JPH0598181A - New crystal of chlorogallium phthalocyanine, photoconductive material composed of the same new crystal and electrophotographic photoreceptor using the same - Google Patents

New crystal of chlorogallium phthalocyanine, photoconductive material composed of the same new crystal and electrophotographic photoreceptor using the same

Info

Publication number
JPH0598181A
JPH0598181A JP2744992A JP2744992A JPH0598181A JP H0598181 A JPH0598181 A JP H0598181A JP 2744992 A JP2744992 A JP 2744992A JP 2744992 A JP2744992 A JP 2744992A JP H0598181 A JPH0598181 A JP H0598181A
Authority
JP
Japan
Prior art keywords
resin
chlorogallium phthalocyanine
crystal
layer
phthalocyanine crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2744992A
Other languages
Japanese (ja)
Other versions
JP3123185B2 (en
Inventor
Masakazu Iijima
正和 飯島
Katsumi Nukada
克己 額田
Katsumi Daimon
克己 大門
Akira Imai
彰 今井
Yasuo Sakaguchi
泰生 坂口
Toru Ishii
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP04027449A priority Critical patent/JP3123185B2/en
Priority to US08/003,123 priority patent/US5358813A/en
Publication of JPH0598181A publication Critical patent/JPH0598181A/en
Application granted granted Critical
Publication of JP3123185B2 publication Critical patent/JP3123185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the subject new crystal capable of providing electrophotographic photoreceptors, excellent in sensitivity characteristics or charge holding properties without impairing dispersibility of the crystal or coating properties of a dispersion due to its high sensitivity and durability as a photoconductive material. CONSTITUTION:The objective crystal having strong diffraction peaks at Bragg angles (2theta+ or -0.2 deg.) of at least 7.4 deg., 16.6 deg., 25.5 deg. and 28.3 deg. or 6.8 deg., 17.3 deg., 23.6 deg. and 26.9 deg. or 8.7-9.2 deg., 17.6 deg., 24' deg., 27.4k and 28.8 deg. in an X-ray diffraction spectrum. This crystal is obtained by synthesizing the crystal of chlorogallium phthalocyanine according to a phthalonitrile method for melting phthalonitrile with a metallic chloride by heating, a method for reacting dilithium phthalocyanine with a metallic salt, etc., and then subjecting the resultant crystal to successive dry and wet grinding treatments.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クロロガリウムフタロ
シアニンの新規な結晶、その新規な結晶よりなる光導電
材料及びそれを用いた電子写真感光体に関し、電子写真
感光体については、特に感光層を構成する電荷発生材料
と結着樹脂の組み合わせに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel crystal of chlorogallium phthalocyanine, a photoconductive material comprising the novel crystal, and an electrophotographic photoreceptor using the same. The present invention relates to a combination of a constituent charge generating material and a binder resin.

【0002】[0002]

【従来の技術】従来、電子写真感光体における感光材料
としては、種々のものが提案されており、そして、感光
層を電荷発生層と電荷輸送層とに分離した積層型の電子
写真感光体に関しても、電荷発生材料として種々の有機
化合物が提案されている。近年、従来提案された有機光
導電材料の感光波長域を近赤外線の半導体レーザーの波
長(780〜830nm )にまで伸ばし、レーザープリンター等
のデジタル記録用の感光体として使用することの要求が
高まっており、この観点から、スクエアリリウム化合物
(特開昭49−105536号及び同58−21416
号公報)、トリフェニルアミン系トリスアゾ化合物(特
開昭61−151659号公報)、フタロシアニン化合
物(特開昭48−34189号及び同57−14874
5号公報)等が、半導体レーザー用の光導電材料として
提案されている。
2. Description of the Related Art Hitherto, various materials have been proposed as a photosensitive material in an electrophotographic photosensitive member, and a laminated type electrophotographic photosensitive member in which a photosensitive layer is separated into a charge generating layer and a charge transporting layer. Also, various organic compounds have been proposed as charge generation materials. In recent years, there has been an increasing demand for extending the photosensitive wavelength range of conventionally proposed organic photoconductive materials to the wavelength (780 to 830 nm) of near-infrared semiconductor lasers and using it as a photoreceptor for digital recording such as laser printers. From this viewpoint, the squarylium compound (JP-A-49-105536 and JP-A-58-21416) is used.
JP-A No. 61-151659), phthalocyanine compounds (JP-A Nos. 48-34189 and 57-14874).
No. 5) has been proposed as a photoconductive material for semiconductor lasers.

【0003】半導体レーザー用の感光材料として、有機
光導電材料を使用する場合は、まず、感光波長域が長波
長まで伸びていること、次に、形成される感光体の感
度、耐久性がよいことなどが要求される。しかし、上記
の有機光導電材料はこれらの諸条件を十分に満足するも
のではない。これらの欠点を克服するために、上記の有
機光導電材料のうちフタロシアニン化合物についてみれ
ば、電子写真感光体用材料、光記録用材料及び光電変換
材料として近年広範に検討されており、特に結晶型と電
子写真特性の関係が検討されている。
When an organic photoconductive material is used as a photosensitive material for a semiconductor laser, first, the photosensitive wavelength region is extended to a long wavelength, and then the sensitivity and durability of the formed photoreceptor are good. Things are required. However, the above organic photoconductive material does not fully satisfy these conditions. In order to overcome these drawbacks, phthalocyanine compounds among the above organic photoconductive materials have been extensively studied in recent years as materials for electrophotographic photoreceptors, materials for optical recording and photoelectric conversion materials, and particularly crystalline type materials. And the relationship between electrophotographic characteristics are being investigated.

【0004】一般に、フタロシアニン化合物は、製造方
法、処理方法の違いにより、幾つかの結晶型を示し、こ
の結晶型の違いはフタロシアニン化合物の光電変換特性
に大きな影響を及ぼすことが知られている。フタロシア
ニン化合物の結晶型については、例えば、銅フタロシア
ニンについてみると、安定系のβ型以外に、α、ε、
π、x、ρ、γ、δ等の結晶型が知られており、これら
の結晶型は、機械的歪力、硫酸処理、有機溶剤処理及び
熱処理等により、相互に移転が可能であることが知られ
ている(例えば米国特許第2,770,629号、同第
3,160,635号、同第3,708,292号及び
同3,357,989号明細書)。また、特開昭50−
38543号公報には、銅フタロシアニンの結晶型の違
いと電子写真特性の関係について、α、β、γ及びε型
の比較ではε型が最も高い感度を示すことが記載されて
いる。
It is known that phthalocyanine compounds generally show several crystal types depending on the production method and the treatment method, and the difference in the crystal types has a great influence on the photoelectric conversion characteristics of the phthalocyanine compound. Regarding the crystal form of the phthalocyanine compound, for example, when looking at copper phthalocyanine, α, ε,
Crystal forms such as π, x, ρ, γ, and δ are known, and these crystal forms can be mutually transferred by mechanical strain, sulfuric acid treatment, organic solvent treatment, heat treatment, and the like. It is known (for example, US Pat. Nos. 2,770,629, 3,160,635, 3,708,292 and 3,357,989). In addition, JP-A-50-
In Japanese Patent No. 38543, regarding the relationship between the difference in crystal type of copper phthalocyanine and the electrophotographic characteristics, it is described that the ε type has the highest sensitivity in comparison of α, β, γ and ε types.

【0005】さらにまた、クロロガリウムフタロシアニ
ンに関しては、電子写真学会誌,26(3),240,
(1987)に、特定のブラッグ角度に回折ピークを有
するクロロガリウムフタロシアニンの結晶型について記
載されているが、本発明のものとは、結晶型が異なるも
のであり、電子写真への応用についての記載もない。一
方、特開昭59−44053号公報、信教技報CPM8
1−69,39(1981)等には、電子写真への応用
についての記載があり、また、特開平1−221459
号公報には、特定のブラッグ角度に回折ピークを有する
クロロガリウムフタロシアニン及びそれを用いた電子写
真感光体が記載されている。
Furthermore, regarding chlorogallium phthalocyanine, the journal of the Electrophotographic Society, 26 (3), 240,
(1987) describes a crystal form of chlorogallium phthalocyanine having a diffraction peak at a specific Bragg angle. However, the crystal form of the present invention is different from that of the present invention, and a description of application to electrophotography. Nor. On the other hand, Japanese Patent Laid-Open No. 59-44053, Reitech Giho CPM8
1-69, 39 (1981) and the like, there is a description of application to electrophotography, and JP-A-1-221459.
The publication describes chlorogallium phthalocyanine having a diffraction peak at a specific Bragg angle and an electrophotographic photosensitive member using the same.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
クロロガリウムフタロシアニンに限らず、従来提案され
ているフタロシアニン化合物は、感光材料として使用し
た場合の光感度と耐久性の点が、未だ十分満足できるも
のではなく、また、その製造に際しても、結晶型の変換
操作が複雑であったり、結晶型の制御が難しい等の問題
があった。さらに、クロロガリウムフタロシアニンは、
結着樹脂中に分散して使用する際の分散性や分散液の塗
布性が悪く、感光体として利用する場合、感度特性や電
荷保持性に問題があり、また画質上もカブリや黒点等の
欠陥を生じ、十分満足できる特性を具備してなかった。
However, not only the above-mentioned chlorogallium phthalocyanine but also the conventionally proposed phthalocyanine compounds are still satisfactory in terms of photosensitivity and durability when used as a photosensitive material. Moreover, in the production thereof, there are problems that the crystal type conversion operation is complicated, and that the crystal type is difficult to control. In addition, chlorogallium phthalocyanine is
When used as a photoreceptor, there is a problem in sensitivity characteristics and charge retention when dispersed in a binder resin, and the coatability of the dispersion is poor. A defect was generated, and it did not have sufficiently satisfactory characteristics.

【0007】本発明は、従来の技術における上述のよう
な問題点に鑑みてなされたものである。すなわち、本発
明の目的は、クロロガリウムフタロシアニンの新規な結
晶を提供することにある。また、本発明の他の目的は、
感度特性と耐久性に優れたクロロガリウムフタロシアニ
ンの新規な結晶よりなる光導電材料、及びより高い感度
特性を有し、電荷保持性が良好で、画質欠陥の少ない電
子写真感光体を提供することにある。
The present invention has been made in view of the above-mentioned problems in the prior art. That is, an object of the present invention is to provide a novel crystal of chlorogallium phthalocyanine. Further, another object of the present invention is to
To provide a photoconductive material composed of a novel chlorogallium phthalocyanine crystal having excellent sensitivity characteristics and durability, and an electrophotographic photoreceptor having higher sensitivity characteristics, good charge retention, and few image quality defects. is there.

【0008】[0008]

【課題を解決するための手段】本発明者等は、鋭意研究
を重ねた結果、合成によって得られたクロロガリウムフ
タロシアニンを簡単な処理を行うことによって、光導電
材料として高い感度と耐久性を有する新規な結晶が得ら
れることを見出し、さらに、この新規な結晶と特定の結
着樹脂を感光層に含有する電子写真感光体は、その作製
時に結晶の分散性や分散液の塗布性を損なうことなく、
一層優れた感度特性を有し、電荷保持特性が良好で、画
質欠陥が少ないことを見出して、本発明を完成するに至
った。すなわち、本発明は、X線回折スペクトルにおい
て、ブラッグ角度(2θ±0.2°)が少なくとも i)
7.4°、16.6°、25.5°及び28.3°、i
i) 6.8°、17.3°、23.6°及び26.9°
または iii) 8.7°〜9.2°、17.6°、24.
0°、27.4°及び28.8°に強い回折ピークを有
するクロロガリウムフタロシアニンの新規な結晶にあ
る。本発明は、また、上記の回折ピークを有するクロロ
ガリウムフタロシアニン結晶の少なくとも1種以上より
なる電子写真感光体用光導電材料にある。本発明は、さ
らに、上記クロロガリウムフタロシアニン結晶を少なく
とも1種以上含有する感光層を導電性支持体上に被覆し
てなる電子写真感光体にあり、感光層はクロロガリウム
フタロシアニン結晶並びにポリビニルアセタール系樹
脂、塩化ビニル−酢酸ビニル系共重合体、フェノキシ樹
脂及び変性エーテル型ポリエステル樹脂から選ばれる少
なくとも1種の結着樹脂を含有する電荷発生層と電荷輸
送層とを順次積層した積層構造のものが特に好ましい。
As a result of intensive studies, the inventors of the present invention have a high sensitivity and durability as a photoconductive material by subjecting chlorogallium phthalocyanine obtained by synthesis to a simple treatment. It has been found that a new crystal can be obtained, and further, an electrophotographic photoreceptor containing the novel crystal and a specific binder resin in the photosensitive layer, impairs the crystal dispersibility and the coating property of the dispersion at the time of its production. Without
The inventors have found that they have more excellent sensitivity characteristics, good charge retention characteristics, and few image quality defects, and have completed the present invention. That is, according to the present invention, in the X-ray diffraction spectrum, the Bragg angle (2θ ± 0.2 °) is at least i).
7.4 °, 16.6 °, 25.5 ° and 28.3 °, i
i) 6.8 °, 17.3 °, 23.6 ° and 26.9 °
Or iii) 8.7 ° to 9.2 °, 17.6 °, 24.
It is a novel crystal of chlorogallium phthalocyanine having strong diffraction peaks at 0 °, 27.4 ° and 28.8 °. The present invention also resides in a photoconductive material for an electrophotographic photoreceptor, which comprises at least one kind of chlorogallium phthalocyanine crystal having the above diffraction peak. The present invention further resides in an electrophotographic photosensitive member comprising a conductive support and a photosensitive layer containing at least one kind of the chlorogallium phthalocyanine crystal described above, wherein the photosensitive layer is a chlorogallium phthalocyanine crystal and a polyvinyl acetal resin. , A vinyl chloride-vinyl acetate-based copolymer, a phenoxy resin and a modified ether type polyester resin having a laminated structure in which a charge generation layer containing at least one binder resin and a charge transport layer are sequentially laminated. preferable.

【0009】以下、本発明について詳述する。光導電材
料として有用な本発明のクロロガリウムフタロシアニン
の新規な結晶は、X線回折スペクトルにおいて、ブラッ
グ角度(2θ±0.2°)が少なくともi)7.4°、1
6.6°、25.5°及び28.3°、ii) 6.8°、
17.3°、23.6°及び26.9°または iii)
8.7°〜9.2°、17.6°、24.0°、27.
4°及び28.8°に強い回折ピークを有するものであ
り、次のようにして製造される。すなわち、フタロニト
リルと金属塩化物とを加熱融解または有機溶媒の存在下
で加熱するフタロニトリル法、無水フタル酸を尿素及び
金属塩化物と加熱融解または有機溶媒の存在下で加熱す
るワイラー法、シアノベンズアミドと金属塩とを高温で
反応させる方法、ジリチウムフタロシアニンと金属塩と
を反応させる方法等、公知のフタロシアニンの合成方法
によって製造することができる。
The present invention will be described in detail below. The novel crystal of the chlorogallium phthalocyanine of the present invention, which is useful as a photoconductive material, has a Bragg angle (2θ ± 0.2 °) of at least i) 7.4 °, 1 in the X-ray diffraction spectrum.
6.6 °, 25.5 ° and 28.3 °, ii) 6.8 °,
17.3 °, 23.6 ° and 26.9 ° or iii)
8.7 ° to 9.2 °, 17.6 °, 24.0 °, 27.
It has strong diffraction peaks at 4 ° and 28.8 ° and is manufactured as follows. That is, the phthalonitrile method in which phthalonitrile and a metal chloride are heated and melted or heated in the presence of an organic solvent, the phthalic anhydride is heated and melted with urea and a metal chloride, or a Weiler method in which it is heated in the presence of an organic solvent, cyano. It can be produced by a known phthalocyanine synthesis method such as a method of reacting benzamide with a metal salt at a high temperature, a method of reacting dilithium phthalocyanine with a metal salt, or the like.

【0010】これらの合成方法において使用する有機溶
媒としては、α−クロロナフタレン、β−クロロナフタ
レン、α−メチルナフタレン、メトキシナフタレン、ジ
フェニルエタン、エチレングリコール、ジアルキルエー
テル、キノリン、スルホラン、ジクロロベンゼン、ジク
ロロトルエン等の反応不活性な高沸点の溶媒が望まし
い。すなわち、本発明のクロロガリウムフタロシアニン
は、例えばフタロニトリルと塩化ガリウム化合物を上記
有機溶媒中で150〜300℃で加熱攪拌して合成する
ことができる。また、フタロニトリルの代わりに、ジイ
ミノイソインドリン等のインドリン系化合物を使用する
こともできる。
Organic solvents used in these synthetic methods include α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, ethylene glycol, dialkyl ether, quinoline, sulfolane, dichlorobenzene, dichlorobenzene. A reaction-inert, high-boiling-point solvent such as toluene is desirable. That is, the chlorogallium phthalocyanine of the present invention can be synthesized, for example, by heating and stirring a phthalonitrile and a gallium chloride compound in the above organic solvent at 150 to 300 ° C. Further, an indoline compound such as diiminoisoindoline can be used instead of phthalonitrile.

【0011】上記の方法で製造したクロロガリウムフタ
ロシアニンの結晶は、大粒径である場合が多く、本発明
の上記X線回折ピークを有するクロロガリウムフタロシ
アニン結晶を得るためには、場合により、微細化するこ
とが必要である。微細化は、磨砕法等の機械的処理法や
アシッドペースティング法、アシッドスラリー法等の化
学的処理法の中から選択され、それらの2種以上の処理
法を組み合わせることもできるが、上記の方法で製造し
た比較的大粒径のものを自動乳鉢、遊星ミル、振動ボー
ルミル、CFミル、ローラーミル、サンドミル、ニーダ
ー等の機械的処理法で乾式磨砕するか、あるいは乾式磨
砕後さらに磨砕メディアと共に溶剤中で湿式磨砕するこ
とが好ましい。乾式磨砕の際、必要に応じて食塩、ぼう
硝等の磨砕助剤を用いると、非常に効率よく、粒径の整
った本発明の結晶型に転移させることが可能となる。磨
砕助剤はクロロガリウムフタロシアニン結晶に対し0.
5倍〜20倍、好ましくは1〜10倍用いる。そして、
乾式磨砕後のクロロガリウムフタロシアニン結晶は、一
次粒子径が0.3μm以下であることが望ましい。
The crystals of chlorogallium phthalocyanine produced by the above method often have a large particle size, and in order to obtain the chlorogallium phthalocyanine crystals having the above X-ray diffraction peak of the present invention, it is necessary to make them finer. It is necessary to. The micronization is selected from a mechanical treatment method such as a grinding method and a chemical treatment method such as an acid pasting method and an acid slurry method, and two or more kinds of these treatment methods can be combined. The relatively large particle size produced by the method is dry-ground by a mechanical treatment method such as an automatic mortar, a planetary mill, a vibrating ball mill, a CF mill, a roller mill, a sand mill, and a kneader, or further after the dry-grinding. Wet milling in a solvent with milling media is preferred. During dry grinding, if necessary, a grinding aid such as sodium chloride and sodium sulfate is used, so that the crystal form of the present invention having a uniform particle size can be transferred very efficiently. The grinding aid is 0. 0 for chlorogallium phthalocyanine crystals.
It is used 5 to 20 times, preferably 1 to 10 times. And
The chlorogallium phthalocyanine crystal after dry grinding preferably has a primary particle size of 0.3 μm or less.

【0012】上記の乾式磨砕に続いて湿式磨砕を併用す
ると、結晶性が良好で、粒径の整ったクロロガリウムフ
タロシアニンを得ることができる。この湿式磨砕処理に
おいて使用する溶剤は、例えば、トルエン、クロロベン
ゼン等の芳香族系溶剤、ジメチルホルムアミド(DM
F)、Nーメチルピロリドン等のアミド系溶剤、メタノ
ール、エタノール、n−ブタノール等の脂肪族アルコー
ル系溶剤、グリセリン、ポリエチレングリコール等の脂
肪族多価アルコール系溶剤、シクロヘキサノン、メチル
エチルケトン(MEK)等のケトン系溶剤、塩化メチレ
ン等の脂肪族ハロゲン化炭化水素系溶剤、テトラヒドロ
フラン(THF)等のエーテル系溶剤、水などから1種
または2種以上の混合溶剤の形で選択することができ
る。また、磨砕装置としては、ボールミル、アトライタ
ー、ロールミル、サンドミル、ホモミキサー等を用いる
ことができるが、これ等に限定されるものではない。溶
剤の量は、クロロガリウムフタロシアニン1部に対して
1〜200部、好ましくは10〜100部が用いられ
る。また、湿式磨砕の処理時間は4時間以上が好まし
く、処理温度は0℃〜溶剤の沸点以下、好ましくは10
〜60℃で処理される。このような溶剤処理は、必要に
応じてガラスビーズ、スチールビーズ、アルミナビーズ
等の磨砕メディアでミリングしながら行ってもよい。
When dry grinding is used in combination with wet grinding, chlorogallium phthalocyanine having good crystallinity and a uniform particle size can be obtained. The solvent used in this wet milling treatment is, for example, an aromatic solvent such as toluene or chlorobenzene, or dimethylformamide (DM).
F), amide solvents such as N-methylpyrrolidone, aliphatic alcohol solvents such as methanol, ethanol and n-butanol, aliphatic polyhydric alcohol solvents such as glycerin and polyethylene glycol, cyclohexanone and methyl ethyl ketone (MEK) The solvent can be selected from the group consisting of a ketone solvent, an aliphatic halogenated hydrocarbon solvent such as methylene chloride, an ether solvent such as tetrahydrofuran (THF), water and the like in the form of one kind or a mixed solvent of two or more kinds. Further, as the grinding device, a ball mill, an attritor, a roll mill, a sand mill, a homomixer or the like can be used, but the grinding device is not limited to these. The amount of the solvent used is 1 to 200 parts, preferably 10 to 100 parts, relative to 1 part of chlorogallium phthalocyanine. The processing time of wet grinding is preferably 4 hours or longer, and the processing temperature is 0 ° C to the boiling point of the solvent or less, preferably 10 ° C.
Processed at ~ 60 ° C. Such solvent treatment may be carried out while milling with a grinding medium such as glass beads, steel beads, alumina beads or the like, if necessary.

【0013】次に、上記の処理方法により得られるクロ
ロガリウムフタロシアニン結晶を感光層における光導電
性材料として作製される電子写真感光体について説明す
る。本発明の電子写真感光体は、感光層が単層構造のも
のでもあるいは電荷発生層と電荷輸送層とに機能分離さ
れた積層構造のものでもよい。感光層が積層構造を有す
る場合において、電荷発生層は上記クロロガリウムフタ
ロシアニン結晶及び結着樹脂から構成される。図1ない
し図4は、本発明の電子写真感光体を模式的に示す断面
図である。図1において、電荷発生層1及びその上に積
層された電荷輸送層2からなる感光層が導電性支持体3
上に被覆されている。図2においては、電荷発生層1と
導電性支持体3の間に下引層4が介在しており、また、
図3においては、感光層の表面に保護層5が被覆されて
いる。さらに、図4においては、下引層4と保護層5の
両者が積層されている。以下、単層構造からなる感光層
の説明を途中に加えながら、上記層1〜5について詳細
に説明する。
Next, an electrophotographic photoreceptor prepared by using the chlorogallium phthalocyanine crystal obtained by the above-mentioned processing method as a photoconductive material in the photosensitive layer will be described. The electrophotographic photosensitive member of the present invention may have a single-layered photosensitive layer or a laminated structure in which a charge generation layer and a charge transport layer are functionally separated. When the photosensitive layer has a laminated structure, the charge generation layer is composed of the chlorogallium phthalocyanine crystal and the binder resin. 1 to 4 are sectional views schematically showing the electrophotographic photosensitive member of the present invention. In FIG. 1, a photosensitive layer comprising a charge generation layer 1 and a charge transport layer 2 laminated thereon is a conductive support 3
Is coated on top. In FIG. 2, an undercoat layer 4 is interposed between the charge generation layer 1 and the conductive support 3, and
In FIG. 3, the surface of the photosensitive layer is covered with the protective layer 5. Further, in FIG. 4, both the undercoat layer 4 and the protective layer 5 are laminated. The layers 1 to 5 will be described in detail below with the description of the photosensitive layer having a single-layer structure in the middle.

【0014】本発明の電子写真感光体における電荷発生
層1は、結着樹脂を有機溶剤に溶解した溶液に前記クロ
ロガリウムフタロシアニン結晶を分散させて塗布液を調
製し、それを導電性支持体3上に塗布することによって
形成される。使用する結着樹脂は広範な樹脂から選択す
ることができる。好ましい結着樹脂としては、例えば、
ポリビニルブチラール樹脂、ポリビニルホルマール樹
脂、ブチラールの一部がホルマールやアセトアセタール
等で変性された部分アセタール化ポリビニルブチラール
樹脂等のポリビニルアセタール系樹脂、ポリアリレート
樹脂(ビスフェノールAとフタル酸の重縮合体等)、ポ
リカーボネート樹脂、ポリエステル樹脂、変性エーテル
型ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル
樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、
ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポ
リアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピ
リジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エ
ポキシ樹脂、シリコン樹脂、ポリビニルアルコール樹
脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニ
ル−酢酸ビニル共重合体、ヒドロキシル変性塩化ビニル
−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−
酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マ
イレン酸共重合体等の塩化ビニル−酢酸ビニル系共重合
体、スチレン−ブタジエン共重合体、塩化ビニリデン−
アクリロニトリル共重合体、スチレン−アルキッド樹
脂、シリコン−アルキッド樹脂、フェノール−ホルムア
ルデヒド樹脂等の絶縁性樹脂をあげることができる。ま
た、ポリ-N- ビニルカルバゾール、ポリビニルアントラ
セン、ポリビニルピレン等の有機光導電性ポリマーから
選択することもできる。しかし、これらの絶縁性樹脂あ
るいは有機光導電性ポリマーに限定されるものではな
い。またこれらの結着樹脂は単独または2種以上混合し
て用いることができる。
For the charge generation layer 1 in the electrophotographic photosensitive member of the present invention, a coating solution is prepared by dispersing the chlorogallium phthalocyanine crystal in a solution in which a binder resin is dissolved in an organic solvent to prepare a coating solution. It is formed by applying on top. The binder resin used can be selected from a wide range of resins. As a preferable binder resin, for example,
Polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin such as partially acetalized polyvinyl butyral resin obtained by partially modifying butyral with formal or acetoacetal, polyarylate resin (polycondensate of bisphenol A and phthalic acid, etc.) , Polycarbonate resin, polyester resin, modified ether type polyester resin, phenoxy resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin,
Polystyrene resin, acrylic resin, methacrylic resin, polyacrylamide resin, polyamide resin, polyvinyl pyridine resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, casein, vinyl chloride-vinyl acetate Polymer, hydroxyl-modified vinyl chloride-vinyl acetate copolymer, carboxyl-modified vinyl chloride-
Vinyl chloride-vinyl acetate copolymers such as vinyl acetate copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, styrene-butadiene copolymers, vinylidene chloride-
Insulating resins such as acrylonitrile copolymer, styrene-alkyd resin, silicon-alkyd resin, and phenol-formaldehyde resin can be used. It can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. However, it is not limited to these insulating resins or organic photoconductive polymers. These binder resins may be used alone or in combination of two or more.

【0015】結着樹脂を溶解する溶剤としては、下引層
4を溶解しないものから選択するのが好ましい。具体的
な有機溶剤としては、メタノール、エタノール、n−プ
ロパノール、i−プロパノール、n−ブタノール、ベン
ジルアルコール等のアルコール類、アセトン、MEK、
シクロヘキサノン等のケトン類、DMF、ジメチルアセ
トアミド等のアミド類、ジメチルスルホキシド等のスル
ホキシド類、THF、ジオキサン、ジエチルエーテル、
メチルセロソルブ、エチルセロソルブ等の環状または直
鎖状のエーテル類、酢酸メチル、酢酸エチル、酢酸n−
ブチル等のエステル類、塩化メチレン、クロロホルム、
四塩化炭素、ジクロロエチレン、トリクロロエチレン等
の脂肪族ハロゲン化炭化水素類、リグロイン等の鉱油、
ベンゼン、トルエン、キシレン等の芳香族炭化水素類、
クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン
化炭化水素類などを単独または2種以上混合して用いる
ことができる。
The solvent that dissolves the binder resin is preferably selected from those that do not dissolve the undercoat layer 4. Specific organic solvents include alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol and benzyl alcohol, acetone, MEK,
Ketones such as cyclohexanone, amides such as DMF and dimethylacetamide, sulfoxides such as dimethylsulfoxide, THF, dioxane, diethyl ether,
Cyclic or linear ethers such as methyl cellosolve and ethyl cellosolve, methyl acetate, ethyl acetate, acetic acid n-
Esters such as butyl, methylene chloride, chloroform,
Aliphatic halogenated hydrocarbons such as carbon tetrachloride, dichloroethylene and trichlorethylene, mineral oil such as ligroin,
Aromatic hydrocarbons such as benzene, toluene, xylene,
Aromatic halogenated hydrocarbons such as chlorobenzene and dichlorobenzene can be used alone or in combination of two or more.

【0016】前記クロロガリウムフタロシアニン結晶と
結着樹脂との配合比(重量)は、40:1〜1:20、
好ましくは10:1〜1:10の範囲である。クロロガ
リウムフタロシアニン結晶の比率が高すぎる場合には塗
布液の安定性が低下し、一方、低すぎる場合には感光体
の感度が低下するので、上記範囲に設定するのが好まし
い。クロロガリウムフタロシアニン結晶を分散させる方
法としては、ボールミル分散法、アトライター分散法、
サンドミル分散法等の通常の方法を用いることができ
る。この際、粒子を0.5μm以下、好ましくは0.3
μm以下、さらに好ましくは0.15μm以下の粒子サ
イズに微細化することが有効である。また、分散によっ
てクロロガリウムフタロシアニンの結晶型が変化しない
条件が必要とされるが、本発明で実施した上記の分散法
のいずれを採用しても分散前と結晶型が変化していない
ことが確認されている。
The mixing ratio (weight) of the chlorogallium phthalocyanine crystal and the binder resin is 40: 1 to 1:20,
It is preferably in the range of 10: 1 to 1:10. If the proportion of chlorogallium phthalocyanine crystals is too high, the stability of the coating solution will be reduced, while if it is too low, the sensitivity of the photoreceptor will be reduced, so it is preferable to set the above range. As a method for dispersing the chlorogallium phthalocyanine crystal, a ball mill dispersion method, an attritor dispersion method,
A usual method such as a sand mill dispersion method can be used. At this time, the particles are 0.5 μm or less, preferably 0.3 μm.
It is effective to reduce the particle size to less than or equal to μm, and more preferably to less than or equal to 0.15 μm. Further, it is necessary that the dispersion does not change the crystal form of chlorogallium phthalocyanine, but it is confirmed that the crystal form does not change from that before the dispersion even if any of the above dispersion methods carried out in the present invention is adopted. Has been done.

【0017】塗布液の塗布は、浸漬コーティング法、ス
プレーコーティング法、スピナーコーティング法、ビー
ドコーティング法、マイヤーバーコーティング法、ブレ
ードコーティング法、ローラーコーティング法、エアー
ナイフコーティング法、カーテンコーティング法等のコ
ーティング法を採用することができる。また、塗布液の
乾燥は、室温における指触乾燥後、30〜200℃の温
度で5分〜2時間の範囲で静止または送風下で加熱乾燥
するのが好ましい。そして、電荷発生層1の膜厚は、通
常0.05〜5μm、好ましくは0.2〜2.0μmが
適当である。
The coating liquid is applied by a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a Meyer bar coating method, a blade coating method, a roller coating method, an air knife coating method, a curtain coating method or the like. Can be adopted. The coating liquid is preferably dried by touching at room temperature and then by heat-drying at a temperature of 30 to 200 ° C. for 5 minutes to 2 hours while still or under blowing air. The thickness of the charge generation layer 1 is usually 0.05 to 5 μm, preferably 0.2 to 2.0 μm.

【0018】本発明においては、前記した結着樹脂のう
ち、クロロガリウムフタロシアニン結晶を結着樹脂に分
散する際の分散性、分散液の塗布性や感光体の感度特
性、電荷保持特性、画質特性等の点から、ポリビニルア
セタール系樹脂、塩化ビニル−酢酸ビニル系共重合体、
フェノキシ樹脂及び変性エーテル型ポリエステル樹脂か
ら選ばれる少なくとも1種より選択することが好まし
い。さらに、X線回折スペクトルにおけるブラッグ角度
(2θ±0.2°)が少なくとも7.4°、16.6
°、25.5°及び28.3°に強い回折ピークを有す
るクロロガリウムフタロシアニン結晶と上記した結着樹
脂とを組み合わせると、電子写真感光体の写真特性が特
に優れている。
In the present invention, among the above-mentioned binder resins, the dispersibility in dispersing chlorogallium phthalocyanine crystals in the binder resin, the coatability of the dispersion liquid, the sensitivity characteristics of the photoconductor, the charge retention characteristics, and the image quality characteristics. From the viewpoint of, for example, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer,
It is preferable to select from at least one selected from phenoxy resins and modified ether type polyester resins. Furthermore, the Bragg angle (2θ ± 0.2 °) in the X-ray diffraction spectrum is at least 7.4 ° and 16.6.
When the chlorogallium phthalocyanine crystal having strong diffraction peaks at °, 25.5 ° and 28.3 ° and the above-mentioned binder resin are combined, the photographic characteristics of the electrophotographic photoreceptor are particularly excellent.

【0019】本発明の電子写真感光体における電荷輸送
層2は、電荷輸送材料を適当な結着樹脂中に含有させて
形成される。電荷輸送材料としては、2,5−ビス−
(p−ジエチルアミノフェニル)−1,3,4−オキサ
ジアゾール等のオキサジアゾール誘導体、1,3,5−
トリフェニルピラゾリン、1−[ピリジル−(2)]−
3−(p−ジエチルアミノスチリル)−5−(p−ジエ
チルアミノフェニル)ピラゾリン等のピラゾリン誘導
体、トリフェニルアミン、ジベンジルアニリン等の芳香
族第三級モノアミノ化合物、N,N′−ジフェニル−
N,N′−ビス−(m−トリル)ベンジジン等の芳香族
第三級ジアミノ化合物、3−(p−ジエチルアミノフェ
ニル)−5,6−ジ−(p−メトキシフェニル)−1,
2,4−トリアジン等の1,2,4−トリアジン誘導
体、4−ジエチルアミノベンズアルデヒド 2,2−ジフェ
ニルヒドラゾン等のヒドラゾン誘導体、2−フェニル−
4−スチリルキナゾリン等のキナゾリン誘導体、6−ヒ
ドロキシ−2,3−ジ−(p−メトキシフェニル)ベン
ゾフラン等のベンゾフラン誘導体、p−(2,2−ジフ
ェニルビニル)−N,N−ジフェニルアニリン等のα−
スチルベン誘導体、トリフェニルメタン誘導体、Jou
rnal of ImagingScience,2
9,7〜10(1985)に記載されているエナミン誘
導体、カルバゾール、N−エチルカルバゾール、ポリ−
N−ビニルカルバゾール、ハロゲン化ポリ−N−ビニル
カルバゾール、ポリグリシジルカルバゾール、ポリ−γ
−カルバゾールエチルグルタメート及びその誘導体、さ
らには、アントラセン、ピレン、フェナントレン等の多
環芳香族化合物、インドール、イミダゾール等の含窒素
複素環化合物、ポリビニルアントラセン、ポリ−9−ビ
ニルフェニルアントラセン、ポリビニルピレン、ポリビ
ニルアクリジン、ポリビニルアセナフチレン、ピレン−
ホルムアルデヒド樹脂、エチルカルバゾール−ホルムア
ルデヒド樹脂等の公知の電荷輸送材料を用いることがで
きるが、これらに限定されるものではない。また、これ
らの電荷輸送材料は単独または2種以上混合して用いら
れ、電荷輸送材料がポリマーの場合はそれ自体で層を形
成してもよい。
The charge transport layer 2 in the electrophotographic photosensitive member of the present invention is formed by containing a charge transport material in a suitable binder resin. As the charge transport material, 2,5-bis-
Oxadiazole derivatives such as (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-
Triphenylpyrazoline, 1- [pyridyl- (2)]-
Pyrazoline derivatives such as 3- (p-diethylaminostyryl) -5- (p-diethylaminophenyl) pyrazoline, aromatic tertiary monoamino compounds such as triphenylamine and dibenzylaniline, N, N'-diphenyl-
Aromatic tertiary diamino compounds such as N, N'-bis- (m-tolyl) benzidine, 3- (p-diethylaminophenyl) -5,6-di- (p-methoxyphenyl) -1,
1,2-Triazine derivatives such as 2,4-triazine, hydrazone derivatives such as 4-diethylaminobenzaldehyde 2,2-diphenylhydrazone, 2-phenyl-
Quinazoline derivatives such as 4-styrylquinazoline, benzofuran derivatives such as 6-hydroxy-2,3-di- (p-methoxyphenyl) benzofuran, p- (2,2-diphenylvinyl) -N, N-diphenylaniline and the like. α-
Stilbene derivative, triphenylmethane derivative, Jou
rnal of ImagingScience, 2
9, 7-10 (1985), enamine derivatives, carbazole, N-ethylcarbazole, poly-
N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyglycidylcarbazole, poly-γ
-Carbazole ethyl glutamate and its derivatives, and further polycyclic aromatic compounds such as anthracene, pyrene and phenanthrene, nitrogen-containing heterocyclic compounds such as indole and imidazole, polyvinylanthracene, poly-9-vinylphenylanthracene, polyvinylpyrene, polyvinyl Acridine, polyvinyl acenaphthylene, pyrene-
Well-known charge transport materials such as formaldehyde resin and ethylcarbazole-formaldehyde resin can be used, but not limited thereto. These charge transport materials may be used alone or in combination of two or more, and when the charge transport material is a polymer, it may form a layer by itself.

【0020】電荷輸送層2を形成する結着樹脂として
は、ポリカーボネート樹脂、ポリエステル樹脂、メタク
リル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩
化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル
樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン
−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル
共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共
重合体、シリコン樹脂、シリコン−アルキッド樹脂、フ
ェノール−ホルムアルデヒド樹脂、スチレン−アルキッ
ド樹脂、ポリ−N−ビニルカルバゾール樹脂等、前記電
荷発生層1に使用されるものと同様の樹脂が使用でき
る。電荷輸送層2は、上記電荷輸送材料と結着樹脂及び
前記電荷発生層1を形成する際に用いる有機溶剤と同様
のものを用いて塗布液を調製した後、前記したコーティ
ング法と同様の手段により塗布液を電荷発生層1上に塗
布して形成することができる。その際、電荷輸送材料と
結着樹脂との配合比(重量)は、10:1〜1:5が好
ましい。また、電荷輸送層2の膜厚は、一般的には5〜
50μm程度、好ましくは10〜30μmが適当ある。
The binder resin forming the charge transport layer 2 includes polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, and styrene-butadiene copolymer. Polymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin The same resin as that used for the charge generation layer 1 such as a poly-N-vinylcarbazole resin can be used. The charge transport layer 2 is prepared by preparing a coating solution using the above charge transport material, a binder resin, and the same organic solvent as that used in forming the charge generating layer 1, and then applying the same means as the coating method described above. Thus, the coating liquid can be applied onto the charge generation layer 1 to form the same. At that time, the compounding ratio (weight) of the charge transport material and the binder resin is preferably 10: 1 to 1: 5. The thickness of the charge transport layer 2 is generally 5 to
About 50 μm, preferably 10 to 30 μm is suitable.

【0021】本発明の感光層が単層構造を有する場合に
おいては、感光層はクロロガリウムフタロシアニン結晶
及び電荷輸送材料が結着樹脂に分散された光導電層より
なる。電荷輸送材料及び結着樹脂は前記と同様なものが
使用され、前記と同様の方法に従って光導電層が形成さ
れる。その場合、結着樹脂は、前記と同様の理由によ
り、ポリビニルアセタール系樹脂、塩化ビニル−酢酸ビ
ニル系共重合体、フェノキシ樹脂及び変性エーテル型ポ
リエステル樹脂から選ばれる少なくとも1種より選択す
ることが最も好ましい。そして、電荷輸送材料と結着樹
脂との配合比(重量)は1:20〜5:1、クロロガリ
ウムフタロシアニン結晶と電荷輸送材料との配合比(重
量)は1:10〜10:1程度に設定するのが好まし
い。
When the photosensitive layer of the present invention has a single layer structure, the photosensitive layer comprises a photoconductive layer in which a chlorogallium phthalocyanine crystal and a charge transport material are dispersed in a binder resin. As the charge transport material and the binder resin, the same materials as described above are used, and the photoconductive layer is formed by the same method as described above. In that case, the binder resin is most preferably selected from at least one selected from polyvinyl acetal resins, vinyl chloride-vinyl acetate copolymers, phenoxy resins and modified ether type polyester resins for the same reason as above. preferable. The compounding ratio (weight) of the charge transport material and the binder resin is 1:20 to 5: 1, and the compounding ratio (weight) of the chlorogallium phthalocyanine crystal and the charge transport material is about 1:10 to 10: 1. It is preferable to set.

【0022】導電性支持体3としては、電子写真感光体
として使用することが可能なものならば、いかなるもの
も使用することができる。具体的には、アルミニウム、
ニッケル、クロム、ステンレス鋼等の金属類、アルミニ
ウム、チタニウム、ニッケル、クロム、ステンレス、
金、バナジウム、酸化スズ、酸化インジウム、ITO等
の薄膜を被覆したプラスチックフィルムなどあるいは導
電性付与剤を塗布または含浸させた紙、プラスチックフ
ィルムなどがあげられる。これらの導電性支持体3は、
ドラム状、シート状、プレート状等、適宜の形状のもの
として使用されるが、これらに限定されるものではな
い。さらに必要に応じて、導電性支持体3の表面は、画
質に影響のない範囲で各種の処理を行ってもよく、例え
ば、表面の酸化処理や薬品処理及び着色処理または砂目
立て等の乱反射処理などを施してもよい。
As the conductive support 3, any support can be used as long as it can be used as an electrophotographic photoreceptor. Specifically, aluminum,
Metals such as nickel, chrome, stainless steel, aluminum, titanium, nickel, chrome, stainless steel,
Examples thereof include a plastic film coated with a thin film of gold, vanadium, tin oxide, indium oxide, ITO or the like, paper coated with or impregnated with a conductivity-imparting agent, and a plastic film. These conductive supports 3 are
It may be used in any suitable shape such as a drum shape, a sheet shape, or a plate shape, but is not limited thereto. Further, if necessary, the surface of the conductive support 3 may be subjected to various treatments within a range that does not affect the image quality. For example, surface oxidation treatment, chemical treatment and coloring treatment, or irregular reflection treatment such as graining. Etc. may be given.

【0023】本発明においては、導電性支持体3と感光
層の間にさらに下引層4が介在してもよい。この下引層
4は積層構造からなる感光層の帯電時において導電性支
持体3から感光層への電荷の注入を阻止すると共に、感
光層を導電性支持体3に対して一体的に接着保持させる
接着層としての作用、あるいは場合によっては、導電性
支持体3の光の反射光防止作用等を示す。上記下引層4
を形成する材料としては、ポリエチレン樹脂、ポリプロ
ピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミ
ド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール
樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリ
イミド樹脂、塩化ビニリデン樹脂、ポリビニルアセター
ル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニル
アルコール樹脂、ポリアクリル酸樹脂、ポリアクリルア
ミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリ
ジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース
等のセルロースエステル樹脂、セルロースエーテル樹
脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、ス
ターチアセテート、アミノ澱粉、ジルコニウムキレート
化合物、ジルコニウムアルコキシド化合物等の有機ジル
コニウム化合物、チタニルキレート化合物、チタニルア
ルコキシド化合物等の有機チタニル化合物、シランカッ
プリング剤などの公知の結着樹脂を用いることができ
る。下引層4を形成するときに採用する塗布方法として
は、ブレードコーティング法、マイヤーバーコーティン
グ法、スプレーコーティング法、浸漬コーティング法、
ビードコーティング法、エアーナイフコーティング法、
カーテンコーティング法等の通常の方法があげられる。
下引層4の膜厚は、0.01〜10μm、好ましくは
0.05〜2μmが適当である。
In the present invention, an undercoat layer 4 may be further interposed between the conductive support 3 and the photosensitive layer. The undercoat layer 4 prevents injection of charges from the conductive support 3 into the photosensitive layer during charging of the photosensitive layer having a laminated structure, and also integrally holds the photosensitive layer to the conductive support 3 by holding. It exhibits an action as an adhesive layer to be applied, or in some cases, an action to prevent reflection of light of the conductive support 3 and the like. Undercoat layer 4
As a material for forming, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, polyimide resin, vinylidene chloride resin, polyvinyl acetal resin, Vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyacrylic acid resin, polyacrylamide resin, polyvinylpyrrolidone resin, polyvinylpyridine resin, water-soluble polyester resin, cellulose ester resin such as nitrocellulose, cellulose ether resin, casein, gelatin , Polyglutamic acid, starch, starch acetate, amino starch, zirconium chelate compounds, zirconium alkoxide compounds and other organic zirconium compounds, chi Nirukireto compounds, organic titanyl compounds such as titanyl alkoxide compound, it may be a known binder resin such as a silane coupling agent. The coating method adopted when forming the undercoat layer 4 is a blade coating method, a Meyer bar coating method, a spray coating method, a dip coating method,
Bead coating method, air knife coating method,
A usual method such as a curtain coating method can be used.
The thickness of the undercoat layer 4 is 0.01 to 10 μm, preferably 0.05 to 2 μm.

