, thickness tc of positive electrode current collector: 0.0020 c
m is an example of a non-aqueous electrolyte secondary battery in which two positive electrodes are attached to the positive electrode.

【0040】この非水電解液二次電池は以下のようにし
て作製した。
This non-aqueous electrolyte secondary battery was manufactured as follows.

【0041】まず、負極は次のようにして作製した。First, the negative electrode was manufactured as follows.

【0042】石油ピッチを、不活性ガス気流中で焼成す
ることによって炭素材料を合成し、この炭素材料を粉砕
することによって平均粒径20μmの炭素材料粉末を得
た。
A carbon material was synthesized by calcining the petroleum pitch in an inert gas stream, and the carbon material was pulverized to obtain a carbon material powder having an average particle diameter of 20 μm.

【0043】この炭素材料粉末90重量部と、結着剤と
なるフッ化ビニリデン樹脂10重量部を混合することで
負極合剤を調製し、この負極合剤をN−メチルピロリド
ンに分散させることで負極合剤スラリーを得た。次に、
この負極合剤スラリーを、厚さ0.0015cmの銅箔
よりなる負極集電体の両面にリード溶接部を除いて塗布
した。そして、この負極集電体をロールで両面から圧縮
することによって負極原板を作製し、幅7.65cm、
長さ485.0cmに裁断した。ここで、〔(1.72
×10-4×La)/(Wa×ta)〕1/2は2.70で
ある。この負極に、図2に示すように両端部と両端部同
士の間の中点位置の3箇所に負極リードを溶接した。な
お、負極リードは、幅13mm、厚さ0.1mmのCu
製リードである。
A negative electrode mixture is prepared by mixing 90 parts by weight of the carbon material powder and 10 parts by weight of vinylidene fluoride resin as a binder, and the negative electrode mixture is dispersed in N-methylpyrrolidone. A negative electrode mixture slurry was obtained. next,
This negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 0.0015 cm except for a lead welding portion. Then, the negative electrode current collector was compressed from both sides with a roll to produce a negative electrode original plate, which was 7.65 cm wide.
It was cut to a length of 485.0 cm. Here, [(1.72
× 10 -4 × La) / (Wa × ta)] 1/2 is 2.70. As shown in FIG. 2, the negative electrode lead was welded to the negative electrode at three midpoints between both ends. The negative electrode lead is made of Cu having a width of 13 mm and a thickness of 0.1 mm.
It is a lead made of.

【0044】正極は次のようにして作製した。The positive electrode was manufactured as follows.

【0045】平均粒径10μmのLiCoO2粉末95
重量部と、導電剤となるグラファイト1.5重量部とカ
ーボンブラックを0.5重量部及び、結着材となるフッ
化ビニリデン樹脂3重量部を混合することによって正極
合剤を調製し、この正極合剤をN−メチルピロリドンに
分散させることで正極合剤スラリーを得た。そして、こ
の正極合剤スラリーを厚さ0.0020cmのアルミ箔
よりなる正極集電体の両面にリード溶接部を除いて塗布
した。そして、この正極集電体をロールで両面から圧縮
することによって正極原板を作製し、幅7.25cm、
長さ470.0cmに裁断した。ここで、〔(2.75
×10-4×Lc)/(Wc×tc)〕1/2は2.99で
ある。この正極に、図2に示すように2本の正極リード
同士の間の中点と前記正極の距離及び、電極端部と前記
電極端部側の正極の距離が等しくなるように2箇所に正
極リードを溶接した。なお、正極リードは、幅15m
m,厚さ0.2mmのAl製リードである。
LiCoO 2 powder 95 having an average particle size of 10 μm
By weight, 1.5 parts by weight of graphite serving as a conductive agent, 0.5 parts by weight of carbon black, and 3 parts by weight of vinylidene fluoride resin serving as a binder were mixed to prepare a positive electrode mixture. The positive electrode mixture slurry was obtained by dispersing the positive electrode mixture in N-methylpyrrolidone. Then, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 0.0020 cm except for a welded portion of a lead. Then, the positive electrode current collector was compressed from both sides with a roll to produce a positive electrode original plate, and was 7.25 cm in width.
It was cut to a length of 470.0 cm. Here, [(2.75
× 10 -4 × Lc) / (Wc × tc)] 1/2 is 2.99. As shown in FIG. 2, two positive electrodes are provided on the positive electrode such that the distance between the center between the two positive electrode leads and the positive electrode and the distance between the electrode end and the positive electrode on the electrode end side are equal. The lead was welded. The positive electrode lead has a width of 15 m.
m, an Al lead having a thickness of 0.2 mm.

【0046】このようにして作製された負極と正極及び
セパレータを、負極・セパレータ・正極・セパレータの
順で重ね、正極よりも負極が内側となるようにポリプロ
ピレン製の内芯(外径:7mm、長さ81mm)に巻取
ることで電極素子を作製した。セパレータは、幅80.
5mm、長さ5100mmのポリプロピレン製の微多孔
性シートであり、このセパレータを電極間に2枚重ねて
配するようにした。
The negative electrode, the positive electrode, and the separator thus manufactured are stacked in the order of negative electrode, separator, positive electrode, and separator, and a polypropylene inner core (outer diameter: 7 mm; The electrode element was manufactured by winding up to a length of 81 mm). The separator has a width of 80.
It is a polypropylene microporous sheet having a length of 5 mm and a length of 5100 mm, and two separators are arranged between the electrodes.

【0047】なお、負極の負極合剤が塗布されていない
部分(リード溶接部)と対向する正極部分には、ポリイ
ミド製テープを貼り、電極間のイオンの移動が疎外され
るようにした。また、負極リードと正極リードは、それ
ぞれ電極素子の異なる端面から導出した。
Incidentally, a polyimide tape was applied to the positive electrode portion opposite to the portion of the negative electrode where the negative electrode mixture was not applied (lead welded portion) so that the movement of ions between the electrodes was eliminated. Further, the negative electrode lead and the positive electrode lead were respectively derived from different end faces of the electrode element.

【0048】次に、作製された電極素子の上下にインシ
ュレータを配し、これをニッケルめっきが施された鉄製
円筒缶に挿入した。そして、負極リードを缶底に溶接す
るとともに、正極リードを電流遮断用薄板に溶接した。
Next, insulators were arranged above and below the manufactured electrode element, and this was inserted into a nickel-plated iron cylindrical can. Then, the negative electrode lead was welded to the bottom of the can, and the positive electrode lead was welded to the current blocking thin plate.

【0049】続いて、円筒缶の中に、プロピレンカーボ
ネートとジエチルカーボネートの混合溶媒にLiBF4
を1.5モル/リットルなる濃度で溶解させた電解液を
注入した。そして、円筒缶の開放側にトップカバーを載
せ、絶縁封口用のガスケットを介してかしめ、密閉する
ことで円筒型非水電解液二次電池(直径40mm、高さ
90mm)を作製した。
Subsequently, LiBF 4 was added to a mixed solvent of propylene carbonate and diethyl carbonate in a cylindrical can.
Was dissolved at a concentration of 1.5 mol / liter. Then, the top cover was placed on the open side of the cylindrical can, and caulked via a gasket for insulating sealing, and sealed to produce a cylindrical nonaqueous electrolyte secondary battery (diameter 40 mm, height 90 mm).

【0050】比較例1 図3に示すように、負極14に溶接する負極リード15
の本数を1本、正極16に溶接する正極リード17の本
数を1本にし、負極リード15を負極14の端部に溶接
し、正極リード17を正極16の反対側の端部に溶接し
たこと以外は実施例1と同様にして非水電解液二次電池
を作製した。
Comparative Example 1 As shown in FIG.
And the number of the positive electrode leads 17 to be welded to the positive electrode 16 was one, the negative electrode lead 15 was welded to the end of the negative electrode 14, and the positive electrode lead 17 was welded to the opposite end of the positive electrode 16. Except for the above, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1.

【0051】比較例2 図4に示すように、負極18に溶接する負極リード19
a,19bの本数を2本、正極20に溶接する正極リー
ド21の本数を1本にし、負極リード19a,19bを
負極18の両端部に溶接し、正極リード21を正極20
の中央部に溶接したこと以外は実施例1と同様にして非
水電解液二次電池を作製した。
COMPARATIVE EXAMPLE 2 As shown in FIG.
The number of a and 19b is two, the number of positive leads 21 to be welded to the positive electrode 20 is one, the negative leads 19a and 19b are welded to both ends of the negative electrode 18, and the positive lead 21 is connected to the positive electrode 20.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the non-aqueous electrolyte secondary battery was welded to the center of the battery.

【0052】以上のようにして作製された電池につい
て、電池の出力特性と内部抵抗解析を行った。その結果
を表1に示す。
The output characteristics and the internal resistance of the battery manufactured as described above were analyzed. Table 1 shows the results.

【0053】[0053]

【表1】 [Table 1]

【0054】表1に示すように、負極リードの本数が所
定の条件を満たす実施例1の電池は、比較例1や比較例
2の電池に比べて集電抵抗が小さく、電池の内部抵抗が
小さく抑えられ、大きな出力密度が得られる。
As shown in Table 1, the battery of Example 1 in which the number of the negative electrode leads satisfies the predetermined condition has a lower current collecting resistance and a lower internal resistance than the batteries of Comparative Examples 1 and 2. It is kept small and a large output density is obtained.

【0055】このことから、リードの本数を、電極の長
さや幅、集電体の厚さに応じて設定することは、電池の
内部抵抗を下げ、大きな出力密度を得る上で有効である
ことがわかった。
Thus, setting the number of leads in accordance with the length and width of the electrode and the thickness of the current collector is effective in lowering the internal resistance of the battery and obtaining a large output density. I understood.

【0056】さらに、負極リードと正極リードの両者を
3本とし、実施例1と同様にして非水電解二次電池を作
製した。なお、正極リードも負極リードと同様にして正
極に取り付けることとした。そして、この非水電解二次
電池の集電抵抗を測定したところ、前述の実施例1より
も更に1(mΩ)程度低下して約2(mΩ)となり、負
極リードと正極リードの本数の両方が所定の条件を満た
す場合には、集電抵抗を更に抑えることが可能となるこ
とが確認された。
Further, a non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that the number of both the negative electrode lead and the positive electrode lead was three. The positive electrode lead was attached to the positive electrode in the same manner as the negative electrode lead. When the current-collecting resistance of this non-aqueous electrolytic secondary battery was measured, it was reduced by about 1 (mΩ) from that of Example 1 to about 2 (mΩ). It was confirmed that, when satisfying the predetermined condition, it was possible to further suppress the current collecting resistance.

【0057】〔実験例2〕次に、正極リードの本数を1
本に固定し、負極リードの本数を変更する以外は、実施
例1と同様にして非水電解二次電池を作製し、これらの
電池の集電抵抗、総抵抗、電池容量比を調査した。
[Experimental Example 2] Next, the number of positive electrode leads was set to 1
A non-aqueous electrolytic secondary battery was fabricated in the same manner as in Example 1 except that the battery was fixed to a book and the number of negative electrode leads was changed, and the current collection resistance, total resistance, and battery capacity ratio of these batteries were examined.

【0058】結果を図5に示す。図5中横軸はリード本
数を示し、縦軸は抵抗と電池容量比を示す。そして、図
5中○は集電抵抗を示し、□は総抵抗を示し、△は電池
容量比を示す。ただし、上記電池容量比は、負極リード
が1本である電池の電池容量を1とした場合の比で示
す。
FIG. 5 shows the results. In FIG. 5, the horizontal axis indicates the number of leads, and the vertical axis indicates the resistance and the battery capacity ratio. In FIG. 5, ○ indicates current collecting resistance, □ indicates total resistance, and △ indicates battery capacity ratio. However, the battery capacity ratio is a ratio when the battery capacity of a battery having one negative electrode lead is set to 1.

【0059】図5の結果を見てわかるように、リード本
数を多くするほど、集電抵抗は低下している。しかしな
がら、リード本数の増加に伴って電池容量は低下してい
る。これは、電池内で電池反応に寄与しない部分が増加
してしまうためである。そして、総抵抗はこれらの相関
で増減し、リード数3本の場合に最小値をとり、それ以
上の本数ではあまり変化がない。ただし、リード本数を
更に増やすと、反応抵抗等の上昇によって総抵抗は上昇
してしまう。
As can be seen from the results shown in FIG. 5, as the number of leads increases, the current collecting resistance decreases. However, as the number of leads increases, the battery capacity decreases. This is because the portion of the battery that does not contribute to the battery reaction increases. The total resistance increases and decreases according to these correlations. The total resistance takes the minimum value when the number of leads is three, and does not change much when the number of leads is more than three. However, when the number of leads is further increased, the total resistance increases due to an increase in reaction resistance and the like.

【0060】すなわち、これらの結果からリード本数を
多くするほど集電抵抗を下げる効果があることが確認さ
れた。また、このリード本数は、総抵抗が上昇しない範
囲とされることが好ましいことが確認された。
That is, from these results, it was confirmed that the effect of lowering the current collecting resistance was increased as the number of leads was increased. Further, it was confirmed that it is preferable that the number of leads be in a range where the total resistance does not increase.

【0061】なお、ここでは、負極リードの本数を変更
して調査を行ったが、正極リードの本数を変更して調査
を行っても同様の結果が得られ、さらに、負極リードと
正極リードの両者の本数を増加させれば、集電抵抗を低
下させる効果がさらに顕著となる。
In this case, the investigation was conducted by changing the number of the negative electrode leads. However, the same result was obtained when the investigation was conducted by changing the number of the positive electrode leads. If the number of both is increased, the effect of lowering the current collection resistance becomes more remarkable.

【0062】[0062]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池では、正極または負極に接続す
るリードの本数を規制するので、内部抵抗が小さく抑え
られ、高い出力を得ることができる。したがって、同じ
出力を得るのに要する電池質量が従来のものに比べて小
さくて済む。また、内部抵抗が低いことによって、充放
電のエネルギー効率が非常に高くなり、さらに充放電に
伴うジュール熱の発生も小さいため、放熱処理が容易に
なる。しかも、リード本数をいたずらに多くすることに
よる電池質量の増加、容量低下を防ぐことができる。
As is clear from the above description, in the nonaqueous electrolyte secondary battery of the present invention, since the number of leads connected to the positive electrode or the negative electrode is regulated, the internal resistance is suppressed to a small value and the high output Can be obtained. Therefore, the mass of the battery required to obtain the same output is smaller than that of the conventional battery. In addition, since the internal resistance is low, the energy efficiency of charging and discharging is extremely high, and since the generation of Joule heat due to charging and discharging is small, the heat radiation processing becomes easy. In addition, it is possible to prevent an increase in battery mass and a decrease in capacity due to an unreasonable increase in the number of leads.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した非水電解液二次電池の一例を
示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図2】負極に3本の負極リードを取付け、正極に2本
の正極リードを取り付けた様子を示す平面図である。
FIG. 2 is a plan view showing a state in which three negative electrode leads are attached to a negative electrode, and two positive electrode leads are attached to a positive electrode.

【図3】負極に1本の負極リードを取付け、正極に1本
の正極リードを取り付けた様子を示す平面図である。
FIG. 3 is a plan view showing a state in which one negative electrode lead is attached to a negative electrode and one positive electrode lead is attached to a positive electrode.

【図4】負極に2本の負極リードを取付け、正極に1本
の正極リードを取り付けた様子を示す平面図である。
FIG. 4 is a plan view showing a state where two negative electrode leads are attached to a negative electrode and one positive electrode lead is attached to a positive electrode.

【図5】リード本数と抵抗、電池容量比の関係を示す特
性図である。
FIG. 5 is a characteristic diagram showing a relationship between the number of leads, a resistance, and a battery capacity ratio.

【符号の説明】[Explanation of symbols]

3 負極、6 正極、12a,12b,12c 負極リ
ード、13a,13b正極リード
3 negative electrode, 6 positive electrode, 12a, 12b, 12c negative electrode lead, 13a, 13b positive electrode lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cuよりなる帯状負極集電体上に、負極
合剤層が形成されてなる負極と、Alよりなる帯状正極
集電体上に、正極合剤層が形成されてなる正極とを有
し、これら負極と正極の長手方向に並列してリードが接
続され、 これらリードの本数が、式1または式2の少なくともい
ずれかの条件を満たすことを特徴とする非水電解液二次
電池。 Xa≧〔(1.72×10-4×La)/(Wa×ta)〕1/2・・・式1 (但し、Laは負極の長さ(cm)、Waは負極の幅
(cm)、taは負極集電体の厚さ(cm)である。ま
た、Xaのうち整数に対応する数が負極のリードの本数
である。) Xc≧〔(2.75×10-4×Lc)/(Wc×tc)〕1/2・・・式2 (但し、Lcは正極の長さ(cm)、Wcは正極の幅
(cm)、tcは正極集電体の厚さ(cm)である。ま
た、Xcのうち整数に対応する数が正極のリードの本数
である。)
1. A negative electrode in which a negative electrode mixture layer is formed on a strip-shaped negative electrode current collector made of Cu, and a positive electrode in which a positive electrode mixture layer is formed on a strip-shaped positive electrode current collector made of Al. And a lead is connected in parallel in the longitudinal direction of the negative electrode and the positive electrode, and the number of these leads satisfies at least one of the conditions of Formula 1 or Formula 2. battery. Xa ≧ [(1.72 × 10 −4 × La) / (Wa × ta)] 1/2 Formula 1 (where La is the length of the negative electrode (cm), Wa is the width of the negative electrode (cm)) , Ta are the thickness (cm) of the negative electrode current collector, and the number corresponding to an integer in Xa is the number of the negative electrode leads.) Xc ≧ [(2.75 × 10 −4 × Lc) / (Wc × tc)] 1/2 Formula 2 (where, Lc is the length (cm) of the positive electrode, Wc is the width (cm) of the positive electrode, and tc is the thickness (cm) of the positive electrode current collector. In addition, the number corresponding to an integer in Xc is the number of positive electrode leads.)
【請求項2】 負極合剤は、炭素材料を含有することを
特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode mixture contains a carbon material.
【請求項3】 正極合剤層は、LixMO2(但し、Mは
Co,Ni,Mn,Cr,Fe,V,Alのいずれか1
種類以上であり、1.1≧x≧0.4である。)で表さ
れるリチウム遷移金属複合酸化物を含有することを特徴
とする請求項1記載の非水電解液二次電池。
3. The positive electrode mixture layer is made of Li x MO 2 (where M is one of Co, Ni, Mn, Cr, Fe, V, and Al).
More than types, and 1.1 ≧ x ≧ 0.4. 2. The non-aqueous electrolyte secondary battery according to claim 1, further comprising a lithium transition metal composite oxide represented by the formula (1).
【請求項4】 負極に3本以上の負極リードが等間隔で
接続され、そのうち2本は負極端部に接続され、 正極に2本以上の正極リードが接続され、隣合う正極リ
ード同士の間の中点と前記正極リードとの距離と、正極
端部と前記正極端部側の正極リードとの距離が等しくな
されていることを特徴とする請求項1記載の非水電解液
二次電池。
4. Three or more negative leads are connected to the negative electrode at equal intervals, two of which are connected to the negative electrode end, two or more positive leads are connected to the positive electrode, and between adjacent positive leads. The non-aqueous electrolyte secondary battery according to claim 1, wherein a distance between a center point of the positive electrode lead and a distance between a positive electrode end and a positive electrode lead on the positive electrode end side is equalized.
JP03749498A 1998-02-19 1998-02-19 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4359941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03749498A JP4359941B2 (en) 1998-02-19 1998-02-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03749498A JP4359941B2 (en) 1998-02-19 1998-02-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11233148A true JPH11233148A (en) 1999-08-27
JP4359941B2 JP4359941B2 (en) 2009-11-11

Family

ID=12499089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03749498A Expired - Fee Related JP4359941B2 (en) 1998-02-19 1998-02-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4359941B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369296C (en) * 2004-02-16 2008-02-13 三星Sdi株式会社 Bettery
US8343666B2 (en) 2005-01-14 2013-01-01 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2014167890A (en) * 2013-02-28 2014-09-11 Toshiba Corp Battery
US9012053B2 (en) 2010-07-12 2015-04-21 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery including the same
US10468655B2 (en) 2015-11-19 2019-11-05 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary batteries
US20210257607A1 (en) * 2018-06-28 2021-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369296C (en) * 2004-02-16 2008-02-13 三星Sdi株式会社 Bettery
US7794872B2 (en) 2004-02-16 2010-09-14 Samsung Sdi Co., Ltd. Secondary battery
US8343666B2 (en) 2005-01-14 2013-01-01 Panasonic Corporation Nonaqueous electrolyte secondary battery
US9012053B2 (en) 2010-07-12 2015-04-21 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery including the same
JP2014167890A (en) * 2013-02-28 2014-09-11 Toshiba Corp Battery
US10468655B2 (en) 2015-11-19 2019-11-05 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary batteries
US20210257607A1 (en) * 2018-06-28 2021-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4359941B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
KR101741666B1 (en) Non-aqueous secondary battery
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
US20160111703A1 (en) Nonaqueous electrolyte secondary battery and battery module
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
JP5257700B2 (en) Lithium secondary battery
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
US20090029257A1 (en) Electric storage device
EP2086044A2 (en) Electric storage device
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP2004006275A (en) Non-aqueous electrolytic solution rechargeable battery
EP3322024B1 (en) Nonaqueous electrolyte battery and battery pack
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2019207755A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP3526786B2 (en) Lithium secondary battery
JP2001167767A (en) Non-aqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP3526223B2 (en) Lithium secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2006134758A (en) Secondary battery
JP4359941B2 (en) Non-aqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP7443579B2 (en) Nonaqueous electrolyte batteries and battery packs
JP2019169346A (en) Lithium ion secondary battery
KR20080029480A (en) Lithium secondary battery, and hybrid capacitor
JP3444302B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees