JPH11221212A - Ultrasonic osteometer - Google Patents

Ultrasonic osteometer

Info

Publication number
JPH11221212A
JPH11221212A JP2496098A JP2496098A JPH11221212A JP H11221212 A JPH11221212 A JP H11221212A JP 2496098 A JP2496098 A JP 2496098A JP 2496098 A JP2496098 A JP 2496098A JP H11221212 A JPH11221212 A JP H11221212A
Authority
JP
Japan
Prior art keywords
bone
frequency
frequency distribution
index
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2496098A
Other languages
Japanese (ja)
Other versions
JP3830650B2 (en
Inventor
Yoshito Tosawa
沢 義 人 東
Morio Nishigaki
垣 森 雄 西
Hiroshi Fukukita
喜 多 博 福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02496098A priority Critical patent/JP3830650B2/en
Publication of JPH11221212A publication Critical patent/JPH11221212A/en
Application granted granted Critical
Publication of JP3830650B2 publication Critical patent/JP3830650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic osteometer capable of obtaining an index to which bone information greatly contributes, by utilizing a part to which a signal component permeating into a bone and getting from a transmitting side ultrasonic converter directly to a receiving side ultrasonic converter greatly contributes. SOLUTION: In a bone index calculation means 4, firstly a part which permeated from a received signal through a tested body on a shortest course is extracted by a waveform extraction means 8, a frequency analysis means 9 calculates the frequency distribution of the extracted received signal, and a frequency region extraction means 10 extracts such a frequency region including a frequency which becomes the maximum in the frequency distribution of amplitude and with little influence of a noise. An attenuation index calculation means 11 calculates an index on attenuation of bone properties from the frequency distribution of the extracted region, whereby an index on the bone properties where the bone component greatly contributed can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を体内に入
射させて、透過もしくは反射した信号から骨の性状に関
連した指標を算出する超音波骨計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic bone measuring apparatus which makes an ultrasonic wave incident on the inside of a body and calculates an index related to the property of a bone from a transmitted or reflected signal.

【0002】[0002]

【従来の技術】従来、超音波骨計測装置は、特開平6−
327674号公報に記載されたものが知られている。
図7は従来の超音波骨計測装置の構成を示しており、1
および2は超音波と電気信号の相互変換を行う超音波変
換手段、3は超音波変換手段を駆動する送受信回路、5
は解析結果を表示する表示手段、6は計測の対象となる
骨を含む被検体、7は超音波の伝搬を媒介する伝搬媒
質、15は被検体6中を透過した受信信号から伝搬時間
を計測する伝搬時間計測手段、16は減衰特性を計測す
る減衰計測手段である。
2. Description of the Related Art Conventionally, an ultrasonic bone measuring apparatus is disclosed in
One described in Japanese Patent No. 332774 is known.
FIG. 7 shows a configuration of a conventional ultrasonic bone measuring apparatus, and FIG.
And 2 are ultrasonic conversion means for mutually converting ultrasonic waves and electric signals, 3 is a transmitting / receiving circuit for driving the ultrasonic conversion means, 5
Is a display means for displaying an analysis result, 6 is a subject including a bone to be measured, 7 is a propagation medium that mediates the propagation of ultrasonic waves, and 15 is a propagation time measured from a received signal transmitted through the subject 6. The propagation time measuring means 16 is an attenuation measuring means for measuring an attenuation characteristic.

【0003】以上のように、構成された超音波骨計測装
置について、その動作を説明する。まず、送受信回路3
は、超音波変換手段1を駆動して音波を放射させる。超
音波変換手段1により放射された音波は、伝搬媒質7を
伝搬し、被検体6に入射する。被検体6に入射した音波
は、主に皮膚表面および骨表面において反射した成分
と、主に皮下組織および骨を透過した成分に分けられ、
それぞれ超音波変換手段1および2で受信される。前記
超音波変換手段2により受信された透過成分は、送受信
回路3にて増幅されてディジタルデータに変換された
後、伝搬時間計測手段15および減衰計測手段16に送
られる。伝搬時間計測手段15では、透過した信号の振
幅が最大値をとる時刻を求め、その時間と超音波変換手
段1の超音波放射の時刻との差として超音波の伝搬時間
dtを求める。また、伝搬時間計測手段15は、音波が
伝搬媒質7中を伝搬する時間を求めるために、被検体6
の透過成分の計測とは別に、超音波変換器1および2か
ら発せられた音波が被検体表面で反射し、超音波変換器
1および2に再び戻る時間をそれぞれ計測する。被検体
6および伝搬媒質7を透過する時間dtから伝搬媒質7
を透過する時間を差し引くことにより、被検体6のみを
透過する時間dtを求める。さらに、被検体6の厚さL
を計測し、下記の式(1)のように被検体6の厚さLを
伝搬時間dtで除算することで被検体6中の音波の伝搬
速度vを算出する。 v=dt' /L ... (1)
[0003] The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3
Drives the ultrasonic converter 1 to emit a sound wave. The sound wave emitted by the ultrasonic wave conversion means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject 6 is divided into a component mainly reflected on the skin surface and the bone surface, and a component mainly transmitted through the subcutaneous tissue and the bone.
The signals are received by the ultrasonic converters 1 and 2, respectively. The transmission component received by the ultrasonic converter 2 is amplified by the transmission / reception circuit 3 and converted into digital data, and then sent to the propagation time measuring unit 15 and the attenuation measuring unit 16. The propagation time measuring means 15 obtains the time at which the amplitude of the transmitted signal takes the maximum value, and calculates the ultrasonic wave propagation time dt as the difference between the time and the time of the ultrasonic emission of the ultrasonic wave converting means 1. Further, the propagation time measuring means 15 determines the time for the sound wave to propagate through the propagation medium
In addition to the measurement of the transmission component, the time when the sound waves emitted from the ultrasonic transducers 1 and 2 are reflected on the surface of the subject and return to the ultrasonic transducers 1 and 2 respectively is measured. From the time dt that passes through the subject 6 and the propagation medium 7, the propagation medium 7
By subtracting the time for transmitting light, the time dt for transmitting only the subject 6 is obtained. Further, the thickness L of the subject 6
Is calculated, and the thickness L of the subject 6 is divided by the propagation time dt as in the following equation (1) to calculate the propagation speed v of the sound wave in the subject 6. v = dt '/ L ... (1)

【0004】また減衰計測手段16では、参照媒質の透
過成分の周波数分布を計測しておき、被検体6と参照媒
質の透過成分の周波数分布から同一周波数における振幅
の差を2点で求める。2点の周波数f1, f2、および
f1, f2における被検体6と参照媒質との透過成分の
振幅の差をA1, A2とすると、下記の式(2)により
周波数依存減衰の係数Aを得る。 A=(A1−A2)/(f1−f2) ...(2) ただし、式(1)を計算するにあたっては、A1, A2
はdB単位で求められているものとする。また、参照媒
質には通常、水が用いられる。表示手段5は、求められ
た伝搬速度vおよび周波数依存減衰Aを骨の性状を表す
指標として表示する。
The attenuation measuring means 16 measures the frequency distribution of the transmission component of the reference medium, and obtains the difference between the amplitudes at the same frequency at two points from the frequency distribution of the transmission component of the subject 6 and the transmission component of the reference medium. Assuming that the differences between the amplitudes of the transmission components between the subject 6 and the reference medium at the two frequencies f1 and f2 and f1 and f2 are A1 and A2, the coefficient A of the frequency-dependent attenuation is obtained by the following equation (2). A = (A1-A2) / (f1-f2) (2) However, when calculating the expression (1), A1, A2
Is determined in dB. Further, water is usually used as the reference medium. The display means 5 displays the obtained propagation velocity v and frequency-dependent attenuation A as indices representing the properties of the bone.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の超音波骨計測装置においては、骨の特性を表す指標
を算出するために利用する被検体透過信号には、骨内部
を透過して送信側超音波変換器から受信側超音波変換器
へ直接到達する以外の経路を伝搬した信号成分が含ま
れ、骨の情報のみを得ることが困難な場合があるという
問題を有していた。
However, in the above-mentioned conventional ultrasonic bone measuring apparatus, the transmission signal transmitted through the inside of the bone is not included in the transmission signal of the subject used for calculating the index indicating the characteristic of the bone. There is a problem that signal components propagated along paths other than those directly reaching the receiving-side ultrasonic transducer from the ultrasonic transducer are included, and it is difficult to obtain only bone information in some cases.

【0006】本発明は、上記従来の問題を解決するもの
で、骨内部を透過して送信側超音波変換器から受信側超
音波変換器へ直接到達する信号成分が大きく寄与する部
分を利用することで、骨の情報が大きく寄与した指標を
得ることができるという優れた超音波骨計測装置を提供
することを目的とする。
The present invention solves the above-mentioned conventional problems, and utilizes a portion where a signal component which penetrates through the inside of a bone and directly reaches from a transmitting ultrasonic transducer to a receiving ultrasonic transducer greatly contributes. Accordingly, it is an object of the present invention to provide an excellent ultrasonic bone measurement device capable of obtaining an index greatly contributed by bone information.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に本発明は、受信信号から被検体中を最短経路で透過し
た部分を抽出する波形抽出手段と、波形抽出手段により
抽出された受信信号の周波数分布を算出する周波数解析
手段と、周波数分布の形状に基づいて周波数分布の領域
を抽出する周波数領域抽出手段とを備え、受信信号から
被検体中を最短経路で透過した成分が大きく寄与する部
分の周波数分布を求めることができるようにしたもので
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a waveform extracting means for extracting a portion transmitted through a shortest path in a subject from a received signal, and a receiving signal extracted by the waveform extracting means. Frequency analysis means for calculating the frequency distribution of the signal, and frequency domain extraction means for extracting the frequency distribution area based on the shape of the frequency distribution. The component transmitted from the received signal through the subject through the shortest path greatly contributes. The frequency distribution of a part can be obtained.

【0008】また、上記問題を解決するために本発明
は、被検体および参照媒質の透過波形について、振幅の
周波数分布で極大となる周波数を求め、両者間の周波数
のずれにより骨の減衰特性の指標を算出する減衰算出手
段を備え、周波数のずれから骨の減衰に関する指標を求
めることができるようにしたものである。
Further, in order to solve the above-mentioned problem, the present invention obtains the maximum frequency in the frequency distribution of the amplitude with respect to the transmission waveform of the subject and the reference medium, and obtains the bone attenuation characteristic by the frequency difference between the two. An attenuation calculating means for calculating an index is provided so that an index relating to bone attenuation can be obtained from a frequency shift.

【0009】また、上記問題を解決するために本発明
は、位相の周波数分布から群遅延量を求める群遅延量算
出手段を備え、群遅延時間もしくは群速度を算出するこ
とにより骨の伝搬速度に関する指標を求めることができ
るようにしたものである。
Further, in order to solve the above problem, the present invention comprises a group delay amount calculating means for obtaining a group delay amount from a phase frequency distribution, and calculates a group delay time or a group speed to obtain a bone propagation speed. An index can be obtained.

【0010】以上により、骨内部を透過して送信側超音
波変換器から受信側超音波変換器へ直接到達する信号成
分が大きく寄与する部分を利用して、骨の特性を表す指
標を算出するために、骨の情報が大きく寄与した指標を
得ることが容易であるという優れた超音波骨計測装置が
得られる。
As described above, an index representing the characteristic of the bone is calculated by utilizing the portion where the signal component that passes through the inside of the bone and directly arrives from the transmitting ultrasonic transducer to the receiving ultrasonic transducer greatly contributes. Therefore, it is possible to obtain an excellent ultrasonic bone measurement device in which it is easy to obtain an index greatly contributed by the information of the bone.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、超音波と電気信号の変換を行う超音波変換手段と、
超音波変換手段の駆動を行う超音波送受信手段と、受信
信号から被検体中を最短経路で透過した部分を抽出する
波形抽出手段と、前記波形抽出手段により抽出された受
信信号の周波数分布を算出する周波数解析手段と、周波
数分布の形状に基づいて周波数分布の領域を抽出する周
波数領域抽出手段とを備えたものであり、受信信号から
被検体中を最短経路で透過した成分が大きく寄与する部
分の周波数分布を抽出できるという作用を有する。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, there is provided an ultrasonic converting means for converting an ultrasonic wave into an electric signal;
An ultrasonic transmission / reception unit for driving the ultrasonic conversion unit; a waveform extraction unit for extracting a portion transmitted through the shortest path in the subject from the reception signal; and calculating a frequency distribution of the reception signal extracted by the waveform extraction unit. Frequency analysis means, and a frequency domain extraction means for extracting a frequency distribution area based on the shape of the frequency distribution. Has the effect of extracting the frequency distribution of

【0012】また、請求項2に記載の発明は、請求項1
記載の超音波骨計測装置において、被検体および参照媒
質の透過波形について、振幅の周波数分布で極大となる
周波数をもとめ、両者間の周波数のずれにより骨の減衰
特性の指標を算出する減衰算出手段を備えたものであ
り、骨を透過した成分が大きく寄与した信号から骨の減
衰に関する指標を求めることができるという作用を有す
る。
The invention described in claim 2 is the first invention.
In the ultrasonic bone measurement device described above, attenuation calculation means for determining the maximum frequency in the frequency distribution of the amplitude with respect to the transmission waveforms of the subject and the reference medium, and calculating an index of the attenuation characteristic of the bone based on the frequency shift between the two. And has an effect that an index relating to bone attenuation can be obtained from a signal to which a component that has passed through bone greatly contributes.

【0013】また、請求項3に記載の発明は、請求項1
記載の超音波骨計測装置において、位相の周波数分布か
ら群遅延量を求める群遅延量算出手段を備えたものであ
り、骨を透過した成分が大きく寄与した信号から骨の伝
搬速度に関する指標を求めることができるという作用を
有する。
[0013] The invention described in claim 3 is the first invention.
The ultrasonic bone measuring apparatus according to the above, further comprising a group delay amount calculating means for obtaining a group delay amount from a phase frequency distribution, and obtaining an index relating to a bone propagation velocity from a signal to which a component transmitted through the bone greatly contributes. It has the effect of being able to.

【0014】以下、本発明の実施の形態について、図1
から図4を用いて説明する。 (実施の形態1)図1は実施の形態1における超音波骨
計測装置の構成を示しており、1および2は超音波と電
気信号の相互変換を行う超音波変換手段、3は超音波変
換手段を駆動する送受信回路、4は被検体内の骨性状の
指標を算出する骨指標算出手段、5は解析結果を表示す
る表示手段、6は計測の対象となる骨を含む被検体、7
は超音波の伝搬を媒介する伝搬媒質である。また骨指標
算出手段4において、8は受信信号から被検体中を最短
経路で透過した部分を抽出する波形抽出手段、9は受信
信号の周波数分布を算出する周波数解析手段、10は周
波数分布の形状に基づいて周波数分布の領域を抽出する
周波数領域抽出手段、11は受信信号の減衰に関する指
標を算出する減衰指標算出手段である。超音波変換手段
1および2は同一性能の物を用いるものとする。また、
本実施の形態1においては超音波変換手段1により超音
波の放射と被検体6からの反射波を受信するもとのし、
超音波変換手段2は被検体6の透過波を受信するものと
する。被検体6には、音波を透過させたときの伝搬経路
において皮下組織の割合より骨組織の割合が大きい踵が
用いられ、伝搬媒質7としては通常、水が用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 shows a configuration of an ultrasonic bone measuring apparatus according to Embodiment 1, wherein 1 and 2 are ultrasonic conversion means for mutually converting ultrasonic waves and electric signals, and 3 is ultrasonic conversion. A transmitting / receiving circuit for driving the means, 4 is a bone index calculating means for calculating an index of bone properties in the subject, 5 is a display means for displaying an analysis result, 6 is a subject including a bone to be measured, 7
Is a propagation medium that mediates the propagation of ultrasonic waves. Further, in the bone index calculating means 4, 8 is a waveform extracting means for extracting a portion transmitted through the subject in the shortest path from the received signal, 9 is a frequency analyzing means for calculating a frequency distribution of the received signal, and 10 is a shape of the frequency distribution. Frequency domain extracting means for extracting a frequency distribution area based on the above, and an attenuation index calculating means 11 for calculating an index relating to attenuation of a received signal. The ultrasonic converters 1 and 2 have the same performance. Also,
In the first embodiment, it is assumed that the ultrasonic wave conversion means 1 receives the radiation of the ultrasonic wave and the reflected wave from the subject 6,
It is assumed that the ultrasonic converter 2 receives a transmitted wave of the subject 6. For the subject 6, a heel having a greater proportion of bone tissue than a proportion of subcutaneous tissue in the propagation path when transmitting sound waves is used, and water is usually used as the propagation medium 7.

【0015】以上のように構成された超音波骨計測装置
について、その動作を説明する。まず、送受信回路3
は、超音波変換手段1を駆動して音波を放射させる。超
音波変換手段1により放射された音波は伝搬媒質7を伝
搬し、被検体6に入射する。被検体に入射した音波は、
主に皮膚表面および骨表面において反射した成分と、主
に皮下組織および骨を透過した成分に分けられ、それぞ
れ超音波変換手段1および2で受信される。超音波変換
手段2により受信された透過波は、送受信回路3にて増
幅されてディジタルデータに変換された後、骨指標算出
手段4に送られる。骨指標算出手段4では、まず波形抽
出手段8により到達時間の長い信号成分、例えば伝搬媒
質7および被検体内部9における多重反射成分や、超音
波変換器1と2の間を縦波として最短経路で伝搬しなか
った成分を除去し、受信信号から被検体中を最短経路で
透過した部分を抽出する。周波数解析手段9は、抽出さ
れた受信信号の周波数分布を算出する。前記周波数解析
手段9により求められた周波数分布は、周波数領域抽出
手段10により、振幅の周波数分布において極大となる
周波数を含み、ノイズの影響が少ない周波数領域を抽出
する。減衰指標算出手段11は、周波数領域抽出手段1
0により抽出された領域の周波数分布から骨性状の減衰
に関する指標を算出する。表示手段5は、骨指標算出手
段4により求められた指標を表示する。
The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3
Drives the ultrasonic converter 1 to emit a sound wave. The sound wave emitted by the ultrasonic wave converting means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject is
The components are mainly divided into the components reflected on the skin surface and the bone surface, and the components mainly transmitted through the subcutaneous tissue and the bone, and are received by the ultrasonic wave converting means 1 and 2, respectively. The transmitted wave received by the ultrasonic wave converter 2 is amplified by the transmission / reception circuit 3 and converted into digital data, and then sent to the bone index calculator 4. In the bone index calculating means 4, first, a signal component having a long arrival time, for example, a multiple reflection component in the propagation medium 7 and the inside 9 of the subject and a shortest path as a longitudinal wave between the ultrasonic transducers 1 and 2 are obtained by the waveform extracting means 8. The components that have not propagated are removed, and the portion transmitted through the shortest path in the subject is extracted from the received signal. The frequency analysis means 9 calculates a frequency distribution of the extracted received signal. The frequency distribution obtained by the frequency analysis means 9 is extracted by the frequency domain extraction means 10 to include a frequency having a maximum in the frequency distribution of the amplitude, and to extract a frequency domain which is less affected by noise. The attenuation index calculating means 11 includes the frequency domain extracting means 1
An index relating to the attenuation of the bone property is calculated from the frequency distribution of the region extracted by 0. The display means 5 displays the index obtained by the bone index calculation means 4.

【0016】次に実施の形態1における波形抽出手段8
の動作について、図2を用いてさらに詳細に説明する。
図2は波形抽出の様子を表す図であり、図2(a)は受
信波形、図2(b)は抽出された波形である。また、2
0は被検体を透過した受信信号、21は受信波形の最大
振幅となる時間、22は最大振幅以後に現れる最初のゼ
ロクロス点、23は受信信号の抽出する範囲である。
Next, the waveform extracting means 8 in the first embodiment
Will be described in more detail with reference to FIG.
2A and 2B are diagrams showing a state of waveform extraction. FIG. 2A shows a received waveform, and FIG. 2B shows an extracted waveform. Also, 2
0 is the received signal transmitted through the subject, 21 is the time when the maximum amplitude of the received waveform is reached, 22 is the first zero cross point appearing after the maximum amplitude, and 23 is the range from which the received signal is extracted.

【0017】超音波変換手段1から放射され被検体6に
入射した音波のうち、被検体6内の骨を透過して直接超
音波変換手段2に到達した成分は、最短経路で超音波変
換器2に到達するために、早い時間に受信される。最短
経路で透過した成分以外は骨の情報を得ることが困難で
あるため、超音波探触子2により受信された波形のう
ち、到達時間の長い信号成分、例えば他の経路を伝搬し
た成分もしくは多重反射成分を除去し、早い時間に到達
した最短経路で透過した成分を抽出することで、骨の特
性を解析する。しかしながら、最短経路で透過した成分
はその他の成分と重なっていたり、測定環境あるいは被
検体の個体差により信号の継続時間が異なるので、最短
経路で透過した成分のみを全て抽出することは困難であ
る。そこで、骨の特性を最も顕著に反映していると思わ
れる領域を以下のようにして抽出し、指標を求める。
The component of the sound wave radiated from the ultrasonic wave converting means 1 and incident on the subject 6 which has passed through the bone in the subject 6 and directly reached the ultrasonic wave converting means 2 is converted into the ultrasonic wave by the shortest path. 2 is received early to reach 2. Since it is difficult to obtain bone information other than the component transmitted through the shortest path, of the waveform received by the ultrasonic probe 2, a signal component having a long arrival time, for example, a component transmitted through another path or The characteristic of the bone is analyzed by removing the multiple reflection components and extracting the components transmitted through the shortest path that arrived earlier. However, it is difficult to extract only the components that have passed through the shortest path, because the components that have passed through the shortest path overlap with other components, or the signal durations vary depending on the measurement environment or individual differences between the subjects. . Therefore, an area which is considered to most remarkably reflect the characteristic of the bone is extracted as follows, and an index is obtained.

【0018】まず、抽出する先頭の時刻は透過成分の先
頭部分がノイズレベル以上となり、他の波形が存在しな
い限りできるだけ早い時刻とする。後端は、受信波形の
最大振幅となる時間21を求め、その時間以降で最初の
0レベルとの交点、すなわちゼロクロス点22を求め、
抽出波形の後端とする。以上の範囲23に限定して受信
信号から波形を抽出し、図2(b)のような波形を得
る。水のみを透過した受信信号である参照信号に対して
も同様な操作を行う。なお、以上の説明では矩形の窓に
よって信号を抽出したが、ハニングウィンドウに代表さ
れるコサインウィンドウを用いてもよい。
First, the leading time to be extracted is set as early as possible unless the leading part of the transmitted component is higher than the noise level and other waveforms exist. The rear end obtains a time 21 at which the maximum amplitude of the received waveform is obtained, and obtains an intersection with the first 0 level after that time, that is, a zero cross point 22,
The end of the extracted waveform. A waveform is extracted from the received signal limited to the above range 23 to obtain a waveform as shown in FIG. The same operation is performed on a reference signal which is a reception signal transmitted through only water. In the above description, a signal is extracted using a rectangular window, but a cosine window represented by a Hanning window may be used.

【0019】次に、実施の形態1における骨の性状の指
標の算出について、図3と図4を用いてさらに詳細に説
明する。図3は骨の周波数減衰による透過波形の違いを
表す図である。図4は骨の減衰特性の指標を算出する様
子を表す図であり、(a)は前記波形抽出手段8により
抽出された被検体の透過波形、(b)は前記波形抽出手
段8により抽出された参照波形、(c)は振幅の周波数
分布、(d)は周波数領域抽出手段10により抽出され
た周波数分布である。また、401は抽出された透過波
形の周波数分布、402は参照信号の周波数分布、40
3は抽出される周波数領域、404は測定系の成分を取
り除いた周波数分布、405は周波数分布404を近似
する直線である。
Next, the calculation of the bone property index in the first embodiment will be described in more detail with reference to FIGS. FIG. 3 is a diagram illustrating a difference in a transmission waveform due to a frequency attenuation of a bone. 4A and 4B are diagrams showing a manner of calculating an index of the attenuation characteristic of the bone. FIG. 4A shows the transmission waveform of the subject extracted by the waveform extracting means 8, and FIG. (C) is the frequency distribution of the amplitude, and (d) is the frequency distribution extracted by the frequency domain extracting means 10. Also, 401 is the frequency distribution of the extracted transmitted waveform, 402 is the frequency distribution of the reference signal, 40
Reference numeral 3 denotes a frequency domain to be extracted, 404 denotes a frequency distribution from which components of the measurement system have been removed, and 405 denotes a straight line approximating the frequency distribution 404.

【0020】最短経路で透過した成分は、骨以外にも皮
下組織や伝搬媒質など、さまざまな媒質を透過している
ため、骨以外の影響を受けたものとなる。ところで、周
波数に対する減衰の変化すなわち周波数減衰は、指標の
算出に使用する数百kHzから数MHzの超音波周波数
では、水や皮膚の周波数依存減衰は骨に比べて小さく無
視できるため、受信信号から周波数依存減衰に関連する
指標を求めれば骨の性状を反映した指標とすることがで
きる。周波数依存減衰の大きさが受信信号に顕著に表れ
るのは、受信信号の先頭の立ち上がり部分である。骨の
減衰が周波数に比例して直線的に大きくなるとすると、
図3のように周波数依存減衰が大きいほど先頭部分に低
周波成分が表れてゼロクロスの間隔w1が大きくなり、
小さいほど測定に使用した超音波の中心周波数に近づき
間隔w1が小さくなる。最も簡単に指標を求めるには、
ゼロクロスの間隔w1を測定すればよいが、立ち上がり
が緩やかであることやノイズにより立ち上がり部分が埋
もれてしまうことがあるために正確に求めることは困難
である。そこで、透過成分の先頭付近の波形についてフ
ーリエ変換により周波数分布を求め、中心周波数の変位
から骨の性状に関する指標を算出する。
The component transmitted through the shortest path is transmitted through various media such as a subcutaneous tissue and a propagation medium other than the bone, and thus is affected by other components than the bone. By the way, the change of the attenuation with respect to the frequency, that is, the frequency attenuation, is different from the received signal because the frequency-dependent attenuation of water and skin is small and negligible at the ultrasonic frequency of several hundred kHz to several MHz used for calculating the index. If an index related to the frequency-dependent attenuation is obtained, it can be used as an index reflecting the properties of the bone. The magnitude of the frequency-dependent attenuation significantly appears in the received signal at the leading edge of the received signal. Assuming that the bone attenuation increases linearly with frequency,
As shown in FIG. 3, as the frequency-dependent attenuation becomes larger, a low-frequency component appears at the head and the zero-cross interval w1 becomes larger.
The smaller the distance, the closer to the center frequency of the ultrasonic wave used for the measurement, and the shorter the interval w1. The easiest way to get metrics is
It is sufficient to measure the zero-cross interval w1, but it is difficult to accurately determine the rising because the rising portion is gradual or the rising portion may be buried by noise. Therefore, a frequency distribution is obtained by Fourier transform for the waveform near the head of the transmission component, and an index relating to the properties of the bone is calculated from the displacement of the center frequency.

【0021】まず、波形抽出手段8により抽出された波
形を周波数解析手段5 はフーリエ変換し、周波数分布
401を求める。周波数分布はdBを単位として求め、
最大値を0dBとして規格化する。周波数領域抽出手段
9は、周波数分布401と参照波形の周波数分布402
の両方の極大値を含み、ノイズレベルにまで落ちていな
い領域、例えば周波数分布401および402の極大値
から10dB下がった範囲として周波数領域406を抽
出する。周波数領域406において、周波数分布401
の極大値の周波数fc1と、参照波形の周波数分布40
2の極大値の周波数fc2を求める。極大値の周波数f
c1とfc2の差(fc1−fc2)を求め、骨の性状
の指標とする。
First, the waveform extracted by the waveform extracting means 8 is subjected to Fourier transform by the frequency analyzing means 5 to obtain a frequency distribution 401. The frequency distribution is obtained in units of dB,
The maximum value is normalized as 0 dB. The frequency domain extraction means 9 includes a frequency distribution 401 and a frequency distribution 402 of a reference waveform.
The frequency region 406 is extracted as a region that includes both local maxima and does not fall to the noise level, for example, a range that is 10 dB lower than the local maxima of the frequency distributions 401 and 402. In the frequency domain 406, the frequency distribution 401
And the frequency distribution 40 of the reference waveform
The frequency fc2 of the maximum value of 2 is obtained. Maximum frequency f
The difference (fc1-fc2) between c1 and fc2 is determined and used as an index of the bone properties.

【0022】また、骨の性状に関する別の指標としては
以下のように求めることもできる。まず、周波数解析手
段5では、波形抽出手段8により抽出された波形をフー
リエ変換し、周波数分布401を求める。周波数分布は
dBを単位として求め、最大値を0dBとして規格化す
る。周波数領域抽出手段9は、周波数分布401と参照
波形の周波数分布402の両方がノイズレベルにまで落
ちていない領域、例えば周波数分布401および402
の極大値から10dB下がった範囲で重なる周波数領域
403を抽出する。つぎに、抽出した周波数領域403
において、周波数分布401から参照波形の周波数分布
402を差し引くことで測定系の成分を取り除き、周波
数分布404を求める。減衰指標算出手段11は。周波
数分布404を近似する直線405を最小2乗法により
求め、その直線の傾きを骨の性状の指標とする。このよ
うにして求められた指標は、被検体の周波数依存減衰と
厳密に一致するものではないが、骨の周波数依存減衰を
反映したものとなる。なお参照波形としては、測定装置
は同一かつ同条件で水のみを透過させて測定した受信信
号を用いる。
Further, another index relating to the properties of the bone can be obtained as follows. First, the frequency analysis unit 5 performs a Fourier transform on the waveform extracted by the waveform extraction unit 8 to obtain a frequency distribution 401. The frequency distribution is obtained in units of dB, and the maximum value is normalized as 0 dB. The frequency domain extraction means 9 determines a region where both the frequency distribution 401 and the frequency distribution 402 of the reference waveform do not fall to the noise level, for example, the frequency distributions 401 and 402.
A frequency region 403 that overlaps in a range that is 10 dB lower than the maximum value of is extracted. Next, the extracted frequency domain 403
In, the components of the measurement system are removed by subtracting the frequency distribution 402 of the reference waveform from the frequency distribution 401 to obtain the frequency distribution 404. The attenuation index calculating means 11 is provided. A straight line 405 approximating the frequency distribution 404 is obtained by the least squares method, and the inclination of the straight line is used as an index of the bone property. The index determined in this way does not exactly match the frequency-dependent attenuation of the subject, but reflects the frequency-dependent attenuation of the bone. As the reference waveform, the measuring apparatus uses a received signal measured by transmitting only water under the same and same conditions.

【0023】なお、以上の説明では、透過信号の抽出す
る方法として、透過信号の最大値の次に現れるゼロクロ
ス点を抽出波形の後端の時刻としたが、透過信号の最大
値を取る点とコサインウィンドウの最大値を取る点を一
致させて、透過信号にコサインウィンドウを乗算するこ
とにより透過信号を抽出してもよい。
In the above description, as a method of extracting a transmitted signal, the zero cross point appearing next to the maximum value of the transmitted signal is set as the time at the rear end of the extracted waveform. The transmission signal may be extracted by multiplying the transmission signal by the cosine window by matching the points that take the maximum value of the cosine window.

【0024】また、以上の説明では、骨の性状の指標の
算出に被検体の受信信号と参照信号との周波数分布の差
を求め、その傾きを指標としたが、骨の減衰が周波数に
比例して大きくなるとして、周波数分布401と402
の極大値の周波数の差を最小とする周波数依存減衰の係
数を最小2乗法により求めてもよい。
In the above description, the difference in the frequency distribution between the received signal and the reference signal of the subject is calculated for calculating the index of the bone property, and the gradient is used as the index. However, the attenuation of the bone is proportional to the frequency. Frequency distributions 401 and 402
The coefficient of the frequency-dependent attenuation that minimizes the difference between the frequencies of the local maximum values may be obtained by the least square method.

【0025】以上のように、本発明の実施の形態1によ
れば、骨指標算出手段4に、受信信号から被検体中を最
短経路で透過した部分を抽出する波形抽出手段8、受信
信号の周波数分布を算出する周波数解析手段9、周波数
分布の形状に基づいて周波数分布の領域を抽出する周波
数領域抽出手段10、受信信号の減衰に関する指標を算
出する減衰指標算出手段11とを設けることにより、受
信信号から被検体中を最短経路で透過した成分が大きく
寄与する部分を抽出することで、骨の成分が大きく寄与
した減衰に関する指標を求めることができる。
As described above, according to the first embodiment of the present invention, the bone index calculating means 4 provides the waveform extracting means 8 for extracting the portion transmitted through the shortest path from the received signal through the subject, By providing frequency analysis means 9 for calculating a frequency distribution, frequency domain extraction means 10 for extracting a frequency distribution area based on the shape of the frequency distribution, and attenuation index calculation means 11 for calculating an index relating to attenuation of a received signal, By extracting, from the received signal, a portion where the component transmitted through the shortest path in the subject greatly contributes, it is possible to obtain an index relating to the attenuation largely contributed by the bone component.

【0026】(実施の形態2)図5は実施の形態2にお
ける超音波骨計測装置の構成を示しており、12は骨指
標算出手段4にあって、受信信号の群遅延および速度を
算出する群遅延量算出手段であり、その他の構成要素は
実施の形態1と同じである。
(Embodiment 2) FIG. 5 shows the configuration of an ultrasonic bone measuring apparatus according to Embodiment 2 of the present invention. Reference numeral 12 denotes a bone index calculating means 4 for calculating the group delay and speed of a received signal. The other components are the same as those of the first embodiment.

【0027】以上のように構成された超音波骨計測装置
について、その動作を説明する。まず、送受信回路3
は、超音波変換手段1を駆動して音波を放射させる。超
音波変換手段1により放射された音波は、伝搬媒質7を
伝搬し、被検体6に入射する。被検体6に入射した音波
は、主に皮膚表面および骨表面において反射した成分
と、主に皮下組織および骨を透過した成分に分けられ、
それぞれ超音波変換手段1および2で受信される。超音
波変換手段2により受信された透過波は、送受信回路3
にて増幅されてディジタルデータに変換された後、骨指
標算出手段4に送られる。骨指標算出手段4では、まず
波形抽出手段8により実施の形態1と同様の方法によ
り、受信信号から被検体中を最短経路で透過した部分を
抽出する。周波数解析手段9は、抽出された受信信号の
周波数分布を算出する。周波数解析手段9により求めら
れた周波数分布は、周波数領域抽出手段10により、振
幅の周波数分布において極大となる周波数を含み、ノイ
ズの影響が少ない周波数領域を抽出する。群遅延量算出
手段12は、周波数領域抽出手段10により抽出された
領域の位相の周波数分布から群遅延量および速度を算出
する。表示手段5は、骨指標算出手段4により求められ
た速度を表示する。なお、波形抽出手段8による波形抽
出、周波数領域抽出手段9による周波数分布の抽出に関
しては、実施の形態1と同様の方法により行われる。
The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3
Drives the ultrasonic converter 1 to emit a sound wave. The sound wave emitted by the ultrasonic wave conversion means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject 6 is divided into a component mainly reflected on the skin surface and the bone surface, and a component mainly transmitted through the subcutaneous tissue and the bone.
The signals are received by the ultrasonic converters 1 and 2, respectively. The transmitted wave received by the ultrasonic wave converting means 2 is transmitted to the transmitting / receiving circuit 3
After being amplified by and converted into digital data, it is sent to the bone index calculating means 4. In the bone index calculating means 4, first, a portion transmitted through the shortest path in the subject is extracted from the received signal by the waveform extracting means 8 in the same manner as in the first embodiment. The frequency analysis means 9 calculates a frequency distribution of the extracted received signal. The frequency distribution obtained by the frequency analysis means 9 is extracted by the frequency domain extraction means 10 to include a frequency having a maximum in the amplitude frequency distribution, and to extract a frequency domain which is less affected by noise. The group delay amount calculating unit 12 calculates the group delay amount and the speed from the frequency distribution of the phase in the region extracted by the frequency region extracting unit 10. The display means 5 displays the speed obtained by the bone index calculation means 4. The extraction of the waveform by the waveform extracting means 8 and the extraction of the frequency distribution by the frequency domain extracting means 9 are performed in the same manner as in the first embodiment.

【0028】次に実施の形態2における群遅延量および
速度算出の方法について、図6を用いてさらに詳細に説
明する。図6は抽出された位相の周波数分布であり、図
6(a)は波形抽出手段8により生成された被検体6の
透過波形、(b)は波形抽出手段8により生成された参
照波形、(c)は抽出された透過信号の位相変化の周波
数分布、(d)は抽出された参照信号の位相変化の周波
数分布、(e)は修正された透過信号の位相変化の周波
数分布、(f)は修正された参照信号の位相変化の周波
数分布、(g)は透過信号と参照信号の間の差の位相変
化を表す周波数分布である。また、601は抽出および
修正された位相の周波数分布、602は周波数分布60
1を近似する直線、603は被検体の透過波形から抽出
した部分、604は参照媒質の透過波形から抽出した部
分である。
Next, the method of calculating the group delay amount and the speed in the second embodiment will be described in more detail with reference to FIG. FIG. 6 shows the frequency distribution of the extracted phase. FIG. 6A shows the transmission waveform of the subject 6 generated by the waveform extracting unit 8, FIG. 6B shows the reference waveform generated by the waveform extracting unit 8, and FIG. c) is the frequency distribution of the phase change of the extracted transmitted signal, (d) is the frequency distribution of the phase change of the extracted reference signal, (e) is the frequency distribution of the phase change of the corrected transmitted signal, (f). Is the frequency distribution of the phase change of the corrected reference signal, and (g) is the frequency distribution representing the phase change of the difference between the transmitted signal and the reference signal. 601 is a frequency distribution of the extracted and corrected phase, and 602 is a frequency distribution 60
1, 603 is a part extracted from the transmission waveform of the subject, and 604 is a part extracted from the transmission waveform of the reference medium.

【0029】まず、実施の形態1と同様の方法を用いて
波形抽出手段8により抽出された波形に、送信開始時刻
から抽出波形の先頭までの長さの0を加え、送信開始時
刻から抽出波形の後端の時刻までの長さの波形を生成す
る。波形抽出手段8により生成された被検体6 の透過
波形および参照波形は、例えば、図6(a)および
(b)のようになり、603、604で表されている領
域が実際の測定波形から抽出した部分、それ以外は0と
した部分である。その波形を周波数解析手段5はフーリ
エ変換し、位相の周波数分布を求める。周波数領域抽出
手段10は,実施の形態1と同様の方法により、位相変
化の周波数分布、図6(c)および(d)が求められ
る。位相変化の周波数分布は、piを円周率として、ラ
ジアンを単位として−piからpiの範囲で求められ
る。群遅延量算出手段12は、この位相変化を−piも
しくはpi付近における不連続な変化、例えば−piか
らpiに変化する点において直線的に変化するように修
正し、修正した位相変化の周波数分布(e)および
(f)を求める。次に透過信号と参照信号との位相変化
の差を表す周波数分布601を求める。群遅延量算出手
段12は、抽出された周波数領域内で位相は周波数に応
じて線形的に変化するものとし、周波数分布601に対
して最小2乗法で直線602を近似する。被検体6と伝
搬媒質7との群遅延量の差をdtとすると、dtは近似
した直線602の傾きから求めることができる。さらに
被検体piの厚さLを別の方法、例えば定規による実測
や超音波の被検体pi表面からの反射信号の遅延時間測
定により求めることで、下記の式(3)により被検体6
を透過する信号の群速度を求めることができる。 v=1/(dt/L+1/vw) ...(3) (v:被検体piの群速度、dt:被検体piの伝搬媒
質との群遅延時間の差、vw:伝搬媒質の速度、L:被
検体piの厚さ)
First, zero is added to the waveform extracted by the waveform extracting means 8 using the same method as in the first embodiment, from the transmission start time to the beginning of the extracted waveform, and the transmission waveform is extracted from the transmission start time. A waveform having a length up to the time at the trailing end is generated. The transmission waveform and the reference waveform of the subject 6 generated by the waveform extracting means 8 are, for example, as shown in FIGS. 6A and 6B, and the areas represented by 603 and 604 are different from the actual measurement waveform. The extracted part, and the other parts are 0 parts. The frequency analysis means 5 performs a Fourier transform on the waveform to obtain a phase frequency distribution. The frequency domain extraction means 10 obtains the frequency distribution of the phase change, and FIGS. 6C and 6D by the same method as in the first embodiment. The frequency distribution of the phase change can be obtained in a range of -pi to pi in units of radians with pi being the pi. The group delay amount calculating means 12 corrects this phase change so as to change linearly at a discontinuous change near −pi or pi, for example, at a point where −pi changes to pi, and changes the frequency distribution of the corrected phase change. Find (e) and (f). Next, a frequency distribution 601 representing a difference in phase change between the transmitted signal and the reference signal is obtained. The group delay amount calculation means 12 assumes that the phase linearly changes in accordance with the frequency in the extracted frequency domain, and approximates a straight line 602 to the frequency distribution 601 by the least square method. Assuming that the difference between the group delay amounts of the subject 6 and the propagation medium 7 is dt, dt can be obtained from the slope of the approximated straight line 602. Further, the thickness L of the object pi is obtained by another method, for example, by actual measurement using a ruler or by measuring the delay time of the reflected signal of the ultrasonic wave from the surface of the object pi.
The group velocity of a signal passing through is obtained. v = 1 / (dt / L + 1 / vw) (3) (v: group velocity of the subject pi, dt: difference in group delay time between the subject pi and the propagation medium, vw: velocity of the propagation medium, L: thickness of subject pi)

【0030】なお、以上の説明では、骨の性状の指標と
して群遅延量を透過信号と参照信号の差の位相変化から
求めたが、透過信号の位相変化のみを直線で近似するこ
とにより骨の性状の指標を求めてもよい。
In the above description, the amount of group delay was determined from the phase change of the difference between the transmitted signal and the reference signal as an index of the bone properties, but only the phase change of the transmitted signal was approximated by a straight line to obtain the bone delay. An index of the property may be obtained.

【0031】なお、以上の説明では、群速度を求めるた
めに被検体piの厚さを用いるものとしたが、超音波の
骨表面からの反射信号の遅延時間測定により骨の厚さを
求め、使用してもよい。
In the above description, the thickness of the subject pi is used to determine the group velocity. However, the thickness of the bone is determined by measuring the delay time of the ultrasonic reflected signal from the bone surface. May be used.

【0032】以上のように、本発明の実施の形態2によ
れば、骨指標算出手段4に、受信信号から被検体中を最
短経路で透過した部分を抽出する波形抽出手段8、受信
信号の周波数分布を算出する周波数解析手段9、周波数
分布の形状に基づいて周波数分布の領域を抽出する周波
数領域抽出手段10、受信信号の群遅延および速度を算
出する群遅延量算出手段12とを設けることにより、受
信信号から被検体中を最短経路で透過した成分が大きく
寄与する部分を抽出することで、骨の成分が大きく寄与
した速度に関する指標を求めることができる。
As described above, according to the second embodiment of the present invention, the bone index calculating means 4 includes the waveform extracting means 8 for extracting a portion transmitted through the shortest path in the subject from the received signal, A frequency analysis unit for calculating a frequency distribution; a frequency domain extraction unit for extracting a frequency distribution region based on a shape of the frequency distribution; and a group delay amount calculation unit for calculating a group delay and a speed of a received signal. By extracting from the received signal a portion to which the component transmitted through the shortest path in the subject greatly contributes, it is possible to obtain an index relating to the speed at which the bone component greatly contributed.

【0033】[0033]

【発明の効果】以上のように本発明は、受信信号から被
検体中を最短経路で透過した部分を抽出する波形抽出手
段と、波形抽出手段により抽出された受信信号の周波数
分布を算出する周波数解析手段と、周波数分布の形状に
基づいて周波数分布の領域を抽出する周波数領域抽出手
段とを設けることにより、受信信号から被検体中を最短
経路で透過した成分が大きく寄与する部分を抽出できる
という効果が得られる。
As described above, according to the present invention, there is provided a waveform extracting means for extracting a portion transmitted through a shortest path in a subject from a received signal, and a frequency for calculating a frequency distribution of the received signal extracted by the waveform extracting means. By providing the analyzing means and the frequency domain extracting means for extracting the frequency distribution area based on the shape of the frequency distribution, it is possible to extract from the received signal a portion to which the component transmitted through the shortest path in the subject greatly contributes. The effect is obtained.

【0034】また、以上のように本発明は、被検体およ
び参照媒質の透過波形について、振幅の周波数分布で極
大となる周波数をもとめ、両者間の周波数のずれにより
骨の減衰特性の指標を算出する減衰算出手段を設けるこ
とにより、受信信号から被検体中を最短経路で透過した
成分が大きく寄与する部分を抽出することで、骨の成分
が大きく寄与した減衰に関する指標を求めることができ
るという効果が得られる。
Further, as described above, according to the present invention, with respect to the transmission waveforms of the subject and the reference medium, the maximum frequency in the frequency distribution of the amplitude is determined, and the index of the bone attenuation characteristic is calculated based on the frequency shift between the two. By providing the attenuation calculating means, the portion where the component transmitted through the shortest path in the subject greatly contributes from the received signal is extracted, so that an index relating to the attenuation greatly contributed by the bone component can be obtained. Is obtained.

【0035】また、以上のように本発明は、位相の周波
数分布から群遅延量を求める群遅延量算出手段を設ける
ことにより、受信信号から被検体中を最短経路で透過し
た成分が大きく寄与する部分を抽出することで、骨の成
分が大きく寄与した速度に関する指標を求めることがで
きるという効果が得られる。
As described above, according to the present invention, by providing the group delay amount calculating means for obtaining the group delay amount from the phase frequency distribution, the component transmitted from the received signal through the subject through the shortest path greatly contributes. By extracting the portion, it is possible to obtain an effect that an index relating to the speed to which the bone component has greatly contributed can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における超音波骨計測装
置の構成を表すブロック図
FIG. 1 is a block diagram illustrating a configuration of an ultrasonic bone measurement device according to a first embodiment of the present invention.

【図2】(a)は本発明の実施の形態1における受信波
形を表す波形図 (b)は本発明の実施の形態1における抽出された波形
を表す波形図
FIG. 2A is a waveform diagram illustrating a received waveform according to the first embodiment of the present invention; FIG. 2B is a waveform diagram illustrating an extracted waveform according to the first embodiment of the present invention;

【図3】本発明の実施の形態1における骨の周波数減衰
による透過波形の違いを表す波形図
FIG. 3 is a waveform chart showing a difference in a transmission waveform due to a frequency attenuation of a bone according to the first embodiment of the present invention.

【図4】(a)は本発明の実施の形態1における抽出さ
れた被検体の透過波形図 (b)は本発明の実施の形態1における抽出された参照
波形図 (c)は本発明の実施の形態1における振幅の周波数分
布図 (d)は本発明の実施の形態1における抽出された周波
数分布図
FIG. 4 (a) is a transmission waveform diagram of an extracted subject according to the first embodiment of the present invention; FIG. 4 (b) is an extracted reference waveform diagram according to the first embodiment of the present invention; (D) is an extracted frequency distribution diagram according to the first embodiment of the present invention.

【図5】本発明の実施の形態2における超音波骨計測装
置の構成を表すブロック図
FIG. 5 is a block diagram illustrating a configuration of an ultrasonic bone measurement device according to a second embodiment of the present invention.

【図6】(a)は本発明の実施の形態2における波形抽
出手段により生成された被検体の透過波形図 (b)は本発明の実施の形態2における波形抽出手段に
より生成された参照波形図 (c)は本発明の実施の形態2における抽出された透過
信号の位相変化の周波数分布図 (d)は本発明の実施の形態2における抽出された参照
信号の位相変化の周波数分布図 (e)は本発明の実施の形態2における修正された透過
信号の位相変化の周波数分布図 (f)は本発明の実施の形態2における抽出された参照
信号の位相変化の周波数分布図 (g)は本発明の実施の形態2における透過信号と参照
信号の間の差の位相変化を表す周波数分布図
6A is a transmission waveform diagram of a subject generated by a waveform extracting unit according to the second embodiment of the present invention; FIG. 6B is a reference waveform generated by the waveform extracting unit according to the second embodiment of the present invention; (C) is a frequency distribution diagram of the phase change of the extracted transmitted signal in the second embodiment of the present invention. (D) is a frequency distribution diagram of the phase change of the extracted reference signal in the second embodiment of the present invention. e) is a frequency distribution diagram of the phase change of the corrected transmitted signal according to the second embodiment of the present invention. (f) is a frequency distribution diagram of the phase change of the extracted reference signal according to the second embodiment of the present invention. Is a frequency distribution diagram showing a phase change of a difference between a transmitted signal and a reference signal according to Embodiment 2 of the present invention.

【図7】従来の超音波骨計測装置の構成を表すブロック
FIG. 7 is a block diagram showing a configuration of a conventional ultrasonic bone measuring device.

【符号の説明】[Explanation of symbols]

1、2 超音波変換手段 3 送受信回路 4 骨指標算出手段 5 表示手段 6 被検体 7 伝搬媒質 8 波形抽出手段 9 周波数解析手段 10 周波数領域抽出手段 11 減衰指標算出手段 12 群遅延量算出手段 15 伝搬時間計測手段 16 減衰計測手段 21 受信波形の最大振幅となる時間 22 最大振幅以後に現れる最初のゼロクロス点 23 受信信号の抽出する範囲 401 抽出された透過波形の周波数分布 402 参照信号の周波数分布 403 抽出される周波数領域 404 測定系の成分を取り除いた周波数分布 405 周波数分布404を近似する直線 406 抽出される周波数領域 601 抽出および修正された位相の周波数分布 602 周波数分布601を近似する直線 1, 2 ultrasonic conversion means 3 transmission / reception circuit 4 bone index calculation means 5 display means 6 subject 7 propagation medium 8 waveform extraction means 9 frequency analysis means 10 frequency domain extraction means 11 attenuation index calculation means 12 group delay amount calculation means 15 propagation Time measuring means 16 Attenuation measuring means 21 Time when the maximum amplitude of the received waveform is reached 22 First zero-cross point appearing after the maximum amplitude 23 Range for extracting the received signal 401 Frequency distribution of the extracted transmitted waveform 402 Frequency distribution of the reference signal 403 Extraction Frequency domain 404 from which the components of the measurement system are removed 405 frequency distribution 405 a straight line approximating the frequency distribution 404 406 extracted frequency domain 601 frequency distribution of the extracted and corrected phase 602 straight line approximating the frequency distribution 601

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超音波と電気信号の変換を行う超音波変
換手段と、超音波変換手段の駆動を行う超音波送受信手
段と、受信信号から被検体中を最短経路で透過した部分
を抽出する波形抽出手段と、前記波形抽出手段により抽
出された受信信号の周波数分布を算出する周波数解析手
段と、周波数分布の形状に基づいて周波数分布の領域を
抽出する周波数領域抽出手段とを備えた超音波骨計測装
置。
1. An ultrasonic wave converting means for converting an ultrasonic wave into an electric signal, an ultrasonic wave transmitting / receiving means for driving the ultrasonic wave converting means, and a portion transmitted through a shortest path in a subject from a received signal is extracted. An ultrasonic wave comprising: a waveform extracting unit; a frequency analyzing unit that calculates a frequency distribution of a received signal extracted by the waveform extracting unit; and a frequency domain extracting unit that extracts a frequency distribution region based on a shape of the frequency distribution. Bone measurement device.
【請求項2】 被検体および参照媒質の透過波形につい
て、振幅の周波数分布で極大となる周波数を求め、両者
間の周波数のずれにより骨の減衰特性の指標を算出する
減衰指標算出手段を備えることを特徴とする請求項1記
載の超音波骨計測装置。
2. An attenuation index calculating means for determining a maximum frequency in an amplitude frequency distribution for a transmission waveform of a subject and a reference medium, and calculating an index of a bone attenuation characteristic based on a frequency shift between the two. The ultrasonic bone measuring apparatus according to claim 1, wherein:
【請求項3】 位相の周波数分布から群遅延量を求める
群遅延量算出手段を備えることを特徴とする請求項1記
載の超音波骨計測装置。
3. The ultrasonic bone measuring apparatus according to claim 1, further comprising a group delay amount calculating means for obtaining a group delay amount from a phase frequency distribution.
JP02496098A 1998-02-05 1998-02-05 Ultrasonic bone measuring device Expired - Fee Related JP3830650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02496098A JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02496098A JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Publications (2)

Publication Number Publication Date
JPH11221212A true JPH11221212A (en) 1999-08-17
JP3830650B2 JP3830650B2 (en) 2006-10-04

Family

ID=12152553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02496098A Expired - Fee Related JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Country Status (1)

Country Link
JP (1) JP3830650B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186620A (en) * 2000-12-21 2002-07-02 Aloka Co Ltd Ultrasonic bone assessment device
JP2003260057A (en) * 2002-02-19 2003-09-16 Biosense Inc Mapping apparatus and mapping method
JP2011255059A (en) * 2010-06-11 2011-12-22 Hitachi Aloka Medical Ltd Ultrasonic bone evaluation device
JP2012529324A (en) * 2009-06-11 2012-11-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Ultrasonic method and apparatus for characterizing media

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186620A (en) * 2000-12-21 2002-07-02 Aloka Co Ltd Ultrasonic bone assessment device
JP2003260057A (en) * 2002-02-19 2003-09-16 Biosense Inc Mapping apparatus and mapping method
JP4689146B2 (en) * 2002-02-19 2011-05-25 バイオセンス・ウエブスター・インコーポレーテツド Mapping apparatus and mapping method
JP2012529324A (en) * 2009-06-11 2012-11-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Ultrasonic method and apparatus for characterizing media
JP2011255059A (en) * 2010-06-11 2011-12-22 Hitachi Aloka Medical Ltd Ultrasonic bone evaluation device

Also Published As

Publication number Publication date
JP3830650B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US4754760A (en) Ultrasonic pulse temperature determination method and apparatus
US5777230A (en) Delay line for an ultrasonic probe and method of using same
EP0123427B1 (en) Ultrasonic medium characterization
WO2007149918A2 (en) High-resolution ultrasound displacement measurement apparatus and method
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP4091302B2 (en) Ultrasonic transmitter / receiver by pulse compression
US6758815B2 (en) Apparatus and method for indicating mechanical stiffness properties of body tissue
JPH0713631B2 (en) Ultrasonic echographic inspection method and apparatus for medium
CN110716202B (en) Frequency modulation continuous wave sonar ranging method and device based on resampling
JP3830650B2 (en) Ultrasonic bone measuring device
CN110108797B (en) Medium interface ultrasonic detection method utilizing acoustic impedance change information
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
RU2673871C1 (en) Method of measuring sound surface reflection coefficient
Bucci et al. Numerical method for transit time measurement in ultrasonic sensor applications
JP4126817B2 (en) Film thickness measuring method and apparatus
CN111812622B (en) Ultrasonic probe bandwidth detection method and system based on lens echo
JPH10213573A (en) Estimating method for surface layer damage
RU2789812C1 (en) Echo sounder
US4475395A (en) Method for recognizing different frequency dependent scatter mechanisms in non-homogeneous tissues
JPH10253340A (en) Method for measuring scale thickness on inside surface of tube
JPH09318340A (en) Rod length measurement device
JPS62123354A (en) Method and device for scanning body by ultrasonic echography
JPH038510B2 (en)
JPH01216291A (en) Method and device for detecting object

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Effective date: 20051208

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060712

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees