JPH11226620A - Method for controlling shape of steel plate - Google Patents

Method for controlling shape of steel plate

Info

Publication number
JPH11226620A
JPH11226620A JP10027095A JP2709598A JPH11226620A JP H11226620 A JPH11226620 A JP H11226620A JP 10027095 A JP10027095 A JP 10027095A JP 2709598 A JP2709598 A JP 2709598A JP H11226620 A JPH11226620 A JP H11226620A
Authority
JP
Japan
Prior art keywords
rolling
shape
yield
adjustment
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10027095A
Other languages
Japanese (ja)
Inventor
Masatoshi Sugioka
正敏 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10027095A priority Critical patent/JPH11226620A/en
Publication of JPH11226620A publication Critical patent/JPH11226620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the best yield by this method which is applicable even in the case a strong edger or the edger itself is not used. SOLUTION: In this control method, after executing the adjusting rolling for rolling a slab so that the thickness in the front and rear end parts of the slab is thicker than that in the middle part, cross rolling in which rolling is executed by turning the direction of rolling direction 90 deg. is executed and, after that, finish rolling is executed. In such a case, the relation between the rolling reduction of the adjusting rolling and the shape of the steel plate after the finish rolling is previously determined and, using this relation, the relation between the rolling reduction of the adjusting rolling and the yield is calculated. Moreover, within the range of variation in the shape of the steel plate after finish rolling, the rolling reduction of the adjusting rolling for making the average value of the yield best is calculated and the adjusting rolling is controlled to that rolling reduction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、調整圧延を行っ
た後、圧延方向を90度回転して圧延する幅出し圧延を行
い、その後仕上圧延を行う厚鋼板の形状制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a thick steel plate in which, after performing adjustment rolling, rolling is performed by rotating the rolling direction by 90 degrees, rolling is performed, and finish rolling is performed.

【0002】[0002]

【従来の技術】板状の物品(以下、板状物品)の製造に
おいては製造上の観点から、幅出し圧延により製造する
ことが多い。この場合、いくつかの方法が提案されてい
る。
2. Description of the Related Art In the manufacture of plate-shaped articles (hereinafter referred to as plate-shaped articles), they are often manufactured by tentative rolling from the viewpoint of manufacturing. In this case, several methods have been proposed.

【0003】特開平5−185105号公報には、水平
ロール圧延機とエッジャを併用して、圧延後の形状を最
適化し、高歩留りの矩形製品を製造する方法が提案され
ている。この技術では、幅出し圧延の前後あるいは途中
において、エッジャ噛み込み端付近と尻抜け端付近は中
央部の基準圧下量より軽圧下となるようエッジングする
というものである。
Japanese Patent Application Laid-Open No. 5-185105 proposes a method of manufacturing a rectangular product with a high yield by using a horizontal roll mill and an edger in combination to optimize the shape after rolling. In this technique, before or after or during the tentering rolling, edging is performed so that the vicinity of the edge of the edger and the vicinity of the trailing edge are slightly reduced from the reference reduction amount at the center.

【0004】また、特開平6−7816号公報には、幅
出し圧延前の圧延最終パスの圧下量を圧延方向に沿って
変化させることにより、圧延終了後の鋼板の幅変動量を
小さくする平面形状制方法が提案されている。この技術
では、圧延終了後の鋼板の幅変動量を予測して、この予
測変動量に基づき圧下量を変化させるというものであ
る。
Japanese Unexamined Patent Publication No. Hei 6-7816 discloses a flat surface for reducing the width variation of a steel sheet after rolling by changing the rolling reduction of a final rolling pass before tentering rolling along the rolling direction. A shape control method has been proposed. In this technique, the width variation of the steel sheet after rolling is predicted, and the rolling reduction is changed based on the predicted variation.

【0005】[0005]

【発明が解決しようとする課題】特開平5−18510
5号公報記載の技術では、エッジャの設備が必要であ
り、設備コストが増加する。特に、エッジャで大きな変
形を加えるためには、エッジャの能力が通常より強力な
設備とする必要がある。
Problems to be Solved by the Invention
In the technique described in Japanese Patent Application Laid-Open No. 5 (1999) -1995, equipment for an edger is required, and equipment costs increase. In particular, in order to apply a large deformation to the edger, it is necessary to use a facility whose edger's capability is stronger than usual.

【0006】特開平6−7816号公報記載の技術で
は、圧延終了後の鋼板の幅変動量を予測する必要がある
が、その具体的な方法については記載されていない。同
公報の図1の説明を見ても、幅出し圧延の際の圧延材の
厚さ、幅等をパラメータにして、圧延終了後の鋼板の幅
変動量を予測する式を作成(定常域がタイコ状となるモ
デルによる)すると記載されているのみである。
[0006] In the technique described in Japanese Patent Application Laid-Open No. 6-7816, it is necessary to predict the width variation of the steel sheet after the completion of rolling, but no specific method is described. From the description of FIG. 1 of the publication, an equation for predicting the width variation of the steel sheet after rolling is created using the thickness, width, and the like of the rolled material in the tentering rolling as a parameter (when the steady-state region is (Depending on the model with a cocoon).

【0007】このようにこの技術では、幅変動量の予測
式の具体的な形はおろか、その使い方についても何ら開
示されていない。また、圧延終了後の鋼板の形状が、長
手方向の中央部で板幅で凹むツヅミ形状となる場合につ
いては考慮されていないため、モデル式としては現実の
再現性の点で問題があり、必ずしも最良の歩留りを得ら
れる保証が無い。
As described above, this technique does not disclose a concrete form of the prediction formula of the width fluctuation amount, nor discloses how to use it. In addition, since the shape of the steel sheet after rolling is not taken into consideration when the shape of the steel sheet is depressed by the sheet width at the center in the longitudinal direction, there is a problem in terms of the actual reproducibility as a model formula, and it is not necessarily required. There is no guarantee that the best yield will be obtained.

【0008】この発明は、以上のような従来技術の問題
点を解決し、強力なエッジャあるいはエッジャ自体を用
いない場合でも適用可能で、最良の歩留りを得ることが
可能な厚鋼板の形状制御方法を提供することを目的とす
る。
The present invention solves the above-mentioned problems of the prior art, and is applicable even when a strong edger or an edger itself is not used, and can control the shape of a thick steel plate capable of obtaining the best yield. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】この発明は、スラブの前
後端部の板厚を中央部より厚くなるよう圧延する調整圧
延を行った後、圧延方向を90度回転して圧延する幅出し
圧延を行い、その後仕上圧延を行う厚鋼板の形状制御方
法において、予め調整圧延の圧下量と仕上圧延後の鋼板
形状の関係を求めておき、この関係を用いて調整圧延の
圧下量と歩留りの関係を算出し、さらに、仕上圧延後の
鋼板形状のバラツキの範囲内で、歩留りの平均値を最良
とする調整圧延の圧下量を算出し、調整圧延をその圧下
量に制御して行うことを特徴とする厚鋼板の形状制御方
法である。
SUMMARY OF THE INVENTION According to the present invention, there is provided a rolling process in which rolling is performed by rotating the rolling direction by 90 degrees after performing adjustment rolling in which the thickness of the front and rear end portions of the slab is made thicker than the center portion. Then, in the shape control method of the thick steel plate to be subjected to finish rolling, the relationship between the reduction amount of the adjustment rolling and the shape of the steel plate after the finish rolling is obtained in advance, and the relationship between the reduction amount of the adjustment rolling and the yield using this relationship. Further, within the range of variation in the shape of the steel sheet after finish rolling, the reduction amount of the adjustment rolling to optimize the average value of the yield is calculated, and the adjustment rolling is performed by controlling the reduction amount to the reduction amount. This is a method for controlling the shape of a thick steel plate.

【0010】この発明は、厚鋼板の形状制御方法を鋭意
検討することによりなされた。その過程で、鋼板形状に
及ぼす調整圧延の影響に着目した。最終的な鋼板の形状
は、調整圧延の圧下量(以下、調整圧下量)により変化
する。この調整圧下量の増加に伴い、長手方向の中央部
で板幅が膨らむタイコ形状から、ほぼ矩形となり、長手
方向の中央部で板幅が凹むツヅミ形状へと変化する。
The present invention has been made by diligently studying a method for controlling the shape of a thick steel plate. In the process, we paid attention to the effect of the adjustment rolling on the shape of the steel sheet. The final shape of the steel sheet changes depending on the reduction amount of the adjustment rolling (hereinafter, the adjustment reduction amount). With the increase in the adjustment reduction amount, the shape changes from a Tyco shape in which the plate width expands at the center in the longitudinal direction to a substantially rectangular shape, and changes to a Tsutsumi shape in which the plate width is depressed at the center in the longitudinal direction.

【0011】従って、個々の圧延については、最終的な
鋼板の形状がほぼ矩形となる調整圧下量で、調整圧延を
行うことにより、歩留りを最良とすることができる。し
かし、素材の寸法、温度、圧延条件等のバラツキを考慮
すると、そのような制御方法では、総合的な歩留り、即
ち個々の圧延の歩留りのバラツキの平均値については、
必ずしも最良とならないことを見出した。
[0011] Therefore, for each rolling, the yield can be optimized by performing the adjustment rolling with the adjustment reduction amount at which the shape of the final steel sheet becomes substantially rectangular. However, in consideration of variations in the dimensions of the material, temperature, rolling conditions, and the like, such a control method provides an overall yield, that is, an average value of the variation in the yield of each rolling,
I found that it was not always the best.

【0012】これは、個々の鋼板の歩留りとしては、鋼
板形状が矩形となる場合が最大であるが、バラツキを考
慮すると最大ではないということである。言い換える
と、最終的な鋼板形状がほぼ矩形となる条件とは別の条
件で、調整圧延を行うことが、総合的な歩留りを最良と
するということである。これは、一見、従来の常識に反
しているため、従来技術では考慮されていなかった。以
下、この理由について説明する。
This means that the yield of each steel plate is maximum when the shape of the steel plate is rectangular, but is not maximum in consideration of variations. In other words, performing the adjustment rolling under conditions different from the conditions under which the final steel sheet shape is substantially rectangular is to optimize the overall yield. At first glance, this is contrary to the conventional wisdom, and thus was not considered in the prior art. Hereinafter, the reason will be described.

【0013】まず、調整圧下量と最終的な鋼板形状の関
係を求めると、1例として図1に示すようになる。ここ
では、鋼板形状を板幅の変化で表しており、縦軸の幅異
形量は、鋼板の長手方向中央の板幅から前後端部の板幅
(平均値)を差引いた値である。この図より、幅異形量
は、調整圧下量の1次式で表されることがわかる。
First, the relationship between the adjustment reduction amount and the final steel sheet shape is obtained, as shown in FIG. 1 as an example. Here, the shape of the steel sheet is represented by a change in the sheet width, and the width variation on the vertical axis is a value obtained by subtracting the sheet width (average value) at the front and rear ends from the sheet width at the center in the longitudinal direction of the steel sheet. From this figure, it can be seen that the width deformation amount is represented by a linear expression of the adjustment reduction amount.

【0014】次に、幅異形量と個々の鋼板の歩留りの関
係について検討すると、図2のようになる。個々の鋼板
の歩留りは、鋼板形状がほぼ矩形となる幅異形量で最大
となり、幅異形量がそれより離れるのに伴い、歩留りは
低下する。ここで、歩留りの低下の程度は、幅異形量が
高低どちら側にずれるかにより、異なることに注目する
必要がある。従って、バラツキの中心を、歩留りの低下
が小さくなる領域に持っていった方が、全体としての歩
留りの低下が小さくて済むことになる。
Next, the relationship between the width irregularity and the yield of each steel plate is examined, as shown in FIG. The yield of each steel sheet is maximized when the width of the steel sheet is substantially rectangular, and the yield decreases as the width of the steel sheet increases. Here, it is necessary to note that the degree of the decrease in the yield differs depending on which side the height of the width irregularity shifts. Therefore, when the center of the variation is set in a region where the reduction in the yield is small, the reduction in the overall yield is small.

【0015】図2では、同じ幅異形量の差に対して、幅
異形量が正の側(タイコ型)にずれた場合は歩留りの低
下が大きく、負の側(ツヅミ型)にずれた場合は歩留り
の低下が小さいことがわかる。ここでバラツキを考慮す
ると、バラツキの中にツヅミ型の頻度がタイコ型より多
く含まれるようにするのがよい。このように、平均的な
歩留りを最良とするには、鋼板形状がほぼ矩形となる幅
異形量より負の側(ツヅミ型)に、幅異形量をずらして
制御した方がよいことになる。
In FIG. 2, when the width variation amount shifts to the positive side (taiko type) with respect to the same difference in the width variation amount, the yield is greatly reduced, and when the width variation amount shifts to the negative side (tsuzumi type). Indicates that the decrease in yield is small. In consideration of the variation, it is preferable that the frequency of the thrush type is included in the variation more than that of the Tyco type. As described above, in order to optimize the average yield, it is better to shift the width irregularity amount to the negative side (knob-shaped) than the width irregularity amount where the shape of the steel sheet is substantially rectangular, and to control it.

【0016】以上は、幅異形量と歩留りの関係について
述べたが、これは、幅異形量と1次式の関係にある調整
圧下量についても当てはまる。従って、調整圧延におい
ては、鋼板形状がほぼ矩形となる調整圧下量より、調整
圧下量を高い側にずらして制御した方がよいことにな
る。
The relationship between the width irregularity and the yield has been described above, but this also applies to the adjustment rolling amount having a linear relationship with the width irregularity. Therefore, in the adjustment rolling, it is better to control the adjustment reduction amount by shifting the adjustment reduction amount to a higher side than the adjustment reduction amount in which the shape of the steel sheet is substantially rectangular.

【0017】このように、この発明では、まず、調整圧
延の圧下量と仕上圧延後の鋼板形状の関係を求めてお
く。この場合、鋼板形状としては、上記の幅異形量の他
種々のパラメータを用いることができる。次いで、この
関係を用いて、調整圧下量と歩留りの関係を算出する。
その結果を用いて、歩留りの平均値が最良となる調整圧
延の圧下量を算出する。
As described above, in the present invention, first, the relationship between the amount of reduction in the adjustment rolling and the shape of the steel sheet after the finish rolling is determined. In this case, as the shape of the steel sheet, various parameters other than the above-mentioned width irregularity amount can be used. Next, using this relationship, the relationship between the adjustment reduction amount and the yield is calculated.
Using the result, the rolling reduction of the adjusted rolling at which the average value of the yield is the best is calculated.

【0018】ここで、圧下量の算出は、仕上圧延後の鋼
板形状のバラツキの範囲内で行う。これは、実際の圧延
結果等から得られる調整圧下量と歩留りの関係につい
て、そのバラツキ(標準偏差等)の範囲内で、歩留りの
平均値を最良とする調整圧下量を算出するということで
ある。
Here, the calculation of the rolling reduction is performed within the range of variation in the shape of the steel sheet after finish rolling. This means that, with respect to the relationship between the adjustment reduction amount obtained from the actual rolling result and the like and the yield, the adjustment reduction amount that optimizes the average value of the yield is calculated within the range of the variation (standard deviation or the like). .

【0019】[0019]

【発明の実施の形態】この発明を厚鋼板の製造に適用し
た場合は、次のようになる。図3は、厚鋼板の圧延の典
型的な例を示す図である。まず、調整圧延では、スラブ
の前後端部の板厚が中央部より厚くなるよう、圧延方向
の圧下率を変化させて圧延する。その結果、調整圧延後
の圧延材は、前後端部の板厚が厚い、いわゆるドッグボ
ーン形状となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When the present invention is applied to the production of a thick steel plate, the following is achieved. FIG. 3 is a diagram showing a typical example of rolling of a thick steel plate. First, in the adjustment rolling, rolling is performed by changing the rolling reduction in the rolling direction such that the plate thickness at the front and rear end portions of the slab is greater than the center portion. As a result, the rolled material after the adjustment rolling has a so-called dogbone shape in which the plate thickness at the front and rear ends is large.

【0020】次の幅出し圧延では、圧延方向を90度回転
して数パスの圧延を行う。この場合も、上記のドッグボ
ーン形状とする。その後、仕上圧延では、再度圧延方向
を90度回転して数パスの圧延を行い、圧延を終了する。
In the next tentering rolling, rolling is performed in several passes by rotating the rolling direction by 90 degrees. Also in this case, the dog bone shape is used. Thereafter, in finish rolling, the rolling direction is rotated again by 90 degrees, rolling is performed for several passes, and the rolling is completed.

【0021】以下、この発明の実施例について述べる。
まず、調整圧下量と幅異形量の関係は、前述の図1のよ
うになった。これより、平均的な歩留りが最良となる調
整圧下量は、個々の歩留りを最良とする調整圧下量よ
り、高い側にずれていることがわかった。
Hereinafter, embodiments of the present invention will be described.
First, the relationship between the adjustment reduction amount and the width irregularity amount was as shown in FIG. 1 described above. From this, it was found that the adjustment reduction amount at which the average yield was the best was shifted to a higher side than the adjustment reduction amount at which the individual yield was the best.

【0022】このように調整圧下量を設定した場合の平
均的歩留りを、個々の歩留りを最良とした場合と比較す
ると、平均歩留りが0.1%向上した。
When the average yield in the case where the adjustment reduction amount is set as described above is compared with the case where the individual yield is optimized, the average yield is improved by 0.1%.

【0023】[0023]

【発明の効果】この発明では、調整圧延の圧下量と仕上
圧延後の鋼板形状の関係から調整圧延の圧下量と歩留り
の関係を算出し、鋼板形状のバラツキを考慮した歩留り
の平均値を最良とする調整圧延を行う。従って、個々の
鋼板形状を矩形とする制御を行う場合よりも、全体の歩
留りを向上させることが可能となる。
According to the present invention, the relationship between the reduction amount of the adjustment rolling and the yield is calculated from the relationship between the reduction amount of the adjustment rolling and the shape of the steel plate after finish rolling, and the average value of the yield in consideration of the variation in the shape of the steel plate is best. Is performed. Therefore, it is possible to improve the overall yield as compared with the case where control is performed to make the shape of each steel plate rectangular.

【図面の簡単な説明】[Brief description of the drawings]

【図1】調整圧下量と最終的な鋼板形状の関係を示す図
である。
FIG. 1 is a diagram showing a relationship between an adjustment reduction amount and a final steel sheet shape.

【図2】幅異形量と個々の鋼板の歩留りの関係を模式的
に示す図である。
FIG. 2 is a diagram schematically showing the relationship between the width irregularity and the yield of individual steel plates.

【図3】厚鋼板の圧延の典型的な例を示す図である。FIG. 3 is a view showing a typical example of rolling of a thick steel plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スラブの前後端部の板厚を中央部より厚
くなるよう圧延する調整圧延を行った後、圧延方向を90
度回転して圧延する幅出し圧延を行い、その後仕上圧延
を行う厚鋼板の形状制御方法において、予め調整圧延の
圧下量と仕上圧延後の鋼板形状の関係を求めておき、こ
の関係を用いて調整圧延の圧下量と歩留りの関係を算出
し、さらに、仕上圧延後の鋼板形状のバラツキの範囲内
で、歩留りの平均値を最良とする調整圧延の圧下量を算
出し、調整圧延をその圧下量に制御して行うことを特徴
とする厚鋼板の形状制御方法。
(1) After performing an adjustment rolling in which the plate thickness at the front and rear end portions of the slab is made thicker than the center portion, the rolling direction is set to 90 °.
In the shape control method of the thick steel plate to perform the tentering rolling to roll by the degree rotation, and then perform the finish rolling, the relationship between the reduction amount of the adjustment rolling and the steel plate shape after the finish rolling is determined in advance, and using this relationship, Calculate the relationship between the reduction amount of the adjustment rolling and the yield, and further, within the range of the variation in the shape of the steel sheet after finish rolling, calculate the reduction amount of the adjustment rolling that optimizes the average value of the yield, and perform the adjustment rolling. A method for controlling the shape of a thick steel plate, wherein the shape is controlled by controlling the amount.
JP10027095A 1998-02-09 1998-02-09 Method for controlling shape of steel plate Pending JPH11226620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10027095A JPH11226620A (en) 1998-02-09 1998-02-09 Method for controlling shape of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10027095A JPH11226620A (en) 1998-02-09 1998-02-09 Method for controlling shape of steel plate

Publications (1)

Publication Number Publication Date
JPH11226620A true JPH11226620A (en) 1999-08-24

Family

ID=12211533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10027095A Pending JPH11226620A (en) 1998-02-09 1998-02-09 Method for controlling shape of steel plate

Country Status (1)

Country Link
JP (1) JPH11226620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974624A (en) * 2012-12-06 2013-03-20 秦皇岛首秦金属材料有限公司 Edge plane shape control method of large-expansion-ratio high strength grade pipeline steel
CN103817155A (en) * 2014-02-21 2014-05-28 内蒙古包钢钢联股份有限公司 Method for controlling shape of thick steel plate with thickness greater than 50mm
CN111389916A (en) * 2020-03-26 2020-07-10 太原科技大学 Gradient tissue regulation and control method based on cross variable thickness rolling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974624A (en) * 2012-12-06 2013-03-20 秦皇岛首秦金属材料有限公司 Edge plane shape control method of large-expansion-ratio high strength grade pipeline steel
CN103817155A (en) * 2014-02-21 2014-05-28 内蒙古包钢钢联股份有限公司 Method for controlling shape of thick steel plate with thickness greater than 50mm
CN111389916A (en) * 2020-03-26 2020-07-10 太原科技大学 Gradient tissue regulation and control method based on cross variable thickness rolling

Similar Documents

Publication Publication Date Title
JPH11226620A (en) Method for controlling shape of steel plate
CN114951304B (en) Roll bending force setting method for cold continuous rolling strip steel head plate shape defect
CN113857297B (en) Straightening machine plate shape control method and system
CN114042760B (en) Method for improving wedge-shaped section of strip steel through lower working roll shifting compensation value
JPH067816A (en) Method for controlling plane shape in thick plate rolling
KR20020045697A (en) A method for manufacturing strips having uniform thickness in widthwise
JPH06218422A (en) Method for cooling h shaped steel
KR20020013269A (en) Method for controlling plan view shape in hot plate mill
CN114951285B (en) Working roll for linearly reducing strip edge drop of plate and roll shape design method
JPS58122106A (en) Method for rolling thick plate
JPS6268608A (en) Rolling method for thick plate
JPS6024722B2 (en) Reduction correction rolling method
KR20020051653A (en) On line width control method in hot plate mill
JP2021164926A (en) Method for rolling thick steel plate and method for producing the thick steel plate
KR20050017995A (en) Method for Manufacturing Steel Plate Using Pair Cross Rolling Mill
JPH02197304A (en) Manufacture of thick steel plate
JP5018260B2 (en) Plate rolling method and plate rolling apparatus
CN116900051A (en) Steel turning mode and rolling system optimization setting method for rough rolling process of medium plate
JP3236604B2 (en) Manufacturing method of non-oriented electrical steel sheet
CN116921447A (en) Dynamic setting method for target plate shape of cold-rolled strip steel
JP2004291014A (en) Method for producing thick plate
JPS63177909A (en) Shape control method for continuous cold rolling
JPS6245405A (en) Method for controlling cross shape of thick plate rolling
JP2004255409A (en) Method for rolling steel sheet
JPH04327304A (en) Method for controlling material of thick steel plate in hot rolling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20061012

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509