【0024】本発明は、さらに必要に応じて、感光層の
表面に保護層5を被覆してもよい。この保護層5は、積
層構造からなる感光層の帯電時の電荷輸送層2の化学的
変質を防止すると共に、感光層の機械的強度を改善する
ために被覆される。上記保護層5は導電性材料を適当な
結着樹脂中に含有させて形成される。導電性材料として
は、ジメチルフェロセン等のメタロセン化合物、N,
N′−ジフェニル−N,N′−ビス−(m−トリル)ベ
ンジジン等の芳香族アミノ化合物、酸化アンチモン、酸
化スズ、酸化チタン、酸化インジウム、酸化スズ−酸化
アンチモン等の金属酸化物などを用いることができる
が、これらに限定されるものではない。また、この保護
層5に用いる結着樹脂としては、ポリアミド樹脂、ポリ
ウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリ
ケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン
樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂等の
公知の樹脂を用いることができる。上記保護層5はその
電気抵抗が109 〜1014Ω・cmとなるように構成す
ることが好ましい。電気抵抗が1014Ω・cmより高く
なると残留電位が上昇しカブリの多い複写物となってし
まい、一方、109 Ω・cmより低くなると画像のボ
ケ、解像力の低下が生じてしまう。また、保護層は像露
光に照射される光の透過を実質上妨げないように構成さ
れなければならない。保護層5を形成する際に採用する
塗布方法としては、ブレードコーティング法、マイヤー
バーコーティング法、スプレーコーティング法、浸漬コ
ーティング法、ビードコーティング法、エアーナイフコ
ーティング法、カーテンコーティング法等の通常の方法
を用いることができる。この保護層5の膜厚は、0.5
〜20μm、好ましくは1〜10μmが適当である。
In the present invention, the surface of the photosensitive layer may be coated with a protective layer 5 if necessary. The protective layer 5 is coated to prevent chemical deterioration of the charge transport layer 2 during charging of the photosensitive layer having a laminated structure and to improve the mechanical strength of the photosensitive layer. The protective layer 5 is formed by containing a conductive material in a suitable binder resin. As the conductive material, a metallocene compound such as dimethylferrocene, N,
Aromatic amino compounds such as N'-diphenyl-N, N'-bis- (m-tolyl) benzidine, metal oxides such as antimony oxide, tin oxide, titanium oxide, indium oxide, tin oxide-antimony oxide, etc. are used. However, the present invention is not limited to these. As the binder resin used for the protective layer 5, known resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinylketone resin, polystyrene resin, polyacrylamide resin and the like are used. You can The protective layer 5 is preferably configured so that its electric resistance is 10 9 to 10 14 Ω · cm. When the electric resistance is higher than 10 14 Ω · cm, the residual potential is increased and a copy with a large amount of fog is produced, while when it is lower than 10 9 Ω · cm, the image is blurred and the resolution is lowered. Also, the protective layer should be constructed so as not to substantially interfere with the transmission of the light applied to the image exposure. As the coating method adopted when forming the protective layer 5, there are used ordinary methods such as a blade coating method, a Meyer bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method and a curtain coating method. Can be used. The thickness of this protective layer 5 is 0.5.
-20 μm, preferably 1-10 μm is suitable.

【0025】[0025]

【実施例】以下、実施例によって本発明を具体的に説明
する。なお、実施例及び比較例において、「部」は重量
部を意味する。 合成例(クロロガリウムフタロシアニンの合成) 1,3−ジイミノイソインドリン30部及び三塩化ガリ
ウム9.1部をキノリン230部中に添加し、200℃
において3時間反応させた後、生成物を濾過し、アセト
ン、メタノールで洗浄した。次いで、湿ケーキを乾燥し
てクロロガリウムフタロシアニン結晶28部を得た。得
られたクロロガリウムフタロシアニン結晶の粉末X線回
折図を図5に示す。
EXAMPLES The present invention will be specifically described below with reference to examples. In addition, in an Example and a comparative example, "part" means a weight part. Synthesis Example (Synthesis of chlorogallium phthalocyanine) 1,3-diiminoisoindoline (30 parts) and gallium trichloride (9.1 parts) were added to quinoline (230 parts), and the temperature was adjusted to 200 ° C.
After reacting for 3 hours in, the product was filtered and washed with acetone, methanol. Next, the wet cake was dried to obtain 28 parts of chlorogallium phthalocyanine crystals. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0026】実施例1 合成例で得られたクロロガリウムフタロシアニン結晶
3.0部を、自動乳鉢(ヤマト科学社製:Lab−Mi
ll UT−21型)で3時間乾式磨砕した。得られた
クロロガリウムフタロシアニン結晶の粉末X線回折図を
図6に示す。
Example 1 3.0 parts of the chlorogallium phthalocyanine crystal obtained in the synthesis example was placed in an automatic mortar (Yamato Scientific Co., Ltd .: Lab-Mi).
(11 UT-21 type) for 3 hours. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0027】実施例2 実施例1で得られたクロロガリウムフタロシアニン結晶
0.5部を1mmφガラスビーズ60部と共に、室温
下、水/クロロベンゼン1:10の混合溶媒20部中で
24時間ボールミリング処理した後、瀘別し、メタノー
ル10部で洗浄し、乾燥してクロロガリウムフタロシア
ニン結晶を得た。得られたクロロガリウムフタロシアニ
ン結晶の粉末X線回折図を図7に示す。
Example 2 0.5 part of the chlorogallium phthalocyanine crystal obtained in Example 1 was ball milled with 60 parts of 1 mmφ glass beads in 20 parts of a mixed solvent of water / chlorobenzene 1:10 at room temperature for 24 hours. After that, it was filtered, washed with 10 parts of methanol, and dried to obtain a chlorogallium phthalocyanine crystal. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0028】実施例3 実施例1で得られたクロロガリウムフタロシアニン結晶
0.5部を1mmφガラスビーズ60部と共に、室温
下、塩化メチレン20部中で24時間ボールミリングし
た後、濾別し、エタノール10部で洗浄してクロロガリ
ウムフタロシアニン結晶を得た。得られたクロロガリウ
ムフタロシアニン結晶の粉末X線回折図を図8に示す。
Example 3 0.5 part of the chlorogallium phthalocyanine crystal obtained in Example 1 was ball-milled with 20 parts of methylene chloride at room temperature for 24 hours together with 60 parts of 1 mmφ glass beads, followed by filtration and ethanol. It was washed with 10 parts to obtain a chlorogallium phthalocyanine crystal. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0029】実施例4 実施例1で得られたクロロガリウムフタロシアニン結晶
0.5部を1mmφガラスビーズ60部と共に、室温
下、クロロベンゼン20部中で24時間ボールミリング
した後、濾別し、メタノール10部で洗浄してクロロガ
リウムフタロシアニン結晶を得た。得られたクロロガリ
ウムフタロシアニン結晶の粉末X線回折図を図9に示
す。
Example 4 0.5 part of the chlorogallium phthalocyanine crystal obtained in Example 1 was ball milled together with 60 parts of 1 mmφ glass beads in 20 parts of chlorobenzene for 24 hours at room temperature, then filtered and separated with methanol 10 It was washed with parts to obtain chlorogallium phthalocyanine crystals. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0030】実施例5 実施例1で得られたクロロガリウムフタロシアニン結晶
0.5部を1mmφガラスビーズ60部と共に、室温
下、メタノール20部中で24時間ボールミリングした
後、濾別し、メタノール10部で洗浄してクロロガリウ
ムフタロシアニン結晶を得た。得られたクロロガリウム
フタロシアニン結晶の粉末X線回折図を図10に示す。
Example 5 0.5 part of the chlorogallium phthalocyanine crystal obtained in Example 1 was ball-milled with 60 parts of 1 mmφ glass beads in 20 parts of methanol at room temperature for 24 hours, filtered and separated with methanol 10. It was washed with parts to obtain chlorogallium phthalocyanine crystals. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0031】実施例6〜10 実施例1〜5でそれぞれ得られたクロロガリウムフタロ
シアニン結晶1部をポリビニルブチラール(積水化学社
製:エスレックBM−S)1部及びシクロヘキサノン1
00部と混合し、ガラスビーズと共にペイントシェーカ
ーで1時間処理して上記結晶が分散した塗布液を調製し
た。次いで、アルミニウム基板を導電性支持体3とし
て、その上に上記塗布液を浸漬コーティング法で塗布
し、100℃において5分間加熱乾燥し、膜厚0.2μ
mの電荷発生層1を形成した。
Examples 6 to 10 1 part of the chlorogallium phthalocyanine crystals obtained in each of Examples 1 to 5 was polyvinyl butyral (Sekisui Chemical Co., Ltd .: S-REC BM-S) 1 part and cyclohexanone 1
It was mixed with 00 parts and treated with a glass bead with a paint shaker for 1 hour to prepare a coating liquid in which the above crystals were dispersed. Then, using an aluminum substrate as the conductive support 3, the above coating solution is applied thereon by a dip coating method, and dried by heating at 100 ° C. for 5 minutes to give a film thickness of 0.2 μm.
m charge generation layer 1 was formed.

