JPH11223513A - Strain measuring device - Google Patents

Strain measuring device

Info

Publication number
JPH11223513A
JPH11223513A JP2628798A JP2628798A JPH11223513A JP H11223513 A JPH11223513 A JP H11223513A JP 2628798 A JP2628798 A JP 2628798A JP 2628798 A JP2628798 A JP 2628798A JP H11223513 A JPH11223513 A JP H11223513A
Authority
JP
Japan
Prior art keywords
optical fiber
measuring
gauge
length
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2628798A
Other languages
Japanese (ja)
Inventor
Hitoshi Hida
仁 飛田
Satoshi Ashida
吏史 芦田
Masayuki Tanigawa
雅之 谷川
Teruhisa Ishihara
照久 石原
Yoshiko Ikuta
芳子 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2628798A priority Critical patent/JPH11223513A/en
Publication of JPH11223513A publication Critical patent/JPH11223513A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect narrow range strain. SOLUTION: A gauge body 2 is constituted of optical fiber by forming a round path 13 where linear measurement parts 12 are arranged mutually in parallel together with a curvature 11 with radius of curvature having very small transmission attenuation of light pulse and the linear measurement part 12 formed in measuring gauge length L and by winding the round path 13 a plurality of turns on the plane shifting the position so that the total length of the curvature 11 and the linear measurement part 12 is over a linear proper gauge length capable of measuring average strain by this optical fiber. The gauge body 2 is fixed on the measuring plane 1 of the measuring object so that the linear measurement part 12 goes along the strain direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバに加わ
る応力により生じる光パルスの後方散乱光(ブリルアン
散乱)を測定し、構造物等の歪みを検出するBOTDA
法による光ファイバを使用した歪み測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a BOTDA for measuring backscattered light (Brillouin scattering) of an optical pulse generated by stress applied to an optical fiber and detecting distortion of a structure or the like.
The present invention relates to a strain measuring device using an optical fiber by a method.

【0002】[0002]

【従来の技術】従来、光ファイバに光パルスを入力し、
光ファイバの歪みにより生じる光パルスの後方散乱光を
測定して被計測物の歪みを検出する光ファイバを使用し
た歪み測定システムでは、特開昭61−104235号
公報に、マイクロベント損失を有する光ファイバ心線を
実装して光ケーブル内の歪み分布を測定する歪み測定方
法が提案されている。また、特開平4−86510号公
報に、構造物の鉄筋に光ファイバを巻き付けることによ
り、光ファイバを構造物に固定するとともに、曲げ部を
形成して散乱損失を発生させ、鉄筋間の構造物の歪み測
定するものが提案されている。このような歪み計測シス
テムでは、光パルスを光ファイバに入射した時の後方散
乱光の信号を時間分解するOTDR(Optical Domain
Reflectometry)法が採用されるが、この測定システ
ムでは、光ファイバ中で発生する自然ブリルアン散乱光
パワーは非常に微弱で測定が困難である。このため、図
3に示すように、光ファイバの一端(または両端)から
パルス光(ポンプ光)と連続(CW)光(プローブ光)
を入射し、両信号間の誘導ブリルアン散乱相互作用を利
用するBOTDA (Brillouin Optical-Fiber Time
Domain Analysis)法が提案されている。
2. Description of the Related Art Conventionally, an optical pulse is input to an optical fiber,
Japanese Patent Application Laid-Open No. 61-104235 discloses a strain measurement system using an optical fiber that measures the backscattered light of an optical pulse generated by the distortion of an optical fiber to detect the distortion of an object to be measured. There has been proposed a strain measuring method for measuring a strain distribution in an optical cable by mounting a fiber core. Japanese Patent Application Laid-Open No. 4-86510 discloses that an optical fiber is wound around a reinforcing bar of a structure, thereby fixing the optical fiber to the structure, and forming a bent portion to generate a scattering loss. There has been proposed a device for measuring the distortion of the light. In such a strain measurement system, an OTDR (Optical Domain) that time-resolves a signal of backscattered light when an optical pulse is incident on an optical fiber.
Reflectometry) method is used, but in this measurement system, the natural Brillouin scattered light power generated in the optical fiber is very weak and difficult to measure. Therefore, as shown in FIG. 3, pulse light (pump light) and continuous (CW) light (probe light) are emitted from one end (or both ends) of the optical fiber.
BOTDA (Brillouin Optical-Fiber Time) using stimulated Brillouin scattering interaction between both signals
Domain Analysis) method has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記構成によ
れば、後方散乱光による損失を検出できる光ファイバの
最短ゲージ長(距離分解能)は、歪み計測器の性能にも
よるが、たとえば2.0〜2.5mで、光ファイバの
2.0〜2.5mの長さの平均的な歪みしか測定でき
ず、構造物の歪みを測定する場合、ゲージ長が2.0〜
2.5mでは、それ以下の範囲での細やかな計測ができ
ず、場所を特定可能な精度のよい歪み測定ができないと
いう問題があった。
However, according to the above configuration, the shortest gauge length (distance resolution) of the optical fiber capable of detecting the loss due to the backscattered light depends on the performance of the strain measuring instrument. In the range of 0 to 2.5 m, only the average strain of the optical fiber having a length of 2.0 to 2.5 m can be measured. When measuring the strain of the structure, the gauge length is 2.0 to 2.5 m.
When the distance is 2.5 m, there is a problem in that it is not possible to perform a detailed measurement in a range less than that, and it is not possible to measure a distortion with high accuracy to specify a place.

【0004】本発明のうち請求項1記載の発明は、上記
問題点を解決して、より狭い範囲の歪みを精度良く検出
できる歪み測定方法および装置を提供することを目的と
する。
An object of the present invention is to provide a distortion measuring method and apparatus capable of solving the above problems and detecting a distortion in a narrower range with high accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、歪み計測器により被計測物に
固定した光ファイバに光パルスを入力し、光ファイバの
歪みにより生じる光パルスの後方散乱光を測定して被計
測物の歪みを検出する光ファイバを使用した歪み測定装
置であって、ゲージ本体を、光ファイバにより、光パル
スの透過減衰量が極めて少ない湾曲半径の湾曲部と、計
測ゲージ長に形成された直線計測部とで、直線計測部が
互いに平行に配置される周回経路を形成して、平面上で
この周回経路を位置ずれして複数回巻回することによ
り、湾曲部と直線計測部の合計長さがこの光ファイバに
よる平均歪みを計測可能な直線固有ゲージ長以上となる
ように構成し、前記直線計測部を歪み方向に沿うように
被計測物の計測平面に固定したものである。
According to a first aspect of the present invention, an optical pulse is input to an optical fiber fixed to an object to be measured by a strain measuring device, and light generated by the distortion of the optical fiber. A strain measuring apparatus using an optical fiber for measuring distortion of an object to be measured by measuring backscattered light of a pulse. Part and a straight line measuring part formed to the length of the measuring gauge, forming a circuit path in which the straight line measuring parts are arranged in parallel to each other, and displacing the circuit path on a plane and winding it a plurality of times. By this, the total length of the curved portion and the straight line measuring portion is configured to be equal to or longer than the straight line specific gauge length capable of measuring the average strain by the optical fiber, and the straight line measuring portion is measured along the strain direction. Measurement plane In which fixed.

【0006】上記構成によれば、固有ゲージ長以上の長
さの光ファイバを、湾曲部と直線計測部からなる周回経
路上で複数回巻回してゲージ本体を形成したので、計測
平面に歪みが生じると直線計測部の光ファイバを伸縮
し、この歪みが後方散乱光となって計測することができ
るので、直線計測部の計測ゲージ長の狭い範囲起こる歪
みを正確に測定することができ、光ファイバによる歪み
の測定精度を向上することができる。
[0006] According to the above configuration, the gauge body is formed by winding the optical fiber having a length equal to or more than the intrinsic gauge length multiple times on the orbital path including the curved portion and the linear measuring portion. When this occurs, the optical fiber of the linear measuring unit expands and contracts, and this distortion can be measured as backscattered light.Therefore, the distortion occurring in a narrow range of the measuring gauge length of the linear measuring unit can be measured accurately, Measurement accuracy of strain due to fiber can be improved.

【0007】また請求項2記載の発明は、上記構成に加
えて、直列に連続して形成された複数のゲージ本体を配
置し、その端部に光パルスを発光するとともに後方散乱
光を受光し光ファイバの歪みを測定する歪み計測器を接
続したものである。
According to a second aspect of the present invention, in addition to the above-described configuration, a plurality of gauge bodies formed continuously in series are arranged, and light pulses are emitted at the ends of the gauge bodies and the backscattered light is received. It is connected to a strain measuring device for measuring the strain of the optical fiber.

【0008】上記構成によれば、大型の構造物で複数の
測定個所がある場合、測定平面に取付けられるゲージ本
体を直列に接続することで、複数の測定個所を一度に測
定することができ、装置の簡略化が図れる。
[0008] According to the above configuration, when a large structure has a plurality of measurement points, the plurality of measurement points can be measured at once by connecting the gauge bodies attached to the measurement plane in series. The apparatus can be simplified.

【0009】さらに請求項3記載の発明は、ゲージ本体
同士をコネクタを使用して接続する時に、ゲージ本体か
ら導出されてコネクタに至る中間光ファイバケーブル
に、コネクタによる光パルスの変動の影響がゲージ本体
による光パルスの変動に及ばない長さの予長部を形成し
たものである。
According to a third aspect of the present invention, when the gauge bodies are connected to each other by using the connector, the influence of the fluctuation of the light pulse by the connector on the intermediate optical fiber cable led from the gauge body to the connector. A pre-length portion having a length that does not reach the fluctuation of the light pulse by the main body is formed.

【0010】上記構成によれば、コネクタによる散乱が
大きくなると、ゲージ本体の散乱に影響を及ぼして計測
値が不正確となりやすいが、中間ケーブルに予長部を設
けて中間ケーブルの長さを長く確保することで、コネク
タの散乱量が大きくても正確な計測が可能となる。
According to the above configuration, if the scattering by the connector increases, the measured value is likely to be inaccurate due to the influence of the scattering of the gauge body. However, the intermediate cable is provided with a pre-length portion to increase the length of the intermediate cable. This ensures accurate measurement even if the amount of scattering of the connector is large.

【0011】[0011]

【発明の実施の形態】ここで、本発明に係る歪み測定装
置の実施の形態を図1および図2に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of a distortion measuring device according to the present invention will be described with reference to FIGS.

【0012】この歪み測定装置は、図2に示すように、
被計測物である大型構造物の複数箇所に設けられた計測
平面1の歪みを測定する歪み測定装置で、各計測平面1
にそれぞれ装着される光ファイバ製の複数のゲージ本体
2と、ゲージ本体2から導出される中間光ファイバケー
ブル(以下中間ケーブルという)3と、中間ケーブル3
を介して各ゲージ本体2を直列に接続するコネクタ4
と、中間ケーブル3のコネクタ4の近傍で、コネクタ4
の散乱光(ブリルアン散乱光に限らない)が大きい場合
にゲージ本体4の散乱光への影響を無くすために設けら
れる予長部である予長ループ3aと、ゲージ本体2が直
列に接続された端部中間ケーブル3bに接続されるBO
TDA計測器(歪み計測器)5とで構成される。なお、
コネクタ4無しで複数のゲージ本体2を直列に連続して
形成し配置することもできる。
As shown in FIG.
A distortion measuring device for measuring distortion of a measurement plane 1 provided at a plurality of locations of a large structure to be measured.
, A plurality of gauge bodies 2 made of optical fibers, each of which is attached to the gauge body 2, an intermediate optical fiber cable (hereinafter referred to as an intermediate cable) 3 derived from the gauge body 2, and an intermediate cable 3
4 for connecting each gauge body 2 in series via
In the vicinity of the connector 4 of the intermediate cable 3, the connector 4
When a large amount of scattered light (not limited to Brillouin scattered light) is large, an extra length loop 3a, which is an extra length portion provided to eliminate the influence of the gauge body 4 on the scattered light, and the gauge body 2 are connected in series. BO connected to end intermediate cable 3b
And a TDA measuring device (strain measuring device) 5. In addition,
A plurality of gauge bodies 2 can be formed and arranged continuously in series without the connector 4.

