JPH1123079A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH1123079A
JPH1123079A JP17156497A JP17156497A JPH1123079A JP H1123079 A JPH1123079 A JP H1123079A JP 17156497 A JP17156497 A JP 17156497A JP 17156497 A JP17156497 A JP 17156497A JP H1123079 A JPH1123079 A JP H1123079A
Authority
JP
Japan
Prior art keywords
booster
primary
refrigerant
valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17156497A
Other languages
Japanese (ja)
Other versions
JP4043074B2 (en
Inventor
Makoto Fujitani
誠 藤谷
Masashi Maeno
政司 前野
Akira Ito
昭 伊東
Harunobu Mizukami
春信 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17156497A priority Critical patent/JP4043074B2/en
Publication of JPH1123079A publication Critical patent/JPH1123079A/en
Application granted granted Critical
Publication of JP4043074B2 publication Critical patent/JP4043074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator to cope with a trouble, such as ozone fracture and warming of a globe by a method wherein a natural refrigerant is used in a circulation cycle on the secondary side, a booster is arranged in a position below primary and secondary heat-exchange parts, and a solenoid valve is arranged on the outlet side of a boosting device. SOLUTION: A secondary refrigerant, being a natural refrigerant such as CO2 , radiated and condensed by a refrigerator 1 on the primary side is fed to a heat- exchanger 2 on the secondary side, where by absorbing heat a substance to be cooled is cooled. A secondary refrigerant evaporated by the heat-exchanger 2 on the secondary side is returned to the refrigerator 1 on the primary side, and is caused to drop under own weight in a liquid reservoir 51 situated downstream from the condensing part of the refrigerator 1 on the primary side, and stored therein. A secondary refrigerant in the liquid reservoir 31 is supplied under own weight to a booster 53 through a check valve 52. When a liquid refrigerant is sufficiently stored in a booster 53, solenoid valves 54 and 56 are closed. A secondary refrigerant is heated by a heating device 57 to increase the internal pressure of the booster 53, and the secondary refrigerant is fed to a heat-exchanger 2 on the secondary through a piping 3 on the secondary side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然冷媒を用いた
り機械式ポンプ代替機関を用いた冷凍(ここでは本来の
冷凍の外冷暖房など温湿度調節すなわち空調を含めてい
る。以下同じ)装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a natural refrigerant or a mechanical pump replacement engine (including temperature and humidity control, such as external cooling and heating of the original refrigeration, or air conditioning; the same applies hereinafter). .

【0002】[0002]

【従来の技術と発明が解決しようとする課題】図15
は、従来の冷凍装置を示しており、システムとしては室
外設置の圧縮式サイクルを有する1次側と室内を空調す
る2次側とから構成される。冷房時には、1次側では圧
縮機11で圧縮された1次冷媒が四方弁12で流路が切
り換えられファン14を有する熱源側熱交換器13で冷
媒を凝縮液化した後、膨張弁15で減圧され1次・2次
熱交換器16で蒸発して四方弁12、アキュムレータ1
7を経て圧縮機11に吸入される。他方、2次側ではポ
ンプ18で圧送された2次冷媒は1次・2次熱考案器1
6で1次側の冷媒に冷却されファン20を有する室内熱
交換器19で室内を冷房した後ポンプ18に戻る。暖房
時には四方弁12で流路が逆方向に切り換えられ1次・
2次熱交換器16で加熱された2次冷媒が室内熱交換器
19に循環し室内を暖房する。上述の場合、1次冷媒と
してフロン系冷媒R22等を用い、2次冷媒として水、
ブライン等が用いられる例が多い。
2. Description of the Related Art FIG.
Shows a conventional refrigeration system, and the system is composed of a primary side having a compression-type cycle installed outdoors and a secondary side for air-conditioning the room. At the time of cooling, on the primary side, the primary refrigerant compressed by the compressor 11 is switched by the four-way valve 12 to condense and liquefy the refrigerant in the heat source side heat exchanger 13 having the fan 14, and then decompressed by the expansion valve 15. Is evaporated in the primary / secondary heat exchanger 16 and the four-way valve 12 and the accumulator 1
, And is sucked into the compressor 11. On the other hand, on the secondary side, the secondary refrigerant pumped by the pump 18 is the primary / secondary heat deviser 1
At 6, the room is cooled by the refrigerant on the primary side and the room is cooled by the indoor heat exchanger 19 having the fan 20, and then returns to the pump 18. During heating, the flow path is switched in the opposite direction by the four-way valve 12 so that the primary
The secondary refrigerant heated by the secondary heat exchanger 16 circulates through the indoor heat exchanger 19 to heat the room. In the case described above, a Freon-based refrigerant R22 or the like is used as a primary refrigerant, and water is used as a secondary refrigerant.
In many cases, brine or the like is used.

【0003】ところが、1次側のフロン系冷媒の中に
は、オゾン層を破壊することから生態系上あるいは地球
温暖化の観点から問題が生ずるものがあり、また2次側
の水やブラインの循環にあっては漏れにより室内が水び
たしとなることがあるという問題がある。
However, some of the CFC-based refrigerants on the primary side cause problems from the viewpoint of ecosystems or global warming due to the destruction of the ozone layer. In the case of circulation, there is a problem that the room may be flooded due to leakage.

【0004】上述の1次側でのフロンの問題に対処する
ため、自然冷媒であるアンモニアを使用する例もある
が、このアンモニアにあっては毒性、爆発性、銅に対す
る腐食性という問題があり、使用条件が極めて限られ、
あまり使用したくないものである。なお、最近Internat
ional Status Report on Compression Systems with Na
tional Working Fluids (1996/2, Report No HPP-AIV22
-2) には、数か月間での2次冷媒にCO2 を利用したア
ンモニアシステムの運転が示されているが、2次冷媒C
2 をポンプにて循環させていることから、一般的に高
圧に基因する信頼性や高コストに問題を残している。ま
た、NH3 /CO2 システムの例も示されているが、重
力利用の自然循環方式であり、流量制御の自由度はな
い。このようにして自然冷媒を用いるとき、毒性等の
点、信頼性やコストの点、流量制御の点にてそれぞれ問
題が生ずることとなった。
[0004] In order to cope with the above-mentioned problem of chlorofluorocarbons on the primary side, there is an example in which ammonia as a natural refrigerant is used. However, this ammonia has problems of toxicity, explosiveness, and corrosiveness to copper. , Use conditions are extremely limited,
I don't want to use it much. Recently, Internat
ional Status Report on Compression Systems with Na
tional Working Fluids (1996/2, Report No HPP-AIV22
-2) shows the operation of the ammonia system using CO 2 as the secondary refrigerant for several months.
Since O 2 is circulated by a pump, there remains a problem in reliability and high cost generally caused by high pressure. Although an example of an NH 3 / CO 2 system is also shown, it is a natural circulation system using gravity, and there is no freedom in flow rate control. When a natural refrigerant is used in this way, problems arise in terms of toxicity, reliability, cost, and flow rate control.

【0005】全く別の観点からポンプについて着目した
場合、実開平6−40771にて開示される先行技術が
ある。図16はこの先行技術における冷媒強制循環装置
であり自然循環できない高所や遠方に冷媒を送るに当り
機械式ポンプを用いることなく強制循環させる装置であ
る。すなわち、1次側冷凍機1の2次側配管3を被冷却
体を冷却する2次側熱交換器2に通すのであるが、更に
この2次側配管3の2次冷媒を搬送する搬送手段にも通
すことによって、被冷却体の冷却のみならず強制循環を
行なおうとするものである。
When attention is paid to the pump from a completely different viewpoint, there is a prior art disclosed in Japanese Utility Model Laid-Open No. 6-40771. FIG. 16 shows a refrigerant forced circulation device according to the prior art, in which the refrigerant is forcedly circulated without using a mechanical pump when sending the refrigerant to a place where natural circulation is not possible or a distant place. That is, the secondary pipe 3 of the primary refrigerator 1 is passed through the secondary heat exchanger 2 that cools the object to be cooled, and a transport unit that further transports the secondary refrigerant in the secondary pipe 3. In this case, not only the cooling of the object to be cooled but also forced circulation is performed.

【0006】搬送手段は、動力が必要で全体の効率を低
下させしかも耐久性に問題のある機械式ポンプではな
く、1次側冷凍機1の下流配管3で低い位置に逆流防止
手段4a,4b、冷媒貯溜容器5、ヒータ6等を備えた
構成を有し、冷凍機1からの液体冷媒を冷媒貯溜容器5
に自然に流れ入ませ、ヒータ6をオンして容器5内の圧
力を上げ、逆流防止手段4aに加わる圧力以上になると
この逆流防止手段4aから2次側熱交換器2に向って冷
媒が押し出されるというもので、ヒータ6のオフによっ
て冷媒貯溜容器5内の圧力が低下すると再び冷凍機1か
らの冷媒が流れ込むというサイクルを繰り返して冷媒を
断続的に循環させている。なお、図16では、7は圧力
検出器、8は制御手段、9はヒータ6のオンオフ切換手
段である。
The transfer means is not a mechanical pump which requires power and lowers the overall efficiency and has a problem in durability. Instead, the backflow prevention means 4a and 4b are located at a low position in the downstream pipe 3 of the primary refrigerator 1. , A refrigerant storage container 5, a heater 6, and the like, and the liquid refrigerant from the refrigerator 1 is supplied to the refrigerant storage container 5.
When the pressure inside the container 5 rises above the pressure applied to the backflow prevention means 4a, the refrigerant is extruded from the backflow prevention means 4a toward the secondary heat exchanger 2. When the pressure in the refrigerant storage container 5 is reduced by turning off the heater 6, the refrigerant is intermittently circulated by repeating a cycle in which the refrigerant from the refrigerator 1 flows again. In FIG. 16, 7 is a pressure detector, 8 is a control means, and 9 is an on / off switching means of the heater 6.

【0007】かかる搬送手段は、図15に示すポンプ1
8などの機械式ポンプ代替手段とな得るものであり、高
所や遠方への冷媒循環に効果的である。
[0007] The transport means is a pump 1 shown in FIG.
8 and the like, and is effective for circulating the refrigerant at a high place or at a distance.

【0008】ところが、貯留容器5内部の圧力を上昇さ
せて冷媒を強制循環させた後、再び貯溜容器5内部に冷
媒を導入するにはヒータ6により加熱した貯溜容器5内
部の冷媒温度が低下して圧力が下がるまで待つ必要があ
り、液冷媒の熱容量を考慮すれば応答が緩慢になること
と熱ロスが生じるという問題がある。
However, after the pressure inside the storage container 5 is increased and the refrigerant is forced to circulate, the refrigerant temperature inside the storage container 5 heated by the heater 6 decreases in order to introduce the refrigerant into the storage container 5 again. Therefore, there is a problem that the response becomes slow and heat loss occurs when the heat capacity of the liquid refrigerant is considered.

【0009】本発明は、上述の問題に鑑み、フロン系冷
媒を用いることなくオゾン破壊係数をゼロ、地球温暖化
係数も極めて小さい自然冷媒を熱駆動させ、また水やブ
ラインを用いることなく漏れがあっても水びたしになる
などの問題を除くようにした冷凍装置の提供を目的とす
る。更に、本発明は、毒性等にて問題となるアンモニア
を用いることなく他の自然冷媒を用いると共に機械式ポ
ンプに替る搬送手段にあって応答の緩慢さや熱ロスの発
生を軽減した冷凍装置の提供を目的とする。
In view of the above problems, the present invention drives a natural refrigerant having a zero ozone depletion potential and an extremely low global warming potential without using a chlorofluorocarbon-based refrigerant, and is free from leakage without using water or brine. It is an object of the present invention to provide a refrigeration apparatus that eliminates problems such as being flushed. Furthermore, the present invention provides a refrigerating apparatus which uses other natural refrigerants without using ammonia which is a problem due to toxicity and the like, and which has a slow response and reduces the occurrence of heat loss in a transport means which replaces a mechanical pump. With the goal.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。 (1) 2次側循環サイクル内にあって、自然冷媒を用
い、1次・2次熱交換部の下方位置に一方向のみの流路
を形成する逆止弁を介して昇圧器を備え、この昇圧装置
の出口側に上記自然冷媒の流路を開閉制御する電磁弁を
備えたことを特徴とする。 (2) 上記(1)において、上記1次・2次熱交換部
と逆止弁との間に液溜めを備えたことを特徴とする。 (3) 上記(1),(2)において、上記2次側循環
サイクル内には、上記1次・2次熱交換部を昇圧器との
間に上記逆止弁と並列に流路を開閉制御する電磁弁を備
えた均圧管を備えたことを特徴とする。 (4) 上記(3)において、上記逆止弁と並列な電磁
弁を有する均圧管を入口側に備え出口側に電磁弁を備え
た昇圧器からなる組を並列に2組備えたことを特徴とす
る。 (5) 上記(4)において、一方の均圧管の電磁弁を
閉じると共に昇圧器に備えられた加熱装置をオンし、時
間遅れをもって昇圧器出口の電磁弁を開き、他方の均圧
管の電磁弁を上記時間遅れをもって開き、更に上記時間
遅れをもって他方の昇圧器の加熱装置をオフし、上記時
間遅れをもって昇圧器出口の電磁弁を閉じることを特徴
とする。 (6) 上記(1),(2),(3),(4)又は
(5)において、1次側循環サイクル内にあって圧縮機
の吐出管及びその下流にあって凝縮器を有する熱源側熱
交換器の出口側のいずれか一方から配管を分岐させ流量
調節弁を介して上記昇圧器の加熱装置に連通したことを
特徴とする。 (7) 上記(1),(2),(3),(4),(5)
又は(6)において,1次側循環サイクル内にあって上
記1次・2次熱交換部の1次側配管を分岐させ、流量調
節弁を介して上記昇圧器の冷却器を構成したことを特徴
とする。 (8) 上記(1),(2)において、1次側循環サイ
クル内にあって圧縮機は、容量可変形圧縮機を用い、運
転速度を変化させるようにしたことを特徴とする。 (9) 上記(1)において、1次側循環サイクル内に
あって圧縮機から1次・2次熱交換部に自然冷媒を送
り、2次側循環サイクル内にあって上記1次・2次熱交
換部の下流には室内熱交換器を備え、その下位値に昇圧
器を備えたことを特徴とする。 (10) 1次側循環サイクル内にあって圧縮機から弁
を介して凝縮器を有する熱源側熱交換器及び1次・2次
熱交換部のいずれかに自然冷媒を送り、2次側循環サイ
クル内にあって上記1次・2次熱交換部の下位値に逆止
弁、昇圧器、電磁弁を備え、更に複数の弁を介在させ
て、1次・2次熱交換部、昇圧器、室内熱交換器の順に
構成される冷房回路と、1次・2次熱交換部、室内熱交
換器、昇圧器の順に構成される暖房回路とを切換えるよ
うにしたことを特徴とする。
The present invention that achieves the above object has the following matters specifying the invention. (1) In the secondary circulation cycle, using a natural refrigerant, a booster is provided via a check valve that forms a flow path in only one direction at a position below the primary and secondary heat exchange units, An electromagnetic valve for controlling the opening and closing of the flow path of the natural refrigerant is provided on the outlet side of the pressure increasing device. (2) In the above (1), a liquid reservoir is provided between the primary / secondary heat exchange section and the check valve. (3) In the above (1) and (2), in the secondary side circulation cycle, the flow path is opened / closed in parallel with the check valve between the primary / secondary heat exchange section and the booster. A pressure equalizing pipe provided with an electromagnetic valve to be controlled is provided. (4) In the above (3), two sets of a pressure equalizer having an electromagnetic valve in parallel with the check valve on the inlet side and a booster having an electromagnetic valve on the outlet side are provided in two sets. And (5) In the above (4), the solenoid valve of one pressure equalizing pipe is closed, the heating device provided in the booster is turned on, the solenoid valve at the pressure booster outlet is opened with a time delay, and the solenoid valve of the other pressure equalizing pipe is opened. Are opened with the time delay, the heating device of the other booster is turned off with the time delay, and the solenoid valve at the outlet of the booster is closed with the time delay. (6) In the above (1), (2), (3), (4) or (5), a heat source having a condenser in a discharge pipe of a compressor and downstream thereof in a primary circulation cycle. A pipe is branched from one of the outlet sides of the side heat exchanger, and is connected to the heating device of the booster via a flow control valve. (7) The above (1), (2), (3), (4), (5)
Or (6) that the primary side pipe of the primary / secondary heat exchange section is branched in the primary side circulation cycle, and the cooler of the booster is configured via a flow rate control valve. Features. (8) In the above (1) and (2), a variable displacement compressor is used as the compressor in the primary circulation cycle, and the operating speed is changed. (9) In the above (1), natural refrigerant is sent from the compressor to the primary / secondary heat exchange section in the primary circulation cycle, and the primary / secondary cycle is sent in the secondary circulation cycle. An indoor heat exchanger is provided downstream of the heat exchange section, and a booster is provided at a lower value thereof. (10) In the primary circulation cycle, the natural refrigerant is sent from the compressor to any one of the heat source side heat exchanger having the condenser and the primary / secondary heat exchange unit via the valve, and the secondary side circulation. In the cycle, a check valve, a booster, and a solenoid valve are provided at lower values of the primary and secondary heat exchangers, and a plurality of valves are interposed between the primary and secondary heat exchangers, the booster. A cooling circuit configured in the order of the indoor heat exchanger and a heating circuit configured in the order of the primary / secondary heat exchange unit, the indoor heat exchanger, and the booster.

【0011】[0011]

【発明の実施の形態】ここで、図1〜図14を参照して
本発明の実施の形態の例を説明する。なお、図15、図
16と同一部分には同符号を付す。図1において、1は
1次側冷凍機、2は2次側熱交換器、3は2次側配管で
ある。この1次側冷凍機1の下流にあって2次側熱交換
器2との間には、図1に示すような構成が備えられる。
すなわち、1次側冷凍機1の凝縮部より下に位置して液
溜め51、逆止弁52を順に介して昇圧器53が備えら
れ、液溜め51、逆止弁52と並列に液溜め51入口か
ら昇圧器53入口まで電磁弁54を介して均圧管55が
連通され、昇圧器53の出口には電磁弁56が備えられ
ている。また、昇圧器53内には加熱装置57が備えら
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described with reference to FIGS. The same parts as those in FIGS. 15 and 16 are denoted by the same reference numerals. In FIG. 1, 1 is a primary refrigerator, 2 is a secondary heat exchanger, and 3 is a secondary pipe. A configuration as shown in FIG. 1 is provided downstream of the primary refrigerator 1 and between the secondary refrigerator and the secondary heat exchanger 2.
That is, a booster 53 is provided below the condensing section of the primary refrigerator 1 via a liquid reservoir 51 and a check valve 52 in order, and the liquid reservoir 51 is provided in parallel with the liquid reservoir 51 and the check valve 52. A pressure equalizing pipe 55 is communicated from an inlet to an inlet of the booster 53 via an electromagnetic valve 54, and an electromagnetic valve 56 is provided at an outlet of the booster 53. A heating device 57 is provided in the booster 53.

【0012】ここにおいて、1次側に冷凍機1にて放熱
し凝縮された例えばCO2 などの自然冷媒である2次冷
媒は2次側熱交換器2にて吸熱し被冷却体を冷やし1次
側冷凍機1に戻るという作用は図16と同じである。1
次側冷凍機1の凝縮部よりも下流下位値にある液溜め5
1に2次冷媒が自重で落下してい貯溜され、更にこの2
次冷媒は逆止弁52を通り昇圧器53に入る。この場
合、電磁弁54は開かれており液溜め51と昇圧器53
とを強制的に均圧化して液溜め内部の2次冷媒を自重に
より昇圧器13に導入するようにしている。
Here, the secondary refrigerant which is a natural refrigerant such as CO 2 radiated and condensed by the refrigerator 1 to the primary side is absorbed by the secondary side heat exchanger 2 to cool the cooled object. The operation of returning to the next refrigerator 1 is the same as that of FIG. 1
Reservoir 5 at a lower value downstream of the condensing section of the next refrigerator 1
The secondary refrigerant is dropped by its own weight in 1 and is stored.
The next refrigerant enters the booster 53 through the check valve 52. In this case, the solenoid valve 54 is open, and the reservoir 51 and the booster 53
Are forcedly equalized so that the secondary refrigerant in the liquid reservoir is introduced into the booster 13 by its own weight.

【0013】昇圧器53の内部に液冷媒が十分に貯溜さ
れたところで電磁弁54および56を閉じ、逆止弁52
も含めて昇圧器53を密閉状態とする。ここで加熱装置
57により2次冷媒を加熱し、昇圧器53の内部の圧力
を上昇させる。例えば熱交換器2が昇圧器53よりも高
所にある場合に、昇圧器53内部の圧力がヘッド差及び
圧力損失分の程度上昇した後に電磁弁56を開くことで
昇圧器53から液冷媒が押し出され、2次冷媒回路内を
循環する。このとき、昇圧器53の内部の液冷媒が、加
熱装置57の位置よりも低下して、有効に圧力を上昇さ
せることが出来なくなるまで加熱装置57を作動させる
ことで昇圧器53の内部の圧力を常に高く保ち、冷媒を
連続的に搬送させる。また、加熱装置57による加熱量
を制御することで昇圧器53の圧力、ひいては2次冷媒
循環量を制御することができる。昇圧器53内部の圧力
が高くなり冷媒が搬送されている間は、逆止弁52があ
ることから液溜め51から昇圧器53へは2次冷媒が導
入されず、液溜め51に2次冷媒が貯溜される。
When the liquid refrigerant is sufficiently stored in the booster 53, the solenoid valves 54 and 56 are closed and the check valve 52 is closed.
And the booster 53 is closed. Here, the secondary refrigerant is heated by the heating device 57 to increase the pressure inside the booster 53. For example, when the heat exchanger 2 is located at a higher position than the booster 53, the liquid refrigerant from the booster 53 is opened by opening the solenoid valve 56 after the pressure inside the booster 53 has increased by about the head difference and the pressure loss. It is pushed out and circulates in the secondary refrigerant circuit. At this time, by operating the heating device 57 until the liquid refrigerant inside the booster 53 drops below the position of the heating device 57 and cannot effectively increase the pressure, the pressure inside the booster 53 is reduced. Is always kept high, and the refrigerant is continuously transported. In addition, by controlling the amount of heating by the heating device 57, the pressure of the booster 53 and thus the amount of secondary refrigerant circulation can be controlled. While the pressure inside the booster 53 is increased and the refrigerant is being conveyed, the secondary refrigerant is not introduced from the liquid reservoir 51 to the pressure booster 53 due to the check valve 52 because the check valve 52 is provided. Is stored.

【0014】昇圧器53の内部の液冷媒が減少して2次
冷媒を搬送できなくなった後、電磁弁56を閉じて再び
昇圧器53内部に冷媒を貯溜する必要がある。しかし、
昇圧器53の内部の圧力は高くなっており、そのままで
は逆止弁52を通じて2次冷媒を昇圧器内に導入出来な
い。本例では、図16に示すような冷媒貯溜容器53の
自然冷却によらず、前述したように電磁弁54を開いて
液溜め51と昇圧器53を強制的に均圧化し、液溜め5
1内部の2次冷媒を自重により昇圧器53に導入してい
る。昇圧器53内部に冷媒が十分貯溜されたところで電
磁弁56及び54を閉じ、加熱装置57を作動させ、圧
力が上昇したところで電磁弁56を開いて冷媒搬送を繰
り返す。昇圧器53から搬送された2次冷媒は、ヘッド
差及び圧力損失に打ち勝って配管3を通り熱交換器2に
送られる。ここで被冷却体から吸熱し、2次側冷媒は蒸
発して1次側冷凍機1に戻り、そこで放熱・凝縮して液
冷媒となり、再び液溜め51に戻ってサイクルを完成す
る。このシステムを用いることにより、2次冷媒を機械
式ポンプを利用せず冷媒を循環させる際、従来例よりも
より効率的な搬送を行なうことが出来る。なお、本例に
おいて液溜め51の存在は、1次側冷凍機1の凝縮部が
過冷却になるのを防止するために2次冷媒を溜めるもの
であるが、例えば図2に示す如く液溜め51を除いた構
成では電磁弁54を有する均圧管55を1次側冷凍機1
の上流側に連通させるようにすればよい。
After the liquid refrigerant inside the booster 53 decreases and the secondary refrigerant cannot be conveyed, it is necessary to close the solenoid valve 56 and store the refrigerant inside the booster 53 again. But,
Since the pressure inside the booster 53 is high, the secondary refrigerant cannot be introduced into the booster through the check valve 52 as it is. In this example, the solenoid valve 54 is opened to forcibly equalize the pressure in the liquid reservoir 51 and the booster 53 without depending on the natural cooling of the refrigerant reservoir 53 as shown in FIG.
The secondary refrigerant inside 1 is introduced into the booster 53 by its own weight. When the refrigerant is sufficiently stored in the booster 53, the electromagnetic valves 56 and 54 are closed, the heating device 57 is operated, and when the pressure increases, the electromagnetic valve 56 is opened to repeat the refrigerant conveyance. The secondary refrigerant conveyed from the booster 53 overcomes the head difference and the pressure loss and is sent to the heat exchanger 2 through the pipe 3. Here, heat is absorbed from the object to be cooled, the secondary refrigerant evaporates and returns to the primary refrigerator 1, where it is radiated and condensed to become a liquid refrigerant, and returns to the liquid reservoir 51 again to complete the cycle. By using this system, when the secondary refrigerant is circulated without using a mechanical pump, more efficient transfer can be performed than in the conventional example. In the present embodiment, the presence of the liquid reservoir 51 is to store the secondary refrigerant in order to prevent the condensing portion of the primary refrigerator 1 from being supercooled. For example, as shown in FIG. In the configuration excluding 51, the equalizing pipe 55 having the solenoid valve 54 is connected to the primary refrigerator 1.
It may be made to communicate with the upstream side of.

【0015】こうして、図1の例では機械式ポンプを使
用しないで2次冷媒を搬送するに当って、液溜めや昇圧
器を2次側配管途中に備え、強制的な均圧化を行なうこ
とにより効率良く2次冷媒を循環させることができる。
As described above, in the example of FIG. 1, when the secondary refrigerant is conveyed without using a mechanical pump, a liquid reservoir or a booster is provided in the middle of the secondary side piping to forcibly equalize the pressure. Thus, the secondary refrigerant can be circulated more efficiently.

【0016】図3は、図1の例を更に発展させたもの
で、逆止め弁52a,52b、昇圧器53a,53b、
電磁弁56a,56b、及び均圧管を並列配置して2次
冷媒を連続的に循環させるようにしたものである。すな
わち、図3に示すように液溜め51から逆止弁52a,
52bを並列配置してそれぞれ加熱装置57a,57b
を有する昇圧器53a,53bに連通させる一方、昇圧
器53a,53bの入口側をそれぞれ電磁弁54a,5
4bを備えた均圧管にて液溜め51の入口側に連通さ
せ、更に、昇圧器53a,53bの出口側を電磁弁56
a,56bを介して2次配管に連通させている。
FIG. 3 shows a further development of the example shown in FIG. 1, and includes check valves 52a and 52b, boosters 53a and 53b,
The solenoid valves 56a and 56b and the pressure equalizing tube are arranged in parallel to continuously circulate the secondary refrigerant. That is, as shown in FIG.
52b are arranged in parallel and heating devices 57a, 57b are respectively provided.
Are connected to the boosters 53a and 53b having the solenoid valves 54a and 5b, respectively.
4b is connected to the inlet side of the liquid reservoir 51 by a pressure equalizing pipe, and the outlet sides of the boosters 53a and 53b are connected to a solenoid valve 56.
a and 56b are connected to the secondary pipe.

【0017】かかる図3に示す構成において、まず加熱
装置57aを作動させ、電磁弁56aを開けて54aを
閉じることで、前述例の手法を用いて昇圧器53a内部
の2次冷媒を循環させる。この間、1次側冷凍機1によ
り凝縮した2次冷媒は液溜め51に貯溜されるが、電磁
弁56bを閉、さらに電磁弁54bを開とすることで、
液溜め51と均圧化された昇圧器53bに2次冷媒が貯
溜される。昇圧器53aの内部の液冷媒は搬送により減
少していくが、その液冷媒がある程度減少したところで
電磁弁54bを閉じ、さらに加熱装置57bを作動させ
て昇圧器53bの内部圧力を上昇させる。加熱装置57
a,57bおよび電磁弁56a,56b,54a,54
bの作動の状態を図4に示す。
In the configuration shown in FIG. 3, first, the heating device 57a is operated, the solenoid valve 56a is opened and the valve 54a is closed, so that the secondary refrigerant in the booster 53a is circulated by using the above-described method. During this time, the secondary refrigerant condensed by the primary refrigerator 1 is stored in the liquid reservoir 51. By closing the solenoid valve 56b and further opening the solenoid valve 54b,
The secondary refrigerant is stored in the liquid reservoir 51 and the booster 53b that has been equalized. The liquid refrigerant inside the booster 53a is reduced by transport, but when the liquid refrigerant is reduced to some extent, the electromagnetic valve 54b is closed, and the heating device 57b is operated to increase the internal pressure of the booster 53b. Heating device 57
a, 57b and solenoid valves 56a, 56b, 54a, 54
FIG. 4 shows the state of operation of b.

【0018】図4に示すタイミングでは、例えば均圧管
の電磁弁54aを閉じ昇圧器53aの加熱装置57aを
オンし、時間的に少し遅らせて電磁56aを開とすると
同時に電磁弁56aを閉じ、昇圧器53bの加熱装置5
7bをオフとし電磁弁54bを開とする。この時点で、
昇圧器53aから2次冷媒が送出され、一方昇圧器53
bへは液溜め51から冷媒が送り込まれる。昇圧器53
aで液冷媒を搬送し終る前に電磁弁54bを閉じ加熱装
置57bをオンし、少し遅らせた時点で均圧管の電磁弁
54aを開とし加熱装置57aをオフとし電磁弁56b
を開、電磁弁56aを閉として、2次冷媒を昇圧器53
bから搬送し昇圧器53aへ液溜め51から冷媒が送り
込まれる。
At the timing shown in FIG. 4, for example, the electromagnetic valve 54a of the pressure equalizing pipe is closed, the heating device 57a of the booster 53a is turned on, and the electromagnetic valve 56a is opened with a slight delay in time, and at the same time, the electromagnetic valve 56a is closed and the pressure is increased. Heating device 5 for vessel 53b
7b is turned off and the solenoid valve 54b is opened. at this point,
The secondary refrigerant is sent out from the booster 53a, while the
The coolant is sent from the liquid reservoir 51 to b. Booster 53
Before the liquid refrigerant is conveyed at a, the electromagnetic valve 54b is closed and the heating device 57b is turned on, and at a point slightly later, the electromagnetic valve 54a of the pressure equalizing tube is opened, the heating device 57a is turned off, and the electromagnetic valve 56b is turned off.
Is opened, the solenoid valve 56a is closed, and the secondary refrigerant is
b, and the refrigerant is sent from the liquid reservoir 51 to the booster 53a.

【0019】この動作のタイミングとしては、昇圧器5
3aで液冷媒を搬送し終わる時に、昇圧器53bの内部
の圧力が、2次冷媒回路内のヘッド差及び圧力損失分の
圧力上昇を生じる程度とする。1次側冷凍機1によって
冷却された液冷媒の熱容量および過冷却分を考慮する
と、加熱装置57a,57bにより冷媒を加熱しはじめ
てから圧力が上昇しはじめるまでに時間のずれが生じる
が、上記タイミングの遅れにより電磁弁56a,57a
を開けた際の冷媒搬送までの時間遅れをなくすことが出
来る。この電磁弁54a,54bが双方共閉じている遅
れの時間は、昇圧器53a,53bが共に圧力が高くな
るので、逆止弁52aおよび52bを通って昇圧器53
a,53bに冷媒を導入することが出来ず、凝縮した冷
媒は液溜め51に貯溜される。昇圧器53a内部の液冷
媒を搬送し終わった後、電磁弁56aを閉じ、代わりに
電磁弁56bを開とすることで、予め圧力を上昇させた
昇圧器53bから液冷媒が熱交換器2に搬送され、2次
側冷媒が途切れることなく連続的に循環させることがで
きる。さらに、このとき電磁弁54aを開として液溜め
51と昇圧器53aを均圧化し、液溜め51内部に貯溜
された液冷媒を昇圧器53aに導入する。昇圧器53b
内部の液冷媒を搬送し終わった後、再び二つの昇圧器5
3a,53bの役割を交替させることで、前述例より更
に発展させて連続的に冷媒を循環させることが出来る。
なお、本例においても液溜め51を備える必要がない場
合には、図2から類推されるように均圧管入口を1次冷
凍機1の上流側に連通させればよい。
The timing of this operation is as follows.
When the liquid refrigerant is completely conveyed in 3a, the pressure inside the booster 53b is set to such an extent that a pressure difference corresponding to the head difference and the pressure loss in the secondary refrigerant circuit occurs. Considering the heat capacity and supercooling of the liquid refrigerant cooled by the primary refrigerator 1, there is a time lag from when the refrigerant is started to be heated by the heating devices 57a and 57b to when the pressure starts to rise. Solenoid valves 56a, 57a
The time delay until the refrigerant is conveyed when the door is opened can be eliminated. During the delay time when both the solenoid valves 54a and 54b are closed, since the pressures of both the boosters 53a and 53b increase, the boosters 53a and 52b pass through the check valves 52a and 52b.
The refrigerant cannot be introduced into the a and 53b, and the condensed refrigerant is stored in the liquid reservoir 51. After the liquid refrigerant inside the booster 53a has been conveyed, the solenoid valve 56a is closed, and the solenoid valve 56b is opened instead, so that the liquid refrigerant flows from the booster 53b whose pressure has been increased in advance to the heat exchanger 2. The secondary refrigerant is conveyed and can be continuously circulated without interruption. Further, at this time, the solenoid valve 54a is opened to equalize the pressure in the reservoir 51 and the booster 53a, and the liquid refrigerant stored in the reservoir 51 is introduced into the booster 53a. Booster 53b
After the internal liquid refrigerant has been conveyed, the two boosters 5
By changing the roles of 3a and 53b, the refrigerant can be continuously circulated with further development than the above-described example.
In this example, when it is not necessary to provide the liquid reservoir 51, the pressure equalizing pipe inlet may be connected to the upstream side of the primary refrigerator 1 as analogized from FIG.

【0020】こうして、図3の例では、図1の例の効果
に加え図4の如く電磁弁と加熱装置の動作のタイミング
を適正化して、機械式ポンプ等の手段によらずに2次側
冷媒を連続的に循環できる。
Thus, in the example of FIG. 3, in addition to the effect of the example of FIG. 1, the operation timing of the solenoid valve and the heating device is optimized as shown in FIG. The refrigerant can be continuously circulated.

【0021】以上の説明は機械式ポンプを用いずCO2
などの自然冷媒を循環させる冷却のみの冷凍装置を得て
応答の緩慢さや熱ロスを少なくしたものである。
In the above description, CO 2 was used without using a mechanical pump.
Such a refrigerating device that only circulates a natural refrigerant such as a natural refrigerant is used to reduce slow response and heat loss.

【0022】次に、図4以下により前例による搬送装置
を用いた1次側及び2次側の冷凍装置を示す。なお、図
5以下の図にて図15と同一部分には同符号を付す。す
なわち、1次側にて圧縮機11、流路切換えのための四
方弁12、ファン14を有する熱源側熱交換器13、膨
張弁15、1次・2次熱交換器16、アキュムレータ1
7を有して1次冷媒が循環し、2次側にて1次・2次熱
交換器16、ファン20を有する室内熱交換器19を有
して2次冷媒が循環する。この場合、1次冷媒はプロパ
ン、2次冷媒はCO2 を使用している。
Next, primary and secondary refrigeration apparatuses using the transfer apparatus according to the previous example are shown in FIGS. In the drawings following FIG. 5, the same parts as those in FIG. 15 are denoted by the same reference numerals. That is, on the primary side, a compressor 11, a four-way valve 12 for switching a flow path, a heat source side heat exchanger 13 having a fan 14, an expansion valve 15, a primary / secondary heat exchanger 16, an accumulator 1
The primary refrigerant circulates at 7 and the secondary refrigerant circulates at the secondary side with a primary / secondary heat exchanger 16 and an indoor heat exchanger 19 with a fan 20. In this case, the primary refrigerant uses propane and the secondary refrigerant uses CO 2 .

【0023】本例では、1次・2次熱交換器16の2次
側にて下流下位値に液溜め101、逆止弁102、加熱
装置105を有する昇圧器103、及び電磁弁104が
順に備えられている。この図5にて、1次側の冷媒プロ
パンは圧縮機11により圧縮されて循環し、冷房時には
熱源側熱交換器13の凝縮器で凝縮液化し1次・2次熱
交換器16で蒸発する。一方、2次側では1次・2次熱
交換器16は凝縮器として使用し、ここで1次冷媒プロ
パンによって冷却された2次側の炭酸ガス冷媒は冷却液
化して液溜め101、逆止弁102を通って昇圧器10
3に落下する。電磁弁104を閉じることにより昇圧器
103には液化した炭酸ガスが溜まり所定量溜まったと
こで加熱装置105を加熱する。加熱量は室内熱交換器
19が高位置にある場合その液ヘッドや圧力損失に抗し
て循環させるに足る圧力差がつく量であればよい。所定
圧力差がついたときに電磁弁104を開くことにより液
化冷媒は逆止弁102の作用により液溜め101に逆流
することなく室内熱交換器19まで圧送され、ここで室
内を冷房することにより蒸発気化して1次・2次熱交換
器16に戻って再度液化するサイクルを繰り返す。
In the present embodiment, a liquid reservoir 101, a check valve 102, a booster 103 having a heating device 105, and a solenoid valve 104 are arranged in the lower order on the secondary side of the primary / secondary heat exchanger 16 in order. Provided. In FIG. 5, the primary-side refrigerant propane is compressed by the compressor 11 and circulates. During cooling, the refrigerant is condensed and liquefied in the condenser of the heat source side heat exchanger 13 and evaporated in the primary and secondary heat exchangers 16. . On the other hand, on the secondary side, the primary / secondary heat exchanger 16 is used as a condenser. Here, the secondary side carbon dioxide gas refrigerant cooled by the primary refrigerant propane is cooled and liquefied to a liquid reservoir 101, and the check is performed. Booster 10 through valve 102
Fall to 3. When the solenoid valve 104 is closed, the liquefied carbon dioxide gas accumulates in the booster 103 and the heating device 105 is heated when a predetermined amount of carbon dioxide gas accumulates. When the indoor heat exchanger 19 is at a high position, the amount of heating may be such that a pressure difference sufficient to circulate the liquid against the liquid head and the pressure loss is generated. By opening the solenoid valve 104 when a predetermined pressure difference is applied, the liquefied refrigerant is pressure-fed to the indoor heat exchanger 19 without flowing back to the reservoir 101 by the action of the check valve 102, and the room is cooled here. The cycle of evaporating and returning to the primary / secondary heat exchanger 16 and liquefying again is repeated.

【0024】この際、電磁弁104を開くと同時に加熱
装置105の通電を停止するか又は電磁弁104を開い
た後も所定時間通電しその後通電停止とする。前者の場
合は駆動力となる差圧の低下が大きく循環量がすぐ低下
するのに対し、後者の場合は加熱により昇圧器103か
ら液が流出し液冷媒量が減少することも相まって加熱装
置105の入力を減らしても循環量を多く保て搬送時間
を拡大できる。また液溜め101は1次・2次加熱交換
器16に冷媒が滞留し過冷却がつくことにより加熱時間
が長くなるのを防止するために設けているが、昇圧器1
03が単独の場合には液溜め101がなくても昇圧器1
03で代替することができる。なお、加熱装置105は
昇圧器103内の下部に配設し液冷媒が流出により減少
しても常に液が加熱できるようにするとよい。
At this time, the energization of the heating device 105 is stopped at the same time as the electromagnetic valve 104 is opened, or the energization is stopped for a predetermined time after the electromagnetic valve 104 is opened, and thereafter the energization is stopped. In the former case, the differential pressure acting as the driving force is greatly reduced, and the circulation amount is immediately reduced. In the latter case, however, the heating device 105 is combined with the fact that the heating causes the liquid to flow out of the booster 103 and the liquid refrigerant amount to be reduced. Even if the number of inputs is reduced, the amount of circulation can be kept large and the transport time can be extended. The liquid reservoir 101 is provided in order to prevent the refrigerant from staying in the primary / secondary heat exchanger 16 and overcooling to increase the heating time.
03 alone, the booster 1 even if there is no reservoir 101
03 can be substituted. It is preferable that the heating device 105 is disposed at a lower portion in the booster 103 so that the liquid can be always heated even if the liquid refrigerant is reduced by outflow.

【0025】冷媒についていえば、1次側の冷媒プロパ
ンは可燃性ではあるが室内では使用せず室外で使用する
上記構成としたことにより万一漏れた場合でも火災とな
る可能性は小さい。又、1次側の冷媒プロパンは圧力、
湿度特性とも従来のフロン冷媒R22とほぼ同じ特性を
持っているため従来の機器を何ら設計変更することなく
使用することができる。2次側の冷媒炭酸ガスは高圧冷
媒で(例えば30℃ではR22の1.2MPaに対し約
7MPa )ポンプ利用の場合には耐圧性を考慮する必要
があるが、上記の如くポンプレスとすることによりサイ
クル中に可動部をなくすことができ故障等の問題もなく
なる。又、高圧冷媒であるが故に加熱量が小さくても駆
動力である圧力差を大きくすることができるメリットが
ある。又、1次側、2次側ともに自然冷媒を使用してい
るためオゾン破壊係数がゼロであることはいうに及ば
ず、地球温暖化係数(GWP)も格段に小さいシステム
とすることができる。GWPはCO2 =1、プロパン=
3に対し、R22=1700である。
With respect to the refrigerant, the primary-side refrigerant propane is flammable, but the above-mentioned configuration in which the propane is not used indoors but used outdoors reduces the possibility of a fire in case of leakage. Also, the primary refrigerant propane is pressure,
Since the humidity characteristics have almost the same characteristics as the conventional Freon refrigerant R22, the conventional equipment can be used without any design change. Refrigerant carbon dioxide secondary side in the case of (1.2MP a relative about 7MP a of example 30 ° C. In R22) pumps used in high-pressure refrigerant, it is necessary to consider pressure resistance, but the above as pumpless This eliminates the movable parts during the cycle and eliminates problems such as failure. Further, since the refrigerant is a high-pressure refrigerant, there is an advantage that the pressure difference, which is the driving force, can be increased even if the amount of heating is small. In addition, since the primary and secondary sides use a natural refrigerant, the system can have a significantly lower global warming potential (GWP) as well as an ozone depletion potential of zero. GWP is CO 2 = 1, propane =
For 3, R22 = 1700.

【0026】図6は、図5の変形例であり、図5と異な
る点として昇圧器103の加熱装置105の熱源として
1次側圧縮機の吐出ガスを利用するものである。すなわ
ち、圧縮機11から四方弁12に向って出た吐出管は、
途中で分岐され流量調節弁110、加熱装置105を通
った後元の吐出管に連通されている。この場合、流量調
節弁110は分岐管でなく吐出管に備えるようにしても
よい。また、別の例として熱源側熱交換器13の凝縮器
を出た液管より分岐させるようにしてもよい。更に、吐
出管や液管に替えて外気を昇圧器103に送風させても
よい。昇圧器103にはフィンを備えれば熱交換効率が
あがる。図6の構成にあって動作は次のようになる。昇
圧器103に所定量の液冷媒が溜った時点で流量調節弁
110を開き適正量の吐出ガスで昇圧器103内の温度
を上げる。電磁弁104を開けば冷媒はシステム内を循
環することとなる。その後流量調節弁110を閉じると
同時に電磁弁104を閉成すれば昇圧器103内に冷媒
が溜まることとなりこの操作をくり返すことにより冷媒
を搬送することができる。図15の例に比して無駄なエ
ネルギを使用することなく1次側のエネルギを有効に回
収することができる。
FIG. 6 is a modification of FIG. 5, which differs from FIG. 5 in that the discharge gas of the primary compressor is used as the heat source of the heating device 105 of the booster 103. That is, the discharge pipe coming out of the compressor 11 toward the four-way valve 12 is:
After being branched on the way, passing through the flow control valve 110 and the heating device 105, it is communicated with the original discharge pipe. In this case, the flow control valve 110 may be provided in the discharge pipe instead of the branch pipe. Further, as another example, the condenser of the heat source side heat exchanger 13 may be branched from a liquid pipe that has exited. Further, outside air may be sent to the booster 103 instead of the discharge pipe or the liquid pipe. If the booster 103 is provided with a fin, the heat exchange efficiency is increased. The operation in the configuration of FIG. 6 is as follows. When a predetermined amount of liquid refrigerant has accumulated in the booster 103, the flow control valve 110 is opened, and the temperature in the booster 103 is increased with an appropriate amount of discharge gas. When the solenoid valve 104 is opened, the refrigerant circulates through the system. Thereafter, if the solenoid valve 104 is closed at the same time as the flow control valve 110 is closed, the refrigerant accumulates in the booster 103, and the refrigerant can be transported by repeating this operation. The energy on the primary side can be effectively recovered without using wasteful energy as compared with the example of FIG.

【0027】図7は第2の変形例であり、図4に示す構
成と異なる点は、1次・2次熱交換器16の1次側出口
配管を分岐しその分岐管120中に昇圧器103を冷や
す冷却器121と流量調節弁122を設けているもので
ある。図5では加熱装置105をオンとして昇圧器10
3内の液冷媒を送出した後加熱装置105をオフにして
も昇圧器103の熱容量のためその温度は仲々低下しな
い。このため作動圧力、温度とも上昇傾向となり冷房効
率が低下することとなる。このため、本例では、1次側
の低温冷媒で昇圧器103を適正に冷却することにより
作動圧力、温度を所定値に保つようにしたものである。
即ち加熱装置105をオフとすると同時に分岐管120
の流量調節弁122の開度を調節することにより冷却器
121で昇圧器103の温度を所定温度に保つように
し、加熱装置105をオンとすると同時に流量調節弁1
22を閉じて冷却器121に冷媒を流さないようにして
いる。
FIG. 7 shows a second modification, which differs from the structure shown in FIG. 4 in that the primary outlet pipe of the primary / secondary heat exchanger 16 is branched and a booster is provided in the branch pipe 120. A cooler 121 for cooling 103 and a flow control valve 122 are provided. In FIG. 5, the heating device 105 is turned on and the booster 10 is turned on.
Even if the heating device 105 is turned off after the liquid refrigerant in 3 is delivered, the temperature does not decrease gradually due to the heat capacity of the booster 103. Therefore, both the operating pressure and the temperature tend to increase, and the cooling efficiency decreases. For this reason, in this example, the operating pressure and temperature are maintained at predetermined values by appropriately cooling the booster 103 with the low-temperature refrigerant on the primary side.
That is, when the heating device 105 is turned off,
The temperature of the booster 103 is maintained at a predetermined temperature by the cooler 121 by adjusting the opening degree of the flow control valve 122 of FIG.
22 is closed to prevent the refrigerant from flowing into the cooler 121.

【0028】図8は第3の変形例であり、図5と異なる
点は1次側圧縮機11をインバータ等を用いた容量可変
形圧縮機11aとし、昇圧器103の加熱装置105を
除いた点にある。かかる構成では次の動作を行なう。可
変容量圧縮機11aを低速で運転することにより2次側
の液化冷媒を昇圧器103に溜め込む。所定量溜まった
とこで1次側の圧縮機11aを高速運転することにより
1次・2次熱交換器16の凝縮温度を下げ凝縮圧力を低
下させる。逆止弁102の前後に2次側の冷媒を循環さ
せるに足る圧力差がついた時点で電磁弁104を開くこ
とにより冷媒を循環させる。
FIG. 8 shows a third modification. The difference from FIG. 5 is that the primary compressor 11 is a variable displacement compressor 11 a using an inverter or the like, and the heating device 105 of the booster 103 is omitted. On the point. In such a configuration, the following operation is performed. The liquefied refrigerant on the secondary side is stored in the booster 103 by operating the variable displacement compressor 11a at a low speed. When a predetermined amount has been accumulated, the primary side compressor 11a is operated at high speed to lower the condensing temperature of the primary / secondary heat exchanger 16 to lower the condensing pressure. The refrigerant is circulated by opening the solenoid valve 104 when a pressure difference sufficient to circulate the refrigerant on the secondary side is obtained before and after the check valve 102.

【0029】図9は、第4の変形例であり、図5の例と
異なる点は、液溜め101の下流にて逆止弁102a,
102b、加熱装置105a,105bを備える昇圧器
103a,103b、電磁弁104a,104bを並列
につなげて構成したことである。かかる構成において
は、次の動作となる。液溜め101を出た冷媒は電磁弁
104a,104bを閉じておくことにより昇圧器10
3a,103bに溜り込む、冷媒が所定量溜ったら一方
の加熱装置105aをオンとし所定圧力に上昇するか所
定時間経過後電磁弁104aを開く。これにより昇圧器
103a内の冷媒は逆止弁102aの作用で液溜め10
1側へ逆流することなくシステム内を循環することとな
る。一方、加熱装置105bはオフ、電磁弁104bは
閉止のままのため1次・2次熱交換器16で凝縮した冷
媒は液溜め101を経由して昇圧器103bに溜り続け
る。昇圧器103a内の冷媒量又は循環量が低下するか
昇圧器103b内の冷媒が所定量になるか所定時間経過
したら加熱装置105bを加熱し所定圧力又は所定時間
後電磁弁104bを開き同時に電磁弁104aを閉じ加
熱装置105aをオフとする。これにより今度は昇圧器
103b内の冷媒がシステム内を循環し昇圧器103a
内に冷媒が溜り始めるようになる。こうして交互に溜め
と加熱、電磁弁のオンオフを繰り返すことにより連続し
て冷媒を循環させることができる。
FIG. 9 shows a fourth modification, which is different from the example of FIG. 5 in that a check valve 102a,
102b, boosters 103a and 103b having heating devices 105a and 105b, and solenoid valves 104a and 104b are connected in parallel. In such a configuration, the following operation is performed. The refrigerant flowing out of the reservoir 101 is supplied to the booster 10 by closing the solenoid valves 104a and 104b.
When a predetermined amount of refrigerant accumulates in the heaters 3a and 103b, one of the heating devices 105a is turned on to increase the pressure to a predetermined pressure or open a solenoid valve 104a after a predetermined time has elapsed. As a result, the refrigerant in the booster 103a is stored in the liquid reservoir 10 by the action of the check valve 102a.
It circulates through the system without backflow to one side. On the other hand, since the heating device 105b is off and the electromagnetic valve 104b remains closed, the refrigerant condensed in the primary / secondary heat exchanger 16 continues to accumulate in the booster 103b via the liquid reservoir 101. The heating device 105b is heated after a lapse of a predetermined time whether the refrigerant amount or the circulation amount in the booster 103a decreases or the refrigerant in the booster 103b reaches a predetermined amount, opens the electromagnetic valve 104b at a predetermined pressure or after a predetermined time, and simultaneously opens the electromagnetic valve. 104a is closed and the heating device 105a is turned off. This causes the refrigerant in the booster 103b to circulate in the system this time,
The refrigerant starts to accumulate inside. In this manner, the refrigerant can be continuously circulated by alternately repeating storage, heating, and ON / OFF of the solenoid valve.

【0030】図10は、第5の変形例で、図9と異なる
点は、昇圧103a,103bと液溜め101とを電磁
弁140a,140bを介して均圧管141a,141
bにて接続したことにある。かかる構成は次の動作とな
る。液溜め101を出た冷媒は電磁弁104a,104
bを閉成しておくことにより昇圧器103a,103b
に溜り込む。この際、電磁弁140a,140bは開
成、閉成どちらでもよい。冷媒が所定量溜ったら一方の
電磁弁105aを加熱し同時に電磁弁140aを閉成す
る。昇圧器103a内が所定圧力に上昇するか所定時間
経過後電磁弁104aを開く。これにより昇圧器103
a内の冷媒は逆止弁102aの作用で液溜め101側へ
逆流することなくシステム内を循環することとなる。一
方加熱装置105bは非加熱、電磁弁104bは閉成と
し、電磁弁140bを開成とすることにより昇圧器10
3b内の圧力と液溜め101内の圧力は均圧されるため
液溜め101内の液は重力で昇圧器103b内に落下し
続けることとなる。その後昇圧器103a内の冷媒量が
低下するか循環量が低下するか昇圧器103b内の冷媒
が所定溜まるか所定時間経過したら電磁弁140b内を
閉成し加熱装置105bをオンとする。所定圧力となる
か所定時間後電磁弁104bを開くと同時に電磁弁10
4aを閉、加熱装置105aをオフ、電磁弁140aを
開とする。すると今度は昇圧器103b内の冷媒がシス
テム内を循環し始め昇圧器103a内に冷媒が溜り始め
ることとなる。加熱装置105aをオフとしても昇圧器
103a内の圧力はすぐには低下しないが電磁弁140
aをオンとすることにより液溜め101と昇圧器103
aの圧力が均圧され液冷媒は落下し易くなる。なお、図
10において1次・2次熱交換器16の過冷却防止のた
め液溜め101を備えているが、その恐れが少ない場合
には、液溜め101を省いてもよい。この場合には、図
10に示す均圧管141a,141bは図11に示すよ
うに1次・2次熱交換器16の2次側上流側に連通させ
ることができる。
FIG. 10 shows a fifth modification, which is different from FIG. 9 in that the pressure boosters 103a, 103b and the reservoir 101 are connected to the equalizing pipes 141a, 141 via solenoid valves 140a, 140b.
b. This configuration operates as follows. The refrigerant flowing out of the reservoir 101 is supplied to the solenoid valves 104a, 104
b, the boosters 103a, 103b
Accumulate in At this time, the solenoid valves 140a and 140b may be open or closed. When a predetermined amount of refrigerant has accumulated, one of the solenoid valves 105a is heated, and at the same time, the solenoid valve 140a is closed. The solenoid valve 104a is opened after the pressure in the booster 103a rises to a predetermined pressure or after a predetermined time has elapsed. Thereby, the booster 103
The refrigerant in a is circulated in the system without flowing back to the liquid reservoir 101 side by the action of the check valve 102a. On the other hand, the heating device 105b is not heated, the solenoid valve 104b is closed, and the solenoid valve 140b is opened, so that the booster 10
Since the pressure in the reservoir 3b and the pressure in the reservoir 101 are equalized, the liquid in the reservoir 101 continues to fall into the booster 103b by gravity. After that, when the amount of refrigerant in the booster 103a decreases, the amount of circulation decreases, or the refrigerant in the booster 103b accumulates for a predetermined time or a predetermined time has elapsed, the electromagnetic valve 140b is closed and the heating device 105b is turned on. The solenoid valve 104b is opened at a predetermined pressure or after a predetermined time,
4a is closed, the heating device 105a is turned off, and the solenoid valve 140a is opened. Then, the refrigerant in the booster 103b starts to circulate in the system, and the refrigerant starts to accumulate in the booster 103a. When the heating device 105a is turned off, the pressure in the booster 103a does not decrease immediately, but the solenoid valve 140
By turning on a, the liquid reservoir 101 and the booster 103 are turned on.
The pressure of a is equalized, and the liquid refrigerant easily falls. Although the liquid reservoir 101 is provided in FIG. 10 to prevent the primary / secondary heat exchanger 16 from being supercooled, the liquid reservoir 101 may be omitted if there is little possibility of such a possibility. In this case, the pressure equalizing tubes 141a and 141b shown in FIG. 10 can be connected to the secondary upstream side of the primary / secondary heat exchanger 16 as shown in FIG.

【0031】図12は、第6の変形例であり、図5との
構成の違いは、1次・2次熱交換器16の下流、下位値
に室内熱交換器20と送風機19を配置し、更にその下
流下位値に逆止弁102、加熱装置105を有する昇圧
器103が備えられたものである。したがって、逆止弁
102、昇圧器103、電磁弁104は室内側に存在す
る。かかる構成において、1次側システムは四方弁12
が切り換えられ、圧縮機11を出たプロパン冷媒は1次
・2次熱交換器16で凝縮液化し膨張弁15で絞られた
後、熱源側熱交換器13で蒸発して圧縮機11に戻る。
2次側では1次・2次熱交換器16で加熱され蒸発した
炭酸ガス冷媒はその下方にある室内熱交換器20で送風
機19から送風される室内空気により凝縮液化し室内は
暖房される。電磁弁104が閉の為室内熱交換器20で
凝縮液化した冷媒は逆止弁102を通って更にその下方
にある昇圧器103に溜まる。所定量たまったとこで加
熱装置105をオンとし所定圧力となって時点で電磁弁
104をオンとすれば昇圧器103内の液冷媒は送出さ
れ再度1次・2次熱交換器16に戻って1次側の高温冷
媒で加熱され蒸発するサイクルを繰り返す。室内熱交換
器20を1次・2次熱交換器16の下方に配設すること
により1次側、2次側とも自然冷媒を用いたシステムで
ポンプレスで暖房サイクルを構成することができる。更
に加熱装置105の熱量も暖房に有効に使うことができ
る。
FIG. 12 shows a sixth modification. The difference from FIG. 5 is that the indoor heat exchanger 20 and the blower 19 are arranged downstream and downstream of the primary and secondary heat exchangers 16. Further, a booster 103 having a check valve 102 and a heating device 105 is provided at the downstream lower value. Therefore, the check valve 102, the booster 103, and the solenoid valve 104 exist indoors. In such a configuration, the primary system is a four-way valve 12.
Is switched, and the propane refrigerant that has exited the compressor 11 is condensed and liquefied in the primary and secondary heat exchangers 16, throttled by the expansion valve 15, evaporated in the heat source side heat exchanger 13, and returned to the compressor 11. .
On the secondary side, the carbon dioxide gas refrigerant heated and evaporated in the primary / secondary heat exchanger 16 is condensed and liquefied by the indoor air blown from the blower 19 in the indoor heat exchanger 20 therebelow, and the room is heated. Since the solenoid valve 104 is closed, the refrigerant condensed and liquefied in the indoor heat exchanger 20 passes through the check valve 102 and accumulates in the booster 103 further below the check valve 102. If the heating device 105 is turned on when the predetermined amount has been accumulated and the solenoid valve 104 is turned on at the time when the pressure reaches a predetermined pressure, the liquid refrigerant in the booster 103 is sent out and returns to the primary / secondary heat exchanger 16 again. The cycle of being heated and evaporated by the high-temperature refrigerant on the primary side is repeated. By arranging the indoor heat exchanger 20 below the primary and secondary heat exchangers 16, a heating cycle can be configured without a pump in a system using natural refrigerant on both the primary and secondary sides. Further, the amount of heat of the heating device 105 can be effectively used for heating.

【0032】図13,14は、図12の変形例であり、
図12と異なる点は2次側の管路中に三方弁及び二方弁
を介装し各々を切換えることにより冷房及び暖房ともに
実施できるようにした点である。1次・2次熱交換器1
6の出口に三方弁Aを介装し一方を室内熱交換器20へ
他方を逆止弁102に接続する。又、室内熱交換器20
を出た配管は一方が二方弁Dを介して逆止弁102、他
方は電磁弁104の後流に介装された三方弁Bに分岐接
続される。逆止弁102昇圧器103、電磁弁104、
三方弁Bと接続された配管は室外側の管路中に配設され
た三方弁Cで一方が三方弁Aと室内熱交換器20との間
の配管に他方は1次・2次熱交換器16に接続されて閉
サイクルを構成する。かかる構成により次の動作とな
る。暖房時は三方弁A,B,Cを図13の如き位置とし
二方弁Dを開成することにより図12と同様暖房を行な
うことができる。一方冷房時は三方弁A,B,Cを図1
4の如く切り換え、二方弁Dを閉成することにより2次
側のサイクルは1次・2次熱交換器16、三方弁A、逆
止弁102、昇圧器103、電磁弁104、三方弁B、
室内熱交換器20、分岐点E、三方弁C、1次・2次熱
交換器16の回路が構成され冷房サイクルとなる。三方
弁A,B,C及び二方弁Dを切り換えることにより1次
側にプロパン、2次側に炭酸ガスを用いた自然冷媒シス
テムをポンプレスで冷房、暖房ともに実施することがで
きる。
FIGS. 13 and 14 are modifications of FIG.
The difference from FIG. 12 is that both cooling and heating can be performed by interposing a three-way valve and a two-way valve in the secondary-side pipeline and switching between them. Primary and secondary heat exchanger 1
A three-way valve A is interposed at the outlet of No. 6 and one is connected to the indoor heat exchanger 20 and the other is connected to the check valve 102. In addition, the indoor heat exchanger 20
Is connected to a check valve 102 via a two-way valve D on one side and to a three-way valve B provided downstream of the solenoid valve 104 via a two-way valve D. Check valve 102, booster 103, solenoid valve 104,
The pipe connected to the three-way valve B is a three-way valve C disposed in a pipe on the outdoor side, one of which is a pipe between the three-way valve A and the indoor heat exchanger 20, and the other is a primary / secondary heat exchanger. Connected to the vessel 16 to form a closed cycle. With this configuration, the following operation is performed. At the time of heating, the three-way valves A, B, and C are positioned as shown in FIG. 13 and the two-way valve D is opened, whereby heating can be performed as in FIG. On the other hand, during cooling, the three-way valves A, B, C
By switching as shown in FIG. 4 and closing the two-way valve D, the cycle on the secondary side becomes the primary / secondary heat exchanger 16, the three-way valve A, the check valve 102, the booster 103, the solenoid valve 104, the three-way valve. B,
The circuit of the indoor heat exchanger 20, the branch point E, the three-way valve C, and the primary / secondary heat exchanger 16 is configured to form a cooling cycle. By switching the three-way valves A, B, C and the two-way valve D, a natural refrigerant system using propane on the primary side and carbon dioxide on the secondary side can be implemented for both cooling and heating without a pump.

【0033】[0033]

【発明の効果】以上説明したように本発明では次の効果
を有する。 (1) 2次側循環サイクル内にあって、自然冷媒を用
い、1次・2次熱交換部の下方位置に一方向のみの流路
を形成する逆止弁を介して昇圧器を備え、この昇圧装置
の出口側に上記自然冷媒の流路を開閉制御する電磁弁を
備えたことにより、オゾン破壊係数ゼロ、地球温暖化係
数も極めて小さく、しかも漏れが仮にあってもプロパン
やCO2 を用いることで水びたしや爆発の問題も極めて
少なくなり、更には機械式ポンプを用いることなく熱ロ
スを少なくでき、従来に比べ応答の緩慢さも軽くでき
る。 (2) 上記1次・2次熱交換部と逆止弁との間に液溜
めを備えたことにより、1次・2次熱交換部の過冷却を
抑えることができる。 (3) 上記2次側循環サイクル内には、上記1次・2
次熱交換部と昇圧器との間に上記逆止弁と並列に流路を
開閉制御する電磁弁を備えた均圧管を備えたことによ
り、昇圧器への冷媒落下を確実かつ円滑に行なうように
できる。 (4) 上記逆止弁と並列な電磁弁を有する均圧管を入
口側に備え出口側に電磁弁を備えた昇圧器からなる組を
並列に2組備えたことにより、各組交互のオンオフ制御
により冷媒の連続送出が可能となる。 (5) 一方の均圧管の電磁弁を閉じると共に昇圧器に
備えられた加熱装置をオンし、時間遅れをもって昇圧器
出口の電磁弁を開き、他方の均圧管の電磁弁を上記時間
遅れをもって開き、更に上記時間遅れをもって他方の昇
圧器の加熱装置をオフし、上記時間遅れをもって昇圧器
出口の電磁弁を閉じることにより、昇圧器出口の電磁弁
を開いた後も加熱をすることで搬送時間を拡大すること
ができる。 (6) 1次側循環サイクル内にあって圧縮機の吐出管
及びその下流にあって凝縮器を有する熱源側熱交換器の
出口側のいずれか一方から配管を分岐させ流量調節弁を
介して上記昇圧器の加熱装置に連通したことにより、加
熱装置に1次側エネルギを利用したことでエネルギの有
効利用が図れる。 (7) 1次側循環サイクル内にあって上記1次・2次
熱交換部の1次側配管を分岐させ、流量調節弁を介して
上記昇圧器の冷却器を構成したことで、1次側の低温冷
媒により作動圧力や温度を上昇させないようにした。 (8) 1次側循環サイクル内にあって圧縮機は、容量
可変形圧縮機を用い、運転速度を変化させるようにした
ことで、圧縮機回転数を上げることにより圧力差がつけ
られるので、加熱装置が必要なくなる。 (9) 1次側循環サイクル内にあって圧縮機から1次
・2次熱交換部に自然冷媒を送り、2次側循環サイクル
内にあって上記1次・2次熱交換部の下流には室内熱交
換器を備え、その下位値に昇圧器を備えたことにより、
自然冷媒による暖房運転をポンプレスにて可能にでき、
また加熱装置の熱エネルギを暖房にとり込むことができ
る。 (10) 1次側循環サイクル内にあって圧縮機から弁
を介して凝縮器を有する熱源側熱交換器及び1次・2次
熱交換部のいずれかに自然冷媒を送り、2次側循環サイ
クル内にあって上記1次・2次熱交換部の下位値に逆止
弁、昇圧器、電磁弁を備え、更に複数の弁を介在させ
て、1次・2次熱交換部、昇圧器、室内熱交換器の順に
構成される冷房回路と、1次2次熱交換部、室内熱交換
器、昇圧器の順に構成される暖房回路とを切換えるよう
にしたことで、冷暖房兼用を実施できる。
As described above, the present invention has the following effects. (1) In the secondary circulation cycle, using a natural refrigerant, a booster is provided via a check valve that forms a flow path in only one direction at a position below the primary and secondary heat exchange units, By providing an electromagnetic valve on the outlet side of this booster to control the opening and closing of the flow path of the natural refrigerant, the ozone depletion potential is zero, the global warming potential is extremely small, and even if there is a leak, propane or CO 2 can be reduced. By using this, the problems of watering and explosion are extremely reduced, and further, the heat loss can be reduced without using a mechanical pump, and the response can be made slower than before. (2) Since the liquid reservoir is provided between the primary / secondary heat exchange section and the check valve, it is possible to suppress overcooling of the primary / secondary heat exchange section. (3) In the secondary circulation cycle, the primary and secondary
By providing a pressure equalizing pipe having an electromagnetic valve for controlling the opening and closing of the flow path in parallel with the check valve between the next heat exchange unit and the booster, it is possible to surely and smoothly drop the refrigerant to the booster. Can be. (4) By providing two sets of pressure equalizer tubes each having a solenoid valve in parallel with the check valve on the inlet side and a booster having an electromagnetic valve on the outlet side in parallel, alternate on / off control of each set is provided. This enables continuous delivery of the refrigerant. (5) Close the solenoid valve of one pressure equalizing tube, turn on the heating device provided in the booster, open the solenoid valve at the booster outlet with a time delay, and open the solenoid valve of the other pressure equalizing tube with the time delay. Further, the heating device of the other booster is turned off with the time delay, and the solenoid valve at the outlet of the booster is closed with the time delay, so that heating is performed even after the solenoid valve at the outlet of the booster is opened. Can be expanded. (6) The pipe is branched from either the discharge pipe of the compressor in the primary circulation cycle or the outlet side of the heat source side heat exchanger downstream of the compressor and having the condenser, and the flow is controlled through the flow control valve. By communicating with the heating device of the booster, the energy can be effectively used by utilizing the primary energy for the heating device. (7) In the primary circulation cycle, the primary pipe of the primary / secondary heat exchange section is branched, and the cooler of the booster is configured via a flow rate control valve. The operating pressure and temperature were not increased by the low-temperature refrigerant on the side. (8) Within the primary circulation cycle, the compressor uses a variable displacement compressor and changes the operating speed, so that a pressure difference is created by increasing the compressor rotation speed. No heating device is required. (9) The natural refrigerant is sent from the compressor to the primary / secondary heat exchange section in the primary circulation cycle, and downstream of the primary / secondary heat exchange section in the secondary circulation cycle. Equipped with an indoor heat exchanger and a booster at the lower value,
Heating operation with natural refrigerant is possible without pump,
Also, the heat energy of the heating device can be taken into heating. (10) In the primary circulation cycle, the natural refrigerant is sent from the compressor to any one of the heat source side heat exchanger having the condenser and the primary / secondary heat exchange unit via the valve, and the secondary side circulation. In the cycle, a check valve, a booster, and a solenoid valve are provided at lower values of the primary and secondary heat exchangers, and a plurality of valves are interposed between the primary and secondary heat exchangers, the booster. By switching between a cooling circuit configured in the order of the indoor heat exchanger and a heating circuit configured in the order of the primary and secondary heat exchange units, the indoor heat exchanger, and the booster, it is possible to perform both cooling and heating. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的な実施の形態の一例の構成図。FIG. 1 is a configuration diagram of an example of a basic embodiment of the present invention.

【図2】図1にて液溜めを省略した場合の構成図。FIG. 2 is a configuration diagram when a liquid reservoir is omitted in FIG.

【図3】図1の構成を二組並列配置した構成図。FIG. 3 is a configuration diagram in which two sets of the configuration of FIG. 1 are arranged in parallel.

【図4】図3の各部波形図。FIG. 4 is a waveform chart of each part in FIG. 3;

【図5】1次循環サイクルをも示した構成図。FIG. 5 is a configuration diagram also showing a primary circulation cycle.

【図6】図5の第1の変形例の構成図。FIG. 6 is a configuration diagram of a first modified example of FIG. 5;

【図7】図5の第2の変形例の構成図。FIG. 7 is a configuration diagram of a second modification of FIG. 5;

【図8】図5の第3の変形例の構成図。FIG. 8 is a configuration diagram of a third modification of FIG. 5;

【図9】図5の第4の変形例の構成図。FIG. 9 is a configuration diagram of a fourth modified example of FIG. 5;

【図10】図5の第5の変形例の構成図。FIG. 10 is a configuration diagram of a fifth modification of FIG. 5;

【図11】図10の変形例の構成図。FIG. 11 is a configuration diagram of a modified example of FIG. 10;

【図12】図5による暖房例の構成図。FIG. 12 is a configuration diagram of a heating example according to FIG. 5;

【図13】図5による冷暖房兼用例の暖房時の構成図。FIG. 13 is a configuration diagram at the time of heating in the cooling / heating combined example shown in FIG. 5;

【図14】図5による冷暖房兼用例の冷房時の構成図。FIG. 14 is a configuration diagram at the time of cooling in the example of both cooling and heating shown in FIG.

【図15】図5に対応する従来例の構成図。FIG. 15 is a configuration diagram of a conventional example corresponding to FIG.

【図16】図1に対応する従来例の構成図。FIG. 16 is a configuration diagram of a conventional example corresponding to FIG.

【符号の説明】[Explanation of symbols]

1 1次側冷凍機 2 2次側熱交換器 11,11a 圧縮機 16 1次・2次熱交換器 20 室内熱交換器 51,101 液溜め 52,52a,52b,102,102a,102b
逆止弁 53,53a,53b,103,103a,103b
昇圧器 54,56,54a,54b,56a,56b,10
4,104a,104b,140a,140b 電磁弁 110,122 流量調節弁
DESCRIPTION OF SYMBOLS 1 Primary-side refrigerator 2 Secondary-side heat exchanger 11, 11a Compressor 16 Primary / secondary heat exchanger 20 Indoor heat exchanger 51,101 Liquid reservoir 52, 52a, 52b, 102, 102a, 102b
Check valve 53, 53a, 53b, 103, 103a, 103b
Boosters 54, 56, 54a, 54b, 56a, 56b, 10
4, 104a, 104b, 140a, 140b Solenoid valve 110, 122 Flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水上 春信 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Harunobu Mizukami 1 Takamichi, Iwazuka-cho, Nakamura-ku, Nagoya-shi, Aichi, Japan Nagoya Research Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 2次側循環サイクル内にあって、自然冷
媒を用い、1次・2次熱交換部の下方位置に一方向のみ
の流路を形成する逆止弁を介して昇圧器を備え、この昇
圧装置の出口側に上記自然冷媒の流路を開閉制御する電
磁弁を備えた冷凍装置。
In the secondary circulation cycle, a natural refrigerant is used, and a booster is connected to a booster through a check valve that forms a flow path in only one direction at a position below a primary / secondary heat exchange section. A refrigerating apparatus provided with an electromagnetic valve for controlling opening and closing of the flow path of the natural refrigerant at an outlet side of the pressure increasing device.
【請求項2】 上記1次・2次熱交換部と逆止弁との間
に液溜めを備えた請求項1記載の冷凍装置。
2. The refrigeration system according to claim 1, wherein a liquid reservoir is provided between said primary / secondary heat exchange section and a check valve.
【請求項3】 上記2次側循環サイクル内には、上記1
次・2次熱交換部を昇圧器との間に上記逆止弁と並列に
流路を開閉制御する電磁弁を備えた均圧管を備えた請求
項1又は2記載の冷凍装置。
3. The method according to claim 1, wherein the first circulation cycle includes:
The refrigerating apparatus according to claim 1 or 2, further comprising a pressure equalizing pipe provided with an electromagnetic valve that controls opening and closing of the flow path in parallel with the check valve between the secondary / secondary heat exchange unit and the booster.
【請求項4】 上記逆止弁と並列な電磁弁を有する均圧
管を入口側に備え出口側に電磁弁を備えた昇圧器からな
る組を並列に2組備えた請求項3記載の冷凍装置。
4. The refrigerating apparatus according to claim 3, wherein two sets each comprising a pressure equalizer having an electromagnetic valve in parallel with the check valve on the inlet side and a booster having an electromagnetic valve on the outlet side are provided in parallel. .
【請求項5】 一方の均圧管の電磁弁を閉じると共に昇
圧器に備えられた加熱装置をオンし、時間遅れをもって
昇圧器出口の電磁弁を開き、他方の均圧管の電磁弁を上
記時間遅れをもって開き、更に上記時間遅れをもって他
方の昇圧器の加熱装置をオフし、上記時間遅れをもって
昇圧器出口の電磁弁を閉じる上記請求項4記載の冷凍装
置。
5. The solenoid valve of one of the pressure equalizing tubes is closed, the heating device provided in the booster is turned on, the solenoid valve at the outlet of the pressure equalizer is opened with a time delay, and the solenoid valve of the other pressure equalizing tube is closed with the time delay. 5. The refrigerating apparatus according to claim 4, wherein the refrigerating apparatus is opened with the time delay, the heating device of the other booster is turned off with the time delay, and the solenoid valve at the booster outlet is closed with the time delay.
【請求項6】 1次側循環サイクル内にあって圧縮機の
吐出管及びその下流にあって凝縮器を有する熱源側熱交
換器の出口側のいずれか一方から配管を分岐させ流量調
節弁を介して上記昇圧器の加熱装置に連通した請求項
1,2,3,4又は5記載の冷凍装置。
6. A pipe is branched from one of a discharge pipe of a compressor and a downstream side of a heat source side heat exchanger having a condenser in a primary side circulation cycle and a flow control valve is provided. The refrigeration apparatus according to claim 1, 2, 3, 4, or 5, wherein the refrigeration apparatus communicates with a heating device of the booster via a heating device.
【請求項7】 1次側循環サイクル内にあって上記1次
・2次熱交換部の1次側配管を分岐させ、流量調節弁を
介して上記昇圧器の冷却器を構成した請求項1,2,
3,4,5又は6記載の冷凍装置。
7. A cooler for the booster via a flow control valve, wherein a primary pipe of the primary / secondary heat exchange section is branched in a primary circulation cycle. , 2,
7. The refrigeration apparatus according to 3, 4, 5, or 6.
【請求項8】 1次側循環サイクル内にあって圧縮機
は、容量可変形圧縮機を用い、運転速度を変化させるよ
うにした請求項1又は2記載の冷凍装置。
8. The refrigeration system according to claim 1, wherein the compressor is a variable capacity compressor in the primary circulation cycle and the operating speed is changed.
【請求項9】 1次側循環サイクル内にあって圧縮機か
ら1次・2次熱交換部に自然冷媒を送り、2次側循環サ
イクル内にあって上記1次・2次熱交換部の下流には室
内熱交換器を備え、その下位値に昇圧器を備えた請求項
1記載の冷凍装置。
9. A natural refrigerant is sent from a compressor to a primary / secondary heat exchange section in a primary circulation cycle, and is sent to the primary / secondary heat exchange section in a secondary circulation cycle. 2. The refrigeration apparatus according to claim 1, further comprising an indoor heat exchanger downstream of the indoor heat exchanger, and a booster at a lower value thereof.
【請求項10】 1次側循環サイクル内にあって圧縮機
から弁を介して凝縮器を有する熱源側熱交換器及び1次
・2次熱交換部のいずれかに自然冷媒を送り、2次側循
環サイクル内にあって上記1次・2次熱交換部の下位値
に逆止弁、昇圧器、電磁弁を備え、更に複数の弁を介在
させて、1次・2次熱交換部、昇圧器、室内熱交換器の
順に構成される冷房回路と、1次・2次熱交換部、室内
熱交換器、昇圧器の順に構成される暖房回路とを切換え
るようにした冷凍装置。
10. A natural refrigerant is sent from a compressor to a heat source side heat exchanger having a condenser and to a primary / secondary heat exchange section via a valve in a primary side circulation cycle. In the side circulation cycle, a check valve, a booster, and a solenoid valve are provided at lower values of the primary and secondary heat exchange units, and a plurality of valves are interposed between the primary and secondary heat exchange units. A refrigeration apparatus that switches between a cooling circuit configured in the order of a booster and an indoor heat exchanger, and a heating circuit configured in the order of a primary / secondary heat exchange unit, an indoor heat exchanger, and a booster.
JP17156497A 1997-06-27 1997-06-27 Refrigeration equipment Expired - Fee Related JP4043074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17156497A JP4043074B2 (en) 1997-06-27 1997-06-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17156497A JP4043074B2 (en) 1997-06-27 1997-06-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH1123079A true JPH1123079A (en) 1999-01-26
JP4043074B2 JP4043074B2 (en) 2008-02-06

Family

ID=15925485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17156497A Expired - Fee Related JP4043074B2 (en) 1997-06-27 1997-06-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4043074B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050822A1 (en) * 1999-02-24 2000-08-31 Hachiyo Engineering Co., Ltd. Heat pump system of combination of ammonia cycle and carbon dioxide cycle
JP2002106983A (en) * 2000-09-28 2002-04-10 Matsushita Refrig Co Ltd Cooling device and vending machine employing the cooling device
WO2005001345A1 (en) * 2003-06-25 2005-01-06 Star Refrigeration Limited Improved cooling system
EP1536190A1 (en) * 2003-11-28 2005-06-01 Birton A/S Refrigeration system using "free energy" for circulation of liquid refrigerant by pressure
EP1662212A2 (en) * 2004-11-23 2006-05-31 LG Electronics Inc. Air conditioning system and method for controlling the same
EP1816415A2 (en) 2006-02-07 2007-08-08 Birton A/S Refrigerating system using "free energy" for circulating liquid re-frigerant by pressure
JP2009115361A (en) * 2007-11-06 2009-05-28 Tamagawa Seiki Co Ltd Cooling device
JP2014092320A (en) * 2012-11-02 2014-05-19 Aisin Seiki Co Ltd Thermal transfer system
EP2781858A1 (en) * 2013-03-20 2014-09-24 Vaillant GmbH Heat pump with at least two heat sources
JP2014531013A (en) * 2011-10-27 2014-11-20 智▲鳴▼ 王 Cooling system without a compressor powered by a heat source
JP2016151374A (en) * 2015-02-17 2016-08-22 オーム電機株式会社 Cooling device
CN106969532A (en) * 2017-04-28 2017-07-21 北京京仪自动化装备技术有限公司 Wax phase change regenerator temperature adjusting means for semiconductor technology temperature controlling instruments
EP3351868A4 (en) * 2016-12-09 2018-07-25 Mitsubishi Electric Corporation Heat pump device
CN111706997A (en) * 2020-03-09 2020-09-25 西安交通大学 Transcritical carbon dioxide air heater and performance optimization control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560851B1 (en) * 2007-12-20 2015-10-15 이 아이 듀폰 디 네모아 앤드 캄파니 Secondary loop cooling system having a bypass and a method for bypassing a reservoir in the system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050822A1 (en) * 1999-02-24 2000-08-31 Hachiyo Engineering Co., Ltd. Heat pump system of combination of ammonia cycle and carbon dioxide cycle
US6619066B1 (en) 1999-02-24 2003-09-16 Hachiyo Engineering Co., Ltd. Heat pump system of combination of ammonia cycle carbon dioxide cycle
JP3458310B2 (en) * 1999-02-24 2003-10-20 八洋エンジニアリング株式会社 Heat pump system combining ammonia cycle and carbon dioxide cycle
JP2002106983A (en) * 2000-09-28 2002-04-10 Matsushita Refrig Co Ltd Cooling device and vending machine employing the cooling device
WO2005001345A1 (en) * 2003-06-25 2005-01-06 Star Refrigeration Limited Improved cooling system
EP1536190A1 (en) * 2003-11-28 2005-06-01 Birton A/S Refrigeration system using "free energy" for circulation of liquid refrigerant by pressure
EP1662212A2 (en) * 2004-11-23 2006-05-31 LG Electronics Inc. Air conditioning system and method for controlling the same
EP1662212A3 (en) * 2004-11-23 2006-09-06 LG Electronics Inc. Air conditioning system and method for controlling the same
EP1816415A2 (en) 2006-02-07 2007-08-08 Birton A/S Refrigerating system using "free energy" for circulating liquid re-frigerant by pressure
JP2009115361A (en) * 2007-11-06 2009-05-28 Tamagawa Seiki Co Ltd Cooling device
JP2014531013A (en) * 2011-10-27 2014-11-20 智▲鳴▼ 王 Cooling system without a compressor powered by a heat source
JP2014092320A (en) * 2012-11-02 2014-05-19 Aisin Seiki Co Ltd Thermal transfer system
EP2781858A1 (en) * 2013-03-20 2014-09-24 Vaillant GmbH Heat pump with at least two heat sources
JP2016151374A (en) * 2015-02-17 2016-08-22 オーム電機株式会社 Cooling device
EP3351868A4 (en) * 2016-12-09 2018-07-25 Mitsubishi Electric Corporation Heat pump device
CN106969532A (en) * 2017-04-28 2017-07-21 北京京仪自动化装备技术有限公司 Wax phase change regenerator temperature adjusting means for semiconductor technology temperature controlling instruments
CN111706997A (en) * 2020-03-09 2020-09-25 西安交通大学 Transcritical carbon dioxide air heater and performance optimization control method thereof

Also Published As

Publication number Publication date
JP4043074B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US9593872B2 (en) Heat pump
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
CN102597657B (en) Air conditioning device
JP3063742B2 (en) Refrigeration equipment
US9513036B2 (en) Air-conditioning apparatus
EP2489965A1 (en) Air-conditioning hot-water supply system
JPH1123079A (en) Refrigerator
JP2001289465A (en) Air conditioner
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
CN102483273A (en) Air conditioning device
JP3599770B2 (en) Heat transfer device
CN102597661A (en) Air conditioning device
JP4651452B2 (en) Refrigeration air conditioner
CN107421173B (en) Emergency refrigerating device and machine room air conditioner continuous refrigerating system
KR20070022585A (en) Compressor with vapor injection system
JP2007100987A (en) Refrigerating system
CN115597131A (en) Outdoor unit and multifunctional water source multi-split system
CN115597130A (en) Outdoor unit and multifunctional water source machine
JP4660334B2 (en) Refrigeration system
JP2002174465A (en) Refrigerating apparatus
JP3918980B2 (en) Refrigeration equipment
JP2002349996A (en) Exhaust heat recovery air conditioner
JP4488767B2 (en) Air-conditioning refrigeration equipment
JP2827656B2 (en) Heat transfer device
JP4393211B2 (en) Air conditioning refrigeration apparatus and control method of air conditioning refrigeration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees