JPH11218946A - Titanylphthalocyanine pigment dispersed liquid and electrophotographic photoreceptor - Google Patents

Titanylphthalocyanine pigment dispersed liquid and electrophotographic photoreceptor

Info

Publication number
JPH11218946A
JPH11218946A JP2081298A JP2081298A JPH11218946A JP H11218946 A JPH11218946 A JP H11218946A JP 2081298 A JP2081298 A JP 2081298A JP 2081298 A JP2081298 A JP 2081298A JP H11218946 A JPH11218946 A JP H11218946A
Authority
JP
Japan
Prior art keywords
peak
dispersion
degrees
titanyl phthalocyanine
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2081298A
Other languages
Japanese (ja)
Other versions
JP3644006B2 (en
Inventor
Kazumasa Watanabe
一雅 渡邉
Fumitaka Mochizuki
文貴 望月
Kenichi Yasuda
憲一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP02081298A priority Critical patent/JP3644006B2/en
Publication of JPH11218946A publication Critical patent/JPH11218946A/en
Application granted granted Critical
Publication of JP3644006B2 publication Critical patent/JP3644006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the titanylphthalocyanine pigment dispersed liquid capable of forming the electrophotographic photoreceptor small in residual potential and good in use repetition characteristics and free from image defect and high in sensitivity and chargeability and to provide this electrophotographic photoreceptor. SOLUTION: The titanylphthalocyanine pigment dispersed liquid has a maximum peak at a Bragg angle (2θ) of 27.2±0.2 deg. and a second peak at 24.1±0.2 deg. in the X-ray diffraction spectra and a main spectral absorption peak in a wavelength of 790±20 nm and a second peak in 690-650 nm is not found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真感光体の
製造等に使用されるチタニルフタロシアニン顔料の分散
液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion of a titanyl phthalocyanine pigment used for producing an electrophotographic photosensitive member.

【0002】[0002]

【従来の技術】従来、近赤外光に発振波長を有する半導
体に感応する高感度な素材としてチタニルフタロシアニ
ンが盛んに研究されてきた。
2. Description of the Related Art Hitherto, titanyl phthalocyanine has been actively studied as a highly sensitive material sensitive to a semiconductor having an oscillation wavelength in near-infrared light.

【0003】特に27.2度に最大ピークを有するY型
チタニルフタロシアニン、その中でも、次なる大きさを
示すピークとして9.5度をもち、かつ6〜8度にかけ
てのピークが小さい結晶は光量子効率が1に近く、極め
て高感度な素材である(Japan Hardcopy
89’ 論文集 103(1989))。
[0003] In particular, a Y-type titanyl phthalocyanine having a maximum peak at 27.2 degrees, and among them, a crystal having a peak having the next magnitude of 9.5 degrees and a small peak from 6 to 8 degrees is a photon efficiency. Is close to 1 and is an extremely sensitive material (Japan Hardcopy)
89 'Transactions 103 (1989)).

【0004】しかしながら、現実に顔料を分散し塗布液
をつくり、感光体を造っていくと様々な問題が浮かび上
がってくる。ある感光体ではポチなどの画像欠陥があ
り、ある感光体では感度の低下や帯電性が低下するなど
の問題がある。
However, various problems emerge when a pigment is actually dispersed to prepare a coating solution and a photoreceptor is manufactured. Some photoconductors have image defects such as spots, and some photoconductors have problems such as a decrease in sensitivity and a decrease in chargeability.

【0005】これらの欠陥の多くは顔料本来の性質より
も作製された分散液に問題がある。発明者等はY型チタ
ニルフタロシアニンの発表(上記文献)の際、その分光
吸収スペクトル(塗布膜として測定)は、630nm,
790nm,700nm,630nm付近にピーク成分
を持ち、特に850nmに最大ピークを有するものが優
れていると紹介した。しかしながら、ここで使用した分
散液は分散後も結晶型を維持する事を狙った処方で作製
したもので、分散をできるだけ穏やかに、均一にするた
め絶縁物であるバインダーの方が顔料より多く(重量比
2倍)、分散強度自体も低めに抑えてある。
[0005] Many of these defects are more problematic in the prepared dispersion than the intrinsic properties of the pigment. When the inventors published Y-type titanyl phthalocyanine (the above document), the spectral absorption spectrum (measured as a coating film) was 630 nm.
It was introduced that those having peak components at around 790 nm, 700 nm, and 630 nm, and particularly those having the maximum peak at 850 nm were excellent. However, the dispersion used here was prepared with a recipe aiming to maintain the crystal form even after the dispersion, and in order to make the dispersion as gentle and uniform as possible, the amount of the binder as an insulator was larger than that of the pigment ( (2 times weight ratio), and the dispersion strength itself is kept low.

【0006】そのため、X線回折スペクトルでは分散後
も2番目に強いピークとして9.5度を維持できてお
り、性能を見ても、初期の感度や、光量子効率などでは
Y型チタニルフタロシアニン本来の優れた性能を引き出
している。そして、単に帯電と露光をモデル的に繰り返
すだけでは大きな問題は出ていない。
Therefore, in the X-ray diffraction spectrum, 9.5 degrees can be maintained as the second strongest peak even after dispersion, and in terms of performance, the initial sensitivity and the photon quantum efficiency show that the Y-type titanyl phthalocyanine does not have the original peak. It brings out excellent performance. Then, simply repeating the charging and the exposure in a model manner does not cause a serious problem.

【0007】しかし、実際に使われる感光体では、繰り
返しコピー時の膜はがれなど機械的問題、あるいは反転
現像プロセスを用いた際に生じる微小な黒斑状画像欠陥
を改良するために、下層に電荷の注入をブロックする絶
縁体からなる中間層(下引き層)を設けざるを得ない。
However, in the photoreceptor actually used, in order to improve a mechanical problem such as peeling of a film at the time of repetitive copying, or a minute black spot-like image defect generated when a reversal development process is used, a charge layer is formed in a lower layer. There is no other choice but to provide an intermediate layer (underlayer) made of an insulator that blocks the injection.

【0008】このような中間層が加わった実際の感光体
では前述のようなバインダー/顔料比率が大きい分散液
では、繰り返しテストで露光部での残留電位が大きいと
いう欠点がある。特に最近のように感光体ドラムの性能
が飛躍的に伸びて、コピー数10万枚の寿命が普通に要
求される場合にはなおさら残留電位上昇が問題になって
きた。
In an actual photoreceptor to which such an intermediate layer has been added, the dispersion having a large binder / pigment ratio as described above has a disadvantage that the residual potential at the exposed portion in a repeated test is large. Particularly, recently, the performance of the photosensitive drum has been dramatically increased, and when the life of 100,000 copies is normally required, the increase in the residual potential becomes even more problematic.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
のごとき問題のないチタニルフタロシアニン顔料の分散
液を提供し、もって電子写真感光体を作製したとき残留
電位が少く、繰り返し使用特性の良い、かつ画像欠陥の
ない高感度で帯電性の高い感光体を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a dispersion of a titanyl phthalocyanine pigment which does not have the above-mentioned problems, and has a low residual potential when electrophotographic photosensitive members are produced, and has good repeated use characteristics. Another object of the present invention is to provide a photosensitive member having high sensitivity and high chargeability without image defects.

【0010】[0010]

【課題を解決するための手段】本発明者らは、分散の機
械的強度、溶媒、バインダー、顔料濃度など鋭意検討の
結果、前述の条件で単にバインダーを減らしただけでは
電位上昇はある程度防げるものの、分散は不足気味で画
像欠陥が残る。しかし、下記の状態の分散液が本発明の
目的を達することを見いだし、本発明に至った。
The inventors of the present invention have conducted intensive studies on the mechanical strength of the dispersion, the concentration of the solvent, the binder, and the pigment. As a result, the increase in the potential can be prevented to some extent by simply reducing the binder under the aforementioned conditions. However, the dispersion tends to be insufficient and image defects remain. However, they have found that a dispersion in the following state can achieve the object of the present invention, and have reached the present invention.

【0011】本発明の目的は、下記構成を採ることによ
り達成される。
The object of the present invention is achieved by adopting the following constitution.

【0012】(1) チタニルフタロシアニン顔料の分
散液において、分散液のX線回折スペクトルがブラッグ
角(2θ)27.2±0.2度に最大ピークを有し、か
つ24.1±0.2度に二番目の強度のピークを有し、
分光吸収スペクトルの主ピークが790±20nmにあ
り、かつ690nm〜650nmに副ピークの見られな
い事を特徴とするチタニルフタロシアニン顔料の分散
液。
(1) In the dispersion of the titanyl phthalocyanine pigment, the X-ray diffraction spectrum of the dispersion has a maximum peak at a Bragg angle (2θ) of 27.2 ± 0.2 °, and 24.1 ± 0.2. Each time has a second intensity peak,
A dispersion liquid of a titanyl phthalocyanine pigment, wherein a main peak of a spectral absorption spectrum is at 790 ± 20 nm and no sub-peak is observed at 690 nm to 650 nm.

【0013】(2) X線回折スペクトルがブラッグ角
(2θ)の9.5±0.4度にかけて表れるピーク強度
が24.1±0.2度のピーク強度の6割以下であり、
6〜8度にかけては明確なピークを持たない事を特徴と
する(1)記載のチタニルフタロシアニン顔料の分散
液。
(2) The peak intensity at which the X-ray diffraction spectrum appears over 9.5 ± 0.4 degrees of the Bragg angle (2θ) is 60% or less of the peak intensity at 24.1 ± 0.2 degrees;
The dispersion of the titanyl phthalocyanine pigment according to (1), wherein the dispersion does not have a clear peak from 6 to 8 degrees.

【0014】(3) チタニルフタロシアニン顔料がア
シッドペースト処理を経由して得られる事を特徴とする
(1)又は(2)記載のチタニルフタロシアニン顔料の
分散液。
(3) The dispersion of the titanyl phthalocyanine pigment according to (1) or (2), wherein the titanyl phthalocyanine pigment is obtained via an acid paste treatment.

【0015】(4) チタニルフタロシアニン顔料が分
散前のX線回折測定にてブラッグ角(2θ)27.2±
0.2度に最大ピークを有し、その他に9.5±0.4
度、24.1±0.2度に明瞭なピークを有する事を特
徴とする(1)、(2)又は(3)記載のチタニルフタ
ロシアニン顔料の分散液。
(4) X-ray diffraction measurement of the titanyl phthalocyanine pigment before dispersion leads to a Bragg angle (2θ) of 27.2 ±
It has a maximum peak at 0.2 degrees and 9.5 ± 0.4
The dispersion of titanyl phthalocyanine pigment according to (1), (2) or (3), which has a clear peak at 24.1 ± 0.2 degrees.

【0016】(5) チタニルフタロシアニン顔料の分
散前の結晶がX線回折の測定でブラッグ角(2θ)2
7.1±0.2度に最大ピークを有し、その他に9.5
±0.4度、24.1±0.2度に明瞭なピークを有
し、かつ6.9〜7.6度にかけて現れるピークが最大
ピークに対して1/10以下のピーク強度しか持たない
結晶型を有する事を特徴とする(1)〜(4)のいずれ
か1項記載のチタニルフタロシアニン顔料の分散液。
(5) The crystal before the dispersion of the titanyl phthalocyanine pigment has a Bragg angle (2θ) 2 by X-ray diffraction measurement.
It has a maximum peak at 7.1 ± 0.2 degrees, and 9.5 in addition.
It has clear peaks at ± 0.4 degrees and 24.1 ± 0.2 degrees, and peaks appearing from 6.9 to 7.6 degrees have only 1/10 or less of the maximum peak intensity. The dispersion of the titanyl phthalocyanine pigment according to any one of (1) to (4), which has a crystal form.

【0017】(6) チタニルフタロシアニン顔料がジ
イミノイソインドリンを経て合成される事を特徴とする
(1)〜(5)のいずれか1項記載のチタニルフタロシ
アニン顔料の分散液。
(6) The dispersion of the titanyl phthalocyanine pigment according to any one of (1) to (5), wherein the titanyl phthalocyanine pigment is synthesized via diiminoisoindoline.

【0018】(7) (1)〜(6)のいずれか1項記
載のチタニルフタロシアニン顔料の分散液を使用して造
られたことを特徴とする電子写真感光体。
(7) An electrophotographic photoreceptor produced using a dispersion of the titanyl phthalocyanine pigment according to any one of (1) to (6).

【0019】本発明において、X線回折スペクトルにお
ける明確なピークを持たないとは、識別不能、あるいは
バックグラウンドを除いて主ピークに対し1/10以下
の強度しか持たない事を言う。
In the present invention, having no clear peak in the X-ray diffraction spectrum means that it is indistinguishable or has only 1/10 or less the intensity of the main peak excluding the background.

【0020】本発明は特許請求の範囲で述べた如くX線
回折と分光吸収スペクトルで規定される分散液である。
尚、X線回折ピーク測定にブラッグ角(2θ)の値は、
特にことわりがない時は、±0.2度の許容範囲を持つ
ものとする。又、(1)に記した二番目の強度ピークと
は、同強度のピークが他にあっても二番目であればよ
い。
The present invention is a dispersion defined by X-ray diffraction and spectral absorption spectrum as described in the claims.
The value of the Bragg angle (2θ) in the X-ray diffraction peak measurement is
Unless otherwise specified, it has a tolerance of ± 0.2 degrees. Further, the second intensity peak described in (1) may be any second peak even if there is another peak having the same intensity.

【0021】分光吸収スペクトルとX線回折スペクトル
のピーク強度比に着目する理由は以下に述べる通りであ
る。
The reason for paying attention to the peak intensity ratio between the spectral absorption spectrum and the X-ray diffraction spectrum is as follows.

【0022】分光吸収スペクトル 今日、多くの方面で使用されている電子写真用の有機感
光体には、その素材として光が当たって光電荷を発生す
る電荷発生物質(CGM)と生じた電荷を輸送する電荷
輸送物質(CTM)が必要である。一般に、色素に光が
当たると励起イオン対が出来るが、ある物ではこれが分
裂して正孔と光電子を発生する。色素がその高い光電変
換効率を持つためには生成した励起イオン対が直ちに失
活することなく、ある程度安定に存在し光電子と正孔を
放出することが必要である(図1参照)。
Spectral Absorption Spectroscopy Organic photoreceptors for electrophotography, which are used in many fields today, transport a charge generating substance (CGM) which generates photocharges when irradiated with light and transports the generated charges. A charge transport material (CTM) is needed. In general, light impinges on a dye to form an excited ion pair, which in some cases splits to generate holes and photoelectrons. In order for the dye to have a high photoelectric conversion efficiency, it is necessary that the generated excited ion pairs be present to some extent without being immediately deactivated and emit photoelectrons and holes (see FIG. 1).

【0023】それには単分子構造であるよりも、何らか
の分子集合体(凝集)構造を持った方が有利である。こ
れが電荷発生物質として一般に溶解した色素では無く、
有機顔料を分散したものが用いられる理由である。
For this purpose, it is more advantageous to have some kind of molecular aggregate (aggregation) structure rather than a monomolecular structure. This is not a generally dissolved dye as a charge generating substance,
This is why organic pigments are dispersed.

【0024】凝集形態を表す尺度の一つとして分光吸収
スペクトルがあり、その長波長シフトの凝集構造と感度
との関係が幾つかの文献で報告されている(電子写真学
会1991年度第3回研究会予稿集 22 木下昭(コ
ニカ))。
A spectroscopic absorption spectrum is one of the scales representing the aggregation morphology, and the relationship between the aggregation structure of the long wavelength shift and the sensitivity has been reported in several documents (The 3rd study of 1991 by the Electrographic Society of Japan). Proceedings of the Society, 22 Akira Kinoshita (Konica)).

【0025】学会で報告されていた(Japan Ha
rdcopy 89’ 論文集 103(1989))
Y型チタニルフタロシアニンの分散吸収のピークは85
0nmにあり、本発明の790nm±20nmとは一
見、大きく異なっているように見える。
Reported at a conference (Japan Ha
rdcopy 89 'Transactions 103 (1989))
The peak of dispersion absorption of Y-type titanyl phthalocyanine is 85
At 0 nm, it seems to be significantly different from 790 nm ± 20 nm of the present invention.

【0026】しかしながら、本発明における790±2
0nmのピークはもともとマイルドな分散でY型チタニ
ルフタロシアニンに見られた4つのピークおよび肩(8
50,790,700,630nm)のうち790nm
のものが主になったものと解釈することもできる。また
後述するようにX線回析を見ても結晶の長期秩序(低角
度のピークに現れる)は崩れているが、結晶の短期秩序
(高角度のピークに現れる)は変化していない。本発明
の結晶が、厳密な意味での報文で報告してきたY型と同
一の結晶か、新規結晶か微妙な所ではあるが、発明者は
感度特性がほぼ同一のことから、分散液中の顔料は、ま
だ広い意味でのY型結晶の範疇にあるものと考えてい
る。
However, in the present invention, 790 ± 2
The peak at 0 nm is originally the four peaks and shoulders (8
790 nm out of 50, 790, 700, and 630 nm)
Can be interpreted as the main thing. As will be described later, the X-ray diffraction shows that the long-term order of the crystal (appearing at a low-angle peak) is broken, but the short-term order of the crystal (appearing at a high-angle peak) does not change. Although the crystal of the present invention is subtly the same as the Y-type crystal reported in the strict sense of the report or a new crystal, the inventors have found that the sensitivity characteristics are almost the same, Are considered to be still in the broad category of Y-type crystals.

【0027】また本発明の分散液は690〜650nm
のピークの無いことを特徴としている。ここで言うピー
クとは肩ではなく、両脇に、それより低い地点を有する
頂点の事である(図2参照)。後述する実施例、比較例
で述べるが、分散の条件によっては、この690〜65
0nmの領域にピークが現れる事がある。このピーク
は、X線回折において26.2度に最大ピークをもつA
型(Japan Hardcopy 89’ 論文集
103(1989)の分類、特開昭62−67094号
の命名ではI型)に見られる680nmの副ピークと考
えている(特開昭62−67094号)。
The dispersion of the present invention has a size of 690 to 650 nm.
Is characterized by no peak. Here, the peak is not a shoulder but a vertex having a lower point on both sides (see FIG. 2). As will be described later in Examples and Comparative Examples, depending on dispersion conditions, these 690 to 65
A peak may appear in a region of 0 nm. This peak corresponds to A having the maximum peak at 26.2 degrees in X-ray diffraction.
Type (Japan Hardcopy 89 '
103 (1989), which is considered to be a sub-peak at 680 nm which is found in the I-type in the naming of JP-A-62-67094 (JP-A-62-67094).

【0028】Y型はA型、B型(共にJapan Ha
rdcopy 89’ 論文集 103(1989)で
の分類)と異なり、準安定状態で化学的、機械的力によ
りA型に転移しやすい。A型への転移は26.2度のピ
ーク(A型の最大ピーク)の出現で規制することもでき
るが、X線回折の変化は「しきい値」の判断が微妙であ
り、680nm付近の吸収に着目することで転移を電子
写真性能と関連づけて制御することができる(実施例
5、比較例6参照、A型の分光吸収スペクトルで最大を
示す780nmのピークは本発明Y型の790nmのピ
ークと重なり判別不能)。
Y type is A type and B type (both are Japan Ha
Unlike rdcopy 89 ', the collection of treatises 103 (1989)), it is liable to be transformed into type A by a chemical or mechanical force in a metastable state. The transition to type A can be regulated by the appearance of a peak at 26.2 degrees (the maximum peak of type A). By focusing on the absorption, the transition can be controlled in association with the electrophotographic performance (see Example 5 and Comparative Example 6, the peak at 780 nm which shows the maximum in the spectral absorption spectrum of the A type is the 790 nm peak of the Y type of the present invention). It is not possible to determine the overlap with the peak).

【0029】X線回折 結晶型を計る一般的な尺度としてX線回折があり、ピー
クの位置とピークの強さが示される。分散により機械的
シェアを掛けると、仮に結晶変化を生じないものであっ
ても、少しずつ結晶は崩れ、その結果、ピーク強度は低
下し最後には無定型に近くなる。特に結晶の長期秩序
(低角度にあらわれる)ほどくずれやすいことは容易に
想像されるところである。
X-ray Diffraction X-ray diffraction is a general measure for measuring the crystal form, and indicates the position of the peak and the intensity of the peak. When a mechanical shear is applied by dispersion, even if no crystal change occurs, the crystal gradually collapses, and as a result, the peak intensity decreases and finally becomes almost amorphous. In particular, it is easy to imagine that the long-term order (appearing at a low angle) of the crystal is more likely to collapse.

【0030】以上の事を踏まえ、本発明の実施例に挙げ
てある、Y型結晶の分散時間とその分散物の回折スペク
トルの関係を見ると、回折スペクトルにみるバインダー
の影響もありベースラインが上がってくる事もあってピ
ークの形は丸みを帯びてくることがわかる。時間経緯を
見るとピーク強度は分散が進むに連れ、全ピークとも低
下し、微細なピークは早期に判別不可能となる。判別可
能なピークに限って、その強度を相対的に見ると、9.
5度付近のピーク強度の低下は著しい(なお、ピークが
低く丸みを帯びることで9.5度のピーク位置は分散前
は±0.2度の範囲で誤差の範囲をカバーできるが、分
散後は±0.4度の範囲を規定しないと誤差の範囲をカ
バーし、ピーク強度を十分に評価できたとはいえなくな
る)。
Based on the above, the relationship between the dispersion time of the Y-type crystal and the diffraction spectrum of the dispersion, which is listed in the examples of the present invention, shows that the baseline is affected by the effect of the binder in the diffraction spectrum. It can be seen that the shape of the peak is rounded due to the rise. Looking at the time course, the peak intensity decreases as the dispersion progresses, and all the peaks decrease, and fine peaks cannot be identified early. If only the peaks that can be distinguished are viewed in terms of their intensities, 9.
The peak intensity around 5 degrees is remarkably reduced. (Because the peak is low and rounded, the peak position at 9.5 degrees can cover the error range within ± 0.2 degrees before dispersion, but after dispersion, If the range of ± 0.4 degrees is not defined, the range of the error is covered, and it cannot be said that the peak intensity was sufficiently evaluated.

【0031】以上のように見掛けの変化は明らかに大き
いので新規結晶とも思える。しかし、分光吸収スペクト
ルが変化していないので電子写真性能の基本となる凝集
構造は壊れていないとも考えられる。実際に感光体を作
製して評価してもほとんど変化はしていない(実施例参
照)。またX線回折のピークの判別可能部分の強度は減
っても位置(角度)は変わらないのでその意味では結晶
としては同一である。
As described above, the apparent change is apparently large, so it can be considered as a new crystal. However, since the spectral absorption spectrum does not change, it is considered that the aggregated structure that is the basis of electrophotographic performance is not broken. Even if a photoconductor is actually manufactured and evaluated, there is almost no change (see Examples). Further, the position (angle) does not change even if the intensity of the part where the peak of X-ray diffraction can be distinguished is reduced, so that the crystal is the same in that sense.

【0032】以上の事からして、この分散液に現れる結
晶型が新規結晶であるか否か、断定する事は議論の別れ
るところである。しかし、少なくとも分散の程度を表す
尺度として使う事はできる。
From the above, it is a matter of controversy to determine whether or not the crystal type appearing in this dispersion is a new crystal. However, it can be used at least as a measure of the degree of variance.

【0033】本発明は端的にいえば、分散の程度を表す
尺度としてX線回折と分光吸収スペクトルを採用し、生
産に適する条件で最適な状態の分散液を得ようとするも
のである。
In short, the present invention employs X-ray diffraction and spectral absorption spectrum as a measure of the degree of dispersion to obtain a dispersion in an optimum state under conditions suitable for production.

【0034】両者ともに分散の尺度であるが、表すとこ
ろは微妙に異なり、電子写真性能との相関を含めた分散
の尺度にするには、それぞれ単独では一長一短がある。
Although both are measures of dispersion, what they represent are subtly different, and the measures of dispersion including correlation with electrophotographic performance alone have advantages and disadvantages.

【0035】本発明で使われるX線回折では集中光学系
が使われる。これは通常の粉末試料を測定するに使用さ
れる方法である。通常使われるガラス製の試料台に分散
液を滴下して乾かし、乾燥膜厚を10μm以上にして測
定したものである。そしてピークの強度とはそのピーク
の位置から±1.5度の範囲で強度の低い部分をもって
線引きしてベースラインを求め、そこからピーク頂点ま
での高さをピーク強度と定めたものである(図3参
照)。分光吸収スペクトルは分散液をガラスやPETベ
ースなどの透明基体に塗布し、最大ピークの吸光度が
1.0〜2.0の範囲になるように膜厚を調整して測定
したものである。
In the X-ray diffraction used in the present invention, a concentrated optical system is used. This is the method used to measure ordinary powder samples. The dispersion was dropped on a commonly used glass sample stage and dried, and the dry film thickness was measured at 10 μm or more. The peak intensity is obtained by drawing a low-intensity portion within a range of ± 1.5 degrees from the position of the peak to obtain a baseline, and defining the height from the base line to the peak apex as the peak intensity ( (See FIG. 3). The spectral absorption spectrum is obtained by applying the dispersion to a transparent substrate such as glass or PET base and adjusting the film thickness so that the maximum peak absorbance is in the range of 1.0 to 2.0.

【0036】27.2度に最大ピークを持つチタニルフ
タロシアニン結晶として最初に発表されたものは特開昭
62−67094号の比較例(分割して特開平2−82
56号)である。
The first published titanyl phthalocyanine crystal having a maximum peak at 27.2 degrees is a comparative example disclosed in JP-A-62-67094.
No. 56).

【0037】しかしながら、このものはX線回折スペク
トルで二番目の強度を持つものとして7.6度のピーク
があり、9〜10度の間を見ても、9.5度ではなく、
むしろ9.0度にピークがあり本発明とは異なってい
る。又、電子写真性能も悪く、帯電電位が低い(比較例
4)。また製造例を見ても、このものはクロルチタニル
フタロシアニンの加水分解によって得られたもので、本
発明の製造例に示すアシッドペースト工程(硫酸に溶か
して水に注ぐ工程)で無定型化(正確には結晶化度の低
いα型化)したものから結晶変換によって得られたもの
とは根本的に異なっている。
However, this has a peak at 7.6 degrees as having the second intensity in the X-ray diffraction spectrum.
Rather, there is a peak at 9.0 degrees, which is different from the present invention. Further, the electrophotographic performance was poor and the charging potential was low (Comparative Example 4). Looking at the production examples, this one is obtained by hydrolysis of chlorotitanyl phthalocyanine, and is made amorphous (accurate in the acid paste step (a step of dissolving in sulfuric acid and pouring into water)) shown in the production example of the present invention. This is fundamentally different from those obtained by crystal transformation from those having a low degree of crystallinity.

【0038】発明者が検討した幾つかのY型結晶のうち
で特に優れたものは6〜8(±0.2)度に現れるピー
クが小さく、主ピークである27.2度に比してピーク
の高さが1/10以下、あるいは誤差ピークと思われる
程、小さいものが殆どであった。この理由については良
くわからないが発明者は次のように考えている。
Among some of the Y-type crystals studied by the inventors, particularly excellent ones have a small peak appearing at 6 to 8 (± 0.2) degrees, which is smaller than the main peak of 27.2 degrees. In most cases, the height of the peak was as small as 1/10 or less or an error peak was considered. Although the reason for this is not well understood, the inventor thinks as follows.

【0039】この6〜8度の領域のピークはY型本来の
もの小ピーク(7.5度付近)もあるが、それ以上に、
もともと7.6度にあるα型結晶の巨大ピーク(特開昭
61−239248号及び同61−217050号)、
6.9度にあるC型(Japan Hardcopy
89’ 論文集 103(1989)の分類)の最大ピ
ークが混入されている可能性がある。両結晶ともY型に
比べると感度が劣る。特にC型はほとんど感度が無い
(Japan Hardcopy 89’ 論文集 1
03(1989))。従って、この領域にピークを持つ
ものは、α型、C型といった結晶型に近くなっているの
であろう。
The peak in the range of 6 to 8 degrees has an original small peak of Y type (around 7.5 degrees).
Giant peak of α-type crystal originally at 7.6 ° (JP-A-61-239248 and JP-A-61-217050),
Type C at 6.9 degrees (Japan Hardcopy
There is a possibility that the maximum peak of the 89 ′ paper collection 103 (classification of 1989) is mixed. Both crystals have lower sensitivity than the Y type. In particular, the type C has almost no sensitivity (Japanese Hardcopy 89 ', 1
03 (1989)). Therefore, those having a peak in this region may be close to crystal types such as α-type and C-type.

【0040】前述してきたようにY型チタニルフタロシ
アニンは組成のチタニルフタロシアニンをアシッドペー
スト処理により無定形化したのち、結晶変換によって得
られるものである。
As described above, the Y-type titanyl phthalocyanine is obtained by transforming titanyl phthalocyanine having a composition into an amorphous form by an acid paste treatment and then transforming the amorphous form.

【0041】組成のチタニルフタロシアニンの合成には
2通りの方法がある。
There are two methods for synthesizing the titanyl phthalocyanine having the composition.

【0042】ジイミノイソインドリンを原料にする合成
法(特開平2−28265号)は穏やかな条件で合成で
きて不純物の少ない合成方法であり、この方法で得たY
型結晶には6〜8度に現れるピークは小さい。この方法
の発表(前記Japan Hardcopy 89’の
文献)以前によく行われていた、フタロニトリルと四塩
化チタンを原料とする方法では反応温度やアシッドペー
スト処理の微妙な条件のバラツキにより、合成されたY
型結晶の6〜8度のピークの大きさが変動する。当然、
出来上がったものの性能もバラツキが大きくなる。
The synthesis method using diiminoisoindoline as a raw material (JP-A-2-28265) is a synthesis method which can be synthesized under mild conditions and contains few impurities.
The peak appearing at 6 to 8 degrees is small in the type crystal. In the method using phthalonitrile and titanium tetrachloride as raw materials, which was often performed before the announcement of this method (the above-mentioned document of Japan Hardcopy 89 '), it was synthesized due to variations in reaction temperature and delicate conditions of acid paste treatment. Y
The size of the peak at 6 to 8 degrees of the type crystal varies. Of course,
The performance of the finished product also varies greatly.

【0043】結晶変換処理は水(アシッドペースト処理
後のウェットペーストに含まれるごく僅かの水でもよ
い)の存在下、o−ジクロルベンゼン、アニソール、ア
セトフェノンなどの芳香族系溶媒、ジクロルエタンなど
のハロゲン化炭化水素、THFなどのエーテル類、シク
ロペンタノンのケトン系溶媒など広範囲のものを選ぶ事
ができる。
In the crystal conversion treatment, aromatic solvents such as o-dichlorobenzene, anisole and acetophenone, and halogens such as dichloroethane are used in the presence of water (may be a very small amount of water contained in the wet paste after the acid paste treatment). A wide range can be selected, such as etherified hydrocarbons, ethers such as THF, and ketone solvents such as cyclopentanone.

【0044】本発明において、顔料の分散方法は特に選
ばないが、サンドグラインダー、ボールミル、超音波な
どを用いることができる。分散溶媒はアルコール類、T
HFなどのエーテル類、メチルエチルケトンなどのケト
ン類、ジクロルメタンなどハロゲン化炭化水素、酢酸エ
チルなどのエステル類など広い範囲のものを選ぶことが
できる。また結晶変換を防ぐ意味でこれらの溶媒に微量
の水を添加することもできる。
In the present invention, the method for dispersing the pigment is not particularly limited, but a sand grinder, a ball mill, an ultrasonic wave or the like can be used. Dispersion solvents are alcohols, T
A wide range of ethers such as HF, ketones such as methyl ethyl ketone, halogenated hydrocarbons such as dichloromethane, and esters such as ethyl acetate can be selected. Also, a small amount of water can be added to these solvents in order to prevent crystal transformation.

【0045】これらの溶媒のなかでは特に酢酸t−ブチ
ルなどの分岐した構造を有するエステル類が結晶変換を
抑制する意味で特に好ましい。
Among these solvents, esters having a branched structure, such as t-butyl acetate, are particularly preferred from the viewpoint of suppressing crystal transformation.

【0046】分散時にはバインダーを使う事ができる。
バインダーにはシリコーン樹脂、ブチラール樹脂、ポリ
カーボネート樹脂など様々な樹脂を使う事ができる。バ
インダー/顔料の比率は通常0から10、好ましくは
0.1から4.0の範囲である。
At the time of dispersion, a binder can be used.
Various resins such as a silicone resin, a butyral resin, and a polycarbonate resin can be used as the binder. The binder / pigment ratio usually ranges from 0 to 10, preferably from 0.1 to 4.0.

【0047】上記したごとく、本発明の分散液は高い光
電変換効率を持ったY型結晶の性質を引き出したもので
センサー、太陽電池など様々な用途が考えられる。なか
でもデジタル複写機やレーザプリンタなどの電子写真技
術の分野に特に適している。
As described above, the dispersion of the present invention is derived from the properties of a Y-type crystal having high photoelectric conversion efficiency, and can be used in various applications such as sensors and solar cells. Among them, it is particularly suitable for the field of electrophotography such as digital copying machines and laser printers.

【0048】本発明の分散液には用途に応じて様々な添
加剤、例えばヒンダードフェノールやヒンダードアミン
などの酸化防止剤、トリフェニルアミン類などの正孔輸
送物質、キノン類などの電子輸送物質、などを混合する
ことができる。
The dispersion of the present invention may contain various additives depending on the intended use, for example, antioxidants such as hindered phenols and hindered amines, hole transporting substances such as triphenylamines, electron transporting substances such as quinones, Etc. can be mixed.

【0049】本発明の分散液が使用される電子写真用の
感光体には、公知の様々な技術を組み合わせることがで
きる。本発明の規定を満足する分散液は実施例をみれば
解るようにバインダー濃度が低いものが多いが、作製後
に他の高濃度のバインダー液と組み合わせて単層感光体
作製に十分な濃度のバインダー液とすることができる。
Various known techniques can be used in combination with the electrophotographic photoreceptor using the dispersion of the present invention. Many dispersions satisfying the requirements of the present invention have a low binder concentration as can be seen from the examples, but after the preparation, a binder having a sufficient concentration for producing a single-layer photoreceptor in combination with another high concentration binder solution is prepared. It can be a liquid.

【0050】積層型感光体の電荷発生層に使用する時
は、分散液をそのまま、あるいは単層の時と同様に他の
液と混合して用いることができる。
When used in the charge generation layer of the laminated photoreceptor, the dispersion can be used as it is or mixed with other liquids as in the case of a single layer.

【0051】あるいは他の顔料の分散液、たとえばアゾ
顔料、フタロシアニン顔料、アントラキノン顔料、イミ
ダゾールペリレン顔料、アンスアンスロン顔料などの分
散液を混合して使用する事もできる。
Alternatively, a dispersion of another pigment, for example, a dispersion of an azo pigment, a phthalocyanine pigment, an anthraquinone pigment, an imidazole perylene pigment, an anthranthrone pigment, or the like can be used as a mixture.

【0052】また本発明が使用される電子写真感光体に
は電荷輸送物質(CTM)も使用されるが、特に制限は
なく、公知のトリフェニルアミン化合物、ブタジエン化
合物、スチリル化合物、ヒドラゾン化合物などを用いる
ことができる。
A charge transport material (CTM) is also used in the electrophotographic photoreceptor to which the present invention is applied. However, there is no particular limitation, and known triphenylamine compounds, butadiene compounds, styryl compounds, hydrazone compounds and the like can be used. Can be used.

【0053】これら電荷輸送物質は通常層状に設けられ
るためバインダーが用いられるが、バインダーにはポリ
カーボネート樹脂、ポリスチレン樹脂、シリコーン樹
脂、ポリエステル樹脂、ポリアミド樹脂などを挙げるこ
とができる。
Since these charge transporting substances are usually provided in a layered form, a binder is used. Examples of the binder include polycarbonate resin, polystyrene resin, silicone resin, polyester resin and polyamide resin.

【0054】また本発明の感光体は導電性支持体と感光
層との間に接着性と導電性支持体からの電荷注入の防止
のため中間層(下引き層)を設けることができる。
The photoreceptor of the present invention may be provided with an intermediate layer (undercoat layer) between the conductive support and the photosensitive layer for the purpose of adhesiveness and preventing charge injection from the conductive support.

【0055】中間層の素材としては接着剤などに使用さ
れている公知のポリマーを使うことができる。例えばポ
リアミド樹脂、ポリブチラール樹脂、ポリ酢酸ビニル樹
脂など接着剤などに使用されている公知のポリマーの
他、セラミック下引きとして知られる金属アルコキシド
(例えばジルコニウムアルコキシド、チタニウムアルコ
キシドなど)の部分加水分解物の縮合体などを挙げるこ
とができる。
As a material for the intermediate layer, a known polymer used for an adhesive or the like can be used. For example, in addition to known polymers used for adhesives such as polyamide resins, polybutyral resins, and polyvinyl acetate resins, partial hydrolysis products of metal alkoxides (for example, zirconium alkoxides, titanium alkoxides and the like) known as ceramic undercoats Condensates and the like can be mentioned.

【0056】また本発明の感光体は保護層を付けること
ができる。
The photoreceptor of the present invention may have a protective layer.

【0057】次いで、実施形態の説明に移る前に本発明
に近い特許の実施例を挙げ、本発明との差異を説明す
る。
Next, before shifting to the description of the embodiments, examples of patents close to the present invention will be described to explain differences from the present invention.

【0058】特開平2−256059号はY型結晶周辺
結晶と分光吸収スペクトルとの関連を初めて論じた特許
であるが、その中で実施されている分散方法は結晶型を
保つ事を目的としたバインダー比の多いマイルドな分散
方法で、本発明の概念の中にある結晶を使用した実施例
2、4(注…特開平2−256059の実施例2、4)
はそれぞれ分光吸収のピークの波長が817nm、83
0nmになっている。またX線回折の7度付近のピーク
が大きく、本発明外の結晶を使った実施例3は感度が低
い。
Japanese Patent Application Laid-Open No. 2-256059 is a patent for the first time discussing the relationship between a peripheral crystal of a Y-type crystal and a spectral absorption spectrum. The dispersion method used in the patent is aimed at maintaining the crystal form. Examples 2 and 4 using a crystal within the concept of the present invention by a mild dispersion method with a large binder ratio (Note: Examples 2 and 4 of JP-A-2-256059)
Indicate that the peak wavelength of the spectral absorption is 817 nm and 83, respectively.
It is 0 nm. In addition, the peak around 7 degrees in X-ray diffraction is large, and Example 3 using a crystal outside the present invention has low sensitivity.

【0059】特開平3−71144号は溶媒の種類とバ
インダー種に言及した特許で、やはり結晶型の維持(長
期秩序を含めた)を狙っている。その実施例(注…特開
平3−71144号の実施例)にあげてあるものは、い
ずれも9.5度のピークが24.1度よりも大きく本発
明とは異なる。比較例に挙げてあるものには9.5度の
ピークが24.1度のそれより大きい物もあるが、分光
吸収の680nmに副ピークがある。
JP-A-3-71144 is a patent which refers to the type of solvent and the type of binder, and also aims at maintaining the crystal form (including long-term order). In all of the examples (note: the examples of JP-A-3-71144), the peak at 9.5 degrees is larger than 24.1 degrees, which is different from the present invention. In some of the comparative examples, the peak at 9.5 degrees is larger than that at 24.1 degrees, but there is a secondary peak at 680 nm in spectral absorption.

【0060】上記のごとく、これらは本発明とは異なる
ものである。
As described above, these are different from the present invention.

【0061】[0061]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明の態様はこれに限定されない。尚、文中
「部」とは「重量部」を表わす。
EXAMPLES The present invention will be described below in detail with reference to examples, but embodiments of the present invention are not limited thereto. In the description, “parts” means “parts by weight”.

【0062】製造例 フタロニトリル102.5g(0.8mol)をメタノ
ール880mlに懸濁し、触媒としてナトリウムメチラ
ートを少量(0.77g)加え、アンモニアガスを吹き
込み、4時間加熱還流した。ついで、溶媒を減圧下溜去
して濃縮の後、酢酸エチルを加え、析出した結晶を濾過
し、1,3−ジイミノイソインドリンを得る(収量 6
7g、収率 58%)。
Production Example 102.5 g (0.8 mol) of phthalonitrile was suspended in 880 ml of methanol, a small amount (0.77 g) of sodium methylate was added as a catalyst, and ammonia gas was blown into the mixture to reflux for 4 hours. Then, the solvent is distilled off under reduced pressure, and after concentration, ethyl acetate is added, and the precipitated crystals are filtered to obtain 1,3-diiminoisoindoline (yield 6).
7 g, 58% yield).

【0063】得られたジイミノイソインドリン203g
をオルトジクロルベンゼン2.5リットルに懸濁しチタ
ニウムテトラ−n−ブトキシド143gを加えて窒素気
流下、6時間150℃〜160℃に加熱する。反応後、
濾過し、オルトジクロルベンゼン、1%塩酸、水、つい
でメタノールで洗浄して粗チタニルフタロシアニンを得
る(収量 184g、収率 91%)。
203 g of the obtained diiminoisoindoline
Is suspended in 2.5 liters of orthodichlorobenzene, 143 g of titanium tetra-n-butoxide is added, and the mixture is heated at 150 ° C. to 160 ° C. for 6 hours under a nitrogen stream. After the reaction,
The mixture is filtered and washed with ortho-dichlorobenzene, 1% hydrochloric acid, water and then methanol to obtain crude titanyl phthalocyanine (yield 184 g, 91%).

【0064】ついで得られた粗チタニルフタロシアニン
20gを氷冷下、硫酸200mlに溶かし、水2.0リ
ットルに注いで生じた沈殿を濾過し、十分に水で洗って
アモルファス(より正確にいえば結晶化度の低いα型)
チタニルフタロシアニンのウェットペーストを得る。
Then, 20 g of the obtained crude titanyl phthalocyanine was dissolved in 200 ml of sulfuric acid under ice-cooling, and poured into 2.0 liters of water. Α type with low degree of conversion)
Obtain a wet paste of titanyl phthalocyanine.

【0065】一方、フラスコにオルトジクロルベンゼン
200mlと水200mlの混液(2層に分離してい
る)を用意し、これに前述のアモルファスチタニルフタ
ロシアニンのウェットペーストを加える。60℃に加温
し6時間攪拌し結晶変換させる。ついで大量のメタノー
ルに注ぎ生じた結晶を濾過し、メタノールで十分に洗浄
しY型チタニルフタロシアニンを得た(図4)。27.
2度に最大ピークを持ち、かつ9.5度付近のピークは
分裂しているが、いずれも高さは24.2度のピーク高
さより大きい。機械の精度によっては9.5度と9.7
度は重なることもある。また7.5度のピークはほとん
ど目立たない。
On the other hand, a mixed solution of 200 ml of ortho-dichlorobenzene and 200 ml of water (separated into two layers) is prepared in a flask, and the above-mentioned wet paste of amorphous titanyl phthalocyanine is added thereto. Heat to 60 ° C. and stir for 6 hours for crystal transformation. Subsequently, the crystals poured into a large amount of methanol were filtered and sufficiently washed with methanol to obtain Y-type titanyl phthalocyanine (FIG. 4). 27.
It has a maximum peak at 2 degrees, and the peak around 9.5 degrees is split, but the height is larger than the peak height of 24.2 degrees. 9.5 degrees and 9.7 depending on the precision of the machine
Degrees can overlap. Further, the peak at 7.5 degrees is hardly noticeable.

【0066】比較製造例 フタロニトリル65gとα−クロルナフタレン400m
lの混合物中に窒素気流下、14.7mlの四塩化チタ
ンを滴下した後、加熱し210〜230℃で3時間反応
させる。
Comparative Production Example 65 g of phthalonitrile and 400 m of α-chloronaphthalene
After 14.7 ml of titanium tetrachloride was added dropwise to the mixture (1) under a nitrogen stream, the mixture was heated and reacted at 210 to 230 ° C. for 3 hours.

【0067】放冷後、結晶を濾過し、α−クロルナフタ
レン、ついでメタノールで洗い、80℃の水で洗って加
水分解する。得られたチタニルフタロシアニンの結晶を
図5に示す。同一の条件で測定した図4に比べると回折
してくるX線のカウント数は低く、結晶化度が低いこと
を示す。
After cooling, the crystals are filtered, washed with α-chloronaphthalene, then with methanol, washed with water at 80 ° C. and hydrolyzed. FIG. 5 shows the obtained crystals of titanyl phthalocyanine. Compared to FIG. 4 measured under the same conditions, the count number of diffracted X-rays is low, indicating that the crystallinity is low.

【0068】そして相対的に見れば27.2度に最大ピ
ークを持つ点では図4と同様であるが、9.5度のピー
クが肩で9.0度の方がむしろ高いこと、7.5度のピ
ークが10度以下の低角度部では最大となっており、別
結晶である事が判明する。
As shown in FIG. 4, the relative peak has a maximum peak at 27.2 degrees, but the peak at 9.5 degrees is rather higher at the shoulder at 9.0 degrees; The peak at 5 degrees is maximum at a low angle portion of 10 degrees or less, which indicates that the crystal is another crystal.

【0069】ついで製造例と同様に、このチタニルフタ
ロシアニン20gを氷冷下、硫酸200mlに溶かし、
水2.0リットルに注いで生じた沈殿を濾過し、十分に
水で洗ってアモルファス(より正確にいえば結晶化度の
低いα型)チタニルフタロシアニンのウェットペースト
を得る。
Then, in the same manner as in the Production Example, 20 g of this titanyl phthalocyanine was dissolved in 200 ml of sulfuric acid under ice-cooling.
The precipitate formed by pouring into 2.0 liters of water is filtered and thoroughly washed with water to obtain a wet paste of amorphous (more precisely, α-form having low crystallinity) titanyl phthalocyanine.

【0070】一方、フラスコにオルトジクロルベンゼン
200mlと水200mlの混液(2層に分離してい
る)を用意し、これに前述のアモルファスチタニルフタ
ロシアニンのウェットペーストを加える。60℃に加温
し6時間攪拌し結晶変換させる。ついで大量のメタノー
ルに注ぎ生じた結晶を濾過し、メタノールで十分に洗浄
しY型チタニルフタロシアニンを得た(図6)。このX
線回折スペクトルは図4とほとんど同じであるが、6.
9〜7.6度のピークは図4に比して少し大きい。
On the other hand, a mixed solution of 200 ml of orthodichlorobenzene and 200 ml of water (separated into two layers) is prepared in a flask, and the above-mentioned wet paste of amorphous titanyl phthalocyanine is added thereto. Heat to 60 ° C. and stir for 6 hours for crystal transformation. Then, the crystals generated by pouring into a large amount of methanol were filtered and sufficiently washed with methanol to obtain Y-type titanyl phthalocyanine (FIG. 6). This X
The line diffraction spectrum is almost the same as FIG.
The peak at 9 to 7.6 degrees is slightly larger than that in FIG.

【0071】実施例1〜5および比較例1 4−メトキシ−4−メチル−2−ペンタノン820ml
と酢酸t−ブチル1000mlを混合し、これにシリコ
ーン変成ブチラール樹脂(ポリビニールブチラール樹脂
とオルガノポリシロキサンが脱水縮合したもの。特開平
3−230166号 合成例5)の酢酸t−ブチル溶液
660g(樹脂分65g)を加え、上記Y型チタニルフ
タロシアニンを130g加え、ガラスビーズ(ハイビー
24、直径0.5〜0.9mm)4.5kgを加えてサ
ンドグラインダーで分散した。サンドグラインダーの大
きさは内容量5リットル、回転するディスクは4枚、大
きさは直径120mm、回転数は750rpmである。
Examples 1 to 5 and Comparative Example 1 820 ml of 4-methoxy-4-methyl-2-pentanone
And 1000 ml of t-butyl acetate, and 660 g of a t-butyl acetate solution (resin) of a silicone-modified butyral resin (polyvinyl butyral resin and organopolysiloxane obtained by dehydration condensation. JP-A-3-230166 Synthesis Example 5) 65 g), 130 g of the above-mentioned Y-type titanyl phthalocyanine was added, and 4.5 kg of glass beads (Hybee 24, diameter: 0.5 to 0.9 mm) was added and dispersed by a sand grinder. The size of the sand grinder is 5 liters, the number of rotating disks is 4, the size is 120 mm in diameter, and the number of rotations is 750 rpm.

【0072】ジャケットに約10℃の冷水を循環させて
冷却し、定められた時間分散後、酢酸t−ブチル450
0mlで希釈し分散液を得た。
The jacket was cooled by circulating cold water of about 10 ° C., dispersed for a specified time, and then t-butyl acetate 450 was dispersed.
It was diluted with 0 ml to obtain a dispersion.

【0073】これを本発明のサンプル1〜5、比較サン
プル1とする。これらのX線回析スペクトルと分光吸収
スペクトルを各々図7〜図12に示す。
These are designated as Samples 1 to 5 of the present invention and Comparative Sample 1. These X-ray diffraction spectra and spectral absorption spectra are shown in FIGS. 7 to 12, respectively.

【0074】比較例2 200mlのステンポットに酢酸t−ブチル40mlと
ガラスビーズ125g、Y型チタニルフタロシアニン
0.67g、シリコーン樹脂(『KR−5240,15
%キシレンブタノール溶液』信越化学)9g(バインダ
ー/顔料=2/1重量比)を加えて直径35mmのディ
スク4枚を使用し、1200rpmで4時間分散した。
これを比較サンプル2とし、X線回析スペクトルと分光
吸収スペクトルを図13に示す。
Comparative Example 2 In a 200 ml stainless steel, 40 ml of t-butyl acetate, 125 g of glass beads, 0.67 g of Y-type titanyl phthalocyanine, and a silicone resin (“KR-5240, 15
% Xylene butanol solution (Shin-Etsu Chemical) 9 g (binder / pigment = 2/1 weight ratio) was added, and the mixture was dispersed at 1200 rpm for 4 hours using four 35 mm diameter disks.
This is referred to as Comparative Sample 2, and the X-ray diffraction spectrum and the spectral absorption spectrum are shown in FIG.

【0075】これは発明者らが以前の学会発表(Jap
an Hardcopy 89’論文集 103(19
89))や以前の特許出願発明(特開平2−25605
9号)で用いていた方法である。
This is because the inventors have presented at a previous conference (Jap
an Hardcopy 89 ', 103 (19
89)) and previous patent application inventions (Japanese Unexamined Patent Publication No.
No. 9).

【0076】ディスクの回転周速度を比較(120×7
50と35×1200)して見れば明らかなように、比
較例2は実施例に比して穏やかな条件である。その代わ
り、バインダーの比率が高い。簡単にいえば、本発明の
実施例は物理化学的な因子が強い分散の代わりに、機械
的な因子が強い分散を試みたものと言える。
The rotational peripheral speeds of the disks were compared (120 × 7
50 and 35 × 1200), it is clear that Comparative Example 2 has milder conditions than the examples. Instead, the ratio of binder is high. Briefly, it can be said that the embodiment of the present invention attempted dispersion with a strong mechanical factor instead of dispersion with a strong physicochemical factor.

【0077】比較例3 比較例2でバインダーの量を1/4に減らした(つま
り、バインダー/顔料の重量比は実施例に一致)他は、
比較例2と同様の条件で分散液を造った。これを比較サ
ンプル3とし、X線回析スペクトルと分光吸収スペクト
ルを図14に示す。
COMPARATIVE EXAMPLE 3 Except that the amount of binder was reduced to 1/4 in Comparative Example 2 (that is, the weight ratio of binder / pigment was the same as that of Example),
A dispersion was prepared under the same conditions as in Comparative Example 2. This is referred to as Comparative Sample 3, and the X-ray diffraction spectrum and the spectral absorption spectrum are shown in FIG.

【0078】比較例4 図3に示す結晶のチタニルフタロシアニンを比較例2と
同様に分散した。これを比較サンプル4とし、X線回析
スペクトルと分光吸収スペクトルを図15に示す。
Comparative Example 4 The crystal titanyl phthalocyanine shown in FIG. 3 was dispersed in the same manner as in Comparative Example 2. This is referred to as Comparative Sample 4, and the X-ray diffraction spectrum and the spectral absorption spectrum are shown in FIG.

【0079】比較例5 図4に示す結晶のチタニルフタロシアニンを比較例2と
同様に分散した。これを比較サンプル5とし、X線回析
スペクトルと分光吸収スペクトルを図16に示す。
Comparative Example 5 The crystal titanyl phthalocyanine shown in FIG. 4 was dispersed in the same manner as in Comparative Example 2. This is referred to as Comparative Sample 5, and the X-ray diffraction spectrum and the spectral absorption spectrum are shown in FIG.

【0080】比較例6 実施例4においてジャケットに冷水の代わりに40℃の
温水を循環させた他は実施例4と同様にして22時間分
散させた。これを比較サンプル6とし、X線回析スペク
トルと分光吸収スペクトルを図17に示す。
Comparative Example 6 Dispersion was carried out for 22 hours in the same manner as in Example 4 except that warm water at 40 ° C. was circulated instead of cold water in the jacket. This is referred to as Comparative Sample 6, and the X-ray diffraction spectrum and the spectral absorption spectrum are shown in FIG.

【0081】分散前のX線回折で6.9〜7.6度に現
れるピークと9.5度付近に現れるピークの強度比率
(7.5/9.5)。分散後の9.5度付近に現れるピ
ークと24.1度付近に現れるピークの強度比率(9.
5/24.1)。および分光吸収スペクトルのピークを
下記の表1に示す。
Intensity ratio (7.5 / 9.5) of a peak appearing at 6.9 to 7.6 degrees and a peak appearing around 9.5 degrees in X-ray diffraction before dispersion. The intensity ratio between the peak appearing around 9.5 degrees after dispersion and the peak appearing around 24.1 degrees (9.
5 / 24.1). And the peaks of the spectral absorption spectrum are shown in Table 1 below.

【0082】[0082]

【表1】 [Table 1]

【0083】電子写真感光体の作製 共重合ポリアミド『CM8000』(東レ)3部をメタ
ノール100部に加熱溶解し、アルミニウムドラム上に
浸漬塗布し、膜厚0.4μmの下引層(UCL)を形成
した。
Preparation of Electrophotographic Photoreceptor 3 parts of the copolymerized polyamide “CM8000” (Toray) were dissolved in 100 parts of methanol by heating and dip-coated on an aluminum drum to form a 0.4 μm-thick undercoat layer (UCL). Formed.

【0084】ついで実施例1〜5、比較例1〜6に至る
分散液を先のUCL上に塗布し、膜厚0.2μmのCG
Lを形成した。ついで下記化合物(CTM−1)を一
部、ポリカーボネート樹脂『ユーピロンZ200』(三
菱瓦斯化学)1.3部、微量のシリコーンオイル『KF
54』(信越化学工業)をジクロルエタン10部に溶解
した液を用いて浸漬塗布し乾燥後の膜厚25μmの感光
体サンプル1〜5,比較感光体サンプル1〜6を作製し
た。
Next, the dispersion liquids of Examples 1 to 5 and Comparative Examples 1 to 6 were applied on the above-mentioned UCL, and CG having a thickness of 0.2 μm was applied.
L was formed. Next, 1.3 parts of a polycarbonate resin "Iupilon Z200" (Mitsubishi Gas Chemical), a part of the following compound (CTM-1), a small amount of silicone oil "KF"
Sample No. 54 (Shin-Etsu Chemical Co., Ltd.) in 10 parts of dichloroethane was applied by dip coating and dried to obtain 25 μm-thick photoreceptor samples 1 to 5 and comparative photoreceptor samples 1 to 6.

【0085】[0085]

【化1】 Embedded image

【0086】評価 レーザプリンタKL−2010(コニカ)(半導体レー
ザ光源)に前述の試料を搭載し、10万回の連続プリン
トを行った。
Evaluation The above-described sample was mounted on a laser printer KL-2010 (Konica) (semiconductor laser light source), and continuous printing was performed 100,000 times.

【0087】感光体サンプル3において未露光部電位V
hが−700Vになるようにグリッド電圧を調整し、1
750μWの照射時の露光部の電位Vlを測定し、さら
にプリント終了後のVh、Vlを測定した。また、現像
バイアス−550Vで反転現像を行い、複写画像の白地
部分の黒斑点を評価した。
In the photosensitive member sample 3, the unexposed portion potential V
The grid voltage is adjusted so that h becomes -700 V, and 1
The potential Vl of the exposed part at the time of irradiation of 750 μW was measured, and Vh and Vl after printing were measured. In addition, reversal development was performed at a development bias of -550 V, and black spots on a white background portion of the copied image were evaluated.

【0088】なお黒斑点の評価は、画像解析装置『オム
ニコン3000型』(島津製作所)を用いて黒斑点の粒
径と個数を測定し、直径0.1mm以上の黒斑点が10
0cm2あたり何個あるかにより尺度とした。
The black spots were evaluated by measuring the particle size and the number of the black spots using an image analyzer “Omnicon 3000” (Shimadzu Corporation).
The scale was based on the number of pieces per 0 cm 2 .

【0089】 [0089]

【0090】[0090]

【表2】 [Table 2]

【0091】本発明の感光体サンプル1〜5は感度も高
く、繰り返しで電位Vlもあまり上昇せず、また画像欠
陥も無い。
The photoreceptor samples 1 to 5 of the present invention have high sensitivity, the potential Vl does not increase so much by repetition, and there is no image defect.

【0092】特に分散後の9.5度のピーク強度が2
4.1度に対して6割以下になっているサンプル2〜5
は優れた電子写真特性を示す。それに反して9.5度の
ピークがほとんど変化していない比較サンプル1は分散
不良が目立ち、画像欠陥も有る。
In particular, the peak intensity at 9.5 degrees after dispersion is 2
4. Samples 2 to 5 that are 60% or less of 1 degree
Shows excellent electrophotographic properties. On the other hand, the comparative sample 1 in which the peak at 9.5 degrees hardly changes has a noticeable dispersion failure and has image defects.

【0093】バインダー重量比の多いサンプル(比較感
光体2)は画像欠陥は見られなかったが電位の上昇が大
きい。顔料を図4のX線回折スペクトルを示すものに変
更した比較サンプル5も同様である。
In the sample having a large binder weight ratio (comparative photoreceptor 2), no image defect was found, but the potential rise was large. The same applies to Comparative Sample 5 in which the pigment is changed to that showing the X-ray diffraction spectrum of FIG.

【0094】バインダー比率を下げた比較感光体3は電
位の上昇は押さえられたが画像欠陥が見られる。また図
3の顔料(特開昭62−67094号の比較例の追試)
を分散させた比較感光体4は帯電性が悪い。
In the comparative photoreceptor 3 in which the binder ratio was lowered, the rise in potential was suppressed, but image defects were observed. Further, the pigment of FIG. 3 (additional test of comparative example in JP-A-62-67094)
The comparative photoreceptor 4 in which is dispersed has poor chargeability.

【0095】また実施例を詳細にみると33時間分散し
た比較サンプル5のX線回折スペクトルにおいて27.
2度のピークの脇に26.2度のピークが僅かに見え
る。これはA型結晶が一部形成してきた事を示すが、分
光吸収スペクトルを見るとA型の副ピークに当たる68
0nmのピークはまだ現れておらず(ピークの肩の部分
は700nm)、性能も高感度を保っている。
Further, when examining the example in detail, the X-ray diffraction spectrum of Comparative Sample 5 dispersed for 33 hours was 27.
The 26.2 degree peak is slightly visible beside the 2 degree peak. This indicates that a part of the A-type crystal has been formed.
The peak at 0 nm has not yet appeared (the shoulder portion of the peak is 700 nm), and the performance also maintains high sensitivity.

【0096】温度を高めて分散した比較サンプル6はA
型化の進行が進み、分光吸収スペクトルにも680nm
にピークが現れてきて感度も低下している。
Comparative sample 6 dispersed at an elevated temperature
Molding progressed, and the spectral absorption spectrum was 680 nm.
, A peak appears and the sensitivity is lowered.

【0097】[0097]

【発明の効果】本発明により、電子写真感光体を作製し
たとき残留電位が少く、繰り返し使用特性の良い、かつ
画像欠陥のない高感度で帯電性の高い感光体を提供する
ことが出来るチタニルフタロシアニン顔料の分散液と、
電子写真感光体を提供することが出来る。
According to the present invention, a titanyl phthalocyanine which has a low residual potential when an electrophotographic photosensitive member is produced, has good repeated use characteristics, and has high sensitivity and high chargeability without image defects can be provided. A pigment dispersion,
An electrophotographic photosensitive member can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】色素に光があたって正孔と光電子が発生するの
を説明する図。
FIG. 1 is a diagram illustrating generation of holes and photoelectrons when light is applied to a dye.

【図2】本発明におけるピークを説明する図。FIG. 2 is a diagram illustrating a peak in the present invention.

【図3】本発明におけるピーク強度を説明する図。FIG. 3 is a view for explaining peak intensity in the present invention.

【図4】製造後分散処理前のチタニルフタロシアニンの
X線回折図。
FIG. 4 is an X-ray diffraction diagram of titanyl phthalocyanine after production and before dispersion treatment.

【図5】製造後分散処理前のチタニルフタロシアニンの
X線回折図。
FIG. 5 is an X-ray diffraction diagram of titanyl phthalocyanine after production and before dispersion treatment.

【図6】製造後分散処理前のチタニルフタロシアニンの
X線回折図。
FIG. 6 is an X-ray diffraction diagram of titanyl phthalocyanine after production and before dispersion treatment.

【図7】本発明に係わるX線回折と分光吸収スペクトル
図。
FIG. 7 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図8】本発明に係わるX線回折と分光吸収スペクトル
図。
FIG. 8 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図9】本発明に係わるX線回折と分光吸収スペクトル
図。
FIG. 9 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図10】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 10 is a diagram showing an X-ray diffraction and a spectral absorption spectrum according to the present invention.

【図11】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 11 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図12】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 12 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図13】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 13 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図14】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 14 is an X-ray diffraction and spectral absorption spectrum chart according to the present invention.

【図15】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 15 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図16】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 16 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

【図17】本発明に係わるX線回折と分光吸収スペクト
ル図。
FIG. 17 is an X-ray diffraction and spectral absorption spectrum diagram according to the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 チタニルフタロシアニン顔料の分散液に
おいて、分散液のX線回折スペクトルがブラッグ角(2
θ)27.2±0.2度に最大ピークを有し、かつ2
4.1±0.2度に二番目の強度のピークを有し、分光
吸収スペクトルの主ピークが790±20nmにあり、
かつ690nm〜650nmに副ピークの見られない事
を特徴とするチタニルフタロシアニン顔料の分散液。
An X-ray diffraction spectrum of a dispersion of a titanyl phthalocyanine pigment has a Bragg angle (2).
θ) having a maximum peak at 27.2 ± 0.2 degrees and 2
4.1 has a second intensity peak at ± 0.2 degrees, the main peak of the spectral absorption spectrum is at 790 ± 20 nm,
A dispersion liquid of a titanyl phthalocyanine pigment, wherein a subpeak is not observed at 690 nm to 650 nm.
【請求項2】 X線回折スペクトルがブラッグ角(2
θ)の9.5±0.4度にかけて表れるピーク強度が2
4.1±0.2度のピーク強度の6割以下であり、6〜
8度にかけては明確なピークを持たない事を特徴とする
請求項1記載のチタニルフタロシアニン顔料の分散液。
2. An X-ray diffraction spectrum having a Bragg angle (2
θ) is 9.5 ± 0.4 degrees, and the peak intensity is 2
It is less than 60% of the peak intensity of 4.1 ± 0.2 degrees,
2. The dispersion of a titanyl phthalocyanine pigment according to claim 1, wherein the dispersion does not have a clear peak at 8 degrees.
【請求項3】 チタニルフタロシアニン顔料がアシッド
ペースト処理を経由して得られる事を特徴とする請求項
1又は2記載のチタニルフタロシアニン顔料の分散液。
3. The dispersion of a titanyl phthalocyanine pigment according to claim 1, wherein the titanyl phthalocyanine pigment is obtained via an acid paste treatment.
【請求項4】 チタニルフタロシアニン顔料が分散前の
X線回折測定にてブラッグ角(2θ)27.2±0.2
度に最大ピークを有し、その他に9.5±0.4度、2
4.1±0.2度に明瞭なピークを有する事を特徴とす
る請求項1、2又は3記載のチタニルフタロシアニン顔
料の分散液。
4. The X-ray diffraction measurement of the titanyl phthalocyanine pigment before dispersion leads to a Bragg angle (2θ) of 27.2 ± 0.2.
At 9.5 ± 0.4 degrees, 2
4. The dispersion of a titanyl phthalocyanine pigment according to claim 1, wherein the dispersion has a clear peak at 4.1 ± 0.2 degrees.
【請求項5】 チタニルフタロシアニン顔料の分散前の
結晶がX線回折の測定でブラッグ角(2θ)27.1±
0.2度に最大ピークを有し、その他に9.5±0.4
度、24.1±0.2度に明瞭なピークを有し、かつ
6.9〜7.6度にかけて現れるピークが最大ピークに
対して1/10以下のピーク強度しか持たない結晶型を
有する事を特徴とする請求項1〜4のいずれか1項記載
のチタニルフタロシアニン顔料の分散液。
5. The crystal before dispersion of the titanyl phthalocyanine pigment has a Bragg angle (2θ) of 27.1 ± by X-ray diffraction measurement.
It has a maximum peak at 0.2 degrees and 9.5 ± 0.4
The crystal form has a clear peak at 24.1 ± 0.2 degrees, and a peak that appears from 6.9 to 7.6 degrees has a peak intensity of 1/10 or less of the maximum peak. A dispersion of the titanyl phthalocyanine pigment according to any one of claims 1 to 4.
【請求項6】 チタニルフタロシアニン顔料がジイミノ
イソインドリンを経て合成される事を特徴とする請求項
1〜5のいずれか1項記載のチタニルフタロシアニン顔
料の分散液。
6. The dispersion of a titanyl phthalocyanine pigment according to claim 1, wherein the titanyl phthalocyanine pigment is synthesized via diiminoisoindoline.
【請求項7】 請求項1〜6のいずれか1項記載のチタ
ニルフタロシアニン顔料の分散液を使用して造られたこ
とを特徴とする電子写真感光体。
7. An electrophotographic photoreceptor produced using a dispersion of the titanyl phthalocyanine pigment according to claim 1. Description:
JP02081298A 1998-02-02 1998-02-02 Dispersion of titanyl phthalocyanine pigment and electrophotographic photoreceptor Expired - Fee Related JP3644006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02081298A JP3644006B2 (en) 1998-02-02 1998-02-02 Dispersion of titanyl phthalocyanine pigment and electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02081298A JP3644006B2 (en) 1998-02-02 1998-02-02 Dispersion of titanyl phthalocyanine pigment and electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH11218946A true JPH11218946A (en) 1999-08-10
JP3644006B2 JP3644006B2 (en) 2005-04-27

Family

ID=12037460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02081298A Expired - Fee Related JP3644006B2 (en) 1998-02-02 1998-02-02 Dispersion of titanyl phthalocyanine pigment and electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3644006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131897A (en) * 2004-10-04 2006-05-25 Mitsubishi Chemicals Corp Oxytitanium phthalocyanine composition, electrophotographic sensitizer and image formation device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131897A (en) * 2004-10-04 2006-05-25 Mitsubishi Chemicals Corp Oxytitanium phthalocyanine composition, electrophotographic sensitizer and image formation device using the same

Also Published As

Publication number Publication date
JP3644006B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3166283B2 (en) Method for producing novel crystals of hydroxygallium phthalocyanine
JPH0598181A (en) New crystal of chlorogallium phthalocyanine, photoconductive material composed of the same new crystal and electrophotographic photoreceptor using the same
JPH08209023A (en) Titaniloxyphthalocyanine crystal, its production and photosensitizer for electrophotography
JPH0354264A (en) Lowly crystalline oxytitaniumphthalocyanine, production of crystalline oxytitaniumphthalocyanine therefrom, oxytitaniumphthalocyanine of new crystal form, and electrophotographic photoreceptor prepared therefrom
JPH0333859A (en) Electrophotographic sensitive body and manufacture of same
JPH0354265A (en) Oxytitaniumphthalocyanine of new crystal form and electrophotographic photoreceptor prepared therefrom
JPH11218946A (en) Titanylphthalocyanine pigment dispersed liquid and electrophotographic photoreceptor
JP2000007933A (en) Crystal type oxotitanyl phthalocyanine, electrophotographic sensitive material and its preparation
JP2005015682A (en) Method for producing b titanyl phthalocyanine crystal, photosensitive pigment, and electrophotographic photoreceptor
JPH10148954A (en) Electrophotographic photoreceptor and electrophotographic process
JP2974036B2 (en) Electrophotographic photoreceptor
JP2000229971A (en) Titanyloxy phthalocyanine, its production and electrophotographic photoreceptor using the same
JP3563597B2 (en) Method for producing titanyloxyphthalocyanine
JPH1135842A (en) Chlorogalliumphthalocyanine crystal, treatment thereof, and electrophotographic photoreceptor using the same
JP2004002874A (en) Titanyloxyphthalocyanine crystal, its preparation method and electrophotographic photoreceptor
JP4147714B2 (en) Method for producing X-type metal-free phthalocyanine pigment
JP2000034421A (en) Organic pigment dispersion, preparation of organic pigment dispersion and organic photoconductive layer
JP3564940B2 (en) Method for producing chlorogallium phthalocyanine crystal
JP2003233206A (en) Electrophotographic photoreceptor
JP3576944B2 (en) Electrophotographic photoreceptor
JPH0560864B2 (en)
JPH11256061A (en) New mixed crystal of phthalocyanine and production of electrophotographic photoreceptor by using the same
JPH07247441A (en) Chlorogallium phthalocyanine crystal, its production and electrophotographic receptor using the same
JP2001117246A (en) Electrophotographic photoreceptor and process cartridge
JPH1160979A (en) Treatment of phthalocyanine pigment and electrophotographic photoreceptor using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees