JPH1121926A - Structure for storing high-pressure fluid and constructing method thereof - Google Patents

Structure for storing high-pressure fluid and constructing method thereof

Info

Publication number
JPH1121926A
JPH1121926A JP9182367A JP18236797A JPH1121926A JP H1121926 A JPH1121926 A JP H1121926A JP 9182367 A JP9182367 A JP 9182367A JP 18236797 A JP18236797 A JP 18236797A JP H1121926 A JPH1121926 A JP H1121926A
Authority
JP
Japan
Prior art keywords
pressure fluid
container
heavy
pressure
muddy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182367A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yoichi
英俊 世一
Masaki Tojo
正樹 東條
Yukio Yamashita
幸夫 山下
Masao Hayashi
正夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TONE CHIKA GIJUTSU KK
Tokai University
Obayashi Corp
Engineering Advancement Association of Japan
Mitsubishi Kakoki Kaisha Ltd
Toray Engineering Co Ltd
Sumitomo Construction Co Ltd
Hazama Ando Corp
Chuo Kaihatsu Corp
Original Assignee
TONE CHIKA GIJUTSU KK
Tokai University
Hazama Gumi Ltd
Obayashi Corp
Engineering Advancement Association of Japan
Mitsubishi Kakoki Kaisha Ltd
Toyo Construction Co Ltd
Sumitomo Construction Co Ltd
Chuo Kaihatsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONE CHIKA GIJUTSU KK, Tokai University, Hazama Gumi Ltd, Obayashi Corp, Engineering Advancement Association of Japan, Mitsubishi Kakoki Kaisha Ltd, Toyo Construction Co Ltd, Sumitomo Construction Co Ltd, Chuo Kaihatsu Corp filed Critical TONE CHIKA GIJUTSU KK
Priority to JP9182367A priority Critical patent/JPH1121926A/en
Publication of JPH1121926A publication Critical patent/JPH1121926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure, cost of which can be reduced largely and which is used for storing a high-pressure fluid, and a constructing method thereof. SOLUTION: A pressure-resistant vessel 10, in which compressed air is stored and which is made of reinforced concrete, and a heavy slurry vessel 20, in which heavy slurry is stored on an outer circumference, are constructed on an existing submerged shaft 1 by a division execution and cast-in-place concret system, and immersed. Heavy slurry applies prestress onto the outer circumference of the pressure-resistant vessel 10, and the compressive stress of the vessel 10 is reinforced. Heavy slurry is supplied and discharged through a heavy slurry pipe 21 reaching the upper section of a ground, and the usage of heavy slurry is minimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は高圧流体貯蔵用構造
物及び高圧流体貯蔵用構造物の築造方法に関し、特に水
没立坑に沈設する主としてCAES(Compressed Air E
nergy Storage)タンク等の高圧流体貯蔵用容器を含む
構造物及びかような構造物を築造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for storing a high-pressure fluid and a method for constructing the structure for storing a high-pressure fluid.
The present invention relates to a structure including a high-pressure fluid storage container such as a tank and a method for constructing such a structure.

【0002】[0002]

【従来の技術】現在、夜間電力の有効な利用形態として
CAESシステムが提案されており、このシステムは、
比較的安価な夜間電力によってコンプレッサを作動させ
て耐圧容器(CAESタンク)に圧縮空気を貯蔵すると
共に、この圧縮空気を昼間に放出してタービンを回すこ
とにより、昼間に高騰する電力需要を補う等するもので
ある。
2. Description of the Related Art At present, a CAES system has been proposed as an effective use form of nighttime electric power.
The compressor is operated by relatively inexpensive nighttime power to store compressed air in a pressure-resistant container (CAES tank), and the compressed air is discharged during the day to rotate the turbine, thereby compensating for the rising power demand during the day. Is what you do.

【0003】また、コンクリートは経済性及び施工性等
に優れる構造材料であるにもかかわらず、引張強度が小
さいため、内圧を受ける上記耐圧容器の材料としては、
たとえ鉄筋を入れても不適当とされていたが、鉄筋コン
クリート製の耐圧容器の周囲に比重2.0程度の重泥水
を貯留して、耐圧容器に外側から重泥水圧によるプレス
トレスを導入すると、耐圧容器の周方向応力が圧縮応力
状態下におかれ、これによって鉄筋コンクリート製容器
がCAESタンクとして安全に使用可能となることが確
認・実証され、以上の技術が特開平7−189273号
公報に開示されている。
[0003] In addition, concrete is a structural material excellent in economy and workability, but has low tensile strength.
Even if a reinforcing bar was inserted, it was considered unsuitable, but if heavy muddy water with a specific gravity of about 2.0 was stored around the reinforced concrete pressure vessel and prestress was introduced into the pressure vessel from outside by heavy mud pressure, It has been confirmed and verified that the circumferential stress of the pressure-resistant container is subjected to a compressive stress state, thereby enabling the reinforced concrete container to be safely used as a CAES tank. The above technology is disclosed in Japanese Patent Application Laid-Open No. 7-189273. Have been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、CAE
Sタンクを設置するための立坑等を掘削するには甚だコ
ストが掛かり、また、立坑等に重泥水を満たすとなる
と、高価な重泥水を必要以上に用いねばならず、重泥水
の坑壁地山への逸泥等を防止するための対策を講じる必
要がある等、コストが更に高騰する等の問題が未解決で
ある。
SUMMARY OF THE INVENTION However, CAE
Excavating shafts and the like for installing S tanks is extremely costly, and when the shafts are filled with heavy muddy water, expensive heavy muddy water must be used more than necessary. Problems such as the need to take measures to prevent sludge loss to the mountain and the further rise in cost remain unsolved.

【0005】従って、本発明の目的は主としてコストを
大幅に低減可能な高圧流体貯蔵用構造物及び高圧流体貯
蔵用構造物の築造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-pressure fluid storage structure and a method of constructing the high-pressure fluid storage structure which can largely reduce the cost.

【0006】[0006]

【課題を解決するための手段】本発明に係る高圧流体貯
蔵用構造物は、水没立坑に設置する高圧流体を貯蔵する
ための構造物であって、前記高圧流体を収容させる鉄筋
コンクリート製の高圧流体用容器と、この高圧流体用容
器の外周にプレストレスを付与して当該高圧流体用容器
の圧縮応力を補強する重泥水を収容させる重泥水用容器
とを備えることを特徴とする。
A high-pressure fluid storage structure according to the present invention is a structure for storing a high-pressure fluid installed in a submerged shaft, and comprises a reinforced concrete high-pressure fluid for containing the high-pressure fluid. And a heavy muddy water container for storing heavy muddy water that applies a prestress to the outer periphery of the high pressure fluid container to reinforce the compressive stress of the high pressure fluid container.

【0007】ここで「水没立坑」には、既存のものと新
たに掘削したものとを含むが、前者、具体的には、閉山
した炭鉱等に存置され、坑壁地山の崩壊防止のために水
が満たされたものを利用することが望ましく、この場
合、新たに立坑を設ける場合に比べ、大幅に施工コスト
等を削減することができる。なお、前後者いずれの立孔
であっても、外水圧によって坑壁崩壊を防止する支保工
が不要になる等、経済的な施工となる。
Here, the "submerged shaft" includes an existing one and a newly excavated one, but the former, specifically, is located in a closed coal mine or the like to prevent the collapse of the pit wall ground. It is desirable to use the one filled with water, and in this case, the construction cost and the like can be greatly reduced as compared with the case where a shaft is newly provided. It should be noted that, regardless of whether it is a vertical hole or a vertical hole, it is economical to construct such that a support work for preventing collapse of a pit wall by external water pressure becomes unnecessary.

【0008】高圧流体としては、圧縮空気の他、LP
G、LNG等が含まれる。
As the high-pressure fluid, in addition to compressed air, LP
G, LNG, and the like.

【0009】重泥水は天然粘土及びバライト(天然重晶
石の粉末;比重4.2〜4.4)を主成分として、これ
に増粘剤及び分散剤等を添加して、比重2.0程度にな
るよう配分したものであり、材料分離が少なく、流動体
(液体)としての長期安定性に優れ、鉄板への腐食の影
響が少ない等の特徴がある。かような重泥水によって高
圧流体用容器の外周へプレストレスを導入することによ
り、高圧流体用容器を外圧の卓越した圧縮応力状態下に
おいて、コンクリート構造体としての高圧流体用容器を
安全に設計することができる。
The heavy muddy water is composed mainly of natural clay and barite (natural barite powder; specific gravity of 4.2 to 4.4), and a thickener and a dispersant are added thereto to obtain a specific gravity of 2.0. It is characterized by low material separation, excellent long-term stability as a fluid (liquid), and little influence of corrosion on the iron plate. By introducing prestress to the outer periphery of the high-pressure fluid container with such heavy muddy water, it is possible to safely design the high-pressure fluid container as a concrete structure under the condition of excellent compressive stress of external pressure. it can.

【0010】また、重泥水を専用の容器に収容すること
により、重泥水の増減が容易となって、その使用量を必
要最低限に抑えるこができ、また、立孔孔壁に逸泥防止
対策を講じる必要もなくなる。立坑孔壁への重泥水の逸
泥防止手段として重泥水容器の代わりに高圧流体容器に
可とう性シートを設置し、シートと高圧流体容器の間に
重泥水を入れて、そのシートが立坑孔壁に密着するよう
にすることも可能である。しかし、この方法ではシート
の破損の危険性が大きく、重泥水の使用量も多量にな
る。
Further, by storing heavy muddy water in a dedicated container, the amount of heavy muddy water can be easily increased and decreased, and the amount of heavy muddy water used can be suppressed to the minimum necessary. There is no need to take any measures. A flexible sheet is installed in the high pressure fluid container instead of the heavy mud container as a means to prevent heavy mud water from getting lost to the shaft wall, and heavy mud is put between the sheet and the high pressure fluid container. It is also possible to make it adhere to a wall. However, in this method, the risk of breakage of the sheet is great, and the amount of heavy muddy water used is large.

【0011】本発明に係る高圧流体貯蔵用構造物の築造
方法は、以上の構造物を築造する方法であって、請求項
1に記載した高圧流体貯蔵用構造物を築造する方法であ
って、前記高圧流体用容器及び前記重泥水用容器を下方
から上方への所定分割部位毎の前記水没立坑上における
分割施工とし、前記高圧流体用容器の各分割施工を打ち
っぱなしの内型枠及び外型枠間への気中における現場打
ちコンクリートとすることを特徴とする。
A method for constructing a structure for storing a high-pressure fluid according to the present invention is a method for constructing the above-mentioned structure, wherein the method for constructing a structure for storing a high-pressure fluid according to claim 1 is provided. The high-pressure fluid container and the heavy muddy water container are divided on the submerged shaft from the lower part to the upper part at predetermined divisions, and each of the high-pressure fluid containers is divided into inner molds and outer molds. It is characterized by cast-in-place concrete in the air between formwork.

【0012】即ち、各分割部位分の内外型枠、重泥水用
容器用枠材、鉄筋かご等を工場にて作製し、現場にて建
込み及びコンクリート打設を繰り返しながら高圧流体用
構造物及び重泥水用容器を施工した後、水没立坑に沈設
するものである。
That is, inner and outer molds, heavy muddy water container frame materials, reinforced cages and the like for each divided part are produced in a factory, and the high pressure fluid structures and After constructing a container for heavy muddy water, it will be submerged in a submerged shaft.

【0013】本発明ではまた、前記内型枠又は前記外型
枠の少なくとも一方に前記高圧流体用容器の気密性を担
持させることができる。
In the present invention, at least one of the inner mold frame and the outer mold frame can carry the airtightness of the high-pressure fluid container.

【0014】[0014]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1は、深度200m程度の既存の水没立
坑1に沈設した高圧流体貯蔵用構造物の断面を便宜的に
示す説明図であり、当該構造物は、高圧流体用容器とし
ての、圧縮空気を貯蔵させる鉄筋コンクリート製の耐圧
容器(CASEタンク)10と、この耐圧容器10の外
周に重泥水(比重2.0)を貯留させる鋼板製の重泥水
容器20とを備える。重泥水は、耐圧容器10の外周に
プレストレスを付与して、耐圧容器10の周方向応力を
圧縮応力状態下におき、もって耐圧容器10に発生する
圧縮応力を補強する。なお、表1に重泥水配合表を示
す。
FIG. 1 is an explanatory view for convenience showing a cross section of a high-pressure fluid storage structure submerged in an existing submerged shaft 1 at a depth of about 200 m. The structure is a compressed high-pressure fluid container. A pressure-resistant container (CASE tank) 10 made of reinforced concrete for storing air and a heavy muddy water container 20 made of steel plate for storing heavy muddy water (specific gravity 2.0) around the outer periphery of the pressure-resistant container 10. The heavy mud gives a pre-stress to the outer periphery of the pressure vessel 10 to put the circumferential stress of the pressure vessel 10 under a compressive stress state, thereby reinforcing the compressive stress generated in the pressure vessel 10. Table 1 shows a composition table of heavy muddy water.

【0016】[0016]

【表1】 [Table 1]

【0017】耐圧容器10の内周面及び外周面には、後
述するコンクリート打設時に打ちっぱなしの捨て型枠と
して容器本体に利用した鋼板製の内型枠11及び外型枠
12が備わり、内型枠11を気密構造とすることによ
り、耐圧容器10からの気体の漏洩が確実に防止される
ようにした。
The inner peripheral surface and the outer peripheral surface of the pressure-resistant container 10 are provided with an inner mold 11 and an outer mold 12 made of a steel plate, which are used for the container body as discarded molds that are left behind during concrete casting, which will be described later. By making the inner mold 11 have an airtight structure, leakage of gas from the pressure-resistant container 10 is reliably prevented.

【0018】耐圧容器10には、地上のコンプレッサ2
と連通する送気管13が接続され、この送気管13を介
して、1日1サイクルのCASE運転、即ち、耐圧容器
10に対する圧縮空気の受け払いが行われる。耐圧容器
10にはまた、地上の圧力補償用水タンク3と連通し、
容器10内の圧縮空気の貯蔵量に応じて圧力補償水を送
排出するための送水管14と、容器10の内圧や応力度
等を計測するための計測用配管15とが接続される。な
お、参照番号4は安全弁を、5はバルブを、6,7は伸
縮継手をそれぞれ表す。
The pressure vessel 10 has a compressor 2 on the ground.
An air supply pipe 13 communicating with the air supply pipe 13 is connected, and the CASE operation of one cycle per day, that is, the compressed air is transferred to and from the pressure-resistant container 10 via the air supply pipe 13. The pressure vessel 10 also communicates with the pressure compensation water tank 3 on the ground,
A water pipe 14 for sending and discharging pressure-compensated water according to the amount of compressed air stored in the container 10 and a measurement pipe 15 for measuring the internal pressure, the stress level, and the like of the container 10 are connected. Reference numeral 4 represents a safety valve, 5 represents a valve, and 6 and 7 represent expansion joints, respectively.

【0019】重泥水容器20の頂部には、上端が地上に
達する重泥水管21が接続され、この重泥水管21を介
して重泥水の供給及び排出が行われる。
A heavy muddy water pipe 21 whose upper end reaches the ground is connected to the top of the heavy muddy water container 20, through which heavy muddy water is supplied and discharged.

【0020】以上の耐圧容器10及び重泥水容器20は
直径5m、全長25m程度のものであり、これらの築造
に当たっては、上下方向に一例として最下方部位の第1
ロットから最上方部位の第7ロットまでの7分割とし、
以下に述べるような分割施工及び現場打ちコンクリート
方式を採用した。なお、各ロット分の内型枠、外型枠、
鉄筋かご及び重泥水容器となる枠材(以下「重泥水型
枠」)は、事前に工場にて製作される。
The above pressure-resistant container 10 and heavy muddy water container 20 have a diameter of 5 m and a total length of about 25 m.
7 divisions from the lot to the 7th lot at the top
The split construction and cast-in-place concrete methods described below were adopted. In addition, the inner formwork, outer formwork for each lot,
The frame material used as a reinforced basket and a heavy mud container (hereinafter, "heavy mud form") is manufactured in advance at a factory.

【0021】第1ロットの施工(図2参照) まず、第1ロット分の内型枠11a、外型枠12a、鉄
筋かご及び重泥水型枠20aを水没立坑1上にてトラッ
ククレーンによって建て込み、内外型枠11a、12a
間にポンプ車によって第1ロット分のコンクリート10
aを気中打設した。なお、内外型枠11a,12a及び
重泥水型枠20aには底蓋がそれぞれ一体に備わる。ま
た、仮受けは重泥水型枠20aの外周面に付設した吊り
・受け共用のブラケット31を、立坑坑口に設置したH
鋼架台32に載置して行った(以下、同じ)。
Construction of the first lot (see FIG. 2) First, the inner mold 11a, the outer mold 12a, the reinforcing cage and the heavy muddy water form 20a of the first lot are built on the submerged shaft 1 by a truck crane. , Inner and outer molds 11a, 12a
The first lot of concrete 10 by a pump truck in between
a was cast in the air. The inner and outer forms 11a and 12a and the heavy muddy water form 20a each have a bottom cover integrally provided. In addition, as for the temporary holder, a bracket 31 for both hanging and receiving, which is attached to the outer peripheral surface of the heavy muddy water form 20a, is installed at the shaft shaft.
The test was carried out by placing it on a steel gantry 32 (the same applies hereinafter).

【0022】第2ロットの施工(図3及び図4参照) 次に、内外型枠11a、12aの上方に第2ロット分の
内外型枠11b、12bを順次突き合わせて溶接により
接合した後、第2ロット分のコンクリート10bを打設
し、次いで、重泥水型枠20a上に第2ロット分の重泥
水型枠20bを突合せ溶接した。なお、内外型枠は薄肉
であるため、それぞれ裏当て材を事前に溶接し、この裏
当て材と共に上記突合せ溶接を行った。また、各々の吊
りワイヤの取外しは、高さ4m程度の仮設足場53を利
用して行った。
Construction of Second Lot (See FIGS. 3 and 4) Next, the inner and outer molds 11b and 12b of the second lot are sequentially butted over the inner and outer molds 11a and 12a and joined by welding. Concrete 10b for two lots was cast, and then heavy mud form 20b for the second lot was butt-welded onto heavy mud form 20a. In addition, since the inner and outer molds were thin, a backing material was welded in advance, and the butt welding was performed together with the backing material. Moreover, each suspension wire was removed using the temporary scaffold 53 having a height of about 4 m.

【0023】第3ロット〜第6ロットの施工(図5参
照) 第2ロットの施工に準じて第3〜6ロットを施工した。
また、第2ロット〜第6ロット対応分の送水管14a、
14b〜14fも振れ止め54にて固定しながら順次継
ぎ足した。
Construction of the third to sixth lots (see FIG. 5) The third to sixth lots were constructed according to the construction of the second lot.
In addition, the water pipes 14a corresponding to the second lot to the sixth lot,
14b to 14f were successively added while being fixed by the steady rest 54.

【0024】第7ロットの施工(図6参照) 送気管13、計測用配管15及び第7ロット対応分の送
水管14gを取り付け、内型枠11f(図5参照)に第
7ロット分の内型枠11gを接合後、内型枠11の上方
を内上蓋11’によって閉合し、次いで、上記各管1
3、15、14gと内上蓋11’との隙間を溶接により
シールした。
Construction of the seventh lot (see FIG. 6) An air supply pipe 13, a measurement pipe 15 and a water supply pipe 14g corresponding to the seventh lot are attached, and the inner lot 11f (see FIG. 5) is used. After joining the molds 11g, the upper part of the inner mold 11 is closed with an inner upper lid 11 '.
The gaps between 3, 15, and 14 g and the inner upper lid 11 ′ were sealed by welding.

【0025】次に、外型枠12f(図5参照)に第7ロ
ット分の外側枠12gを接合後、第7ロット分のコンク
リート10gを打設し、次いで、外型枠12の上方を外
上蓋12’によって閉合し、上記各管13、15、14
gと外上蓋12’との隙間を溶接によりシールし、更
に、セメントミルク注入口55からコンクリート上面と
外上蓋12’との隙間にセメントミルクを注入・充填し
た。
Next, after bonding the outer frame 12g of the seventh lot to the outer frame 12f (see FIG. 5), concrete 10g of the seventh lot is poured. The tubes 13, 15, 14 are closed by the upper lid 12 ′.
g and the outer top lid 12 'were sealed by welding, and cement milk was injected and filled into the gap between the concrete upper surface and the outer top lid 12' through the cement milk injection port 55.

【0026】その後、重泥水型枠20f(図5参照)に
第7ロット分の重泥水型枠20gを接合後、重泥水管2
1の一部を一体に有する上蓋20’を、上記各管13、
15、14gを貫通させて取り付け、各管13、14
g,15の貫通部分を溶接によってシールした。
Then, after joining the heavy mud mold 20g of the seventh lot to the heavy mud mold 20f (see FIG. 5), the heavy mud pipe 2
The upper lid 20 ′ having a part of the tube 1 integrally with each of the tubes 13,
15 and 14 g are passed through and attached, and each tube 13 and 14
g, 15 were sealed by welding.

【0027】なお、内外型枠11,12等のコンクリー
ト打設面には、鋼板によるコンクリート表面拘束の影響
を除去するため型枠剥離剤を塗布し、また、コンクリー
トには早強且つ流動性のよいものを選定し、打設後、バ
イブレータによって入念に締め固めを行った。
A concrete release agent is applied to the concrete casting surfaces of the inner and outer forms 11, 12 and the like in order to remove the influence of the concrete surface restraint by the steel plate. Good ones were selected and after compaction, they were carefully compacted with a vibrator.

【0028】また、特に内型枠11及び内上蓋11’の
継目のシール溶接等を確実に行うことによって、既述し
た気密構造を付与した。
The above-mentioned hermetic structure is provided particularly by securely performing seal welding and the like at the joint between the inner mold frame 11 and the inner upper lid 11 '.

【0029】以上の工程を終えた後、吊り治具60によ
って吊り鋼棒61を介して構造物(耐圧容器10及び重
泥水容器20)を懸吊しながら約10m毎に水没立坑1
を順次降下させて深度200mまで沈設を行う。この
際、送気管13、送水管14、計測用配管15及び重泥
水管21を座屈防止及び振れ止めを図りながら継ぎ足す
と共に、吊り鋼棒61も定着ナット及びカップラーを介
在しながら継ぎ足す。なお、構造物が構造上回転し易い
ため、吊り材としてワイヤを用いずに高強度のPC鋼棒
(61)を用いることとした。また、構造物が立坑坑壁
と接触するおそれがあるため、重泥水容器20の外周面
にゴム製の防弦材22(図1参照)を付設した。
After the above steps are completed, the structure (pressure vessel 10 and heavy muddy water container 20) is suspended by the suspending jig 60 via the suspended steel rod 61, and the submerged shaft 1
Are sequentially descended and laid down to a depth of 200 m. At this time, the air supply pipe 13, the water supply pipe 14, the measurement pipe 15, and the heavy muddy water pipe 21 are added while preventing buckling and preventing steadying, and the hanging steel rod 61 is also added while interposing the fixing nut and the coupler. In addition, since the structure easily rotates in terms of structure, a high-strength PC steel rod (61) was used without using a wire as a suspending member. Further, since there is a possibility that the structure may come into contact with the shaft wall, a rubber-made stringing member 22 (see FIG. 1) is provided on the outer peripheral surface of the heavy muddy water container 20.

【0030】[0030]

【発明の効果】以上述べたように、本発明に係る高圧流
体用構造物及び高圧流体用構造物の築造方法では、高圧
流体用容器の外周に重泥水を貯留する重泥水専用の容器
を設けたことにより、重泥水を立坑に直接貯留する場合
に比べ、その使用量を必要最低限に抑えることができ、
また、重泥水の坑壁地山への逸泥防止対策を講じる必要
もなく、その分コストを低減することができ、更に、既
存の水没立坑を利用すれば、施工コストを一層低減する
ことができる。更にまた、重泥水用容器内の重泥水の水
位を調整することが可能であり、高圧流体用容器への圧
縮応力負荷の強さを容易に調整することが可能となる。
As described above, in the high-pressure fluid structure and the method for constructing a high-pressure fluid structure according to the present invention, a container dedicated to heavy mud is provided on the outer periphery of the high-pressure fluid container. As a result, the amount of heavy muddy water used can be kept to a minimum as compared with the case where it is stored directly in a shaft,
In addition, there is no need to take measures to prevent sludge from flowing into the ground of heavy muddy water, and the cost can be reduced accordingly, and the construction cost can be further reduced by using the existing submerged shaft. it can. Furthermore, the level of heavy muddy water in the container for heavy muddy water can be adjusted, and the strength of compressive stress applied to the container for high pressure fluid can be easily adjusted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高圧流体貯蔵用構造物の断面を便
宜的に示す説明図である。
FIG. 1 is an explanatory view for convenience showing a cross section of a high-pressure fluid storage structure according to the present invention.

【図2】第1ロットを施工した状態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a state in which a first lot has been constructed.

【図3】第1ロットに第2ロット分の内型枠を突き合わ
せる状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which a second lot of inner molds are matched with a first lot.

【図4】第2ロットを施工した状態を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a state in which a second lot has been constructed.

【図5】第6ロットを施工した状態を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a state in which a sixth lot has been constructed.

【図6】耐圧容器及び重泥水容器を沈設する状態を示す
説明図である。
FIG. 6 is an explanatory diagram showing a state where a pressure-resistant container and a heavy muddy water container are laid down.

【符号の説明】[Explanation of symbols]

1 水没立坑 2 コンプレッサ 3 圧力補償水タンク 10 耐圧容器(CASEタンク) 11,11a,11b,11f,11g 内型枠 11’ 内上蓋 13 送気管 12,12a,12b,12f,12g 外型枠 14,14a,14b,14f,14g 送水管 15 計測用配管 20 重泥水容器 20’ 上蓋 21 重泥水管 DESCRIPTION OF SYMBOLS 1 Submerged shaft 2 Compressor 3 Pressure compensation water tank 10 Pressure-resistant container (CASE tank) 11, 11a, 11b, 11f, 11g Inner form 11 'Inner lid 13 Air supply pipe 12, 12a, 12b, 12f, 12g Outer form 14, 14a, 14b, 14f, 14g Water pipe 15 Measurement pipe 20 Heavy mud container 20 'Top lid 21 Heavy mud pipe

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591052239 財団法人エンジニアリング振興協会 東京都港区西新橋1丁目4番6号 CYD ビル (71)出願人 000125369 学校法人東海大学 東京都渋谷区富ヶ谷2丁目28番4号 (71)出願人 000222668 東洋建設株式会社 大阪府大阪市中央区高麗橋4丁目1番1号 (71)出願人 000183325 住友建設株式会社 東京都新宿区荒木町13番地の4 (71)出願人 391058657 利根地下技術株式会社 東京都大田区南蒲田2丁目16番2号 (71)出願人 000210908 中央開発株式会社 東京都新宿区西早稲田3丁目13番5号 (72)発明者 世一 英俊 東京都港区北青山2−5−8 株式会社間 組内 (72)発明者 東條 正樹 横浜市西区みなとみらい3−3−1 三菱 化工機株式会社内 (72)発明者 山下 幸夫 東京都清瀬市下清戸4丁目640番地 株式 会社大林組技術研究所内 (72)発明者 林 正夫 千葉県我孫子市若松131−7番地 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 591052239 Engineering Promotion Association 1-4-6 Nishi-Shimbashi, Minato-ku, Tokyo CYD Building (71) Applicant 000125369 Tokai University 2-28 Tomigaya, Shibuya-ku, Tokyo No. 4 (71) Applicant 000222668 Toyo Construction Co., Ltd. 4-1-1 Koraibashi, Chuo-ku, Osaka-shi, Osaka (71) Applicant 000183325 Sumitomo Construction Co., Ltd. 13-4 Arakicho, Shinjuku-ku, Tokyo (71) Application Person 391058657 Tone Underground Technology Co., Ltd. 2-16-2 Minami Kamata, Ota-ku, Tokyo (71) Applicant 000210908 Central Development Co., Ltd. 3- 13-5 Nishi-Waseda, Shinjuku-ku, Tokyo (72) Inventor Hidetoshi Seichi Tokyo (72) Inventor Masaki 3-3-1 Minatomirai, Nishi-ku, Yokohama-shi Mitsubishi Kakoki Co., Ltd. (72) Inventor Yukio Yamashita 4-640 Shimoseito, Kiyose-shi, Tokyo Obayashi Corporation Technical Research Institute Co., Ltd. (72) Inventor Masao Hayashi 131-7 Wakamatsu, Abiko-shi, Chiba

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水没立坑に設置する高圧流体を貯蔵する
ための構造物であって、前記高圧流体を収容させる鉄筋
コンクリート製の高圧流体用容器と、この高圧流体用容
器の外周にプレストレスを付与して当該高圧流体用容器
の圧縮応力を補強する重泥水を収容させる重泥水用容器
とを備えることを特徴とする高圧流体貯蔵用構造物。
1. A structure for storing a high-pressure fluid installed in a submerged shaft, comprising: a high-pressure fluid container made of reinforced concrete for storing the high-pressure fluid; and a prestress applied to an outer periphery of the high-pressure fluid container. And a container for heavy mud that accommodates heavy mud that reinforces the compressive stress of the high pressure fluid container.
【請求項2】 請求項1に記載した高圧流体貯蔵用構造
物を築造する方法であって、前記高圧流体用容器及び前
記重泥水用容器を下方から上方への所定分割部位毎の前
記水没立坑上における分割施工とし、前記高圧流体用容
器の各分割施工を打ちっぱなしの内型枠及び外型枠間へ
の気中における現場打ちコンクリートとすることを特徴
とする高圧流体貯蔵用構造物の築造方法。
2. The method for constructing a high pressure fluid storage structure according to claim 1, wherein the high pressure fluid container and the heavy muddy water container are submerged in a predetermined division from a lower part to an upper part. Of the high-pressure fluid storage structure, characterized in that each of the high-pressure fluid containers is subjected to split-in-place construction, and that each split-operation of the high-pressure fluid container is cast-in-place concrete in the air between an inner mold and an outer mold that are left unattended. Construction method.
【請求項3】 前記内型枠又は前記外型枠の少なくとも
一方に前記高圧流体用容器の気密性を担持させる請求項
2に記載の高圧流体貯蔵用構造物の築造方法。
3. The method for constructing a high-pressure fluid storage structure according to claim 2, wherein at least one of the inner mold frame and the outer mold frame holds the airtightness of the high-pressure fluid container.
JP9182367A 1997-07-08 1997-07-08 Structure for storing high-pressure fluid and constructing method thereof Pending JPH1121926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9182367A JPH1121926A (en) 1997-07-08 1997-07-08 Structure for storing high-pressure fluid and constructing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182367A JPH1121926A (en) 1997-07-08 1997-07-08 Structure for storing high-pressure fluid and constructing method thereof

Publications (1)

Publication Number Publication Date
JPH1121926A true JPH1121926A (en) 1999-01-26

Family

ID=16117080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182367A Pending JPH1121926A (en) 1997-07-08 1997-07-08 Structure for storing high-pressure fluid and constructing method thereof

Country Status (1)

Country Link
JP (1) JPH1121926A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140196456A1 (en) * 2011-09-14 2014-07-17 Beijing Xiangtian Huachang Aerodynamic Force Technology Research Institute Company Limited Storage energy generation method utilizing natural energy and generation system thereof
WO2015080353A1 (en) * 2013-11-26 2015-06-04 한국지질자원연구원 High-pressure fluid storage tank and construction method thereof
WO2019218085A1 (en) 2018-05-17 2019-11-21 Hydrostor Inc. A hydrostatically compensated compressed gas energy storage system
US11473724B2 (en) 2017-02-01 2022-10-18 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
US11644150B2 (en) 2017-03-09 2023-05-09 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140196456A1 (en) * 2011-09-14 2014-07-17 Beijing Xiangtian Huachang Aerodynamic Force Technology Research Institute Company Limited Storage energy generation method utilizing natural energy and generation system thereof
WO2015080353A1 (en) * 2013-11-26 2015-06-04 한국지질자원연구원 High-pressure fluid storage tank and construction method thereof
US11473724B2 (en) 2017-02-01 2022-10-18 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11767950B2 (en) 2017-02-01 2023-09-26 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11644150B2 (en) 2017-03-09 2023-05-09 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11821584B2 (en) 2017-03-09 2023-11-21 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
WO2019218085A1 (en) 2018-05-17 2019-11-21 Hydrostor Inc. A hydrostatically compensated compressed gas energy storage system
EP3794270A4 (en) * 2018-05-17 2022-03-09 Hydrostor Inc. A hydrostatically compensated compressed gas energy storage system
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir

Similar Documents

Publication Publication Date Title
CN111648228A (en) Assembled pier and construction process thereof
CN106320377A (en) Water-rich soft soil area deep foundation pit cover and excavation top-down construction method
CN105926470B (en) Elevated bridge remodeling method
CN109837895A (en) A kind of big pressure dispersing anchorage cable construction of depth
CN106150523A (en) A kind of Railway Tunnel ditch cable trench integral mold plate construction
JPH1121926A (en) Structure for storing high-pressure fluid and constructing method thereof
JP6640891B2 (en) Grouting method for joints of submerged boxes
CN108360508A (en) The construction method of cast-in-place concrete core cement soil stirring pile
CN106498929A (en) Grouting Pipe and reinforcement of concrete defect method
CN109723064A (en) Ensure the interim retaining wall column and its construction method of enlarging deep pit monitor
CN108999227B (en) Reinforcing structure of building foundation and construction method thereof
CN104234217B (en) Light-duty pressure grouting device for overall and grout construction method thereof
CN212507065U (en) Steel construction assembled house mill prefabricated steel pipe concrete column
CN112796773B (en) Steel sleeve construction process and assembly method
JPH10159027A (en) Earthquake-resistant reinforcing method for existing structure and reinforcing construction
CN115262537A (en) Karst development area cast-in-situ bored pile forming device and construction method
CN210341975U (en) Major diameter single pile steel-pipe pile interpolation changeover portion grouting construction system
CN211499464U (en) Steel pipe concrete composite column for high-rise building and reinforcing system thereof
CN112647530A (en) Offshore wind power foundation structure with single pile, negative pressure barrel and transition section and construction method
CN210712528U (en) Deepwater pier reinforcing structure
JPH10299377A (en) Earth retaining construction method for shaft
CN208441834U (en) A kind of rectangular top pipe reception sleeve arrangement
CN107419721B (en) Improve the method for the pre-buried sound detecting pipe survival rate of bored concrete pile and the Sound Surveillance System of bored concrete pile
CN208455485U (en) Combined type single wall steel bushing case apparatus
CN212375851U (en) Test pile load box inner crack grouting reinforcement coupling device