JP3830650B2 - Ultrasonic bone measuring device - Google Patents

Ultrasonic bone measuring device Download PDF

Info

Publication number
JP3830650B2
JP3830650B2 JP02496098A JP2496098A JP3830650B2 JP 3830650 B2 JP3830650 B2 JP 3830650B2 JP 02496098 A JP02496098 A JP 02496098A JP 2496098 A JP2496098 A JP 2496098A JP 3830650 B2 JP3830650 B2 JP 3830650B2
Authority
JP
Japan
Prior art keywords
frequency
bone
frequency distribution
waveform
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02496098A
Other languages
Japanese (ja)
Other versions
JPH11221212A (en
Inventor
沢 義 人 東
垣 森 雄 西
喜 多 博 福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02496098A priority Critical patent/JP3830650B2/en
Publication of JPH11221212A publication Critical patent/JPH11221212A/en
Application granted granted Critical
Publication of JP3830650B2 publication Critical patent/JP3830650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を体内に入射させて、透過もしくは反射した信号から骨の性状に関連した指標を算出する超音波骨計測装置に関する。
【0002】
【従来の技術】
従来、超音波骨計測装置は、特開平6−327674号公報に記載されたものが知られている。図7は従来の超音波骨計測装置の構成を示しており、1および2は超音波と電気信号の相互変換を行う超音波変換手段、3は超音波変換手段を駆動する送受信回路、5は解析結果を表示する表示手段、6は計測の対象となる骨を含む被検体、7は超音波の伝搬を媒介する伝搬媒質、15は被検体6中を透過した受信信号から伝搬時間を計測する伝搬時間計測手段、16は減衰特性を計測する減衰計測手段である。
【0003】
以上のように、構成された超音波骨計測装置について、その動作を説明する。まず、送受信回路3は、超音波変換手段1を駆動して音波を放射させる。超音波変換手段1により放射された音波は、伝搬媒質7を伝搬し、被検体6に入射する。被検体6に入射した音波は、主に皮膚表面および骨表面において反射した成分と、主に皮下組織および骨を透過した成分に分けられ、それぞれ超音波変換手段1および2で受信される。前記超音波変換手段2により受信された透過成分は、送受信回路3にて増幅されてディジタルデータに変換された後、伝搬時間計測手段15および減衰計測手段16に送られる。伝搬時間計測手段15では、透過した信号の振幅が最大値をとる時刻を求め、その時間と超音波変換手段1の超音波放射の時刻との差として超音波の伝搬時間dtを求める。また、伝搬時間計測手段15は、音波が伝搬媒質7中を伝搬する時間を求めるために、被検体6の透過成分の計測とは別に、超音波変換器1および2から発せられた音波が被検体表面で反射し、超音波変換器1および2に再び戻る時間をそれぞれ計測する。被検体6および伝搬媒質7を透過する時間dtから伝搬媒質7を透過する時間を差し引くことにより、被検体6のみを透過する時間dtを求める。さらに、被検体6の厚さLを計測し、下記の式(1)のように被検体6の厚さLを伝搬時間dtで除算することで被検体6中の音波の伝搬速度vを算出する。
v=dt' /L ... (1)
【0004】
また減衰計測手段16では、参照媒質の透過成分の周波数分布を計測しておき、被検体6と参照媒質の透過成分の周波数分布から同一周波数における振幅の差を2点で求める。2点の周波数f1, f2、およびf1, f2における被検体6と参照媒質との透過成分の振幅の差をA1, A2とすると、下記の式(2)により周波数依存減衰の係数Aを得る。
A=(A1−A2)/(f1−f2) ...(2)
ただし、式(1)を計算するにあたっては、A1, A2はdB単位で求められているものとする。また、参照媒質には通常、水が用いられる。表示手段5は、求められた伝搬速度vおよび周波数依存減衰Aを骨の性状を表す指標として表示する。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の超音波骨計測装置においては、骨の特性を表す指標を算出するために利用する被検体透過信号には、骨内部を透過して送信側超音波変換器から受信側超音波変換器へ直接到達する以外の経路を伝搬した信号成分が含まれ、骨の情報のみを得ることが困難な場合があるという問題を有していた。
【0006】
本発明は、上記従来の問題を解決するもので、骨内部を透過して送信側超音波変換器から受信側超音波変換器へ直接到達する信号成分が大きく寄与する部分を利用することで、骨の情報が大きく寄与した指標を得ることができるという優れた超音波骨計測装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記問題を解決するために本発明は、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段と、波形抽出手段により抽出された受信信号の周波数分布を算出する周波数解析手段と、周波数分布の形状に基づいて周波数分布の領域を抽出する周波数領域抽出手段とを備え、受信信号から被検体中を最短経路で透過した成分が大きく寄与する部分の周波数分布を求めることができるようにしたものである。
【0008】
また、上記問題を解決するために本発明は、被検体および参照媒質の透過波形について、振幅の周波数分布で極大となる周波数を求め、両者間の周波数のずれにより骨の減衰特性の指標を算出する減衰算出手段を備え、周波数のずれから骨の減衰に関する指標を求めることができるようにしたものである。
【0009】
また、上記問題を解決するために本発明は、位相の周波数分布から群遅延量を求める群遅延量算出手段を備え、群遅延時間もしくは群速度を算出することにより骨の伝搬速度に関する指標を求めることができるようにしたものである。
【0010】
以上により、骨内部を透過して送信側超音波変換器から受信側超音波変換器へ直接到達する信号成分が大きく寄与する部分を利用して、骨の特性を表す指標を算出するために、骨の情報が大きく寄与した指標を得ることが容易であるという優れた超音波骨計測装置が得られる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、超音波と電気信号の変換を行なう超音波変換手段と、前記超音波変換手段の駆動を行なう超音波送受信手段と、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段と、前記波形抽出手段により抽出された受信信号の周波数分布を算出する周波数解析手段と、前記周波数分布の形状に基づいて前記周波数分布の領域を抽出する周波数領域抽出手段とを備え、前記波形抽出手段では、透過信号の最大ピーク直後に前記信号が零となる点を抽出の後端とすることを特徴とするものであり、受信信号から被検体中を最短経路で透過した成分が大きく寄与する部分を抽出することで、骨の成分が大きく寄与した減衰に関する指標を求めることができるという作用を有する。
【0014】
以下、本発明の実施の形態について、図1から図4を用いて説明する。
(実施の形態1)
図1は実施の形態1における超音波骨計測装置の構成を示しており、1および2は超音波と電気信号の相互変換を行う超音波変換手段、3は超音波変換手段を駆動する送受信回路、4は被検体内の骨性状の指標を算出する骨指標算出手段、5は解析結果を表示する表示手段、6は計測の対象となる骨を含む被検体、7は超音波の伝搬を媒介する伝搬媒質である。また骨指標算出手段4において、8は受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段、9は受信信号の周波数分布を算出する周波数解析手段、10は周波数分布の形状に基づいて周波数分布の領域を抽出する周波数領域抽出手段、11は受信信号の減衰に関する指標を算出する減衰指標算出手段である。超音波変換手段1および2は同一性能の物を用いるものとする。また、本実施の形態1においては超音波変換手段1により超音波の放射と被検体6からの反射波を受信するもとのし、超音波変換手段2は被検体6の透過波を受信するものとする。被検体6には、音波を透過させたときの伝搬経路において皮下組織の割合より骨組織の割合が大きい踵が用いられ、伝搬媒質7としては通常、水が用いられる。
【0015】
以上のように構成された超音波骨計測装置について、その動作を説明する。まず、送受信回路3は、超音波変換手段1を駆動して音波を放射させる。超音波変換手段1により放射された音波は伝搬媒質7を伝搬し、被検体6に入射する。被検体に入射した音波は、主に皮膚表面および骨表面において反射した成分と、主に皮下組織および骨を透過した成分に分けられ、それぞれ超音波変換手段1および2で受信される。超音波変換手段2により受信された透過波は、送受信回路3にて増幅されてディジタルデータに変換された後、骨指標算出手段4に送られる。骨指標算出手段4では、まず波形抽出手段8により到達時間の長い信号成分、例えば伝搬媒質7および被検体内部9における多重反射成分や、超音波変換器1と2の間を縦波として最短経路で伝搬しなかった成分を除去し、受信信号から被検体中を最短経路で透過した部分を抽出する。周波数解析手段9は、抽出された受信信号の周波数分布を算出する。前記周波数解析手段9により求められた周波数分布は、周波数領域抽出手段10により、振幅の周波数分布において極大となる周波数を含み、ノイズの影響が少ない周波数領域を抽出する。減衰指標算出手段11は、周波数領域抽出手段10により抽出された領域の周波数分布から骨性状の減衰に関する指標を算出する。表示手段5は、骨指標算出手段4により求められた指標を表示する。
【0016】
次に実施の形態1における波形抽出手段8の動作について、図2を用いてさらに詳細に説明する。図2は波形抽出の様子を表す図であり、図2(a)は受信波形、図2(b)は抽出された波形である。また、20は被検体を透過した受信信号、21は受信波形の最大振幅となる時間、22は最大振幅以後に現れる最初のゼロクロス点、23は受信信号の抽出する範囲である。
【0017】
超音波変換手段1から放射され被検体6に入射した音波のうち、被検体6内の骨を透過して直接超音波変換手段2に到達した成分は、最短経路で超音波変換器2に到達するために、早い時間に受信される。最短経路で透過した成分以外は骨の情報を得ることが困難であるため、超音波探触子2により受信された波形のうち、到達時間の長い信号成分、例えば他の経路を伝搬した成分もしくは多重反射成分を除去し、早い時間に到達した最短経路で透過した成分を抽出することで、骨の特性を解析する。しかしながら、最短経路で透過した成分はその他の成分と重なっていたり、測定環境あるいは被検体の個体差により信号の継続時間が異なるので、最短経路で透過した成分のみを全て抽出することは困難である。そこで、骨の特性を最も顕著に反映していると思われる領域を以下のようにして抽出し、指標を求める。
【0018】
まず、抽出する先頭の時刻は透過成分の先頭部分がノイズレベル以上となり、他の波形が存在しない限りできるだけ早い時刻とする。後端は、受信波形の最大振幅となる時間21を求め、その時間以降で最初の0レベルとの交点、すなわちゼロクロス点22を求め、抽出波形の後端とする。以上の範囲23に限定して受信信号から波形を抽出し、図2(b)のような波形を得る。水のみを透過した受信信号である参照信号に対しても同様な操作を行う。なお、以上の説明では矩形の窓によって信号を抽出したが、ハニングウィンドウに代表されるコサインウィンドウを用いてもよい。
【0019】
次に、実施の形態1における骨の性状の指標の算出について、図3と図4を用いてさらに詳細に説明する。図3は骨の周波数減衰による透過波形の違いを表す図である。図4は骨の減衰特性の指標を算出する様子を表す図であり、(a)は前記波形抽出手段8により抽出された被検体の透過波形、(b)は前記波形抽出手段8により抽出された参照波形、(c)は振幅の周波数分布、(d)は周波数領域抽出手段10により抽出された周波数分布である。また、401は抽出された透過波形の周波数分布、402は参照信号の周波数分布、403は抽出される周波数領域、404は測定系の成分を取り除いた周波数分布、405は周波数分布404を近似する直線である。
【0020】
最短経路で透過した成分は、骨以外にも皮下組織や伝搬媒質など、さまざまな媒質を透過しているため、骨以外の影響を受けたものとなる。ところで、周波数に対する減衰の変化すなわち周波数減衰は、指標の算出に使用する数百kHzから数MHzの超音波周波数では、水や皮膚の周波数依存減衰は骨に比べて小さく無視できるため、受信信号から周波数依存減衰に関連する指標を求めれば骨の性状を反映した指標とすることができる。周波数依存減衰の大きさが受信信号に顕著に表れるのは、受信信号の先頭の立ち上がり部分である。骨の減衰が周波数に比例して直線的に大きくなるとすると、図3のように周波数依存減衰が大きいほど先頭部分に低周波成分が表れてゼロクロスの間隔w1が大きくなり、小さいほど測定に使用した超音波の中心周波数に近づき間隔w1が小さくなる。最も簡単に指標を求めるには、ゼロクロスの間隔w1を測定すればよいが、立ち上がりが緩やかであることやノイズにより立ち上がり部分が埋もれてしまうことがあるために正確に求めることは困難である。そこで、透過成分の先頭付近の波形についてフーリエ変換により周波数分布を求め、中心周波数の変位から骨の性状に関する指標を算出する。
【0021】
まず、波形抽出手段8により抽出された波形を周波数解析手段5 はフーリエ変換し、周波数分布401を求める。周波数分布はdBを単位として求め、最大値を0dBとして規格化する。周波数領域抽出手段9は、周波数分布401と参照波形の周波数分布402の両方の極大値を含み、ノイズレベルにまで落ちていない領域、例えば周波数分布401および402の極大値から10dB下がった範囲として周波数領域406を抽出する。周波数領域406において、周波数分布401の極大値の周波数fc1と、参照波形の周波数分布402の極大値の周波数fc2を求める。極大値の周波数fc1とfc2の差(fc1−fc2)を求め、骨の性状の指標とする。
【0022】
また、骨の性状に関する別の指標としては以下のように求めることもできる。まず、周波数解析手段5では、波形抽出手段8により抽出された波形をフーリエ変換し、周波数分布401を求める。周波数分布はdBを単位として求め、最大値を0dBとして規格化する。周波数領域抽出手段9は、周波数分布401と参照波形の周波数分布402の両方がノイズレベルにまで落ちていない領域、例えば周波数分布401および402の極大値から10dB下がった範囲で重なる周波数領域403を抽出する。つぎに、抽出した周波数領域403において、周波数分布401から参照波形の周波数分布402を差し引くことで測定系の成分を取り除き、周波数分布404を求める。減衰指標算出手段11は。周波数分布404を近似する直線405を最小2乗法により求め、その直線の傾きを骨の性状の指標とする。このようにして求められた指標は、被検体の周波数依存減衰と厳密に一致するものではないが、骨の周波数依存減衰を反映したものとなる。なお参照波形としては、測定装置は同一かつ同条件で水のみを透過させて測定した受信信号を用いる。
【0023】
なお、以上の説明では、透過信号の抽出する方法として、透過信号の最大値の次に現れるゼロクロス点を抽出波形の後端の時刻としたが、透過信号の最大値を取る点とコサインウィンドウの最大値を取る点を一致させて、透過信号にコサインウィンドウを乗算することにより透過信号を抽出してもよい。
【0024】
また、以上の説明では、骨の性状の指標の算出に被検体の受信信号と参照信号との周波数分布の差を求め、その傾きを指標としたが、骨の減衰が周波数に比例して大きくなるとして、周波数分布401と402の極大値の周波数の差を最小とする周波数依存減衰の係数を最小2乗法により求めてもよい。
【0025】
以上のように、本発明の実施の形態1によれば、骨指標算出手段4に、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段8、受信信号の周波数分布を算出する周波数解析手段9、周波数分布の形状に基づいて周波数分布の領域を抽出する周波数領域抽出手段10、受信信号の減衰に関する指標を算出する減衰指標算出手段11とを設けることにより、受信信号から被検体中を最短経路で透過した成分が大きく寄与する部分を抽出することで、骨の成分が大きく寄与した減衰に関する指標を求めることができる。
【0026】
(実施の形態2)
図5は実施の形態2における超音波骨計測装置の構成を示しており、12は骨指標算出手段4にあって、受信信号の群遅延および速度を算出する群遅延量算出手段であり、その他の構成要素は実施の形態1と同じである。
【0027】
以上のように構成された超音波骨計測装置について、その動作を説明する。まず、送受信回路3は、超音波変換手段1を駆動して音波を放射させる。超音波変換手段1により放射された音波は、伝搬媒質7を伝搬し、被検体6に入射する。被検体6に入射した音波は、主に皮膚表面および骨表面において反射した成分と、主に皮下組織および骨を透過した成分に分けられ、それぞれ超音波変換手段1および2で受信される。超音波変換手段2により受信された透過波は、送受信回路3にて増幅されてディジタルデータに変換された後、骨指標算出手段4に送られる。骨指標算出手段4では、まず波形抽出手段8により実施の形態1と同様の方法により、受信信号から被検体中を最短経路で透過した部分を抽出する。周波数解析手段9は、抽出された受信信号の周波数分布を算出する。周波数解析手段9により求められた周波数分布は、周波数領域抽出手段10により、振幅の周波数分布において極大となる周波数を含み、ノイズの影響が少ない周波数領域を抽出する。群遅延量算出手段12は、周波数領域抽出手段10により抽出された領域の位相の周波数分布から群遅延量および速度を算出する。表示手段5は、骨指標算出手段4により求められた速度を表示する。なお、波形抽出手段8による波形抽出、周波数領域抽出手段9による周波数分布の抽出に関しては、実施の形態1と同様の方法により行われる。
【0028】
次に実施の形態2における群遅延量および速度算出の方法について、図6を用いてさらに詳細に説明する。図6は抽出された位相の周波数分布であり、図6(a)は波形抽出手段8により生成された被検体6の透過波形、(b)は波形抽出手段8により生成された参照波形、(c)は抽出された透過信号の位相変化の周波数分布、(d)は抽出された参照信号の位相変化の周波数分布、(e)は修正された透過信号の位相変化の周波数分布、(f)は修正された参照信号の位相変化の周波数分布、(g)は透過信号と参照信号の間の差の位相変化を表す周波数分布である。また、601は抽出および修正された位相の周波数分布、602は周波数分布601を近似する直線、603は被検体の透過波形から抽出した部分、604は参照媒質の透過波形から抽出した部分である。
【0029】
まず、実施の形態1と同様の方法を用いて波形抽出手段8により抽出された波形に、送信開始時刻から抽出波形の先頭までの長さの0を加え、送信開始時刻から抽出波形の後端の時刻までの長さの波形を生成する。波形抽出手段8により生成された被検体6 の透過波形および参照波形は、例えば、図6(a)および(b)のようになり、603、604で表されている領域が実際の測定波形から抽出した部分、それ以外は0とした部分である。その波形を周波数解析手段5はフーリエ変換し、位相の周波数分布を求める。周波数領域抽出手段10は,実施の形態1と同様の方法により、位相変化の周波数分布、図6(c)および(d)が求められる。位相変化の周波数分布は、piを円周率として、ラジアンを単位として−piからpiの範囲で求められる。群遅延量算出手段12は、この位相変化を−piもしくはpi付近における不連続な変化、例えば−piからpiに変化する点において直線的に変化するように修正し、修正した位相変化の周波数分布(e)および(f)を求める。次に透過信号と参照信号との位相変化の差を表す周波数分布601を求める。群遅延量算出手段12は、抽出された周波数領域内で位相は周波数に応じて線形的に変化するものとし、周波数分布601に対して最小2乗法で直線602を近似する。被検体6と伝搬媒質7との群遅延量の差をdtとすると、dtは近似した直線602の傾きから求めることができる。さらに被検体piの厚さLを別の方法、例えば定規による実測や超音波の被検体pi表面からの反射信号の遅延時間測定により求めることで、下記の式(3)により被検体6を透過する信号の群速度を求めることができる。
v=1/(dt/L+1/vw) ...(3)
(v:被検体piの群速度、dt:被検体piの伝搬媒質との群遅延時間の差、vw:伝搬媒質の速度、L:被検体piの厚さ)
【0030】
なお、以上の説明では、骨の性状の指標として群遅延量を透過信号と参照信号の差の位相変化から求めたが、透過信号の位相変化のみを直線で近似することにより骨の性状の指標を求めてもよい。
【0031】
なお、以上の説明では、群速度を求めるために被検体piの厚さを用いるものとしたが、超音波の骨表面からの反射信号の遅延時間測定により骨の厚さを求め、使用してもよい。
【0032】
以上のように、本発明の実施の形態2によれば、骨指標算出手段4に、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段8、受信信号の周波数分布を算出する周波数解析手段9、周波数分布の形状に基づいて周波数分布の領域を抽出する周波数領域抽出手段10、受信信号の群遅延および速度を算出する群遅延量算出手段12とを設けることにより、受信信号から被検体中を最短経路で透過した成分が大きく寄与する部分を抽出することで、骨の成分が大きく寄与した速度に関する指標を求めることができる。
【0033】
【発明の効果】
以上のように本発明は、超音波と電気信号の変換を行なう超音波変換手段と、前記超音波変換手段の駆動を行なう超音波送受信手段と、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段と、前記波形抽出手段により抽出された受信信号の周波数分布を算出する周波数解析手段と、前記周波数分布の形状に基づいて前記周波数分布の領域を抽出する周波数領域抽出手段とを備え、前記波形抽出手段では、透過信号の最大ピーク直後に前記信号が零となる点を抽出の後端とすることを特徴とするものであり、受信信号から被検体中を最短経路で透過した成分が大きく寄与する部分を抽出することで、骨の成分が大きく寄与した減衰に関する指標を求めることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における超音波骨計測装置の構成を表すブロック図
【図2】(a)は本発明の実施の形態1における受信波形を表す波形図
(b)は本発明の実施の形態1における抽出された波形を表す波形図
【図3】本発明の実施の形態1における骨の周波数減衰による透過波形の違いを表す波形図
【図4】(a)は本発明の実施の形態1における抽出された被検体の透過波形図
(b)は本発明の実施の形態1における抽出された参照波形図
(c)は本発明の実施の形態1における振幅の周波数分布図
(d)は本発明の実施の形態1における抽出された周波数分布図
【図5】本発明の実施の形態2における超音波骨計測装置の構成を表すブロック図
【図6】(a)は本発明の実施の形態2における波形抽出手段により生成された被検体の透過波形図
(b)は本発明の実施の形態2における波形抽出手段により生成された参照波形図
(c)は本発明の実施の形態2における抽出された透過信号の位相変化の周波数分布図
(d)は本発明の実施の形態2における抽出された参照信号の位相変化の周波数分布図
(e)は本発明の実施の形態2における修正された透過信号の位相変化の周波数分布図
(f)は本発明の実施の形態2における抽出された参照信号の位相変化の周波数分布図
(g)は本発明の実施の形態2における透過信号と参照信号の間の差の位相変化を表す周波数分布図
【図7】従来の超音波骨計測装置の構成を表すブロック図
【符号の説明】
1、2 超音波変換手段
3 送受信回路
4 骨指標算出手段
5 表示手段
6 被検体
7 伝搬媒質
8 波形抽出手段
9 周波数解析手段
10 周波数領域抽出手段
11 減衰指標算出手段
12 群遅延量算出手段
15 伝搬時間計測手段
16 減衰計測手段
21 受信波形の最大振幅となる時間
22 最大振幅以後に現れる最初のゼロクロス点
23 受信信号の抽出する範囲
401 抽出された透過波形の周波数分布
402 参照信号の周波数分布
403 抽出される周波数領域
404 測定系の成分を取り除いた周波数分布
405 周波数分布404を近似する直線
406 抽出される周波数領域
601 抽出および修正された位相の周波数分布
602 周波数分布601を近似する直線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic bone measuring apparatus that calculates an index related to bone properties from a transmitted or reflected signal by causing ultrasonic waves to enter the body.
[0002]
[Prior art]
Conventionally, an ultrasonic bone measuring apparatus described in Japanese Patent Laid-Open No. 6-327664 is known. FIG. 7 shows the configuration of a conventional ultrasonic bone measuring apparatus. Reference numerals 1 and 2 denote ultrasonic conversion means for performing mutual conversion between ultrasonic waves and electrical signals, 3 denotes a transmission / reception circuit for driving the ultrasonic conversion means, and 5 denotes Display means for displaying the analysis result, 6 is a subject including a bone to be measured, 7 is a propagation medium that mediates the propagation of ultrasonic waves, and 15 is a propagation time measured from a received signal transmitted through the subject 6. A propagation time measuring means 16 is an attenuation measuring means for measuring attenuation characteristics.
[0003]
The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3 drives the ultrasonic conversion means 1 to emit sound waves. The sound wave radiated by the ultrasonic wave conversion means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject 6 is mainly divided into a component reflected on the skin surface and the bone surface and a component transmitted mainly through the subcutaneous tissue and the bone, and is received by the ultrasonic conversion means 1 and 2, respectively. The transmission component received by the ultrasonic wave conversion means 2 is amplified by the transmission / reception circuit 3 and converted into digital data, and then sent to the propagation time measurement means 15 and the attenuation measurement means 16. The propagation time measuring means 15 obtains the time when the amplitude of the transmitted signal takes the maximum value, and obtains the ultrasonic propagation time dt as the difference between the time and the time of ultrasonic radiation of the ultrasonic conversion means 1. In addition, the propagation time measuring means 15 receives the sound waves emitted from the ultrasonic transducers 1 and 2 separately from the measurement of the transmission component of the subject 6 in order to obtain the time for the sound waves to propagate through the propagation medium 7. Times of reflection on the sample surface and returning to the ultrasonic transducers 1 and 2 are measured. By subtracting the time of transmission through the propagation medium 7 from the time dt of transmission through the subject 6 and the propagation medium 7, the time dt of transmission through only the subject 6 is obtained. Further, the thickness L of the subject 6 is measured, and the propagation velocity v of the sound wave in the subject 6 is calculated by dividing the thickness L of the subject 6 by the propagation time dt as shown in the following equation (1). To do.
v = dt ′ / L (1)
[0004]
The attenuation measuring means 16 measures the frequency distribution of the transmission component of the reference medium, and obtains the difference in amplitude at the same frequency from two points from the frequency distribution of the transmission component of the subject 6 and the reference medium. Assuming that the difference in amplitude of the transmitted component between the subject 6 and the reference medium at the two frequencies f1, f2 and f1, f2 is A1, A2, a frequency-dependent attenuation coefficient A is obtained by the following equation (2).
A = (A1-A2) / (f1-f2) (2)
However, in calculating equation (1), A1 and A2 are determined in dB units. Also, water is usually used as the reference medium. The display means 5 displays the obtained propagation velocity v and frequency-dependent attenuation A as indices indicating the bone properties.
[0005]
[Problems to be solved by the invention]
However, in the conventional ultrasonic bone measuring apparatus, the subject transmission signal used to calculate the index representing the bone characteristics is transmitted through the bone and transmitted from the transmission-side ultrasonic transducer to the reception-side ultrasonic wave. There is a problem in that it may be difficult to obtain only bone information because a signal component propagated through a path other than directly reaching the converter is included.
[0006]
The present invention solves the above-mentioned conventional problem, by utilizing a part that the signal component that directly penetrates the bone and reaches directly from the transmission-side ultrasonic transducer to the reception-side ultrasonic transducer greatly contributes, It is an object of the present invention to provide an excellent ultrasonic bone measuring apparatus capable of obtaining an index greatly contributed by bone information.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a waveform extracting means for extracting a portion that has passed through a subject through a shortest path from a received signal, and a frequency analyzing means for calculating a frequency distribution of the received signal extracted by the waveform extracting means. And frequency domain extraction means for extracting a frequency distribution area based on the shape of the frequency distribution, and the frequency distribution of the portion to which the component transmitted through the subject through the shortest path greatly contributes from the received signal can be obtained. It is what I did.
[0008]
In order to solve the above problems, the present invention obtains the maximum frequency in the amplitude frequency distribution for the transmission waveform of the subject and the reference medium, and calculates an index of the bone attenuation characteristic by the frequency deviation between the two. An attenuation calculation means is provided, and an index relating to bone attenuation can be obtained from a frequency shift.
[0009]
Further, in order to solve the above problem, the present invention includes a group delay amount calculation means for obtaining a group delay amount from the phase frequency distribution, and obtains an index relating to the bone propagation velocity by calculating the group delay time or the group velocity. It is something that can be done.
[0010]
As described above, in order to calculate an index that represents the characteristics of the bone, using the part that the signal component that directly penetrates the bone and directly reaches the receiving-side ultrasonic transducer from the transmitting-side ultrasonic transducer contributes greatly. It is possible to obtain an excellent ultrasonic bone measuring device that it is easy to obtain an index greatly contributed by bone information.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, the ultrasonic transducer means for converting ultrasonic electrical signals, the ultrasonic transmitting and receiving means for driving the ultrasonic transducer means, the subject of the received signal shortest extracting a waveform extracting means for extracting a transmitted portion in the path, a frequency analysis means for calculating a frequency distribution of the received signal extracted by the waveform extracting means, the area of the frequency distribution based on the shape of the frequency distribution A frequency domain extracting means , wherein the waveform extracting means is characterized in that a point at which the signal becomes zero immediately after the maximum peak of the transmission signal is set as a rear end of the extraction , By extracting the portion to which the component transmitted through the shortest path greatly contributes , it is possible to obtain an index relating to attenuation to which the bone component has greatly contributed .
[0014]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 shows the configuration of an ultrasonic bone measuring apparatus according to Embodiment 1, wherein 1 and 2 are ultrasonic conversion means for performing mutual conversion between ultrasonic waves and electrical signals, and 3 is a transmission / reception circuit for driving the ultrasonic conversion means. 4 is a bone index calculating means for calculating a bone property index in the subject, 5 is a display means for displaying the analysis result, 6 is a subject including a bone to be measured, and 7 is a medium for propagation of ultrasonic waves. It is a propagation medium. In the bone index calculating means 4, 8 is a waveform extracting means for extracting a portion that has passed through the subject through the shortest path from the received signal, 9 is a frequency analyzing means for calculating the frequency distribution of the received signal, and 10 is the shape of the frequency distribution. The frequency domain extracting means 11 extracts a frequency distribution area based on the above, and 11 is an attenuation index calculating means for calculating an index relating to attenuation of the received signal. The ultrasonic conversion means 1 and 2 shall use the thing of the same performance. In the first embodiment, the ultrasonic wave conversion means 1 receives the ultrasonic wave radiation and the reflected wave from the subject 6, and the ultrasonic wave conversion means 2 receives the transmitted wave of the subject 6. Shall. For the subject 6, a heel having a bone tissue ratio larger than a subcutaneous tissue ratio in the propagation path when sound waves are transmitted is used, and water is usually used as the propagation medium 7.
[0015]
The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3 drives the ultrasonic conversion means 1 to emit sound waves. The sound wave radiated by the ultrasonic wave conversion means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject is divided into a component reflected mainly on the skin surface and the bone surface and a component transmitted mainly through the subcutaneous tissue and the bone, and is received by the ultrasonic conversion means 1 and 2, respectively. The transmitted wave received by the ultrasonic wave conversion means 2 is amplified by the transmission / reception circuit 3 and converted into digital data, and then sent to the bone index calculation means 4. In the bone index calculating means 4, first, a signal component having a long arrival time by the waveform extracting means 8, for example, a multiple reflection component in the propagation medium 7 and the inside of the subject 9, or a shortest path between the ultrasonic transducers 1 and 2 as a longitudinal wave. The component that has not propagated in step 1 is removed, and the portion of the received signal that has passed through the subject through the shortest path is extracted. The frequency analysis means 9 calculates the frequency distribution of the extracted received signal. The frequency distribution obtained by the frequency analyzing unit 9 includes a frequency that is maximized in the frequency distribution of the amplitude by the frequency region extracting unit 10 and extracts a frequency region that is less affected by noise. The attenuation index calculation unit 11 calculates an index related to the bone property attenuation from the frequency distribution of the region extracted by the frequency region extraction unit 10. The display means 5 displays the index obtained by the bone index calculation means 4.
[0016]
Next, the operation of the waveform extracting means 8 in the first embodiment will be described in more detail with reference to FIG. 2A and 2B are diagrams showing how waveforms are extracted. FIG. 2A shows a received waveform, and FIG. 2B shows an extracted waveform. Further, 20 is a received signal that has passed through the subject, 21 is the time when the received waveform has the maximum amplitude, 22 is the first zero cross point that appears after the maximum amplitude, and 23 is the range from which the received signal is extracted.
[0017]
Among the sound waves radiated from the ultrasound conversion means 1 and incident on the subject 6, the components that have passed through the bone in the subject 6 and reached the ultrasound conversion means 2 directly reach the ultrasound transducer 2 through the shortest path. To be received at an early time. Since it is difficult to obtain bone information other than the component transmitted through the shortest path, a signal component having a long arrival time, such as a component propagated through another path, among the waveforms received by the ultrasonic probe 2 or The characteristic of bone is analyzed by removing the multiple reflection component and extracting the component that has passed through the shortest path that arrived early. However, it is difficult to extract all the components that have been transmitted through the shortest path because the components that have been transmitted through the shortest path overlap with other components or the duration of the signal varies depending on the measurement environment or individual differences in the subject. . Therefore, an area that seems to reflect the characteristics of the bone most significantly is extracted as follows to obtain an index.
[0018]
First, the leading time to be extracted is set to the earliest possible time as long as the leading part of the transmission component is equal to or higher than the noise level and no other waveform exists. The rear end obtains a time 21 at which the maximum amplitude of the received waveform is obtained, obtains an intersection with the first zero level after that time, that is, a zero cross point 22, and serves as the rear end of the extracted waveform. The waveform is extracted from the received signal within the above range 23 to obtain a waveform as shown in FIG. The same operation is performed on a reference signal that is a received signal that has passed through only water. In the above description, a signal is extracted by a rectangular window, but a cosine window represented by a Hanning window may be used.
[0019]
Next, calculation of the bone property index in the first embodiment will be described in more detail with reference to FIGS. FIG. 3 is a diagram showing a difference in transmission waveform due to bone frequency attenuation. FIGS. 4A and 4B are diagrams showing a state in which an index of bone attenuation characteristics is calculated. FIG. 4A shows a transmission waveform of the subject extracted by the waveform extracting unit 8, and FIG. (C) is the frequency distribution of the amplitude, and (d) is the frequency distribution extracted by the frequency domain extracting means 10. In addition, 401 is the frequency distribution of the extracted transmission waveform, 402 is the frequency distribution of the reference signal, 403 is the extracted frequency region, 404 is the frequency distribution from which the components of the measurement system are removed, and 405 is a straight line approximating the frequency distribution 404. It is.
[0020]
The component transmitted through the shortest path is transmitted through various media such as the subcutaneous tissue and the propagation medium in addition to the bone, and thus is affected by the effects other than the bone. By the way, the change in attenuation with respect to frequency, that is, frequency attenuation, is less than the frequency dependent attenuation of water and skin compared with bone at the ultrasonic frequency of several hundred kHz to several MHz used for calculating the index. If an index related to frequency-dependent attenuation is obtained, the index can reflect the bone properties. The magnitude of the frequency-dependent attenuation is noticeable in the received signal at the leading edge of the received signal. Assuming that the bone attenuation increases linearly in proportion to the frequency, as the frequency-dependent attenuation increases as shown in FIG. 3, the low-frequency component appears at the leading portion and the zero cross interval w1 increases, and the smaller the frequency, the more used the measurement. The interval w1 decreases as it approaches the center frequency of the ultrasonic wave. In order to obtain the index in the simplest manner, the zero-cross interval w1 may be measured. However, it is difficult to obtain the index accurately because the rise may be slow or the rise may be buried by noise. Therefore, a frequency distribution is obtained by Fourier transform for the waveform near the head of the transmission component, and an index relating to the bone property is calculated from the displacement of the center frequency.
[0021]
First, the frequency analysis means 5 performs a Fourier transform on the waveform extracted by the waveform extraction means 8 to obtain a frequency distribution 401. The frequency distribution is obtained with dB as a unit, and is normalized with the maximum value being 0 dB. The frequency domain extracting means 9 includes the maximum values of both the frequency distribution 401 and the frequency distribution 402 of the reference waveform, and the frequency does not fall to the noise level, for example, a range that is 10 dB lower than the maximum values of the frequency distributions 401 and 402. A region 406 is extracted. In the frequency region 406, a maximum value frequency fc1 of the frequency distribution 401 and a maximum value frequency fc2 of the frequency distribution 402 of the reference waveform are obtained. The difference (fc1-fc2) between the maximum frequencies fc1 and fc2 is obtained and used as an index of bone properties.
[0022]
Further, as another index relating to the properties of bone, it can also be obtained as follows. First, the frequency analysis unit 5 performs Fourier transform on the waveform extracted by the waveform extraction unit 8 to obtain a frequency distribution 401. The frequency distribution is obtained with dB as a unit, and is normalized with the maximum value being 0 dB. The frequency domain extracting unit 9 extracts a frequency domain 403 that overlaps in a range where both the frequency distribution 401 and the frequency distribution 402 of the reference waveform do not fall to the noise level, for example, a range 10 dB lower than the maximum value of the frequency distributions 401 and 402. To do. Next, in the extracted frequency region 403, the frequency distribution 404 is obtained by subtracting the frequency distribution 402 of the reference waveform from the frequency distribution 401 to remove the components of the measurement system. The attenuation index calculation means 11 is. A straight line 405 that approximates the frequency distribution 404 is obtained by the method of least squares, and the slope of the straight line is used as an index of bone properties. The index obtained in this way does not exactly match the frequency-dependent attenuation of the subject, but reflects the frequency-dependent attenuation of the bone. As a reference waveform, the measurement apparatus uses a reception signal measured by transmitting only water under the same and the same conditions.
[0023]
In the above description, as a method of extracting the transmission signal, the zero cross point that appears next to the maximum value of the transmission signal is set as the time at the rear end of the extraction waveform. The transmission signal may be extracted by matching the points having the maximum values and multiplying the transmission signal by a cosine window.
[0024]
In the above description, the difference in frequency distribution between the received signal of the subject and the reference signal is obtained in calculating the bone property index, and the gradient is used as an index. However, the bone attenuation increases in proportion to the frequency. As a result, a frequency-dependent attenuation coefficient that minimizes the frequency difference between the maximum values of the frequency distributions 401 and 402 may be obtained by the method of least squares.
[0025]
As described above, according to the first embodiment of the present invention, the bone index calculating unit 4 extracts the waveform extraction unit 8 that extracts the portion that has passed through the subject from the received signal through the shortest path, and the frequency distribution of the received signal. By providing a frequency analyzing means 9 for calculating, a frequency domain extracting means 10 for extracting a frequency distribution area based on the shape of the frequency distribution, and an attenuation index calculating means 11 for calculating an index relating to the attenuation of the received signal, the received signal can be obtained. By extracting a portion where the component transmitted through the subject through the shortest path greatly contributes, it is possible to obtain an index relating to attenuation greatly contributed by the bone component.
[0026]
(Embodiment 2)
FIG. 5 shows the configuration of the ultrasonic bone measuring apparatus according to the second embodiment. Reference numeral 12 denotes a bone index calculating unit 4 which is a group delay amount calculating unit for calculating a group delay and a speed of a received signal. These components are the same as those in the first embodiment.
[0027]
The operation of the ultrasonic bone measuring apparatus configured as described above will be described. First, the transmission / reception circuit 3 drives the ultrasonic conversion means 1 to emit sound waves. The sound wave radiated by the ultrasonic wave conversion means 1 propagates through the propagation medium 7 and enters the subject 6. The sound wave incident on the subject 6 is mainly divided into a component reflected on the skin surface and the bone surface and a component transmitted mainly through the subcutaneous tissue and the bone, and is received by the ultrasonic conversion means 1 and 2, respectively. The transmitted wave received by the ultrasonic wave conversion means 2 is amplified by the transmission / reception circuit 3 and converted into digital data, and then sent to the bone index calculation means 4. In the bone index calculation means 4, first, the waveform extraction means 8 extracts the portion that has passed through the subject through the shortest path from the received signal by the same method as in the first embodiment. The frequency analysis means 9 calculates the frequency distribution of the extracted received signal. The frequency distribution obtained by the frequency analysis means 9 includes a frequency that has a maximum in the frequency distribution of amplitude by the frequency domain extraction means 10 and extracts a frequency domain that is less affected by noise. The group delay amount calculation unit 12 calculates the group delay amount and the speed from the frequency distribution of the phase of the region extracted by the frequency region extraction unit 10. The display means 5 displays the speed obtained by the bone index calculation means 4. The waveform extraction by the waveform extraction unit 8 and the frequency distribution extraction by the frequency domain extraction unit 9 are performed by the same method as in the first embodiment.
[0028]
Next, the group delay amount and speed calculation method according to the second embodiment will be described in more detail with reference to FIG. 6 shows the frequency distribution of the extracted phase, FIG. 6A shows the transmission waveform of the subject 6 generated by the waveform extraction means 8, FIG. 6B shows the reference waveform generated by the waveform extraction means 8, c) is the frequency distribution of the phase change of the extracted transmission signal, (d) is the frequency distribution of the phase change of the extracted reference signal, (e) is the frequency distribution of the phase change of the corrected transmission signal, and (f). Is the frequency distribution of the phase change of the corrected reference signal, and (g) is the frequency distribution representing the phase change of the difference between the transmitted signal and the reference signal. Reference numeral 601 denotes a frequency distribution of the extracted and corrected phase, 602 denotes a straight line approximating the frequency distribution 601, 603 denotes a portion extracted from the transmission waveform of the subject, and 604 denotes a portion extracted from the transmission waveform of the reference medium.
[0029]
First, 0 of the length from the transmission start time to the beginning of the extracted waveform is added to the waveform extracted by the waveform extraction means 8 using the same method as in the first embodiment, and the trailing end of the extracted waveform from the transmission start time. A waveform having a length up to the time is generated. The transmission waveform and the reference waveform of the subject 6 generated by the waveform extracting means 8 are as shown in FIGS. 6A and 6B, for example, and the regions represented by 603 and 604 are obtained from the actual measurement waveform. The extracted part and the other parts are set to 0. The frequency analysis means 5 performs a Fourier transform on the waveform to obtain a frequency distribution of the phase. The frequency domain extraction means 10 obtains the frequency distribution of phase change, FIGS. 6C and 6D, by the same method as in the first embodiment. The frequency distribution of the phase change is obtained in the range of -pi to pi with pi as the circumference and radians as the unit. The group delay amount calculating means 12 corrects this phase change so as to change linearly at a point where -pi or pi is discontinuous, for example, from -pi to pi, and the frequency distribution of the corrected phase change (E) and (f) are obtained. Next, a frequency distribution 601 representing the difference in phase change between the transmission signal and the reference signal is obtained. The group delay amount calculation means 12 assumes that the phase linearly changes according to the frequency within the extracted frequency domain, and approximates the straight line 602 to the frequency distribution 601 by the least square method. If the difference in the group delay between the subject 6 and the propagation medium 7 is dt, dt can be obtained from the slope of the approximate straight line 602. Further, the thickness L of the subject pi is obtained by another method, for example, measurement by a ruler or measurement of the delay time of the reflected signal of the ultrasonic wave from the surface of the subject pi, so that the subject 6 is transmitted by the following equation (3). The group velocity of the signal to be obtained can be obtained.
v = 1 / (dt / L + 1 / vw) (3)
(V: group velocity of subject pi, dt: difference in group delay time of subject pi from propagation medium, vw: velocity of propagation medium, L: thickness of subject pi)
[0030]
In the above description, the group delay amount is obtained from the phase change of the difference between the transmission signal and the reference signal as an index of the bone property. However, the bone property index is obtained by approximating only the phase change of the transmission signal with a straight line. You may ask for.
[0031]
In the above description, the thickness of the subject pi is used to obtain the group velocity. However, the bone thickness is obtained by measuring the delay time of the reflected signal from the bone surface of the ultrasonic wave and used. Also good.
[0032]
As described above, according to the second embodiment of the present invention, the bone index calculating unit 4 extracts the waveform extracting unit 8 that extracts the portion that has passed through the subject from the received signal through the shortest path, and the frequency distribution of the received signal. By providing the frequency analysis means 9 for calculating, the frequency domain extracting means 10 for extracting the frequency distribution area based on the shape of the frequency distribution, and the group delay amount calculating means 12 for calculating the group delay and speed of the received signal, reception is achieved. By extracting a portion where the component transmitted through the subject through the shortest path greatly contributes from the signal, it is possible to obtain an index related to the velocity greatly contributed by the bone component.
[0033]
【The invention's effect】
As described above, according to the present invention, ultrasonic conversion means for converting ultrasonic waves and electrical signals, ultrasonic transmission / reception means for driving the ultrasonic conversion means, and transmission from the received signal through the subject through the shortest path. a waveform extracting means for extracting a portion, and frequency analysis means for calculating a frequency distribution of the received signal extracted by the waveform extraction means, the frequency region extracting means for extracting a region of the frequency distribution based on the shape of the frequency distribution The waveform extraction means is characterized in that a point at which the signal becomes zero immediately after the maximum peak of the transmission signal is set as a rear end of the extraction, and from the received signal through the subject through the shortest path. By extracting a portion to which the transmitted component greatly contributes , an effect of obtaining an index relating to attenuation greatly contributed by the bone component can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an ultrasonic bone measuring apparatus according to Embodiment 1 of the present invention. FIG. 2 (a) is a waveform diagram showing a received waveform according to Embodiment 1 of the present invention. FIG. 3 is a waveform diagram showing the extracted waveform in the first embodiment of the invention. FIG. 3 is a waveform diagram showing a difference in transmission waveform due to bone frequency attenuation in the first embodiment of the invention. The transmission waveform diagram (b) of the extracted subject in the first embodiment is the reference waveform diagram (c) extracted in the first embodiment of the present invention, and the frequency distribution diagram of the amplitude in the first embodiment of the present invention FIG. 5D is a frequency distribution diagram extracted in the first embodiment of the present invention. FIG. 5 is a block diagram showing the configuration of the ultrasonic bone measuring apparatus in the second embodiment of the present invention. Generated by the waveform extracting means in the second embodiment of the invention. The transmission waveform diagram (b) of the subject is the reference waveform diagram (c) generated by the waveform extracting means in the second embodiment of the present invention, and the phase change frequency of the extracted transmission signal in the second embodiment of the present invention. The distribution diagram (d) is the frequency distribution diagram of the phase change of the extracted reference signal in the second embodiment of the present invention, and (e) is the frequency distribution diagram of the phase change of the corrected transmission signal in the second embodiment of the present invention. (F) is a frequency distribution diagram of the phase change of the extracted reference signal in Embodiment 2 of the present invention, and (g) represents the phase change of the difference between the transmitted signal and the reference signal in Embodiment 2 of the present invention. Frequency distribution diagram [Fig. 7] Block diagram showing the configuration of a conventional ultrasonic bone measuring device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Ultrasonic conversion means 3 Transmission / reception circuit 4 Bone index calculation means 5 Display means 6 Subject 7 Propagation medium 8 Waveform extraction means 9 Frequency analysis means 10 Frequency domain extraction means 11 Attenuation index calculation means 12 Group delay amount calculation means 15 Propagation Time measurement means 16 Attenuation measurement means 21 Time 22 that is the maximum amplitude of the received waveform First zero cross point 23 that appears after the maximum amplitude Range that the received signal is extracted 401 Frequency distribution of the extracted transmitted waveform 402 Frequency distribution 403 of the reference signal Extraction The frequency distribution 404 obtained by removing the components of the measurement system 405 The straight line 406 approximating the frequency distribution 404 The extracted frequency domain 601 The frequency distribution 602 of the extracted and corrected phase The straight line approximating the frequency distribution 601

Claims (1)

超音波と電気信号の変換を行なう超音波変換手段と、前記超音波変換手段の駆動を行なう超音波送受信手段と、受信信号から被検体中を最短経路で透過した部分を抽出する波形抽出手段と、前記波形抽出手段により抽出された受信信号の周波数分布を算出する周波数解析手段と、前記周波数分布の形状に基づいて前記周波数分布の領域を抽出する周波数領域抽出手段とを備え、前記波形抽出手段では、透過信号の最大ピーク直後に前記信号が零となる点を抽出の後端とすることを特徴とする超音波骨計測装置。  Ultrasonic wave conversion means for converting ultrasonic waves and electrical signals; ultrasonic wave transmission / reception means for driving the ultrasonic wave conversion means; and waveform extraction means for extracting a portion that has passed through the subject through the shortest path from the received signal; A frequency analysis unit that calculates a frequency distribution of the received signal extracted by the waveform extraction unit; and a frequency domain extraction unit that extracts a region of the frequency distribution based on a shape of the frequency distribution, the waveform extraction unit Then, an ultrasonic bone measuring apparatus characterized in that a point at which the signal becomes zero immediately after the maximum peak of the transmission signal is set as a rear end of the extraction.
JP02496098A 1998-02-05 1998-02-05 Ultrasonic bone measuring device Expired - Fee Related JP3830650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02496098A JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02496098A JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Publications (2)

Publication Number Publication Date
JPH11221212A JPH11221212A (en) 1999-08-17
JP3830650B2 true JP3830650B2 (en) 2006-10-04

Family

ID=12152553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02496098A Expired - Fee Related JP3830650B2 (en) 1998-02-05 1998-02-05 Ultrasonic bone measuring device

Country Status (1)

Country Link
JP (1) JP3830650B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186620A (en) * 2000-12-21 2002-07-02 Aloka Co Ltd Ultrasonic bone assessment device
US6773402B2 (en) * 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
FR2946753B1 (en) * 2009-06-11 2011-07-22 Centre Nat Rech Scient ULTRASONIC METHOD AND DEVICE FOR CHARACTERIZING A MEDIUM
JP5620720B2 (en) * 2010-06-11 2014-11-05 日立アロカメディカル株式会社 Ultrasound bone evaluation device

Also Published As

Publication number Publication date
JPH11221212A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US4452082A (en) Ultrasonic measuring method
EP0123427B1 (en) Ultrasonic medium characterization
WO2007149918A2 (en) High-resolution ultrasound displacement measurement apparatus and method
JP2000508774A (en) Characterizing objects with ultrasound
JP4091302B2 (en) Ultrasonic transmitter / receiver by pulse compression
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
KR101646623B1 (en) Estimation method and system for shear wave speed and lesion diagnosis method and system in the tissue using the same
US6758815B2 (en) Apparatus and method for indicating mechanical stiffness properties of body tissue
CN110716202B (en) Frequency modulation continuous wave sonar ranging method and device based on resampling
JP3830650B2 (en) Ultrasonic bone measuring device
Parker et al. Comparison of techniques for in vivo attenuation measurements
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
Jang et al. Ultrasound attenuation estimation in soft tissue using the entropy difference of pulsed echoes between two adjacent envelope segments
JP5801956B2 (en) Propagation velocity measuring device, propagation velocity measuring program, and propagation velocity measuring method
CN110108797B (en) Medium interface ultrasonic detection method utilizing acoustic impedance change information
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
CN110824017A (en) Soft material acoustic parameter measuring method
CN111812622B (en) Ultrasonic probe bandwidth detection method and system based on lens echo
JPH10213573A (en) Estimating method for surface layer damage
CN110988148B (en) Measuring system and measuring method for detecting compactness by utilizing ultrasonic waves
Kanzler et al. Improved scatterer size estimation using backscatter coefficient measurements with coded excitation and pulse compression
JP2001066130A (en) Film thickness measuring method and its device
JP2818615B2 (en) Ultrasonic measuring device
JP2024039091A (en) Acoustic characteristics measurement method and device
KR20240028511A (en) Ultrasound systems and methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees