JPH11229039A - Production of hot dip galvannealed steel sheet excellent in surface appearance - Google Patents

Production of hot dip galvannealed steel sheet excellent in surface appearance

Info

Publication number
JPH11229039A
JPH11229039A JP4637398A JP4637398A JPH11229039A JP H11229039 A JPH11229039 A JP H11229039A JP 4637398 A JP4637398 A JP 4637398A JP 4637398 A JP4637398 A JP 4637398A JP H11229039 A JPH11229039 A JP H11229039A
Authority
JP
Japan
Prior art keywords
rough rolling
hot
steel sheet
rolling
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4637398A
Other languages
Japanese (ja)
Inventor
Yoshimasa Funakawa
義正 船川
Toru Inazumi
透 稲積
Shunsaku Noide
俊策 野出
Junichi Inagaki
淳一 稲垣
Yoko Muramatsu
陽子 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4637398A priority Critical patent/JPH11229039A/en
Publication of JPH11229039A publication Critical patent/JPH11229039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hot dip galvanized steel sheet capable of preventing bamboo-leaf patterns generated, when a Ti-added extra- low carbon steel sheet having high workability is used as a parent metal. SOLUTION: In producing a hot dip galvannealed steel sheet by subjecting a steel contg., by weight, <=0.003% C, <=0.1% Si, <=0.5% Mn, <=0.03% P, <=0.03% S, <=0.1% Al, <=0.03% N and 0.02 to 0.15% Ti to continuous casting, executing hot rolling, thereafter subjecting it to cold rolling, furthermore executing annealing and subsequently subjecting it to hot dip galvannealing treatment, the slab thickness by the continuous casting is regulated to >=230 mm, the slab reheating temp. in the hot rolling is regulated to <=1150 deg.C, the rough rolling ratio is regulated to >=70%, the rough rolling finishing surface temp. is regulated to >=900 deg.C, and in the case the slab heating temp. is defined as A ( deg.C), the rough rolling finishing temp. is defined as B (±C), the draft in the rough rolling is defined as R (%), and the time till the completion of the rough rolling after extraction from a heating furnace is defined as T (sec), S=(A+B)/(T×(R)<0.17 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、電気機器
等に用いられるTi添加極低炭素鋼を母材とした合金化
溶融亜鉛めっき鋼板の製造方法に関し、特に表面外観に
優れた合金化溶融亜鉛めっき鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet using Ti-added ultra-low carbon steel as a base material, which is used for automobiles, electric appliances and the like, and particularly to an alloyed hot-dip galvanized steel sheet having excellent surface appearance. The present invention relates to a method for manufacturing a galvanized steel sheet.

【0002】[0002]

【従来の技術】自動車外板などに用いられる鋼板には高
加工性、高耐食性が要求されることから、Ti添加極低
炭素鋼に溶融亜鉛めっきを施したものが用いられている
が、めっきを行うと表面に笹の葉状の模様が発生し、表
面品質が劣化する。これは、Ti添加極低炭素鋼冷延焼
鈍板の板面において結晶粒径の微細な領域が多数発生
し、粒界の多いこの領域において粒界から始まる合金化
反応が他の部分より促進され、合金化にむらが生じた
り、めっき表面に凹凸が生じるためである。
2. Description of the Related Art Steel sheets used for automobile outer panels are required to have high workability and high corrosion resistance, and therefore, a titanium-added ultra-low carbon steel coated with hot-dip zinc is used. In this case, a bamboo leaf-like pattern is generated on the surface, and the surface quality is deteriorated. This is because many regions having a fine grain size are generated on the surface of the cold-rolled annealed sheet of Ti-added ultra low carbon steel, and in this region having many grain boundaries, the alloying reaction starting from the grain boundaries is promoted more than other portions. This is because unevenness occurs in alloying and irregularities occur on the plating surface.

【0003】この笹の葉模様を防止するための技術が、
特開平2−38550号公報に開示されている。この公
報には、スラブ加熱中に雰囲気よりNがスラブ表面に固
溶し、微細TiNが生成することが局部的な微細粒の発
生原因であるとして、860℃以上の超高温焼鈍を行
い、粒成長を著しく促進させることで表層の結晶粒の最
短径を8μm以上にすることにより、この笹の葉模様を
解消することができるとしている。しかしながら、この
方法では、笹の葉模様は消えるものの、細粒領域外の結
晶粒径が粗大となり、成形後に肌荒れが生じてしまい、
成形後の表面性状が劣化する。
[0003] Techniques for preventing this bamboo leaf pattern include:
It is disclosed in Japanese Patent Application Laid-Open No. 2-38550. According to this publication, ultra-high-temperature annealing at 860 ° C. or more is performed by assuming that the formation of fine TiN is locally caused by solid solution of N on the slab surface from the atmosphere during slab heating. It is stated that the bamboo leaf pattern can be eliminated by making the shortest diameter of the crystal grains of the surface layer 8 μm or more by remarkably promoting the growth. However, in this method, although the bamboo leaf pattern disappears, the crystal grain size outside the fine grain region becomes coarse, and roughening occurs after molding,
The surface properties after molding deteriorate.

【0004】また、特開平7−228944号公報に
は、Ti量に応じて最適スラブ加熱温度を規定し、表層
で微細析出するTiNを粗大化させて笹の葉模様を低減
する方法が開示されているが、その効果にはばらつきが
あり、必ずしも笹の葉模様を完全に防止することができ
ないのが実状である。
Japanese Patent Application Laid-Open No. 7-228944 discloses a method in which the optimum slab heating temperature is specified in accordance with the amount of Ti, and TiN deposited finely in the surface layer is coarsened to reduce the leaf pattern of bamboo grass. However, the effect varies, and the actual situation is that it is not always possible to completely prevent the bamboo leaf pattern.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、高加工性のTi添加極低
炭素鋼板を母材とした場合に発生する笹の葉模様を防止
することができる表面性状に優れた溶融亜鉛めっき鋼板
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to prevent a bamboo leaf pattern generated when a highly workable Ti-added ultra-low carbon steel sheet is used as a base material. It is an object of the present invention to provide a method for producing a hot-dip galvanized steel sheet having excellent surface properties.

【0006】[0006]

【課題を解決するための手段】溶融亜鉛めっき鋼板の笹
の葉模様の原因は、表面の結晶粒径の不均一であり、こ
れはスラブ加熱時に雰囲気からスラブ表層に侵入したN
がスラブ表層で不均一に微細TiNとなり、冷延焼鈍時
に粒成長を阻害することにより発生する。このTiNの
生成を防止するためにはスラブ加熱温度の低減が有効と
考えられるが、工業的に可能な範囲でスラブ加熱温度を
低減してもスラブ表層へのNの侵入を完全には防止する
ことができない。
The cause of the bamboo leaf pattern of the hot-dip galvanized steel sheet is that the crystal grain size on the surface is non-uniform.
Are unevenly formed in the surface layer of the slab to form fine TiN, which is generated by inhibiting grain growth during cold rolling annealing. In order to prevent the generation of TiN, it is considered effective to reduce the slab heating temperature. However, even if the slab heating temperature is reduced within an industrially feasible range, the penetration of N into the slab surface layer is completely prevented. Can not do.

【0007】本発明者らは、上記課題を解決すべく鋭意
研究を重ねた結果、スラブ加熱温度を低減することでス
ラブ表層へのNの侵入を最小限に抑えるとともに、スラ
ブ厚、粗圧延率、粗圧延終了時の表面温度、粗圧延時間
を調整することで粗バー段階でのNの侵入層を十分にス
ケールオフさせることが可能であることを知見した。さ
らに、粗圧延後、レベラーによる矯正、粗バー加熱、デ
スケーリングを続けて行うことにより、その効果が促進
されることを知見した。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that reducing the slab heating temperature minimizes the intrusion of N into the slab surface layer, as well as the slab thickness and the rough rolling ratio. It has been found that by adjusting the surface temperature and the rough rolling time at the end of the rough rolling, it is possible to sufficiently scale off the N intrusion layer at the rough bar stage. Furthermore, after rough rolling, it was found that the effect was promoted by continuously performing leveling, rough bar heating, and descaling by a leveler.

【0008】本発明はこのような知見に基づいてなされ
たものであり、重量%で、C≦0.003%、Si≦
0.1%、Mn≦0.5%、P≦0.03%、S≦0.
03%、Al≦0.1%、N≦0.003%、0.02
%≦Ti≦0.15%を含む鋼を連続鋳造し、熱間圧延
した後、冷間圧延を施し、さらに焼鈍を行い、その後合
金化溶融亜鉛めっき処理を行って溶融亜鉛めっき鋼板を
製造するにあたり、連続鋳造によるスラブ厚さを230
mm以上、熱延のスラブ再加熱温度を1150℃以下、
粗圧延率70%以上、粗圧延終了表面温度を900℃以
上とし、スラブ加熱温度をA(℃)、粗圧延終了温度を
B(℃)、粗圧延の圧下率R(%)、加熱炉抽出後粗圧
延終了までの時間をT(sec)としたとき、次式で定
義されるパラメータSが、 S=(A+B)/(T×R)<0.17 を満たすことを特徴とする表面外観に優れた合金化溶融
亜鉛めっき鋼板の製造方法を提供するものである。
[0008] The present invention has been made based on these findings, and in terms of% by weight, C ≦ 0.003% and Si ≦
0.1%, Mn ≦ 0.5%, P ≦ 0.03%, S ≦ 0.
03%, Al ≦ 0.1%, N ≦ 0.003%, 0.02
% ≦ Ti ≦ 0.15% steel is continuously cast, hot-rolled, cold-rolled, further annealed, and then subjected to alloying hot-dip galvanizing to produce a hot-dip galvanized steel sheet. The slab thickness by continuous casting
mm or more, the slab reheating temperature of hot rolling is 1150 ° C or less,
Coarse rolling rate 70% or more, rough rolling end surface temperature 900 ° C. or more, slab heating temperature A (° C.), rough rolling end temperature B (° C.), rough rolling reduction R (%), heating furnace extraction When the time until the end of the post-rough rolling is T (sec), the parameter S defined by the following equation satisfies the following expression: S = (A + B) / (T × R) <0.17 It is intended to provide a method for producing a galvannealed steel sheet having excellent heat resistance.

【0009】また、本発明は、重量%で、C≦0.00
3%、Si≦0.1%、Mn≦0.5%、P≦0.03
%、S≦0.03%、Al≦0.1%、N≦0.003
%、0.02%≦Ti≦0.15%を含む鋼を連続鋳造
し、熱間圧延した後、冷間圧延を施し、さらに焼鈍を行
い、その後合金化溶融亜鉛めっき処理を行って合金化溶
融亜鉛めっき鋼板を製造するにあたり、連続鋳造による
スラブ厚さを230mm以上、熱延のスラブ再加熱温度
を1150℃以下、粗圧延率70%以上、粗圧延終了表
面温度を900℃以上とし、粗圧延後仕上げ圧延前にレ
ベラーによる矯正、粗バー加熱による30℃以上の加
熱、デスケーリングを続けて行うことを特徴とする表面
外観に優れた合金化溶融亜鉛めっき鋼板の製造方法を提
供するものである。
Further, the present invention relates to a method for producing a rubber composition, comprising:
3%, Si ≦ 0.1%, Mn ≦ 0.5%, P ≦ 0.03
%, S ≦ 0.03%, Al ≦ 0.1%, N ≦ 0.003
%, 0.02% ≦ Ti ≦ 0.15% steel is continuously cast, hot rolled, cold rolled, further annealed, and then alloyed by hot dip galvanizing. In producing a hot-dip galvanized steel sheet, the slab thickness by continuous casting is 230 mm or more, the slab reheating temperature of hot rolling is 1150 ° C or less, the rough rolling ratio is 70% or more, and the rough rolling end surface temperature is 900 ° C or more. The present invention provides a method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance, characterized in that straightening by a leveler, heating at a temperature of 30 ° C. or more by coarse bar heating, and descaling are continuously performed before finishing rolling after rolling. is there.

【0010】さらに、本発明は、上記いずれかの方法に
おいて、前記鋼は、さらに、重量%で、0.0020%
以下のBおよび0.04%以下のNbの1種または2種
を含むことを特徴とする表面外観に優れた合金化溶融亜
鉛めっき鋼板の製造方法を提供するものである。
[0010] Further, the present invention provides the method according to any of the above, wherein the steel further comprises 0.0020% by weight.
An object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance, characterized by containing one or two kinds of the following B and 0.04% or less of Nb.

【0011】[0011]

【発明の実施の形態】以下、本発明について具体的に説
明する。まず、鋼組成について説明する。本発明に用い
る母材鋼板は、Ti添加極低炭素鋼であり、具体的に
は、重量%で、C≦0.003%、Si≦0.1%、M
n≦0.5%、P≦0.03%、S≦0.03%、Al
≦0.1%、N≦0.003%、0.02%≦Ti≦
0.15%を含むものである。また、重量%で、0.0
020%以下のBおよび0.04%以下のNbの1種ま
たは2種を含んでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. First, the steel composition will be described. The base steel sheet used in the present invention is a Ti-added ultra-low carbon steel. Specifically, in terms of% by weight, C ≦ 0.003%, Si ≦ 0.1%, M
n ≦ 0.5%, P ≦ 0.03%, S ≦ 0.03%, Al
≦ 0.1%, N ≦ 0.003%, 0.02% ≦ Ti ≦
It contains 0.15%. Also, in weight%, 0.0
It may contain one or two of 020% or less of B and 0.04% or less of Nb.

【0012】(1)C、N C、NはTiによって析出物として固定されるが、析出
物が多いと加工性が低下することから、可能な限り低減
することが望ましい。したがって、本発明ではC、Nと
もに上限を0.003%とする。
(1) C, NC, and N are fixed as precipitates by Ti. However, if the amount of precipitates is large, workability is deteriorated. Therefore, in the present invention, the upper limits of both C and N are set to 0.003%.

【0013】(2)Si、Mn、P Si、Mn、Pは固溶することにより鋼を強化し、加工
性を劣化させることから可能な限り低減することが望ま
しい。そのような観点から本発明ではSiの上限を0.
1%、Mnの上限を0.5%、Pの上限を0.03%と
する。
(2) Si, Mn, PSi, Mn, and P are desirably reduced as much as possible because they form a solid solution to strengthen the steel and deteriorate workability. From such a viewpoint, the present invention sets the upper limit of Si to 0.1.
1%, the upper limit of Mn is 0.5%, and the upper limit of P is 0.03%.

【0014】(3)S SはCと同様にTiによって析出物として固定される
が、析出物が多いと加工性が低下することから、可能な
限り低減することが望ましい。したがって、本発明では
Sの上限を0.03%とする。
(3) SS S is fixed as a precipitate by Ti, like C, but if the precipitate is large, the workability is reduced. Therefore, in the present invention, the upper limit of S is set to 0.03%.

【0015】(4)Al Alは脱酸材であることから、ある程度は含まれるが、
多量に含有されると硬質化することから、その上限を
0.1%とする。
(4) Al Since Al is a deoxidizer, it is contained to some extent,
If contained in a large amount, it hardens, so the upper limit is made 0.1%.

【0016】(5)Ti Tiは、C、N、Sを析出物として固定し、EL、r値
の向上を通じて加工性を良好にする。このような観点か
ら、本発明では、C、N、Sを固定するに十分な量とし
てTiの含有量を0.02%以上とする。しかし、その
含有量が0.15%を超えた場合、固溶Tiが多量に発
生して鋼が硬質化してしまうことから、その上限を0.
15%とする。
(5) Ti Ti fixes C, N and S as precipitates and improves workability by improving EL and r values. From such a viewpoint, in the present invention, the content of Ti is set to 0.02% or more as an amount sufficient to fix C, N, and S. However, if the content exceeds 0.15%, a large amount of solid-solution Ti is generated and the steel is hardened.
15%.

【0017】(6)Nb Nbは、Tiと同様に、C、N、Sを析出物として固定
し、加工性を良好にすることから、さらなる加工性の向
上を目的として必要に応じて添加することができる。た
だし、0.04%を超えて添加された場合、効果が飽和
するとともに、固溶Nbが多量に発生して鋼が硬質化す
るとともに再結晶温度が上昇することから、その上限を
0.04%とする。
(6) Nb Nb, like Ti, fixes C, N, and S as precipitates and improves the workability. Therefore, Nb is added as necessary for the purpose of further improving the workability. be able to. However, if added in excess of 0.04%, the effect is saturated, and a large amount of solute Nb is generated to harden the steel and increase the recrystallization temperature. %.

【0018】(7)B Ti添加極低炭素鋼板では、Cは析出物として固定さ
れ、固溶状態では存在しないため、2次加工脆性が生じ
る。これに対し、Bを添加して粒界強度を上昇させ、こ
のような2次加工脆性を防止することができるので、必
要に応じて添加することができる。ただし、その量が
0.0020%を超えると、固溶Bによりr値が低下し
たり硬質化することから、その上限を0.0020%と
する。
(7) B In the Ti-added ultra-low carbon steel sheet, C is fixed as a precipitate and does not exist in a solid solution state, so that secondary working embrittlement occurs. On the other hand, B is added to increase the grain boundary strength and prevent such secondary working embrittlement, so that it can be added as necessary. However, if the amount exceeds 0.0020%, the r value is lowered or hardened by solid solution B, so the upper limit is made 0.0020%.

【0019】次に、製造条件について説明する。本発明
では、上述の組成の鋼を連続鋳造し、熱間圧延した後、
冷間圧延を施し、さらに焼鈍を行い、その後溶融亜鉛め
っき処理および合金化処理を行って合金化溶融亜鉛めっ
き鋼板を製造するにあたり、連続鋳造によるスラブ厚さ
を230mm以上、熱延のスラブ再加熱温度を1150
℃以下、粗圧延率70%以上、粗圧延終了表面温度を9
00℃以上とし、スラブ加熱温度をA(℃)、粗圧延終
了温度をB(℃)、粗圧延の圧下率R(%)、加熱炉抽
出後粗圧延終了までの時間をT(sec)としたとき、
パラメータS=(A+B)/(T×R)<0.17を満
足する。また、このパラメータSを規定する代わりに、
粗圧延後仕上げ圧延前にレベラーによる矯正、粗バー加
熱による30℃以上の加熱、デスケーリングを続けて行
う。
Next, the manufacturing conditions will be described. In the present invention, after continuously casting steel having the above composition and hot rolling,
Cold-rolled, further annealed, and then subjected to hot-dip galvanizing treatment and alloying treatment to produce an alloyed hot-dip galvanized steel sheet, the slab thickness by continuous casting is 230 mm or more, hot-rolled slab reheating Temperature 1150
℃ or less, rough rolling rate 70% or more, rough rolling end surface temperature 9
The slab heating temperature is A (° C.), the rough rolling end temperature is B (° C.), the rough rolling reduction R (%), and the time from the heating furnace extraction to the rough rolling end is T (sec). When
The parameter S = (A + B) / (T × R) <0.17 is satisfied. Also, instead of defining this parameter S,
After rough rolling and before finish rolling, straightening by a leveler, heating at 30 ° C. or more by rough bar heating, and descaling are performed successively.

【0020】(1)スラブ厚さ スラブ厚さが230mmよりも薄いと表層の温度低下が
著しく、粗圧延前、粗圧延中のデスケーリング後の表面
復熱が促進されない。そのため、スケールオフ量が低減
し、N侵入層を十分除去することができなくなる。した
がってスラブ厚さの下限を230mmとする。
(1) Thickness of slab If the slab thickness is less than 230 mm, the temperature of the surface layer drops remarkably, and the surface reheating before rough rolling and after descaling during rough rolling is not promoted. Therefore, the scale-off amount is reduced, and the N invasion layer cannot be sufficiently removed. Therefore, the lower limit of the slab thickness is set to 230 mm.

【0021】(2)粗圧延率 粗圧延率が70%よりも低いと粗圧延後のNの侵入層の
厚みが薄くならないため、粗バーでのスケールオフでこ
れを十分に除去することができず、笹の葉模様の発生を
抑制することができない。したがって、粗圧延率の下限
を70%とする。
(2) Coarse Rolling Ratio If the rough rolling ratio is lower than 70%, the thickness of the N infiltration layer after the rough rolling does not become thin, so that it can be sufficiently removed by scale-off with a coarse bar. Therefore, it is not possible to suppress the occurrence of leaf pattern of bamboo grass. Therefore, the lower limit of the rough rolling ratio is set to 70%.

【0022】(3)スラブ加熱温度 スラブ加熱温度が1150℃を超えると、スラブ表層へ
のNの侵入深さが深くなり、粗バーでのスケールオフで
これを十分に除去することができず、いかなる条件でも
笹の葉模様の発生を抑えることができない。
(3) Slab heating temperature If the slab heating temperature exceeds 1150 ° C., the penetration depth of N into the slab surface layer becomes deep, and it cannot be sufficiently removed by scale-off with a coarse bar. The occurrence of bamboo leaf pattern cannot be suppressed under any conditions.

【0023】これを実験結果で説明する。重量%でほぼ
C:0.002%、Si:0.01%、Mn:0.2
%、P:0.015%、S:0.01%、Al:0.0
45%、N:0.002%、Ti:0.08%であり、
残部がFeおよび不可避的不純物である鋼を、厚さ25
0mmのスラブに鋳造し、熱間圧延を行った。加熱炉抽
出後粗圧延終了までの時間を170秒、粗圧延出口温度
を950℃一定、粗バー厚さを40mmとしてスラブ加
熱温度を変化させた。その後、仕上げ圧延を行い、62
0℃で巻取り、厚さ3.2mmの熱延板を作成した。酸
洗後0.8mmまで冷間圧延を行い、850℃焼鈍後、
合金化溶融亜鉛めっきを行った。表面の笹の葉模様の有
無を目視で評価した。その結果を表1に示す。
This will be described with experimental results. Almost C: 0.002%, Si: 0.01%, Mn: 0.2% by weight.
%, P: 0.015%, S: 0.01%, Al: 0.0
45%, N: 0.002%, Ti: 0.08%,
Steel whose balance is Fe and unavoidable impurities has a thickness of 25
It was cast into a 0 mm slab and hot rolled. The slab heating temperature was changed with the time from the heating furnace extraction to the end of the rough rolling being 170 seconds, the rough rolling outlet temperature kept constant at 950 ° C., and the rough bar thickness being 40 mm. After that, finish rolling is performed, and 62
Winding was performed at 0 ° C. to prepare a 3.2 mm-thick hot-rolled sheet. Cold rolling to 0.8 mm after pickling, annealing at 850 ° C,
Alloyed hot-dip galvanizing was performed. The presence or absence of a bamboo leaf pattern on the surface was visually evaluated. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、加熱温度が1150℃
を超えると、パラメータSの値如何によらず笹の葉模様
が発生してしまう。よって、スラブ加熱温度の上限を1
150℃以下とする。
As shown in Table 1, the heating temperature was 1150 ° C.
Is exceeded, a bamboo leaf pattern is generated regardless of the value of the parameter S. Therefore, the upper limit of the slab heating temperature is set to 1
The temperature is set to 150 ° C or lower.

【0026】(4)粗圧延終了温度 本発明において、粗圧延終了温度は表層のN侵入層を除
去するため、粗圧延終了温度はスケールが十分に生成す
る温度でなければならない。このような観点から粗圧延
終了温度の下限を900℃以上とする。
(4) Termination Temperature of Rough Rolling In the present invention, the termination temperature of the rough rolling must be a temperature at which the scale is sufficiently formed in order to remove the N-infiltration layer on the surface. From such a viewpoint, the lower limit of the rough rolling end temperature is set to 900 ° C. or more.

【0027】(5)パラメータS<0.17 パラメータSは、スラブ加熱温度をA(℃)、粗圧延終
了温度をB(℃)、粗圧延の圧下率R(%)、加熱炉抽
出後粗圧延終了までの時間をT(sec)としたとき、
S=(A+B)/(T×R)で定義され、本発明ではS
<0.17と規定する。
(5) Parameter S <0.17 Parameter S is the slab heating temperature A (° C.), the rough rolling end temperature B (° C.), the rolling reduction R (%) of the rough rolling, When the time until the end of rolling is T (sec),
S = (A + B) / (T × R)
<0.17 is specified.

【0028】この式は経験的に求められたものであるこ
とから、実験結果によって本式を説明する。重量%でほ
ぼC:0.002%、Si:0.01%、Mn:0.2
%、P:0.015%、S:0.01%、Al:0.0
45%、N:0.002%、Ti:0.08%であり、
残部がFeおよび不可避的不純物である鋼を、厚さ25
0mmのスラブに鋳造し、スラブ加熱温度1110℃で
加熱後、熱間圧延を行った。加熱炉抽出後粗圧延終了ま
での時間を150秒、粗圧延出口温度を970℃一定と
して、粗バー厚さを変化させた。その後、仕上げ圧延を
行い、620℃で巻取り、厚さ2.8mmの熱延板を作
成した。酸洗後0.8mmまで冷間圧延を行い、850
℃焼鈍後、合金化溶融亜鉛めっきを行った。表面の笹の
葉模様の有無を目視で評価した。その結果を表2に示
す。
Since this equation has been obtained empirically, this equation will be explained based on experimental results. Almost C: 0.002%, Si: 0.01%, Mn: 0.2% by weight.
%, P: 0.015%, S: 0.01%, Al: 0.0
45%, N: 0.002%, Ti: 0.08%,
Steel whose balance is Fe and unavoidable impurities has a thickness of 25
It was cast into a 0 mm slab, heated at a slab heating temperature of 1110 ° C., and then subjected to hot rolling. The time from the extraction in the heating furnace to the end of the rough rolling was 150 seconds, and the outlet temperature of the rough rolling was constant at 970 ° C., and the thickness of the rough bar was changed. Thereafter, finish rolling was performed, and the resultant was rolled at 620 ° C. to prepare a hot-rolled sheet having a thickness of 2.8 mm. Cold rolling to 0.8 mm after pickling, 850
After annealing at ℃, galvannealing was performed. The presence or absence of a bamboo leaf pattern on the surface was visually evaluated. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、パラメータSの値が
0.17より小さければ笹の葉模様が発生しないことが
わかる。したがって、本発明ではパラメータSを、S<
0.17と規定している。
As shown in Table 2, when the value of the parameter S is smaller than 0.17, it is understood that the bamboo leaf pattern does not occur. Therefore, in the present invention, the parameter S is set as S <
It is specified as 0.17.

【0031】さらに、本発明においては、(5)に示す
ようなパラメータによらずとも、以下に示すように、粗
圧延後にレベラー矯正、粗バー加熱、デスケーリングを
行うことにより笹の葉模様を抑制することができる。
Further, in the present invention, the bamboo leaf pattern can be obtained by performing leveler straightening, coarse bar heating, and descaling after rough rolling, as shown below, regardless of the parameters shown in (5). Can be suppressed.

【0032】(6)レベラーによる矯正、粗バー加熱、
デスケーリング 本発明では、粗圧延により厚みが低減した粗バー表層の
N侵入層を除去することを骨子としている。そのため、
レベラーによる粗バー矯正でスケールを除去した後に、
粗バー加熱でスケール生成を促進し、さらにデスケーリ
ングを組み合わせることで笹葉模様発生を効率的に抑制
することができる。レベラーの代わりにデスケーリング
でもスケールオフが可能であるが、粗バー表面温度が低
下してしまい、粗バーは薄いためその復熱が十分ではな
く、スケール成長が抑制されてしまうため、好ましくは
ない。粗バー加熱により顕著な効果を得るために、粗バ
ー加熱による温度上昇を30℃以上とする。粗バー加熱
方法は、誘導加熱、ガス加熱、トンネル炉のような炉に
よる加熱、コイルボックスに巻き取っての加熱でも構わ
ないが、短時間で表層の温度を上げることができる誘導
加熱が好ましい。粗バー加熱後のデスケーリングによっ
て粗バー加熱で生成したスケールを完全に除去して仕上
げ圧延を行うことで、完全に笹の葉模様発生を抑制する
ことができるとともに、仕上げミルにおけるスケール噛
み込みなどを防止することができる。
(6) Straightening by leveler, coarse bar heating,
Descaling In the present invention, the main point is to remove the N intrusion layer on the surface of the rough bar whose thickness has been reduced by rough rolling. for that reason,
After removing scale by coarse bar straightening by leveler,
The generation of scale is promoted by rough bar heating, and the occurrence of bamboo leaf pattern can be efficiently suppressed by combining descaling. Although scale-off is possible by de-scaling instead of a leveler, the coarse bar surface temperature decreases, and the coarse bar is thin, so the recuperation is not enough, and the scale growth is suppressed, which is not preferable. . In order to obtain a remarkable effect by the rough bar heating, the temperature rise by the rough bar heating is set to 30 ° C. or more. The rough bar heating method may be induction heating, gas heating, heating by a furnace such as a tunnel furnace, or heating by winding up a coil box, but induction heating which can raise the surface temperature in a short time is preferable. By completely removing the scale generated by coarse bar heating due to de-scaling after coarse bar heating and performing finish rolling, it is possible to completely suppress the occurrence of bamboo leaf pattern, scale biting in the finishing mill, etc. Can be prevented.

【0033】冷間圧延、焼鈍および合金化溶融亜鉛めっ
きの工程は、常法に従って行えばよく、その条件は特に
限定されるものではないが、通常、冷間圧延は60%以
上の圧下率で行われ、その後の焼鈍は780℃以上で行
われる。
The steps of cold rolling, annealing and galvannealing may be performed according to a conventional method, and the conditions are not particularly limited. Usually, cold rolling is performed at a rolling reduction of 60% or more. The subsequent annealing is performed at 780 ° C. or higher.

【0034】なお、本発明においては、成分調整には転
炉を用いても電気炉を用いてもよい。また、スクラップ
を原料としてもなんら差し支えなく、Cu、Sn、S
b、As、Coなどの元素が混入しても少量であれば本
発明の効果が損なわれることはない。ただし、これらの
元素の混入は合計で1%以下が望ましい。また、耐食性
向上のためにNi、Crを微量添加してもなんら問題は
ないが、これらの元素の混入は鋼の硬質化を招くため添
加量は合計で1%以下が望ましい。さらに、熱延の巻取
温度については特に規定はない。めっきについては、合
金化溶融亜鉛めっきの上に、電気めっきや化成処理、N
iめっきなどを行っても本発明の効果が損なわれること
はない。また、連続鋳造スラブの手入れの有無は本発明
の効果には影響を及ぼさない。すなわち、連続鋳造スラ
ブを無手入れで加熱炉に挿入しても、例えば製鋼性介在
物を取り除くために1mm以上、表面偏析を取り除くた
め3〜10mm、さらには表面欠陥を取り除くために部
分的に表面を手入れしてもなんら問題はない。
In the present invention, the components may be adjusted using a converter or an electric furnace. Also, there is no problem if scrap is used as a raw material, and Cu, Sn, S
Even if elements such as b, As, and Co are mixed, the effects of the present invention will not be impaired if the amount is small. However, the mixing of these elements is desirably 1% or less in total. There is no problem even if a small amount of Ni or Cr is added for improving the corrosion resistance, but the addition of these elements causes hardening of the steel, so that the total added amount is desirably 1% or less. Further, there is no particular limitation on the winding temperature of hot rolling. Regarding plating, electroplating, chemical conversion treatment, N
Even if i-plating or the like is performed, the effects of the present invention are not impaired. The maintenance of the continuous casting slab does not affect the effect of the present invention. That is, even if the continuous casting slab is inserted into the heating furnace without care, for example, 1 mm or more to remove steel-made inclusions, 3 to 10 mm to remove surface segregation, and partially remove the surface to remove surface defects. There is no problem even if you care for.

【0035】[0035]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表3に示す化学成分の鋼を表に示す厚さの
スラブに連続鋳造し、表4に示す条件で熱間圧延を行っ
た。得られた鋼板を冷間圧延し、820℃で焼鈍後、合
金化溶融亜鉛めっき処理を行い、板厚1.0mmの合金
化溶融亜鉛めっき鋼板を製造した。得られためっき鋼板
の表面の笹の葉模様の有無を観察した。その結果を表4
に併記する。
Embodiments of the present invention will be described below. (Example 1) Steel having the chemical composition shown in Table 3 was continuously cast into a slab having the thickness shown in the table, and hot-rolled under the conditions shown in Table 4. The obtained steel sheet was cold-rolled, annealed at 820 ° C., and then subjected to an alloyed hot-dip galvanizing treatment to produce an alloyed hot-dip galvanized steel sheet having a thickness of 1.0 mm. The presence or absence of bamboo leaf pattern on the surface of the obtained plated steel sheet was observed. Table 4 shows the results.
It is described together.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】表4に示すように、本発明に従って、パラ
メータSの値が0.17未満で笹の葉模様のない表面性
状の良好な合金化溶融亜鉛めっき鋼板を製造できること
が確認された。
As shown in Table 4, according to the present invention, it was confirmed that a galvannealed steel sheet having a parameter S value of less than 0.17 and having good surface properties without bamboo leaf pattern can be produced.

【0039】(実施例2)表5に示す化学成分の鋼を表
に示す厚さのスラブに連続鋳造し、表6に示す条件で熱
間圧延を行った。熱間圧延に関しては、粗バー加熱前に
レベラーをかけ、粗バー加熱後にデスケーリングを行っ
た。得られた鋼板を冷間圧延し、820℃で焼鈍後、合
金化溶融亜鉛めっき処理を行い、板厚0.7mmの合金
化溶融亜鉛めっき鋼板を製造した。得られためっき鋼板
の表面の笹の葉模様の有無を観察した。その結果を表6
に併記する。
(Example 2) Steel having the chemical composition shown in Table 5 was continuously cast into a slab having the thickness shown in the table, and hot-rolled under the conditions shown in Table 6. For hot rolling, leveling was performed before heating the coarse bar, and descaling was performed after heating the coarse bar. The obtained steel sheet was cold-rolled, annealed at 820 ° C., and subjected to an alloyed hot-dip galvanizing treatment to produce a 0.7 mm-thick galvannealed steel sheet. The presence or absence of bamboo leaf pattern on the surface of the obtained plated steel sheet was observed. Table 6 shows the results.
It is described together.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】表6に示すように、本発明に従って、レベ
ラーによる矯正、粗バー加熱、デスケーリングを続けて
行ったものは、笹の葉模様のない表面性状の良好な合金
化溶融亜鉛めっき鋼板を製造できることが確認された。
As shown in Table 6, in accordance with the present invention, after continuous straightening by a leveler, coarse bar heating, and descaling, an alloyed hot-dip galvanized steel sheet with good surface properties without bamboo leaf pattern was obtained. It was confirmed that it could be manufactured.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
高加工性のTi添加極低炭素鋼板を母材とした場合に発
生する笹の葉模様を防止することができる表面性状に優
れた溶融亜鉛めっき鋼板を製造することができる。
As described above, according to the present invention,
A hot-dip galvanized steel sheet having excellent surface properties and capable of preventing a bamboo leaf pattern generated when a highly workable Ti-added ultra-low carbon steel sheet is used as a base material can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 淳一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村松 陽子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junichi Inagaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yoko Muramatsu 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C≦0.003%、Si≦
0.1%、Mn≦0.5%、P≦0.03%、S≦0.
03%、Al≦0.1%、N≦0.003%、0.02
%≦Ti≦0.15%を含む鋼を連続鋳造し、熱間圧延
した後、冷間圧延を施し、さらに焼鈍を行い、その後合
金化溶融亜鉛めっき処理を行って合金化溶融亜鉛めっき
鋼板を製造するにあたり、連続鋳造によるスラブ厚さを
230mm以上、熱延のスラブ再加熱温度を1150℃
以下、粗圧延率70%以上、粗圧延終了表面温度を90
0℃以上とし、スラブ加熱温度をA(℃)、粗圧延終了
温度をB(℃)、粗圧延の圧下率R(%)、加熱炉抽出
後粗圧延終了までの時間をT(sec)としたとき、次
式で定義されるパラメータSが、 S=(A+B)/(T×R)<0.17 を満たすことを特徴とする表面外観に優れた合金化溶融
亜鉛めっき鋼板の製造方法。
1. The composition according to claim 1, wherein C ≦ 0.003%, Si ≦
0.1%, Mn ≦ 0.5%, P ≦ 0.03%, S ≦ 0.
03%, Al ≦ 0.1%, N ≦ 0.003%, 0.02
% ≦ Ti ≦ 0.15% steel is continuously cast, hot-rolled, cold-rolled, further annealed, and then subjected to an alloyed hot-dip galvanizing process to obtain an alloyed hot-dip galvanized steel sheet. In manufacturing, the slab thickness by continuous casting is 230mm or more, and the slab reheating temperature of hot rolling is 1150 ° C.
Hereinafter, the rough rolling rate is 70% or more, and the surface temperature at the end of the rough rolling is 90.
0 ° C. or higher, the slab heating temperature is A (° C.), the rough rolling end temperature is B (° C.), the rough rolling reduction R (%), and the time from the heating furnace extraction to the rough rolling end is T (sec). A parameter S defined by the following equation: S = (A + B) / (T × R) <0.17. A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance, characterized in that:
【請求項2】 重量%で、C≦0.003%、Si≦
0.1%、Mn≦0.5%、P≦0.03%、S≦0.
03%、Al≦0.1%、N≦0.003%、0.02
%≦Ti≦0.15%を含む鋼を連続鋳造し、熱間圧延
した後、冷間圧延を施し、さらに焼鈍を行い、その後合
金化溶融亜鉛めっき処理を行って合金化溶融亜鉛めっき
鋼板を製造するにあたり、連続鋳造によるスラブ厚さを
230mm以上、熱延のスラブ再加熱温度を1150℃
以下、粗圧延率70%以上、粗圧延終了表面温度を90
0℃以上とし、粗圧延後仕上げ圧延前にレベラーによる
矯正、粗バー加熱による30℃以上の加熱、デスケーリ
ングを続けて行うことを特徴とする表面外観に優れた合
金化溶融亜鉛めっき鋼板の製造方法。
2. In% by weight, C ≦ 0.003%, Si ≦
0.1%, Mn ≦ 0.5%, P ≦ 0.03%, S ≦ 0.
03%, Al ≦ 0.1%, N ≦ 0.003%, 0.02
% ≦ Ti ≦ 0.15% steel is continuously cast, hot-rolled, cold-rolled, further annealed, and then subjected to an alloyed hot-dip galvanizing process to obtain an alloyed hot-dip galvanized steel sheet. In manufacturing, the slab thickness by continuous casting is 230mm or more, and the slab reheating temperature of hot rolling is 1150 ° C.
Hereinafter, the rough rolling rate is 70% or more, and the surface temperature at the end of the rough rolling is 90.
Manufacture of alloyed hot-dip galvanized steel sheet with excellent surface appearance characterized by continuously performing leveling, roughing bar heating, heating at 30 ° C or higher, and descaling at a temperature of 0 ° C or higher, before roughing and finishing rolling. Method.
【請求項3】 前記鋼は、さらに、重量%で、0.00
20%以下のBおよび0.04%以下のNbの1種また
は2種を含むことを特徴とする請求項1または請求項2
に記載の表面外観に優れた合金化溶融亜鉛めっき鋼板の
製造方法。
3. The steel according to claim 1, further comprising:
3. The composition according to claim 1, wherein the composition contains one or two of B at 20% or less and Nb at 0.04% or less.
3. A method for producing an alloyed hot-dip galvanized steel sheet having excellent surface appearance according to item 1.
JP4637398A 1998-02-13 1998-02-13 Production of hot dip galvannealed steel sheet excellent in surface appearance Pending JPH11229039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4637398A JPH11229039A (en) 1998-02-13 1998-02-13 Production of hot dip galvannealed steel sheet excellent in surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4637398A JPH11229039A (en) 1998-02-13 1998-02-13 Production of hot dip galvannealed steel sheet excellent in surface appearance

Publications (1)

Publication Number Publication Date
JPH11229039A true JPH11229039A (en) 1999-08-24

Family

ID=12745353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4637398A Pending JPH11229039A (en) 1998-02-13 1998-02-13 Production of hot dip galvannealed steel sheet excellent in surface appearance

Country Status (1)

Country Link
JP (1) JPH11229039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231373A (en) * 2010-04-28 2011-11-17 Jfe Steel Corp Galvannealed steel sheet and method of manufacturing the same
WO2016170794A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Alloyed hot-dip galvanized sheet, production method therefor and alloyed hot-dip galvanized steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231373A (en) * 2010-04-28 2011-11-17 Jfe Steel Corp Galvannealed steel sheet and method of manufacturing the same
WO2016170794A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Alloyed hot-dip galvanized sheet, production method therefor and alloyed hot-dip galvanized steel sheet
JPWO2016170794A1 (en) * 2015-04-21 2017-06-01 Jfeスチール株式会社 Alloyed hot-dip galvanized base plate, manufacturing method thereof, and alloyed hot-dip galvanized steel
CN107532264A (en) * 2015-04-21 2018-01-02 杰富意钢铁株式会社 Alloyed zinc hot dip galvanized raw sheet and its manufacture method and alloyed hot-dip galvanized steel sheet
CN107532264B (en) * 2015-04-21 2019-03-15 杰富意钢铁株式会社 Alloyed zinc hot dip galvanized raw sheet and its manufacturing method and alloyed hot-dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
CN108431264B (en) High-strength steel sheet and method for producing same
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
KR20180126580A (en) Low density hot-dip galvanized steel and its manufacturing method
JP2008255442A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP6443555B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR100797238B1 (en) The method for manufacturing thin steel sheet for deep drawing having excellent workability
JP5655363B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN115198173B (en) 980 MPa-grade hot-base galvanized complex-phase steel, steel matrix and preparation method thereof
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP2005256141A (en) Method for manufacturing high-strength steel sheet superior in hole expandability
TWI461542B (en) Cold rolled steel sheet and method for manufacturing the same
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP2010196096A (en) Cold rolled steel sheet having excellent balance in strength and ductility after press working and coating baking, and method for producing the same
JP5245914B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent workability
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3494133B2 (en) Manufacturing method of hot-dip coated high strength steel sheet
JPH11229039A (en) Production of hot dip galvannealed steel sheet excellent in surface appearance
JPH0137455B2 (en)
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP2005105399A (en) Method for manufacturing low-yield-ratio high-strength galvannealed steel
CN115198207B (en) Zinc-aluminum-magnesium coating hot-rolled complex-phase steel, matrix steel thereof and preparation method thereof
KR102606996B1 (en) High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same
JP2514298B2 (en) Method for producing galvannealed steel sheet with excellent press formability
KR101149202B1 (en) Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality
JP2009249715A (en) Method for producing galvannealed steel sheet excellent in coat-baking hardenenability