【0013】ゲージ本体2は、図1に示すように、光フ
ァイバにより、光パルスの透過減衰量が極めて少ない湾
曲半径r,r′に設定された湾曲部11と、計測ゲージ
長L以上に形成された直線計測部12とで、直線計測部
12が互いに平行に配置される略長円形の周回経路13
を形成して、平面上で周回経路13を位置ずれして複数
回螺旋状に巻回することにより、湾曲部11と直線計測
部12の光ファイバの合計長さがこの光ファイバによる
平均歪みを計測可能な固有ゲージ長以上となるように構
成される。
As shown in FIG. 1, the gauge main body 2 is formed by an optical fiber with a bending portion 11 having a bending radius r, r 'having a very small amount of light pulse transmission attenuation, and a length longer than the measurement gauge length L. With the straight line measuring unit 12, a substantially elliptical orbital path 13 in which the straight line measuring unit 12 is arranged in parallel with each other.
Is formed, and the spiral path 13 is displaced on the plane and spirally wound a plurality of times, so that the total length of the optical fibers of the bending portion 11 and the linear measuring portion 12 reduces the average distortion caused by this optical fiber. It is configured to be longer than the measurable intrinsic gauge length.

【0014】BOTDA計測器5の特性によりこの光フ
ァイバの固有ゲージ長はたとえば2.0〜2.5mであ
り、したがってゲージ本体2の光ファイバの合計長さは
2.5m以上必要となる。また直線計測部12の長さL
は、ここでは100mm以上に設定され、周回経路13
の全長をたとえば約300mmとすると巻回数は8〜1
0程度であるが、好ましくは光ファイバの全長が4.0
m前後確保することで、より高精度な計測が可能とな
る。また湾曲部11の湾曲半径r(r〈r′)は、光伝
播経路の曲がりにより光パルスが透過ロスがなく減衰量
が計測に無視できるくらいに小さくなるような設定値に
構成され、ここではたとえば湾曲半径r=15mm以上
が望ましい。
Due to the characteristics of the BOTDA measuring instrument 5, the intrinsic gauge length of this optical fiber is, for example, 2.0 to 2.5 m, and therefore the total length of the optical fiber of the gauge body 2 needs to be 2.5 m or more. The length L of the straight line measuring unit 12
Is set to 100 mm or more in this case.
If the total length is about 300 mm, the number of turns is 8 to 1
0, but preferably the total length of the optical fiber is 4.0.
By securing about m, more accurate measurement becomes possible. The bending radius r (r <r ') of the bending portion 11 is set to a set value such that the light pulse has no transmission loss due to the bending of the light propagation path and the attenuation is negligibly small for measurement. For example, it is desirable that the radius of curvature r = 15 mm or more.

【0015】このゲージ本体2は、被計測物の計測平面
1に、前記ゲージ本体2が直線計測部12を歪み方向に
沿わせて固定されており、直線計測部12の両端部が予
張力を持たせて接着固定された取付け板21介して計測
平面1に固定され、直線計測部12も計測平面1に全長
にわたって接着固定される。
In the gauge body 2, the gauge body 2 is fixed to a measurement plane 1 of an object to be measured along a direction in which a straight line measuring section 12 is distorted, and both ends of the straight line measuring section 12 apply pretension. It is fixed to the measurement plane 1 via the mounting plate 21 which is held and adhered and fixed, and the straight line measurement unit 12 is also adhered and fixed to the measurement plane 1 over the entire length.

【0016】ここで計測される歪みには圧縮歪みと膨張
歪みがあり、予張力はこの圧縮歪みを良好に検出するた
めのもので、その上限は光ファイバの強度を越えない範
囲であり、その下限は起こり得る圧縮歪みをカバーでき
る範囲で、ここでは0.1%の予歪みが生じるように張
力をかけておけばよい。なお、この湾曲部3曲がりとに
よる散乱光は、ゲージの持つ固有散乱量として計測時に
考慮される。
The strain measured here includes a compression strain and an expansion strain, and the pretension is for detecting the compression strain satisfactorily. The upper limit thereof is within a range not exceeding the strength of the optical fiber. The lower limit is a range in which possible compressive strain can be covered, and in this case, tension may be applied so that a prestrain of 0.1% is generated. The scattered light due to the bending of the curved portion 3 is considered at the time of measurement as the intrinsic scattering amount of the gauge.

【0017】また、中間ケーブル3同士の接続部におい
て、コネクタ4の散乱光が大きい場合、ゲージ本体4の
散乱光の計測値に影響を及ぼして歪み検出値の精度が低
下するおそれがあるが、ここでは、予長ループ3aによ
り光ファイバをたとえば10m程度ループ状に複数回巻
回して長さを確保することで、その影響が及ばないよう
に考慮されている。なお、中間ケーブル3に予長ループ
3aを形成したが、ループ状に限るものではなく、歪み
が少なく長さが確保できるものであればよい。
When the scattered light of the connector 4 is large at the connection between the intermediate cables 3, the measured value of the scattered light of the gauge body 4 may be affected, and the accuracy of the distortion detection value may be reduced. Here, it is considered that the influence is not exerted by securing the length by winding the optical fiber a plurality of times by, for example, a loop of about 10 m by the pre-length loop 3a. Although the pre-length loop 3a is formed in the intermediate cable 3, the pre-length loop 3a is not limited to the loop shape, but may be any as long as the length is small with little distortion.

【0018】BOTDA計測器5は、レーザ光源、受光
回路などからなる計測部と、コンピュータからなる演算
処理部とで構成される。上記構成において、BOTDA
計測器5のレーザ光源から発光されたレーザパルスは、
端部中間ケーブル3bから直列に接続されたゲージ本体
2に順次送られ、BOTDA計測器5の受光回路で散乱
光量が測定され、演算処理部により時間軸(距離)にお
ける光ファイバの歪み量が測定される。これにより、所
定の位置にあるゲージ本体2の取付け位置におけるゲー
ジ長Lの歪みが正確に計測される。また中間ケーブル3
の接続部のコネクタ4に大きい散乱が発生している場合
にコネクタ4の位置(距離)に大きい減衰が表れても、
予長ループ3aにより光ファイバの長さが確保されてい
るので、ゲージ本体2の計測精度が低下することもな
い。
The BOTDA measuring device 5 is composed of a measuring section including a laser light source and a light receiving circuit, and an arithmetic processing section including a computer. In the above configuration, BOTDA
The laser pulse emitted from the laser light source of the measuring instrument 5 is
It is sequentially sent from the end intermediate cable 3b to the gauge body 2 connected in series, the amount of scattered light is measured by the light receiving circuit of the BOTDA measuring instrument 5, and the amount of distortion of the optical fiber in the time axis (distance) is measured by the arithmetic processing unit. Is done. Thereby, the distortion of the gauge length L at the mounting position of the gauge main body 2 at a predetermined position is accurately measured. Also intermediate cable 3
In the case where large scattering occurs in the connector 4 of the connection part, even if a large attenuation appears at the position (distance) of the connector 4,
Since the length of the optical fiber is ensured by the pre-length loop 3a, the measurement accuracy of the gauge body 2 does not decrease.

【0019】上記構成によれば、従来の歪み測定装置で
は、固有ゲージ長が大きいため、狭い範囲の歪みを正確
に計測することができなかったが、本発明によれば、直
線固有ゲージ長に相当する全長以上の光ファイバを長円
形に複数回巻回してその直線計測部12を計測平面1に
接着固定することにより、直線計測部12の長さに相当
する計測ゲージ長Lの狭い範囲の歪みを高精度で検出す
ることができる。
According to the above configuration, in the conventional strain measuring apparatus, it is not possible to accurately measure the strain in a narrow range due to the large intrinsic gauge length. By winding an optical fiber having a length equal to or more than the corresponding length a plurality of times into an oval shape and bonding and fixing the straight line measuring portion 12 to the measurement plane 1, a narrow range of the measuring gauge length L corresponding to the length of the straight line measuring portion 12 can be obtained. Distortion can be detected with high accuracy.

【0020】また、一本の光ファイバ(中間ケーブル
3)に沿って複数のゲージ本体2をコネクタ4を介して
直列に接続し、ゲージ本体2を複数の計測平面1に装着
することにより、広範囲な多点計測が可能となり、計測
準備、撤去の作業を大幅に軽減することができる。ま
た、コネクタ4の散乱光量が大きく、かつコネクタ4と
ゲージ本体2との距離が短い場合でも、予長ループ3a
を設けることにより、ゲージ本体2の計測値にコネクタ
4の影響を受けることがない。
Further, a plurality of gauge bodies 2 are connected in series via a connector 4 along one optical fiber (intermediate cable 3), and the gauge bodies 2 are mounted on a plurality of measurement planes 1 so as to cover a wide area. Multi-point measurement is possible, and the work of measurement preparation and removal can be greatly reduced. Further, even when the amount of scattered light from the connector 4 is large and the distance between the connector 4 and the gauge body 2 is short, the extra length loop 3a
Is provided, the measured value of the gauge body 2 is not affected by the connector 4.

【0021】なお、上記実施の形態では、各コネクタ4
間に1個のゲージ本体2を介在させたが、コネクタ4間
に直列に連続して形成された複数のゲージ本体2を介在
させることもできる。
In the above embodiment, each connector 4
Although one gauge body 2 is interposed therebetween, a plurality of gauge bodies 2 formed in series between the connectors 4 may be interposed.

【0022】[0022]

【発明の効果】以上に述べたごとく本発明の請求項1記
載の発明によれば、固有ゲージ長以上の長さの光ファイ
バを、湾曲部と直線計測部からなる周回経路上で複数回
巻回してゲージ本体を形成したので、計測平面に歪みが
生じると直線計測部の光ファイバを伸縮し、この歪みが
後方散乱光となって計測することができるので、直線計
測部の計測ゲージ長の狭い範囲起こる歪みを正確に測定
することができ、光ファイバによる歪みの測定精度を向
上することができる。
As described above, according to the first aspect of the present invention, an optical fiber having a length equal to or greater than the intrinsic gauge length is wound a plurality of times on a circuit path including a curved portion and a linear measuring portion. By turning the gauge body, if the measurement plane is distorted, the optical fiber of the linear measurement part expands and contracts, and this distortion can be measured as backscattered light. The strain occurring in a narrow range can be accurately measured, and the accuracy of measuring the strain caused by the optical fiber can be improved.

【0023】また請求項2記載の発明によれば、大型の
構造物で複数の測定個所がある場合、測定平面に取付け
られるゲージ本体を直列に接続することで、複数の測定
個所を一度に測定することができ、装置の簡略化が図れ
る。
According to the second aspect of the present invention, when a large structure has a plurality of measurement points, the gauge bodies attached to the measurement plane are connected in series to measure the plurality of measurement points at once. And the device can be simplified.

【0024】さらに請求項3記載の発明によれば、コネ
クタによる散乱が大きくなると、ゲージ本体の散乱に影
響を及ぼして計測値が不正確となりやすいが、中間ケー
ブルに予長部を設けて中間ケーブルの長さを長く確保す
ることで、コネクタの散乱量が大きくても正確な計測が
可能となる。
According to the third aspect of the invention, when the scattering by the connector increases, the scattering of the gauge body is affected and the measured value tends to be inaccurate. By ensuring a long length, accurate measurement is possible even when the amount of scattering of the connector is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る歪み測定装置の実施の形態を示す
ゲージ本体の正面図である。
FIG. 1 is a front view of a gauge main body showing an embodiment of a strain measuring device according to the present invention.

【図2】同歪み測定装置を示す構成図である。FIG. 2 is a configuration diagram showing the distortion measuring device.

【図3】BOTDA法による歪み測定方法を示す説明図
である。
FIG. 3 is an explanatory diagram showing a distortion measurement method according to the BOTDA method.

【符号の説明】[Explanation of symbols]

1 計測平面 2 ゲージ本体 3 中間光ファイバケーブル 3a 予長ループ 4 コネクタ 5 BOTDA計測器 11 湾曲部 12 直線計測部 13 周回経路 21 取付け板 DESCRIPTION OF SYMBOLS 1 Measurement plane 2 Gauge main body 3 Intermediate optical fiber cable 3a Preliminary loop 4 Connector 5 BOTDA measuring instrument 11 Bending part 12 Straight line measuring part 13 Circuit path 21 Mounting plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷川 雅之 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 石原 照久 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 生田 芳子 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Masayuki Tanigawa 1-89, Minamikohoku, Suminoe-ku, Osaka-shi, Osaka Prefecture Inside Hitachi Zosen Corporation (72) Inventor Teruhisa Ishihara 1-chome, Minamikohoku, Suminoe-ku, Osaka-shi, Osaka No. 7-89 Hitachi Zosen Corporation (72) Inventor Yoshiko Ikuta 1-89 Minami Kohoku, Suminoe-ku, Osaka City, Osaka Prefecture Inside Hitachi Zosen Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 歪み計測器により被計測物に固定した光
ファイバに光パルスを入力し、光ファイバの歪みにより
生じる光パルスの後方散乱光を測定して被計測物の歪み
を検出する光ファイバを使用した歪み測定装置であっ
て、 ゲージ本体を、光ファイバにより、光パルスの透過減衰
量が極めて少ない湾曲半径の湾曲部と、計測ゲージ長に
形成された直線計測部とで、直線計測部が互いに平行に
配置される周回経路を形成して、平面上でこの周回経路
を位置ずれして複数回巻回することにより、湾曲部と直
線計測部の合計長さがこの光ファイバによる平均歪みを
計測可能な直線固有ゲージ長以上となるように構成し、 前記直線計測部を歪み方向に沿うように被計測物の計測
平面に固定したことを特徴とする歪み測定装置。
1. An optical fiber for inputting an optical pulse to an optical fiber fixed to an object to be measured by a strain measuring device, measuring backscattered light of the optical pulse caused by the distortion of the optical fiber, and detecting the distortion of the object to be measured. A strain measuring device using a linear measuring unit, wherein a gauge body is formed by an optical fiber, a curved portion having a curved radius with a very small optical pulse transmission attenuation amount, and a straight line measuring unit formed to a measuring gauge length. Is formed in parallel with each other, and by winding this loop several times with the position shifted on the plane, the total length of the curved portion and the straight line measuring portion is increased by the average distortion caused by this optical fiber. The strain measuring device is configured to have a length equal to or longer than a straight line specific gauge length capable of measuring, and the straight line measuring unit is fixed to a measurement plane of an object to be measured along a strain direction.
【請求項2】 直列に連続して形成された複数のゲージ
本体を配置し、その端部に光パルスを発光するとともに
後方散乱光を受光し光ファイバの歪みを測定する歪み計
測器を接続したことを特徴とする請求項1記載の歪み測
定装置。
2. A plurality of gauge bodies continuously formed in series are arranged, and a strain measuring device that emits light pulses, receives backscattered light, and measures strain of an optical fiber is connected to an end thereof. 2. The distortion measuring device according to claim 1, wherein:
【請求項3】 ゲージ本体同士をコネクタを使用して接
続する時に、ゲージ本体から導出されてコネクタに至る
中間光ファイバケーブルに、コネクタによる光パルスの
変動の影響がゲージ本体による光パルスの変動に及ばな
い長さの予長部を形成したことを特徴とする請求項2記
載の歪み測定装置。
3. When the gauge bodies are connected to each other by using a connector, the influence of the light pulse fluctuation by the connector on the intermediate optical fiber cable led from the gauge body to the connector affects the fluctuation of the light pulse by the gauge body. 3. The strain measuring apparatus according to claim 2, wherein a pre-length portion having a length less than the length is formed.
JP2628798A 1998-02-09 1998-02-09 Strain measuring device Pending JPH11223513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2628798A JPH11223513A (en) 1998-02-09 1998-02-09 Strain measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2628798A JPH11223513A (en) 1998-02-09 1998-02-09 Strain measuring device

Publications (1)

Publication Number Publication Date
JPH11223513A true JPH11223513A (en) 1999-08-17

Family

ID=12189093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2628798A Pending JPH11223513A (en) 1998-02-09 1998-02-09 Strain measuring device

Country Status (1)

Country Link
JP (1) JPH11223513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937414A (en) * 2012-11-06 2013-02-20 昆山北极光电子科技有限公司 Dynamic and static strain testing method
CN109186825A (en) * 2018-08-10 2019-01-11 哈尔滨工业大学(深圳) A kind of optical fiber macrobend pressure sensor and its measuring system
CN113124747A (en) * 2021-04-21 2021-07-16 齐鲁工业大学 Three-dimensional sensor for online safety monitoring of asphalt pavement and preparation method thereof
CN114088003A (en) * 2021-11-09 2022-02-25 交通运输部公路科学研究所 Fiber grating sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937414A (en) * 2012-11-06 2013-02-20 昆山北极光电子科技有限公司 Dynamic and static strain testing method
CN109186825A (en) * 2018-08-10 2019-01-11 哈尔滨工业大学(深圳) A kind of optical fiber macrobend pressure sensor and its measuring system
CN109186825B (en) * 2018-08-10 2021-02-02 哈尔滨工业大学(深圳) Optical fiber macrobend pressure sensor and measuring system thereof
CN113124747A (en) * 2021-04-21 2021-07-16 齐鲁工业大学 Three-dimensional sensor for online safety monitoring of asphalt pavement and preparation method thereof
CN114088003A (en) * 2021-11-09 2022-02-25 交通运输部公路科学研究所 Fiber grating sensor

Similar Documents

Publication Publication Date Title
JP4350380B2 (en) Optical fiber backscatter polarization analysis
EP1992926B1 (en) Optical fiber vibration sensor
US4854706A (en) Modal domain optical fiber sensors
US4692610A (en) Fiber optic aircraft load relief control system
US5201015A (en) Conformal fiber optic strain sensor
WO2020027223A1 (en) Cable, cable shape sensing system, sensing system, and method for sensing cable shape
US4947693A (en) Discrete strain sensor
US20090323074A1 (en) Fiber-based laser interferometer for measuring and monitoring vibrational characterstics of scattering surface
US7164469B1 (en) Method of evaluating fiber PMD using composite POTDR trace
US20040084611A1 (en) Method of evaluating fiber PMD using polarization optical time domain reflectometry
JP3147616B2 (en) Distributed waveguide sensor
CN203083975U (en) Optical acoustic emission detection and positioning system
US6127673A (en) Apparatus and method for detecting curvature
JPH11223513A (en) Strain measuring device
US20180128599A1 (en) Force sensing in a distal region of an instrument including single-core or multi-core optical fiber
JP2000018981A (en) Optical fiber sensor
JP3063063B2 (en) Optical fiber temperature distribution measurement system
JP2016020865A (en) Stress distribution measuring method using optical fiber, and stress distribution measuring device
US6727491B1 (en) Sensor and method for detecting changes in distance
US8792754B2 (en) Modalmetric fibre sensor
JPH05272920A (en) Optical-fiber displacement gage
JP4028035B2 (en) Optical fiber measuring instrument
JP2001013036A (en) Backscattering measuring apparatus for optical time domain for multimode optical fiber, its light source and manufacture of light source part
JPS62285027A (en) Optical hydrophone
JPH10319241A (en) Interference type optical fiber sensor