JPH11221693A - Solder alloy - Google Patents

Solder alloy

Info

Publication number
JPH11221693A
JPH11221693A JP2489998A JP2489998A JPH11221693A JP H11221693 A JPH11221693 A JP H11221693A JP 2489998 A JP2489998 A JP 2489998A JP 2489998 A JP2489998 A JP 2489998A JP H11221693 A JPH11221693 A JP H11221693A
Authority
JP
Japan
Prior art keywords
alloy
weight
tin
bismuth
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2489998A
Other languages
Japanese (ja)
Other versions
JP3353686B2 (en
Inventor
Mitsuo Yamashita
満男 山下
Shinji Tada
慎司 多田
Kunio Shiokawa
国夫 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02489998A priority Critical patent/JP3353686B2/en
Priority to US09/244,034 priority patent/US6156132A/en
Priority to DE19904765A priority patent/DE19904765B4/en
Publication of JPH11221693A publication Critical patent/JPH11221693A/en
Application granted granted Critical
Publication of JP3353686B2 publication Critical patent/JP3353686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a lead-free alloy having excellent ductility and thermal strength by using tin as an essential component and incorporating bismuth, germanium, antimony and silver at specific ratios therein. SOLUTION: This low-temp. solder alloy consists, by weight %, of 30 to 58 bismuth, <=0.1 germanium, <=5 antimony and <=2 silver and the balance substantially tin. The m. p. of the tin-bismuth alloy contg. 30 to 58 wt.% bismuth is about 180 deg.C. If the germanium is added to the alloy at 0.1 wt.%, the strength of the alloy increases. The tensile strength of the alloy is enhanced by the addition of the antimony and the silver. The ductility increases with the amt. of the Bi to be added and decreases gradually toward the eutectic structure (Bi is 58 wt.%) when the peak is exceeded. The tensile strength and creep resistance of the alloy depend upon the amt. of the Ge to be added. When the Ge is added to the alloy, the oxidation of the Sn is prevented. This low- temp. solder alloy is adequate for the metal joining of electronic apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電子機器における
金属接合において使用される「はんだ合金」に係り、特
に鉛を含有しないで公害のない「はんだ合金」に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a "solder alloy" used for metal bonding in electronic equipment, and more particularly to a "solder alloy" containing no lead and having no pollution.

【0002】[0002]

【従来の技術】はんだ接合を行う際には「はんだ合金」
は所望の接合温度を有し、接合時にぬれ性が良好である
こと、また延性,熱疲労強度,耐食性に優れていること
が必要である。さらに「はんだ合金」は環境上の配慮か
ら鉛を含有しないことが望まれる。
2. Description of the Related Art When soldering, a "solder alloy" is used.
Must have a desired joining temperature, have good wettability at the time of joining, and have excellent ductility, thermal fatigue strength and corrosion resistance. Further, it is desired that the “solder alloy” does not contain lead from environmental considerations.

【0003】従来の「はんだ合金」としては、スズ‐鉛
Sn-Pb 合金、スズ‐銀Sn-Ag 合金,スズ‐アンチモンSn
-Sb 合金、スズ- ビスマスSn-Bi 系合金等があげられ
る。
[0003] Conventional solder alloys include tin-lead.
Sn-Pb alloy, tin-silver Sn-Ag alloy, tin-antimony Sn
-Sb alloy, tin-bismuth Sn-Bi alloy, and the like.

【0004】[0004]

【発明が解決しようとする課題】代表的なスズ‐鉛Sn-P
b 合金である63Sn-37Pb (共晶温度183 ℃)は鉛を含有
するので対環境性の点で望ましくない。装置の構成上、
複数回の「はんだ接合」を行なう場合に接合温度の異な
る複数種類の「はんだ合金」を使用する必要があり、さ
らに半導体部品の信頼性を保証するために半導体部品は
ピーク温度125 ℃付近までのヒートサイクル耐久性が必
要であるために溶融温度が約180℃で鉛フリーの低温
「はんだ合金」が必要となる。
[Problems to be Solved by the Invention] Typical tin-lead Sn-P
The alloy 63Sn-37Pb (eutectic temperature 183 ° C) contains lead, which is not desirable in terms of environmental friendliness. Due to the configuration of the device,
When performing multiple “solder joints”, it is necessary to use multiple types of “solder alloys” with different joining temperatures, and in order to guarantee the reliability of the semiconductor parts, the semiconductor parts must be used at a peak temperature of around 125 ° C. The need for heat cycle durability requires a lead-free low-temperature "solder alloy" with a melting temperature of about 180 ° C.

【0005】スズ‐鉛Sn-Pb 合金に代わる「はんだ合
金」でPbを含有しない「はんだ合金」であるスズ‐アン
チモンSn-Sb 合金は溶融温度が232-245 ℃であり、また
スズ‐銀Sn-Ag 合金(3.5 %銀)は共晶点が221 ℃であ
り溶融温度がそれぞれ高い。スズ- ビスマスSn-Bi 系合
金の一つであるSn7.5Bi2Ag0.5Cu は溶融温度が200-220
℃で、接合温度として240-250 を要する。またSn7.5Bi2
Ag0.5Cu のようにビスマスを数%含有するものは延性が
低く、加工性や強度上の問題があり、さらに液相線/固
相線の固液共存領域が広く部品によっては接合時にビス
マスの濃度偏析を生じ、剥離を生じる(リフトオフ現
象)場合もある。
[0005] A tin-antimony Sn-Sb alloy, which is a "solder alloy" that does not contain Pb and is a "solder alloy" that replaces the tin-lead Sn-Pb alloy, has a melting temperature of 232-245 ° C and a tin-silver Sn The eutectic point of the -Ag alloy (3.5% silver) is 221 ° C and the melting temperature is high. The melting temperature of Sn7.5Bi2Ag0.5Cu, one of the tin-bismuth Sn-Bi alloys, is 200-220.
At 240C, a bonding temperature of 240-250 is required. Also Sn7.5Bi2
A material containing bismuth, such as Ag0.5Cu, has low ductility, has problems in workability and strength, and has a wide solid-liquid coexistence region of liquidus / solidus. In some cases, concentration segregation occurs and separation occurs (lift-off phenomenon).

【0006】鉛フリーで且つ溶融温度の低い「はんだ合
金」としてスズをベースとしてインジウムを添加したSn
-In 合金が検討されている。Sn-In 合金は共晶点が118
℃である。さらに他の鉛フリーの低温「はんだ合金」で
あるBi-In 合金は共晶点が75℃である。上述した鉛フリ
ーの低温「はんだ合金」は耐熱温度が低過ぎる。この発
明は上述の点に鑑みてさなれその目的は、スズ- ビスマ
スSn-Bi 系合金を改良して、延性や熱強度に優れるとと
もに鉛フリーの低温「はんだ合金」を提供することにあ
る。
[0006] Sn as a lead-free and low-melting-point “solder alloy” with tin-based indium addition
-In alloys are being considered. Eutectic point of Sn-In alloy is 118
° C. Another lead-free, low-temperature “solder alloy”, the Bi-In alloy, has a eutectic point of 75 ° C. The above-mentioned lead-free low-temperature “solder alloy” has a too low heat-resistant temperature. An object of the present invention is to improve a tin-bismuth Sn-Bi alloy to provide a lead-free low-temperature "solder alloy" which is excellent in ductility and thermal strength.

【0007】[0007]

【課題を解決するための手段】上述の目的はこの発明に
よればスズを主成分とし、ビスマスを30ないし58重
量%、ゲルマニウムを0.1重量%以下含有することに
より達成される。上述の発明においてアンチモンを5重
量%以下含有すること、銀を2重量%以下含有するこ
と、またはアンチモンを5重量%以下と銀を2重量%以
下含有することが有効である。
According to the present invention, the above objects can be attained by containing tin as a main component, 30 to 58% by weight of bismuth and 0.1% by weight or less of germanium. In the above invention, it is effective to contain 5% by weight or less of antimony, 2% by weight or less of silver, or 5% by weight or less of antimony and 2% by weight or less of silver.

【0008】スズを主成分とし、ビスマスを30ないし
58重量%含有するスズ- ビスマスSn-Bi 系合金は溶融
温度が180 ℃近辺にある。スズを主成分とし、ビスマス
を30ないし58重量%含有するスズ- ビスマスSn-Bi
合金に、ゲルマニウムを0.1重量%以下添加するとス
ズ- ビスマスSn-Bi 合金の強度が増加する。アンチモン
の5重量%以下もしくは銀の2重量%以下または両者を
添加すると引っ張り強度はさらに高まる。
[0008] A tin-bismuth Sn-Bi alloy containing tin as a main component and containing 30 to 58% by weight of bismuth has a melting temperature around 180 ° C. Tin-bismuth Sn-Bi containing tin as a main component and containing 30 to 58% by weight of bismuth
If germanium is added to the alloy in an amount of 0.1% by weight or less, the strength of the tin-bismuth Sn-Bi alloy increases. Addition of up to 5% by weight of antimony or up to 2% by weight of silver or both increases the tensile strength further.

【0009】上述したアンチモン,銀,またはゲルマニ
ウムの添加量においてはスズ- ビスマスSn-Bi 系合金の
延性は良好に維持される。
With the above-mentioned added amount of antimony, silver or germanium, the ductility of the tin-bismuth Sn-Bi-based alloy is well maintained.

【0010】[0010]

【発明の実施の形態】「はんだ合金」は、Sn,Bi,Sb,Ag,
Ge, の各原料を電気炉中で溶解して調製することができ
る。各原料は純度99.99 重量%以上のものを使用した。
Snは主成分である。Biが30ないし58重量%以下、Geが0.
1 重量%以下添加される。Sb5 重量%以下もしくはAg2
重量%以下またはSb5 重量%以下とAg2 重量%以下の両
者がSnを主成分としBiが30ないし58重量%以下、Geが0.
1 重量%以下のスズ- ビスマスSn-Bi 系合金に添加され
る。
BEST MODE FOR CARRYING OUT THE INVENTION "Solder alloy" refers to Sn, Bi, Sb, Ag,
Ge, can be prepared by melting each material in an electric furnace. Each raw material used had a purity of 99.99% by weight or more.
Sn is a main component. Bi is 30 to 58% by weight or less, Ge is 0.
1% by weight or less is added. Sb5 wt% or less or Ag2
% By weight or less than 5% by weight of Sb and not more than 5% by weight of Ag2 both contain Sn as the main component, 30 to 58% by weight of Bi, and 0.1% of Ge.
Added to 1% by weight or less of tin-bismuth Sn-Bi alloy.

【0011】図1はこの発明のスズ- ビスマスSn-Bi 系
合金につき伸び(%)のBi添加量(wt%)依存性を示
す線図である。図中○はSn-Bi 合金の示す特性点、◇は
Sn-Bi-Ag合金の示す特性点、□はSn-Bi-Sb合金の示す特
性点である。伸び測定におけるひずみ速度は0.2 %/s
である。Sn-Bi 合金(○)の延性はBi添加量とともに増
し、ピークを過ぎると共晶組成(Bi58%)に向けて漸減
することがわかる。共晶組成における融点は139 ℃であ
る。Bi30-50 %の範囲ではSn-Bi 合金の伸びは50-90 %
である。Sn-Ag 合金(3.5 %銀)は伸びが20-30 %であ
り、また鉛フリーのスズ- ビスマスSn-Bi 系合金である
Sn7.5Bi2Ag0.5Cu (溶融温度は約200 ℃)が伸び10%を
示すことを考慮すると、Bi30-50 %の範囲でのSn-Bi 合
金の伸びは充分に大きい。これはSn-Pb 「はんだ合金」
と同等レベルの延性である。Sn-Bi-Ag合金(◇)、Sn-B
i-Sb合金(□)の延性はBi30-58 %の範囲でSn-Bi 合金
(○)よりも低下するがまだ充分に大きいことがわか
る。
FIG. 1 is a diagram showing the dependency of elongation (%) on the amount of added Bi (wt%) for the tin-bismuth Sn—Bi-based alloy of the present invention. In the figure, ○ indicates characteristic points of the Sn-Bi alloy, and Δ indicates
Characteristic points indicated by the Sn-Bi-Ag alloy, and □ are characteristic points indicated by the Sn-Bi-Sb alloy. The strain rate in elongation measurement is 0.2% / s
It is. It can be seen that the ductility of the Sn-Bi alloy (○) increases with the amount of Bi added, and gradually decreases after the peak toward the eutectic composition (Bi 58%). The melting point in the eutectic composition is 139 ° C. In the range of Bi30-50%, the elongation of Sn-Bi alloy is 50-90%
It is. Sn-Ag alloy (3.5% silver) has an elongation of 20-30% and is a lead-free tin-bismuth Sn-Bi alloy
Considering that Sn7.5Bi2Ag0.5Cu (melting temperature is about 200 ° C) shows an elongation of 10%, the elongation of Sn-Bi alloy in the range of Bi30-50% is sufficiently large. This is Sn-Pb "solder alloy"
The same level of ductility. Sn-Bi-Ag alloy (◇), Sn-B
It can be seen that the ductility of the i-Sb alloy (□) is lower than that of the Sn-Bi alloy (○) in the range of Bi30-58%, but is still sufficiently large.

【0012】図2はこの発明のスズ- ビスマスSn-Bi 系
合金(Bi43重量%)につき引っ張り強度のGe添加量依存
性を示す線図である。引っ張り強度試験は直径3mm の試
験片を用い、引っ張り速度を0.2 %/sにして室温で測
定した。Sn-Bi 合金(Bi43重量%)にSb,Ag,Geを添加す
ると引っ張り強度が増大することがわかる。Geを添加す
るとSnの酸化が防止される。スズに43重量%のビスマス
を添加した合金(Sn43Bi),スズに43重量%のビスマス
と2 重量%のAgを添加した合金(Sn43Bi2Ag ),スズに
43重量%のビスマスと2 重量%のSbを添加した合金(Sn
43Bi2Sb ),スズに43重量%のビスマスと5 重量%のSb
を添加した合金(Sn43Bi5Sb )のそれぞれにGeを0.05重
量%添加すると引っ張り強度が一様に増加する。Geを0.
1 重量%添加するとSbを含む合金の強度はさらに増す
が、Agを含む合金の強度は飽和して減少に転ずる。
FIG. 2 is a diagram showing the dependence of the tensile strength on the amount of Ge added to the tin-bismuth Sn-Bi alloy (Bi 43% by weight) of the present invention. The tensile strength test was performed at room temperature using a test piece having a diameter of 3 mm at a tensile speed of 0.2% / s. It can be seen that the addition of Sb, Ag and Ge to the Sn-Bi alloy (Bi 43% by weight) increases the tensile strength. Addition of Ge prevents oxidation of Sn. Alloy containing 43 wt% bismuth in tin (Sn43Bi), alloy containing 43 wt% bismuth and 2 wt% Ag in tin (Sn43Bi2Ag), tin
Alloy containing 43 wt% bismuth and 2 wt% Sb (Sn
43Bi2Sb), 43% by weight of bismuth and 5% by weight of Sb in tin
When 0.05% by weight of Ge is added to each of the alloys (Sn43Bi5Sb) to which Cr is added, the tensile strength uniformly increases. Ge to 0.
When 1 wt% is added, the strength of the alloy containing Sb further increases, but the strength of the alloy containing Ag saturates and starts to decrease.

【0013】図3はこの発明のスズ- ビスマスSn-Bi 系
合金(Bi43重量%)につき伸び(%)のGe添加量依存性
を示す線図である。Sb,Ag,Geをスズ- ビスマスSn-Bi 合
金(Bi43重量%)に添加すると伸びはSn-Bi 合金(Bi43
重量%)より低下する。Geを0.05重量%より0.1 重量%
に増大するとSbを含む合金はAgを含む合金に比して伸び
(%)が小さくなるがGe0.1 重量%においてなお30%の
伸びを示し充分に使用可能である。
FIG. 3 is a graph showing the dependency of the elongation (%) on the amount of Ge added for the tin-bismuth Sn—Bi-based alloy (Bi 43% by weight) of the present invention. When Sb, Ag, and Ge are added to a tin-bismuth Sn-Bi alloy (Bi43% by weight), the elongation increases with the Sn-Bi alloy (Bi43
% By weight). Ge 0.1% by weight from 0.05% by weight
As the alloy content increases, the alloy containing Sb has a smaller elongation (%) than the alloy containing Ag, but the alloy still shows 30% elongation at 0.1% by weight of Ge and can be used sufficiently.

【0014】図4はこの発明のスズ- ビスマスSn-Bi 系
合金(Bi43重量%)につき温度100℃におけるクリープ
速度のGe添加量依存性を示す線図である。スズに43重量
%のビスマスを添加した合金(Sn43Bi),スズに43重量
%のビスマスと2 重量%のAgを添加した合金(Sn43Bi2A
g )はほぼ同程度のクリープ抵抗を示す。Geを0.05重量
%より0.1 重量%に増大するとクリープ速度は小さくな
り、クリープ抵抗が増すからGe添加の効果が認められ
る。スズに43重量%のビスマスと2 重量%のSbを添加し
た合金(Sn43Bi2Sb ),スズに43重量%のビスマスと5
重量%のSbを添加した合金(Sn43Bi5Sb )はGeを0.05重
量%添加するとクリープ抵抗が顕著に増大する。これは
GeとSbの相乗効果による。
FIG. 4 is a graph showing the dependence of the creep rate at 100 ° C. on the amount of Ge added for the tin-bismuth Sn—Bi-based alloy (Bi 43% by weight) of the present invention. Alloy with Sn added 43% by weight of bismuth (Sn43Bi), Alloy with Sn added 43% by weight of bismuth and 2% by weight of Ag (Sn43Bi2A
g) shows almost the same creep resistance. When Ge is increased from 0.05% by weight to 0.1% by weight, the creep rate decreases and the creep resistance increases, so that the effect of Ge addition is recognized. Alloy (Sn43Bi2Sb) with 43 wt% bismuth and 2 wt% Sb added to tin, 43 wt% bismuth and 5 wt%
The alloy (Sn43Bi5Sb) to which Sb is added by weight% has a remarkable increase in creep resistance when 0.05% by weight of Ge is added. this is
Due to the synergistic effect of Ge and Sb.

【0015】図5はこの発明のスズ- ビスマスSn-Bi 系
合金(Bi43重量%)につき温度100℃と温度120 ℃の範
囲におけるクリープ速度の温度依存性をスス- 鉛Sn-Pb
合金の特性とともに示す線図である。熱強度を調べるた
めに上述と同様の試験片を用い、クリープ試験を行っ
た。スズに43重量%のビスマスを添加した合金(Sn43B
i),スズに43重量%のビスマスと2 重量%のSbを添加
した合金(Sn43Bi2Sb ),スズに43重量%のビスマスと
2 重量%のSbと0.05重量%のGeを添加した合金(Sn43Bi
2Sb0.05 Ge),スズ-鉛Sn-Pb 合金(63Sn-37Pb )はほ
ぼ同程度のクリープ温度特性を示す。特にスズに43重量
%のビスマスを添加した合金(Sn43Bi)にSbを添加する
と温度100-120℃で安定したクリープ抵抗を示し、スズ
に43重量%のビスマスと2 重量%のSbと0.05重量%のGe
を添加した合金(Sn43Bi2Sb0.05 Ge)はスズ- 鉛Sn-Pb
合金(63Sn-37Pb )とほぼ同等なクリープ温度特性を示
す。スズに43重量%のビスマスを添加した合金(Sn43B
i)にSbとGeを添加した際のクリープ特性はスズに30重
量%のビスマスを添加した合金(Sn30Bi)とスズに58重
量%のビスマスを添加した合金(Sn58Bi)においても同
様に認められた。
FIG. 5 shows the temperature dependence of the creep rate of the tin-bismuth Sn-Bi-based alloy (Bi 43% by weight) in the range of 100 ° C. and 120 ° C. by using Sn—Pb.
It is a diagram shown with the characteristic of an alloy. In order to examine the thermal strength, a creep test was performed using the same test piece as described above. Alloy containing 43% by weight of bismuth added to tin (Sn43B
i), an alloy containing 43% by weight of bismuth and 2% by weight of Sb added to tin (Sn43Bi2Sb), 43% by weight of bismuth to tin
Alloy (Sn43Bi) containing 2% by weight of Sb and 0.05% by weight of Ge
2Sb0.05Ge) and tin-lead Sn-Pb alloy (63Sn-37Pb) show almost the same creep temperature characteristics. In particular, when Sb was added to an alloy containing 43% by weight of bismuth (Sn43Bi) in tin, a stable creep resistance was exhibited at a temperature of 100-120 ° C, and 43% by weight of bismuth, 2% by weight of Sb and 0.05% by weight of tin were added. Ge
Alloy (Sn43Bi2Sb0.05 Ge) with tin added is tin-lead Sn-Pb
It shows a creep temperature characteristic almost equivalent to that of the alloy (63Sn-37Pb). Alloy containing 43% by weight of bismuth added to tin (Sn43B
The creep characteristics when Sb and Ge were added to i) were also observed in an alloy containing 30% by weight of bismuth in tin (Sn30Bi) and an alloy in which 58% by weight of bismuth was added to tin (Sn58Bi). .

【0016】[0016]

【発明の効果】この発明によればスズを主成分とし、ビ
スマスを30ないし58重量%、ゲルマニウムを0.1
重量%以下含有するので、延性と熱強度に優れ鉛フリー
の低温「はんだ合金」が得られる。このスズ- ビスマス
Sn-Bi 系合金にアンチモンもしくは銀またはアンチモン
と銀の両者を添加すると熱強度が同等以上に良好な鉛フ
リーのスズ- ビスマスSn-Bi 系低温「はんだ合金」が得
られる。。
According to the present invention, tin is a main component, 30 to 58% by weight of bismuth, and 0.1% of germanium.
Since it is contained by weight% or less, a lead-free low-temperature "solder alloy" having excellent ductility and thermal strength can be obtained. This tin-bismuth
If antimony or silver or both antimony and silver are added to a Sn-Bi alloy, a lead-free tin-bismuth Sn-Bi-based low-temperature "solder alloy" having a thermal strength equal to or better than that of a solder is obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のスズ- ビスマスSn-Bi 系合金につき
伸び(%)のBi添加量(wt%)依存性を示す線図
FIG. 1 is a diagram showing the dependency of elongation (%) on the amount of added Bi (wt%) for a tin-bismuth Sn—Bi based alloy of the present invention.

【図2】この発明のスズ- ビスマスSn-Bi 系合金(Bi43
重量%)につき引っ張り強度のGe添加量依存性を示す線
FIG. 2 shows a tin-bismuth Sn—Bi alloy (Bi43) of the present invention.
(% By weight) shows the dependence of the tensile strength on the amount of Ge added.

【図3】この発明のスズ- ビスマスSn-Bi 系合金(Bi43
重量%)につき伸び(%)のGe添加量依存性を示す線図
FIG. 3 shows a tin-bismuth Sn—Bi alloy (Bi43
(% By weight) shows the dependency of elongation (%) on the amount of Ge added.

【図4】この発明のスズ- ビスマスSn-Bi 系合金(Bi43
重量%)につき温度100 ℃におけるクリープ速度のGe添
加量依存性を示す線図
FIG. 4 shows a tin-bismuth Sn—Bi-based alloy (Bi43
(% By weight) shows the dependence of the creep rate at 100 ° C on the Ge addition amount.

【図5】この発明のスズ- ビスマスSn-Bi 系合金(Bi43
重量%)につき温度100 ℃と温度120 ℃の範囲における
クリープ速度の温度依存性をスス- 鉛Sn-Pb 合金の特性
とともに示す線図
FIG. 5 shows a tin-bismuth Sn—Bi alloy (Bi43) of the present invention.
(% By weight) A diagram showing the temperature dependence of the creep rate in the temperature range of 100 ° C and 120 ° C, together with the characteristics of the Sn-Pb alloy.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】スズを主成分とし、ビスマスを30ないし
58重量%、ゲルマニウムを0.1重量%以下含有する
ことを特徴とする「はんだ合金」。
1. A "solder alloy" comprising tin as a main component, 30 to 58% by weight of bismuth and 0.1% by weight or less of germanium.
【請求項2】アンチモンを5重量%以下含有する請求項
1に記載の「はんだ合金」。
2. The "solder alloy" according to claim 1, which contains 5% by weight or less of antimony.
【請求項3】銀を2重量%以下含有する請求項1に記載
の「はんだ合金」。
3. The “solder alloy” according to claim 1, which contains 2% by weight or less of silver.
【請求項4】アンチモンを5重量%以下と銀を2重量%
以下含有する請求項1に記載の「はんだ合金」。
4. An antimony content of 5% by weight or less and silver of 2% by weight.
The "solder alloy" according to claim 1, which contains:
JP02489998A 1998-02-05 1998-02-05 Solder alloy Expired - Lifetime JP3353686B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02489998A JP3353686B2 (en) 1998-02-05 1998-02-05 Solder alloy
US09/244,034 US6156132A (en) 1998-02-05 1999-02-04 Solder alloys
DE19904765A DE19904765B4 (en) 1998-02-05 1999-02-05 Using an alloy as a lead-free solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02489998A JP3353686B2 (en) 1998-02-05 1998-02-05 Solder alloy

Publications (2)

Publication Number Publication Date
JPH11221693A true JPH11221693A (en) 1999-08-17
JP3353686B2 JP3353686B2 (en) 2002-12-03

Family

ID=12151038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02489998A Expired - Lifetime JP3353686B2 (en) 1998-02-05 1998-02-05 Solder alloy

Country Status (1)

Country Link
JP (1) JP3353686B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183590A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Semiconductor device
JP2010167472A (en) * 2009-01-26 2010-08-05 Fujitsu Ltd Solder, soldering method, and semiconductor device
JP2014524354A (en) * 2011-08-02 2014-09-22 アルファ・メタルズ・インコーポレイテッド High impact toughness solder alloy
WO2015019966A1 (en) * 2013-08-05 2015-02-12 千住金属工業株式会社 Lead-free solder alloy
JP2018122322A (en) * 2017-01-31 2018-08-09 株式会社タムラ製作所 Lead-free solder alloy, solder paste, electronic circuit board and electronic control device
JP6477965B1 (en) * 2018-03-08 2019-03-06 千住金属工業株式会社 Solder alloy, solder paste, solder ball, flux cored solder and solder joint
JP2019527145A (en) * 2016-08-11 2019-09-26 ベイジン コンポー アドバンスト テクノロジー カンパニー リミテッドBeijing Compo Advanced Technology Co.,Ltd. SnBiSb low-temperature lead-free solder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183590A (en) * 2007-01-30 2008-08-14 Oki Electric Ind Co Ltd Semiconductor device
JP2010167472A (en) * 2009-01-26 2010-08-05 Fujitsu Ltd Solder, soldering method, and semiconductor device
JP2014524354A (en) * 2011-08-02 2014-09-22 アルファ・メタルズ・インコーポレイテッド High impact toughness solder alloy
EP3907037A1 (en) * 2011-08-02 2021-11-10 Alpha Assembly Solutions Inc. High impact toughness solder alloy
WO2015019966A1 (en) * 2013-08-05 2015-02-12 千住金属工業株式会社 Lead-free solder alloy
JP5679094B1 (en) * 2013-08-05 2015-03-04 千住金属工業株式会社 Lead-free solder alloy
JP2019527145A (en) * 2016-08-11 2019-09-26 ベイジン コンポー アドバンスト テクノロジー カンパニー リミテッドBeijing Compo Advanced Technology Co.,Ltd. SnBiSb low-temperature lead-free solder
US11479835B2 (en) 2016-08-11 2022-10-25 Beijing Compo Advanced Technology Co., Ltd. SnBiSb series low-temperature lead-free solder and its preparation method
JP2018122322A (en) * 2017-01-31 2018-08-09 株式会社タムラ製作所 Lead-free solder alloy, solder paste, electronic circuit board and electronic control device
WO2019171978A1 (en) * 2018-03-08 2019-09-12 千住金属工業株式会社 Solder alloy, solder paste, solder ball, resin-flux cored solder, and solder joint
JP2019155471A (en) * 2018-03-08 2019-09-19 千住金属工業株式会社 Solder alloy, solder paste, solder ball, resin cored solder, and solder joint
JP6477965B1 (en) * 2018-03-08 2019-03-06 千住金属工業株式会社 Solder alloy, solder paste, solder ball, flux cored solder and solder joint
TWI679078B (en) * 2018-03-08 2019-12-11 日商千住金屬工業股份有限公司 Solder alloy, solder paste, solder ball, turpentine
US11241760B2 (en) 2018-03-08 2022-02-08 Senju Metal Industry Co., Ltd. Solder alloy, solder paste, solder ball, resin flux-cored solder and solder joint

Also Published As

Publication number Publication date
JP3353686B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3296289B2 (en) Solder alloy
US6156132A (en) Solder alloys
KR970010891B1 (en) High temperature lead-free tin based solder composition
EP0985486B1 (en) Leadless solder
KR102207301B1 (en) Lead-free solder alloy with high reliability
US20020015660A1 (en) Lead-free solder alloys
JPH0970687A (en) Leadless solder alloy
JP3353640B2 (en) Solder alloy
JP6804126B1 (en) Lead-free solder alloys and solder joints
KR20220048483A (en) High-temperature ultra-reliable alloy
JP4618089B2 (en) Sn-In solder alloy
JPH1158066A (en) Solder alloy
JP3262113B2 (en) Solder alloy
JP3736819B2 (en) Lead-free solder alloy
US20050008525A1 (en) Lead-free soft solder
JP3386009B2 (en) Solder alloy
JP3353686B2 (en) Solder alloy
JPH10314980A (en) Solder material
CN106041353A (en) Sn-Zn-Bi-series lead-free welding flux alloy and preparation method thereof
JP3673021B2 (en) Lead-free solder for electronic component mounting
JPH0994688A (en) Lead-free solder alloy
JP2001287082A (en) Solder
JP3346848B2 (en) Lead-free solder alloy
JP2000343273A (en) Soldering alloy
JP3107483B2 (en) No to low lead content solder alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term