JPH11228136A - Ion conductive oxide material - Google Patents

Ion conductive oxide material

Info

Publication number
JPH11228136A
JPH11228136A JP10025947A JP2594798A JPH11228136A JP H11228136 A JPH11228136 A JP H11228136A JP 10025947 A JP10025947 A JP 10025947A JP 2594798 A JP2594798 A JP 2594798A JP H11228136 A JPH11228136 A JP H11228136A
Authority
JP
Japan
Prior art keywords
ion conductive
conductive material
oxide ion
oxide
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10025947A
Other languages
Japanese (ja)
Other versions
JP4119511B2 (en
Inventor
Isamu Yasuda
勇 安田
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP02594798A priority Critical patent/JP4119511B2/en
Publication of JPH11228136A publication Critical patent/JPH11228136A/en
Application granted granted Critical
Publication of JP4119511B2 publication Critical patent/JP4119511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To realize an ion conductive oxide material having high mechanical strength and to provide a fuel cell or the like high in durability. SOLUTION: In the ion conductive oxide material composed of La(1-x) Srx Ga(1-y-z) Mgy Alz O3 , the oxide ion conductive material is formed on the condition of 0<x<=0.2, 0<y<=0.2, and 0<z<=0.4. And an electrochemically acting member such as a cell is formed by laminating the oxide ion conductive material composed of La(1-x) Srx Ga(1-y-z) Mgy Alz O3 wherein 0<x<=0.2, 0<y<=0.2 and 0<z⊖0.4 and an electrode material through a prescribed intermediate layer. As a result, the oxide ion conductive material is increased in mechanical strength and the durability of electrochemical devices such as a solid electrolyte type fuel cell using the same is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物イオン導電
性材料に関し、特に機械的強度が高く、耐久性と経済性
に優れた酸化物イオン導電性材料及び、それを用いて形
成した電気化学的作用部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide ion conductive material, and more particularly to an oxide ion conductive material having high mechanical strength, excellent durability and economic efficiency, and an electrochemical material formed using the same. Operative member.

【0002】[0002]

【従来の技術】酸化物イオン導電性材料は、蛍石型の結
晶構造を有するジルコニアやセリア系の酸化物固溶体が
最も一般的なものとして知られており、燃料電池、高温
水蒸気電解、酸素センサ、電気化学的反応器、ガス分離
膜、酸素ポンプなどの幅広い技術分野への応用が試みら
れている。
2. Description of the Related Art Zirconia and ceria-based oxide solid solutions having a fluorite-type crystal structure are known as the most common oxide ion conductive materials, and include fuel cells, high-temperature steam electrolysis, and oxygen sensors. Applications to a wide range of technical fields such as electrochemical reactors, gas separation membranes, and oxygen pumps have been attempted.

【0003】ジルコニア系の酸化物イオン導電性材料と
しては、安定化ジルコニア、ZrO2 −M23 (M=
Y,Yb,Sc)、ZrO2 −MO(M=Mg,Ca)
等が知られており、又セリア系としては、セリア固溶
体、CeO2 −M23 (M=Gd,Sm,Y)、Ce
2 −MO(M=Ca,Sr)等が知られている。
As zirconia-based oxide ion conductive materials, stabilized zirconia, ZrO 2 -M 2 O 3 (M =
Y, Yb, Sc), ZrO 2 -MO (M = Mg, Ca)
Are known as ceria, ceria solid solution, CeO 2 -M 2 O 3 (M = Gd, Sm, Y), Ce
O 2 -MO (M = Ca, Sr) and the like are known.

【0004】一方、これら材料よりも高い酸化物イオン
導電性を有するぺロブスカイト型酸化物LaGaO3
固溶体が近年提案され、燃料電池を含む各種用途に向け
ての応用のための基礎的検討が盛んになってきている。
On the other hand, in recent years, solid solutions of perovskite-type oxide LaGaO 3 having higher oxide ion conductivity than these materials have been proposed, and basic studies for application to various uses including fuel cells have been actively conducted. It is becoming.

【0005】又、新たに提案された酸化物イオン導電性
材料として、La(1-x) Srx Ga(1-y) Mgy3
おいて、x=0.1〜0.2、y=0.2とした組成物
がある。これは、従来の上記材料よりも導電率が高く、
又低温になるほどその効果が大きくなることが報告され
ており、低温作動固体電解質型燃料電池の電解質材料と
しての適用のための基礎的研究が現在進められている。
In addition, as a newly proposed oxide ion conductive material, x = 0.1 to 0.2 and y = 10 in La (1-x) Sr x Ga (1-y) Mg y O 3 There is a composition with 0.2. It has a higher conductivity than the previous materials,
It is also reported that the effect increases as the temperature decreases, and basic research for application as an electrolyte material for a low-temperature operating solid oxide fuel cell is currently in progress.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、LaG
aO3 系固溶体は、一般にイオン導電性は高いが、機械
的な強度が十分でないという問題があった。酸化物イオ
ン導電性材料の用いられ方のほとんどは、表裏面に組成
の異なるガスを流通、接触させて反応を起こさせるもの
であり、仮にクラックや連通孔などが酸化物イオン導電
性材料に生じると、それを介して表裏面のガスのリーク
が発生してしまう。ガスがリークすると、機器の機能を
損ない、効率を著しく低下させるばかりでなく、機器全
体の破損につながることがある。そのため、LaGaO
3 系固溶体からなる酸化物イオン導電性材料の機械的な
強度の向上が必要とされている。
SUMMARY OF THE INVENTION However, LaG
The aO 3 -based solid solution generally has high ionic conductivity, but has a problem of insufficient mechanical strength. Most of the methods of using the oxide ion conductive material are to cause a reaction by flowing and contacting gases having different compositions on the front and back surfaces, and temporarily cause cracks and communication holes in the oxide ion conductive material. Then, gas leaks on the front and back surfaces occur through it. If the gas leaks, it not only impairs the function of the device and significantly lowers the efficiency, but also may lead to damage to the entire device. Therefore, LaGaO
Improve mechanical strength of the oxide ion conducting material consisting of 3 solid solution is required.

【0007】また、従来のジルコニア系やセリア系の電
気化学的作用部材、例えば燃料電池における単電池等に
用いられていた電極材料は、LaGaO3 系固溶体との
反応性が高く、LaGaO3 系固溶体を酸化物イオン導
電性材料とした場合、従来と同様電極として利用するこ
とができないという問題があった。
Further, electrode materials used in conventional zirconia-based or ceria-based electrochemically acting members, for example, unit cells in fuel cells, have high reactivity with LaGaO 3 -based solid solutions, and have high reactivity with LaGaO 3 -based solid solutions. In the case where is made of an oxide ion conductive material, there is a problem that it cannot be used as an electrode as in the related art.

【0008】又、La(1-x) Srx Ga(1-y) Mgy
3 においては、Gaの価格が高く、これを用いた場合製
品価格が上昇してしまうという問題があった。更に、L
aGaO3 系固溶体からなる酸化物イオン導電性材料
は、高温時にクリープ現象がみられ、長時間の安定した
使用には不都合があった。
Also, La (1-x) Sr x Ga (1-y) Mg y O
In No. 3 , there was a problem that the price of Ga was high, and the use of Ga increased the product price. Furthermore, L
The oxide ion conductive material made of the aGaO 3 -based solid solution has a creep phenomenon at a high temperature, which is disadvantageous for long-term stable use.

【0009】本発明は、機械的な強度が高く、形状の安
定性が得られ、かつ安価な酸化物イオン導電性材料、お
よびそれを用いた電気化学的作用部材を提供することを
目的とする。
An object of the present invention is to provide an inexpensive oxide ion conductive material which has high mechanical strength, is stable in shape and is inexpensive, and an electrochemically active member using the same. .

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、酸化物イオン導電性材料を次のように構成した。す
なわち、La(1-x) Srx Ga(1-y-z) Mgy Alz
3 からなる酸化物イオン導電性材料において、0<x≦
0.2、0<y≦0.2、0<z<0.4とした。
Means for Solving the Problems In order to solve the above problems, the oxide ion conductive material is constituted as follows. That is, La (1-x) Sr x Ga (1-yz) Mg y Al z O
In the oxide ion conductive material composed of 3 , 0 <x ≦
0.2, 0 <y ≦ 0.2, and 0 <z <0.4.

【0011】又、上記酸化物イオン導電性材料と電極材
料とを組み合わせて構成する電気化学的作用部材におい
て、酸化物イオン導電性材料と電極材料との間に中間層
を設けることとした。又、かかる中間層をCeO2 系酸
化物固溶体から形成した。
[0011] Further, in the electrochemical action member constituted by combining the oxide ion conductive material and the electrode material, an intermediate layer is provided between the oxide ion conductive material and the electrode material. The intermediate layer was formed from a CeO 2 -based oxide solid solution.

【0012】更に、上記酸化物イオン導電性材料を用い
た電気化学的作用部材の作動温度を900℃以下とし
た。又、上記条件を備えた電気化学的作用部材を用いて
固体電解質型燃料電池を構成した。
Further, the operating temperature of the electrochemical action member using the oxide ion conductive material is set to 900 ° C. or less. Further, a solid oxide fuel cell was constructed using the electrochemically acting member satisfying the above conditions.

【0013】これにより、機械的強度が高く、耐久性が
あり、かつ低コストの酸化物イオン導電性材料、それを
用いた電気化学的作用部材、及びそれらからなる製品を
提供することができる。
As a result, it is possible to provide an oxide ion conductive material having high mechanical strength, durability and low cost, an electrochemically active member using the same, and a product comprising the same.

【0014】[0014]

【発明の実施の形態】以下、発明の実施の一形態につい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0015】酸化物イオン導電性材料La(1-x) Srx
Ga(1-y-z) Mgy Alz3 において、各金属成分の
硝酸塩水溶液をx=0.2、y=0.2、z=0、0.
05、0.1、0.2、0.3、0.4となるように混
合し、スプレー熱分解法により成分の異なる原料粉末を
6種類合成した。得られた粉末は、金型を用いて板状に
一軸加圧成型した後、2500kgf/cm2 の圧力で
静水圧プレスを行ない、その後空気中で1350℃から
1450℃において3〜12時間焼成した。
Oxide ion conductive material La (1-x) Sr x
In Ga (1-yz) Mg y Al z O 3 , an aqueous nitrate solution of each metal component was added at x = 0.2, y = 0.2, z = 0,.
The powders were mixed so as to be 05, 0.1, 0.2, 0.3, and 0.4, and six kinds of raw material powders having different components were synthesized by a spray pyrolysis method. The obtained powder was formed into a plate by uniaxial pressure molding using a mold, then subjected to isostatic pressing at a pressure of 2500 kgf / cm 2 , and then fired in air at 1350 ° C. to 1450 ° C. for 3 to 12 hours. .

【0016】形成した焼結体から4mm×3mm×40
mmの試験片を切り出し、室温において、JIS160
1に準拠した4点曲げ試験を行ない、抗折強度、および
弾性率を測定した。結果を図1に示す。図1に示すよう
にGaの一部をAlで置換することにより、室温におけ
る平均4点曲げ強度はいずれの範囲においてもz=0の
従来品より向上していることがわかる。
4 mm × 3 mm × 40 from the formed sintered body
mm test piece was cut out at room temperature according to JIS160.
A four-point bending test according to No. 1 was performed, and the bending strength and the elastic modulus were measured. The results are shown in FIG. As shown in FIG. 1, by partially replacing Ga with Al, it can be seen that the average four-point bending strength at room temperature is higher than that of the conventional product at z = 0 in any range.

【0017】また、z=0、0.05,0.10の焼結
体から4mm角×25mmの長さの試料を切り出し、O
2 /Ar混合ガス、およびCO/CO2 混合ガス中にお
いて、直流4端子法により800℃で導電率の測定を行
なった。導電率は、図2に示すように、10のマイナス
22乗atmから1atmの広い酸素分圧範囲におい
て、酸素分圧に依存しない一定の値を示した。このこと
から、導電性は酸化物イオンの伝導支配になっているも
のと考えられる。更に、Gaの一部をAlに置換した場
合、導電率の値に僅かな減少が見られるが、これは各種
電気化学的作用部材への応用を妨げるほどのものではな
い。
Further, a sample of 4 mm square × 25 mm length is cut out from the sintered body of z = 0, 0.05, 0.10 and
In a mixed gas of 2 / Ar and a mixed gas of CO / CO 2 , the conductivity was measured at 800 ° C. by a DC four-terminal method. As shown in FIG. 2, the conductivity showed a constant value independent of the oxygen partial pressure in a wide oxygen partial pressure range from 10 −22 atm to 1 atm. From this, it is considered that the conductivity is governed by the conduction of oxide ions. Further, when a part of Ga is replaced by Al, a slight decrease in the conductivity value is observed, but this does not hinder the application to various electrochemical working members.

【0018】尚、xの値を0以上とすると、Laの一部
がSrに置換され、その置換量に応じて結晶格子中の酸
素が抜けるので、酸化物イオン導電性が向上する。一
方、xの値を0.2以上にするとSrがぺロブスカイト
型の結晶格子に入りきらず、導電性の低い第2相を生成
することからxの値を0.2以上にすることは好ましく
ない。
If the value of x is set to 0 or more, a part of La is replaced by Sr, and oxygen in the crystal lattice is released according to the amount of the replacement, so that the oxide ion conductivity is improved. On the other hand, if the value of x is 0.2 or more, it is not preferable to set the value of x to 0.2 or more since Sr cannot enter the perovskite-type crystal lattice and generates a second phase having low conductivity. .

【0019】又、yの値を0以上とすると、Gaの一部
がMgに置換され、その置換量に応じて結晶格子中の酸
素が抜けるので、酸化物イオン導電性が向上する。一
方、yの値を0.2以上にするとMgがぺロブスカイト
型の結晶格子に入りきらず、導電性の低い第2相を生成
することから0.2以上にすることは好ましくない。
If the value of y is set to 0 or more, part of Ga is replaced by Mg, and oxygen in the crystal lattice is released according to the amount of replacement, so that the oxide ion conductivity is improved. On the other hand, if the value of y is 0.2 or more, Mg does not fit into the perovskite-type crystal lattice, and a second phase having low conductivity is generated.

【0020】更に、zの値を増加させても、導電性等の
低下はほとんど問題とならないが、zの値を0.4以上
とすると、Alによる置換量が増大し、導電性の低下が
大きくなることから実用的ではない。
Further, even if the value of z is increased, the decrease in conductivity or the like is hardly a problem. However, if the value of z is 0.4 or more, the amount of substitution by Al increases, and the decrease in conductivity decreases. It is not practical because it becomes large.

【0021】又、z=0とした組成物の粉末( 従来製
品、以下LSGMとする。) を、図3に示す組み合わせ
で、1:1のモル比で混合したものを空気中、1100
〜1400℃において12時間アニールし、反応生成物
等の有無を粉末X線回折法により分析した。その結果、
LSGMは従来から固体電解質型燃料電池の空気極材料
として一般的に用いられてきたLSM( La0.85Sr
0.15MnO3 ) とLSC(La0.9 Sr0.1 CoO3
とは反応しないことが明らかになり、このことは、空気
極材料として従来品を使用できることを意味する。
Further, a mixture of a powder of a composition with z = 0 (conventional product, hereinafter referred to as LSGM) in a molar ratio of 1: 1 in a combination shown in FIG.
Annealing was performed at 4001400 ° C. for 12 hours, and the presence or absence of a reaction product and the like was analyzed by powder X-ray diffraction. as a result,
LSGM is an LSM (La 0.85 Sr) which has been generally used as an air electrode material of a solid oxide fuel cell.
0.15 MnO 3 ) and LSC (La 0.9 Sr 0.1 CoO 3 )
Does not react, which means that a conventional product can be used as a cathode material.

【0022】一方、従来から一般的に用いられてきたN
iO/8YSZ系燃料極材料に関しては、NiO、8Y
SZ(8mol%Y23 −ZrO2 )のいずれもLS
GMと著しく反応し、別の化合物を生成したことから、
これらをそのままの状態でLaGaO3 系材料用の電極
として適用はできなかった。
On the other hand, conventionally used N
Regarding iO / 8YSZ-based fuel electrode materials, NiO, 8Y
SZ (8mol% Y 2 O 3 -ZrO 2) none of the LS
Remarkably reacted with GM and produced another compound,
They could not be used as they were as electrodes for LaGaO 3 -based materials.

【0023】しかるに、LSGMとSDC(Ce0.8
0.21.9 )との組み合わせは、一部の成分間に固溶
が認められるが、反応生成物は認められていない。この
結果と、SDCとNiOと8YSZとを混合して製造し
た固体電解質型燃料電池用の燃料極が正常に機能してい
るという事実から、SDCからなる中間層を配置すれ
ば、NiO/8YSZ系材料をLaGaO3 系材料用の
電極として適用可能と判断できる。 又、SDCはLS
MやLSCとの間にも反応生成物を生じていないことか
ら、空気極側の中間層としても利用することができる。
すなわち、中間層を電解質材料の表裏片側にのみ設けて
も、両側に設けるようにしてもよい。
However, LSGM and SDC (Ce 0.8 S
In combination with m 0.2 O 1.9 ), solid solution was observed between some components, but no reaction product was observed. From this result and the fact that the fuel electrode for a solid oxide fuel cell manufactured by mixing SDC, NiO and 8YSZ is functioning normally, the NiO / 8YSZ-based It can be determined that the material is applicable as an electrode for a LaGaO 3 -based material. SDC is LS
Since no reaction product is generated between M and LSC, it can also be used as an intermediate layer on the air electrode side.
That is, the intermediate layer may be provided only on one side of the electrolyte material, or may be provided on both sides.

【0024】更に、上記例では、z=0、すなわちAl
を含まない例で説明したが、zを0以上、すなわちAl
により置換した場合であっても同様な効果が得られる。
Further, in the above example, z = 0, that is, Al
Has been described, but z is 0 or more, that is, Al
The same effect can be obtained even when the substitution is made by

【0025】又、x=0.2、y=0.2、z=0、
0.10、0.40の各組成物の焼結体を上記実施の形
態に記載した方法により形成し、これから4mm角×2
0mmの長さに切り出し、3種類の試料を製造した。こ
の試料を焼結アルミナを標準試料とする差動型ディラト
メータにセットし、長さ方向に30グラム重の一定加重
をかけた状態にし、空気中800〜1000℃の温度で
200時間寸法の経時変化を計測した。
Also, x = 0.2, y = 0.2, z = 0,
A sintered body of each composition of 0.10 and 0.40 was formed by the method described in the above embodiment, and a 4 mm square × 2
The sample was cut to a length of 0 mm, and three types of samples were manufactured. This sample was set on a differential dilatometer using sintered alumina as a standard sample, and a constant weight of 30 grams was applied in the length direction. Was measured.

【0026】結果は、温度を1000℃とした場合、従
来製品では0.18%の収縮が発生したが、z=0.1
0では、0.11%であり、z=0.40の場合は、
0.05%であった。更に、実験温度を900℃とした
場合には、いずれの試料にもほとんど収縮は発生しなか
った。
As a result, when the temperature was set to 1000 ° C., the shrinkage of 0.18% occurred in the conventional product, but z = 0.1
At 0, it is 0.11%, and when z = 0.40,
It was 0.05%. Furthermore, when the experimental temperature was 900 ° C., almost no shrinkage occurred in any of the samples.

【0027】このことから、1000℃の使用であって
もAlを10%以上含む場合は変形が少なく、しかも、
900℃以下の場合には、いずれも変形が見られないこ
とから、これら酸化物イオン導電性材料から構成した電
気化学的作用部材を900℃以下で作動させることによ
り、機械的信頼性を大幅に向上させることができる。
From this, even when used at 1000 ° C., when Al contains 10% or more, deformation is small, and
When the temperature is 900 ° C or lower, no deformation is observed in any case. Therefore, by operating the electrochemically acting member composed of these oxide ion conductive materials at 900 ° C or lower, the mechanical reliability is greatly reduced. Can be improved.

【0028】[0028]

【実施例】上記酸化物イオン導電性材料から構成した電
気化学的作用部材を用いて構成した固体電解質型燃料電
池について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will be given of a solid oxide fuel cell constituted by using an electrochemically acting member constituted by the above oxide ion conductive material.

【0029】燃料電池は、上記酸化物イオン導電性材料
を電解質材料とし、電極を従来のNiO/8YSZ系材
料に用いられていた電極とし、これら酸化物イオン導電
性材料と電極との間にCeO2 系の中間層を介在させて
なる電気化学的作用部材から構成し、約800℃で作動
させた。この燃料電池は、比較的低温の作動温度におい
て良好な発電作用を有し、かつ優れた耐久性を発揮し
た。
In the fuel cell, the above-mentioned oxide ion conductive material is used as an electrolyte material, the electrodes are used as the electrodes used in conventional NiO / 8YSZ-based materials, and CeO is placed between these oxide ion conductive materials and the electrodes. It was composed of an electrochemically active member having a two- system intermediate layer interposed, and was operated at about 800 ° C. This fuel cell had a good power generation effect at a relatively low operating temperature and exhibited excellent durability.

【0030】[0030]

【発明の効果】本発明の酸化物イオン導電性材料によれ
ば、電気化学的性質に劣化をおよぼすことなく、機械的
強度を向上でき、かつGaの使用量を減少できることか
らコストを低減できる。又、中間層を用いることによ
り、従来用いられていた電極を利用することができる。
According to the oxide ion conductive material of the present invention, the mechanical strength can be improved without deteriorating the electrochemical properties and the amount of Ga can be reduced, so that the cost can be reduced. In addition, by using the intermediate layer, a conventionally used electrode can be used.

【0031】また900℃以下で作動させることによ
り、クリープの発生を抑制し、長時間の安定した作動が
得られる固体電解質型燃料電池を提供することができ
る。
By operating at 900 ° C. or lower, it is possible to provide a solid oxide fuel cell capable of suppressing the occurrence of creep and achieving stable operation for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物イオン導電性材料の実験結果を
示す図である。
FIG. 1 is a view showing experimental results of an oxide ion conductive material of the present invention.

【図2】本発明の酸化物イオン導電性材料の実験結果を
示す図である。
FIG. 2 is a view showing experimental results of the oxide ion conductive material of the present invention.

【図3】本発明の酸化物イオン導電性材料の実験結果を
示す図である。
FIG. 3 is a view showing experimental results of the oxide ion conductive material of the present invention.

【符号の説明】[Explanation of symbols]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】La(1-x) Srx Ga(1-y-z) Mgy Al
z3 からなる酸化物イオン導電性材料において、0<
x≦0.2、0<y≦0.2、0<z<0.4としたこ
とを特徴とする酸化物イオン導電性材料。
1. La (1-x) Sr x Ga (1-yz) Mg y Al
In an oxide ion conductive material composed of zO 3 , 0 <
An oxide ion conductive material, wherein x ≦ 0.2, 0 <y ≦ 0.2, and 0 <z <0.4.
【請求項2】 La(1-x) Srx Ga(1-y-z) Mgy
z3 、かつ0<x≦0.2、0<y≦0.2、0≦
z<0.4とした酸化物イオン導電性材料に、電極材料
を積層して構成した電気化学的作用部材において、前記
酸化物イオン導電性材料と前記電極材料との間に所定の
中間層を設けたことを特徴とする電気化学的作用部材。
2. La (1-x) Sr x Ga (1-yz) Mg y A
l z O 3 and 0 <x ≦ 0.2, 0 <y ≦ 0.2, 0 ≦
In an electrochemical action member formed by laminating an electrode material on an oxide ion conductive material with z <0.4, a predetermined intermediate layer is provided between the oxide ion conductive material and the electrode material. An electrochemically acting member, wherein the member is provided.
【請求項3】 前記中間層をCeO2 系酸化物固溶体で
形成したことを特徴とする請求項2に記載の電気化学的
作用部材。
3. The electrochemically active member according to claim 2, wherein the intermediate layer is formed of a CeO 2 -based oxide solid solution.
【請求項4】 前記酸化物イオン導電性材料を900℃
以下で作動させることを特徴とする請求項2または3に
記載の電気化学的作用部材。
4. The method according to claim 1, wherein the oxide ion conductive material is 900 ° C.
4. The electrochemically acting member according to claim 2, which is operated as follows.
【請求項5】 請求項2〜4のいずれか1項に記載の電
気化学的作用部材を用い、所定の酸化性ガスおよび還元
性ガスを前記電気化学的作用部材に供給して発電作用を
行なわせるように構成したことを特徴とする固体電解質
型燃料電池。
5. A power generating operation by supplying a predetermined oxidizing gas and a reducing gas to the electrochemically active member using the electrochemically active member according to any one of claims 2 to 4. A solid oxide fuel cell, characterized in that the fuel cell is configured to be operated.
JP02594798A 1998-02-06 1998-02-06 Oxide ion conductive material Expired - Lifetime JP4119511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02594798A JP4119511B2 (en) 1998-02-06 1998-02-06 Oxide ion conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02594798A JP4119511B2 (en) 1998-02-06 1998-02-06 Oxide ion conductive material

Publications (2)

Publication Number Publication Date
JPH11228136A true JPH11228136A (en) 1999-08-24
JP4119511B2 JP4119511B2 (en) 2008-07-16

Family

ID=12179962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02594798A Expired - Lifetime JP4119511B2 (en) 1998-02-06 1998-02-06 Oxide ion conductive material

Country Status (1)

Country Link
JP (1) JP4119511B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283876A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell of solid electrolytic fuel battery
JP2001283877A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
EP1168478A3 (en) * 2000-06-28 2004-12-15 Mitsubishi Materials Corporation Solid oxide electrolyte fuel cell
JP2011216464A (en) * 2010-03-19 2011-10-27 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283876A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell of solid electrolytic fuel battery
JP2001283877A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
EP1168478A3 (en) * 2000-06-28 2004-12-15 Mitsubishi Materials Corporation Solid oxide electrolyte fuel cell
US7033690B1 (en) 2000-06-28 2006-04-25 Mitsubishi Materials Corporation Solid oxide fuel cell
JP2011216464A (en) * 2010-03-19 2011-10-27 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method

Also Published As

Publication number Publication date
JP4119511B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Huang et al. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer
US10593981B2 (en) Heterogeneous ceramic composite SOFC electrolyte
Huang et al. Development of solid oxide fuel cell materials for intermediate-to-low temperature operation
JP4981239B2 (en) High performance cathode for solid oxide fuel cells
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
KR100352097B1 (en) Mixed ions containing conductor and device using the same
US6004688A (en) Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
Ishihara et al. Oxide ion conductivity in La0. 8Sr0. 2Ga0. 8Mg0. 2− X Ni X O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells
WO2008127652A1 (en) Composite anode showing low performance loss with time
US6887612B2 (en) Fuel cell
JP2000340240A (en) High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
Qiu et al. LaCoO3-δ coated Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for intermediate temperature solid oxide fuel cells
JP5219370B2 (en) Ionic conductor
Wang et al. Joining the BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3-δ electrolyte to AISI 441 interconnect for protonic ceramic fuel cell applications: interfacial microstructure and long-term stability
Devi et al. Solid oxide fuel cell materials: a review
US20090181274A1 (en) Electrodes for Lanthanum Gallate Electrolyte-Based Electrochemical Systems
JP4119511B2 (en) Oxide ion conductive material
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
JP3937852B2 (en) Oxyfluorides, solid electrolytes and fuel cells
JP3501409B2 (en) Self-supporting flat-plate solid electrolyte fuel cell
AU2021201380A1 (en) Electrochemical cell, electrochemical cell stack, and electrolyte for electrochemical cell
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
Chen Engineering solid oxide fuel cell materials
Steele et al. Properties and Applications of Ce (Gd) O2− x Electrolytes in the Temperature Range 500–700° C.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term