【0032】次に、下記構造式(1)Next, the following structural formula (1)

【化1】 で示されるN,N′−ジフェニル−N,N′−ビス−
(m−トリル)ベンジジン2部と
[Chemical 1] N, N'-diphenyl-N, N'-bis-
2 parts of (m-tolyl) benzidine

【0033】下記構造式(2)The following structural formula (2)

【化2】 で示されるポリ[1,1−ジ−(p−フェニレン)シク
ロヘキサンカーボネート]3部とをクロロベンゼン20
部に溶解し、得られた塗布液を電荷発生層1が形成され
たアルミニウム基板上に浸漬コーティング法で塗布し、
120℃において1時間加熱乾燥して膜厚20μmの電
荷輸送層2を形成した。
[Chemical 2] And 3 parts of poly [1,1-di- (p-phenylene) cyclohexane carbonate] represented by
And the obtained coating liquid is applied onto the aluminum substrate having the charge generation layer 1 formed thereon by a dip coating method,
It was heated and dried at 120 ° C. for 1 hour to form a charge transport layer 2 having a film thickness of 20 μm.

【0034】このようにして作製された電子写真感光体
の電子写真特性を下記のようにして測定した。静電複写
紙試験装置(川口電機社製:エレクトロスタティックア
ナライザーEPA−8100、)を用いて、常温常湿
(20℃、50%RH)の環境下に−6KVのコロナ放
電により感光体を帯電させた後、タングステンランプの
光を、モノクロメーターを用いて800nmの単色光に
分光し、感光体表面上で1μW/cm2 になるように調
整し、照射した。そして、その初期表面電位V0 (ボル
ト)、V0 の1/2になるまでの半減露光量E1/2 (e
rg/cm2 )を測定し、その後10luxのタングス
テン光を1秒間感光体表面上に照射し、残留電位V
R (ボルト)を測定した。また、減衰率DDR(%)に
ついても測定した。さらに、上記の帯電、露光を100
0回繰り返した後のV0 、E1/2 、DDR、VR を測定
した。その結果を下記の比較例1、2と併せて後記の表
1に示す。
The electrophotographic characteristics of the electrophotographic photosensitive member thus produced were measured as follows. Using an electrostatic copying paper tester (Kawaguchi Denki Co., Ltd .: Electrostatic Analyzer EPA-8100), the photoreceptor is charged by corona discharge of -6 KV in an environment of normal temperature and normal humidity (20 ° C, 50% RH). After that, the light of the tungsten lamp was dispersed into monochromatic light of 800 nm using a monochromator, adjusted to 1 μW / cm 2 on the surface of the photoconductor, and irradiated. Then, the initial surface potential V 0 (V), half decay exposure amount E 1/2 until 1/2 of V 0 (e
rg / cm 2 ) was measured, and then 10 lux of tungsten light was irradiated onto the surface of the photoconductor for 1 second to obtain a residual potential V
R (volt) was measured. The attenuation rate DDR (%) was also measured. Furthermore, 100 times the above charging and exposure.
After repeating 0 times, V 0 , E 1/2 , DDR and V R were measured. The results are shown in Table 1 below together with Comparative Examples 1 and 2 below.

【0035】比較例1 合成例で得られたクロロガリウムフタロシアニン結晶を
用いた以外は、実施例6と同様の方法で電荷発生層1と
電荷輸送層2を形成し、作製された電子写真感光体を実
施例6と同様の方法で評価した。
Comparative Example 1 An electrophotographic photoreceptor prepared by forming a charge generation layer 1 and a charge transport layer 2 by the same method as in Example 6 except that the chlorogallium phthalocyanine crystal obtained in the synthesis example was used. Was evaluated in the same manner as in Example 6.

【0036】比較例2 実施例1で得られたクロロガリウムフタロシアニン結晶
0.5部を1 mmφガラスビーズ60部と共に、室温
下、エチレングリコール20部中で20時間ボールミリ
ング処理した後、ガラスビーズを濾別し、メタノール1
0部で洗浄してクロロガリウムフタロシアニン結晶を得
た。得られたクロロガリウムフタロシアニン結晶の粉末
X線回折図を図11示す。次いで、実施例6と同様の方
法で電荷発生層1と電荷輸送層2を形成し、作製された
電子写真感光体を実施例6と同様の方法で評価した。
Comparative Example 2 0.5 part of the chlorogallium phthalocyanine crystal obtained in Example 1 was ball milled in 20 parts of ethylene glycol at room temperature for 20 hours together with 60 parts of 1 mmφ glass beads, and then the glass beads were removed. It is separated by filtration and methanol 1
It was washed with 0 part to obtain a chlorogallium phthalocyanine crystal. FIG. 11 shows a powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal. Then, the charge generation layer 1 and the charge transport layer 2 were formed in the same manner as in Example 6, and the produced electrophotographic photosensitive member was evaluated in the same manner as in Example 6.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例11 アルミニウム基板上にアルコール可溶性ナイロン樹脂
(大日本インキ化学社製:ラッカマイドL−5003)
1部とメタノール10部からなる溶液を浸漬コーティン
グ法で塗布し、120℃において10分間加熱乾燥し、
膜厚0.5μmの下引層4を形成した。次いで、実施例
2で得られたクロロガリウムフタロシアニン結晶1部
を、ポリビニルブチラール樹脂(積水化学社製:エスレ
ックBM−S)1部及び酢酸n−ブチル100部と混合
し、ガラスビーズと共にペイントシェーカーで1時間処
理して樹脂溶液中に分散させた。得られた塗布液を浸漬
コーティング法で上記下引層4上に塗布し、100℃に
おいて10分間加熱乾燥して膜厚0.15μmの電荷発
生層1を形成した。なお、分散後の上記クロロガリウム
フタロシアニン結晶の結晶型はX線回折によって分散前
の結晶型と比較して変化していないことを確認した。
Example 11 An alcohol-soluble nylon resin (manufactured by Dainippon Ink and Chemicals, Inc .: Lackamide L-5003) on an aluminum substrate.
A solution consisting of 1 part and 10 parts of methanol is applied by a dip coating method, and dried by heating at 120 ° C. for 10 minutes,
An undercoat layer 4 having a film thickness of 0.5 μm was formed. Next, 1 part of the chlorogallium phthalocyanine crystal obtained in Example 2 was mixed with 1 part of polyvinyl butyral resin (Sekisui Chemical Co., Ltd .: S-REC BM-S) and 100 parts of n-butyl acetate, and the mixture was mixed with glass beads in a paint shaker. It was treated for 1 hour and dispersed in the resin solution. The obtained coating solution was applied onto the undercoat layer 4 by a dip coating method and dried by heating at 100 ° C. for 10 minutes to form a charge generation layer 1 having a film thickness of 0.15 μm. It was confirmed by X-ray diffraction that the crystal form of the chlorogallium phthalocyanine crystal after dispersion was not changed as compared with the crystal form before dispersion.

【0039】次に、前記構造式(1)で示されるN,
N′−ジフェニル−N,N′−ビス−(m−トリル)ベ
ンジジン2部と前記構造式(2)で示されるポリ[1,
1−ジ−(p−フェニレン)シクロヘキサンカ−ボネ−
ト]3部をクロロベンゼン20部に溶解し、得られた塗
布液を電荷発生層1が形成されたアルミニウム基板上に
浸漬コ−ティング法で塗布し、120℃において1時間
加熱乾燥して膜厚20μmの電荷輸送層2を形成した。
Next, N, represented by the structural formula (1),
2 parts of N'-diphenyl-N, N'-bis- (m-tolyl) benzidine and poly [1,1] represented by the above structural formula (2).
1-di- (p-phenylene) cyclohexanecarbone
[3 parts] dissolved in 20 parts of chlorobenzene, and the obtained coating solution is applied on an aluminum substrate on which the charge generation layer 1 is formed by a dip coating method, and dried by heating at 120 ° C. for 1 hour to form a film thickness. A 20 μm charge transport layer 2 was formed.

【0040】このようにして作製された電子写真感光体
の電子写真特性を下記のようにして測定した。静電複写
紙試験装置(川口電機製:エレクトロスタティックアナ
ライザーEPA−8100)を用いて、常温常湿(20
℃、40%RH)の環境下に−6KVのコロナ放電によ
り感光体を帯電させた後、タングステンランプの光を、
モノクロメーターを用いて800nmの単色光に分光
し、感光体表面上で1μW/cm2 になるように調節
し、照射した。そして、その初期表面電位VO (ボル
ト)、半減露光量E1/2 (erg/cm2 )を測定し、
その後10luxの白色光を感光体表面上に1秒間照射
し、残留電位VR (ボルト)を測定した。さらに、上記
の帯電、露光を1000回繰り返した後のVO
1/2 、VR を測定した。電荷発生層1を構成するクロ
ロガリウムフタロシアニン結晶と結着樹脂及び上記の測
定結果を、下記の実施例12〜17及び比較例3〜6と
併せて後記の表2に示す。
The electrophotographic characteristics of the electrophotographic photosensitive member thus produced were measured as follows. Using an electrostatic copying paper tester (Kawaguchi Denki: Electrostatic Analyzer EPA-8100), room temperature and humidity (20
After charging the photoconductor by corona discharge of −6 KV in an environment of 40 ° C. and 40% RH, the light from the tungsten lamp is
A monochromatic light of 800 nm was dispersed using a monochromator, adjusted to 1 μW / cm 2 on the surface of the photoreceptor, and irradiated. Then, the initial surface potential V O (volt) and the half-exposure amount E 1/2 (erg / cm 2 ) are measured,
Then, 10 lux of white light was irradiated onto the surface of the photoconductor for 1 second, and the residual potential V R (volt) was measured. Further, V O after repeating the above charging and exposure 1000 times,
E 1/2 and V R were measured. The chlorogallium phthalocyanine crystal that constitutes the charge generation layer 1, the binder resin, and the above measurement results are shown in Table 2 below together with Examples 12 to 17 and Comparative Examples 3 to 6 below.

【0041】実施例12 電荷発生層1を構成する前記ポリビニルブチラール樹脂
の代わりにポリエステル樹脂(東洋紡社製:バイロン2
00)1部を用いた以外は、実施例11と同様の感光体
を作製し、同様の測定を行った。
Example 12 Instead of the polyvinyl butyral resin constituting the charge generation layer 1, a polyester resin (manufactured by Toyobo Co., Ltd .: Byron 2) was used.
(00) A photoconductor similar to that of Example 11 was prepared except that 1 part was used, and the same measurement was performed.

【0042】比較例3 実施例2で得られたクロロガリウムフタロシアニン結晶
の代わりに合成例で得られたクロロガリウムフタロシア
ニン結晶を用いた以外は、実施例11と同様の感光体を
作製し、同様の測定を行った。
Comparative Example 3 A photoconductor was prepared in the same manner as in Example 11 except that the chlorogallium phthalocyanine crystal obtained in Synthesis Example was used instead of the chlorogallium phthalocyanine crystal obtained in Example 2. The measurement was performed.

【0043】比較例4 実施例2で得られたクロロガリウムフタロシアニン結晶
の代わりに比較例2で得られたクロロガリウムフタロシ
アニン結晶を用いた以外は、実施例11と同様の感光体
を作製し、同様の測定を行った。
Comparative Example 4 A photoconductor was prepared in the same manner as in Example 11 except that the chlorogallium phthalocyanine crystal obtained in Comparative Example 2 was used in place of the chlorogallium phthalocyanine crystal obtained in Example 2. Was measured.

【0044】実施例13 水/クロロベンゼン混合溶媒の代わりにTHFを用いた
以外は、実施例2と同様に処理した。得られたクロロガ
リウムフタロシアニン結晶の粉末X線回折図は図7と同
様であった。
Example 13 The same procedure as in Example 2 was repeated except that THF was used instead of the water / chlorobenzene mixed solvent. The powder X-ray diffraction pattern of the obtained chlorogallium phthalocyanine crystal was similar to that of FIG. 7.

【0045】次に、アルミニウム基板上にアルコール可
溶性ナイロン樹脂(東レ社製:CM−8000)1部と
メタノール10部からなる溶液を浸漬コーティング法で
塗布し、110℃において10分間加熱乾燥して膜厚
0.1μmの下引層4を形成した。次いで、上記THF
処理して得られたクロロガリウムフタロシアニン結晶1
部を、部分アセトアセタール化ポリビニルブチラール樹
脂(積水化学社製:エスレックBX−L)1部及びシク
ロヘキサノン100部と混合し、ガラスビーズと共にペ
イントシェーカーで1時間処理して樹脂溶液中に分散さ
せた。得られた塗布液を浸漬コーティング法で上記下引
層4上に塗布し、120℃において10分加熱乾燥して
膜厚0.2μmの電荷発生層1を形成した。なお、分散
後の上記クロロガリウムフタロシアニン結晶の結晶型は
X線回折によって分散前の結晶型と比較して変化してい
ないことを確認した。
Next, a solution consisting of 1 part of alcohol-soluble nylon resin (CM-8000 manufactured by Toray Industries, Inc.) and 10 parts of methanol was applied on an aluminum substrate by a dip coating method, and heated and dried at 110 ° C. for 10 minutes to form a film. An undercoat layer 4 having a thickness of 0.1 μm was formed. Then the above THF
Chlorogallium phthalocyanine crystal 1 obtained by treatment
Part was mixed with 1 part of partially acetoacetalized polyvinyl butyral resin (Sekisui Chemical Co., Ltd .: S-REC BX-L) and 100 parts of cyclohexanone, and treated with glass beads for 1 hour on a paint shaker to be dispersed in the resin solution. The obtained coating liquid was applied onto the undercoat layer 4 by a dip coating method, and dried by heating at 120 ° C. for 10 minutes to form a charge generation layer 1 having a thickness of 0.2 μm. It was confirmed by X-ray diffraction that the crystal form of the chlorogallium phthalocyanine crystal after dispersion was not changed as compared with the crystal form before dispersion.

【0046】そして、前記構造式(1)で示されるN,
N′−ジフェニル−N,N′−ビス−(m−トリル)ベ
ンジジンの代わりに下記構造式(3)
Then, N represented by the structural formula (1),
Instead of N′-diphenyl-N, N′-bis- (m-tolyl) benzidine, the following structural formula (3)

【化3】 で示されるN,N′−ビス−(p−トリル)−N,N′
−ビス−(p−エチルフェニル)−3,3′−ジメチル
ベンジジン2部を用いた以外は、実施例11と同様の電
荷輸送層2を形成し、作製された感光体ついて実施例1
1と同様の測定を行った。
[Chemical 3] N, N′-bis- (p-tolyl) -N, N ′ represented by
The same procedure as in Example 11 was repeated except that 2 parts of -bis- (p-ethylphenyl) -3,3'-dimethylbenzidine were used.
The same measurement as 1 was performed.

【0047】実施例14 電荷発生層1を構成する前記部分アセトアセタール化ポ
リビニルブチラール樹脂の代わりにポリメチルメタクリ
レート樹脂(デュポン社製:エルバサイト2021)1
部を用いた以外は、実施例13と同様の感光体を作製
し、同様の測定を行った。
Example 14 Instead of the partially acetoacetalized polyvinyl butyral resin constituting the charge generation layer 1, a polymethylmethacrylate resin (DuPont: Elvasite 2021) 1 was used.
A photoreceptor was prepared in the same manner as in Example 13 except that the parts were used, and the same measurements were performed.

【0048】比較例5 実施例13において得られたクロロガリウムフタロシア
ニン結晶の代わりに比較例2で得られたクロロガリウム
フタロシアニン結晶を用いた以外は、実施例13と同様
の感光体を作製し、同様の測定を行った。
Comparative Example 5 A photoconductor was prepared in the same manner as in Example 13 except that the chlorogallium phthalocyanine crystal obtained in Comparative Example 2 was used instead of the chlorogallium phthalocyanine crystal obtained in Example 13. Was measured.

【0049】実施例15 ジルコニウム化合物(マツモト製薬社製:オルガチック
スZC540)10部及びシラン化合物(日本ユンカー
社製:A1110)1部とi−プロパノール40部及び
ブタノール20部からなる溶液をアルミニウム基板上に
浸漬コーティング法で塗布し、160℃において10分
間加熱乾燥して膜厚0.1μmの下引層4を形成した。
次いで、実施例13においてTHF処理して得られたク
ロロガリウムフタロシアニン結晶1部を、カルボキシル
変性塩化ビニル−酢酸ビニル共重合体(ユニオンカーバ
イト社製:VMCH)1部及び酢酸n−ブチル100部
と混合し、ガラスビーズと共にペイントシェーカーで1
時間処理して共重合体溶液中に分散させた。得られた塗
布液を浸漬コーティング法で上記下引層4上に塗布し、
100℃において10分間加熱乾燥して膜厚0.2μm
の電荷発生層1を形成した。なお、分散後の前記クロロ
ガリウムフタロシアニン結晶の結晶型はX線回折によっ
て分散前の結晶型と比較して変化していないことを確認
した。そして、実施例13と同様の電荷輸送層2を形成
し、作製された感光体について実施例13と同様の測定
を行った。
Example 15 A solution containing 10 parts of a zirconium compound (manufactured by Matsumoto Pharmaceutical Co., Ltd .: Organix ZC540) and 1 part of a silane compound (manufactured by Japan Junker Co .: A1110), 40 parts of i-propanol and 20 parts of butanol was placed on an aluminum substrate. Was applied by a dip coating method and heated and dried at 160 ° C. for 10 minutes to form an undercoat layer 4 having a film thickness of 0.1 μm.
Next, 1 part of the chlorogallium phthalocyanine crystal obtained by the THF treatment in Example 13 was combined with 1 part of a carboxyl-modified vinyl chloride-vinyl acetate copolymer (VMCH manufactured by Union Carbide Co.) and 100 parts of n-butyl acetate. Mix and 1 on a paint shaker with glass beads
It was treated for a time and dispersed in the copolymer solution. The obtained coating liquid is applied onto the undercoat layer 4 by a dip coating method,
0.2 µm film thickness after heating and drying at 100 ° C for 10 minutes
The charge generation layer 1 was formed. It was confirmed by X-ray diffraction that the crystal form of the chlorogallium phthalocyanine crystal after dispersion was not changed as compared with the crystal form before dispersion. Then, the same charge transport layer 2 as in Example 13 was formed, and the same measurement as in Example 13 was performed on the manufactured photoconductor.

【0050】実施例16 電荷発生層1を構成する前記変性塩化ビニル−酢酸ビニ
ル共重合体の代わりにフェノキシ樹脂(ユニオンカーバ
イド社製:PKHH)1部とシクロヘキサノン100部
を用いた以外は、実施例15と同様の感光体を作製し、
同様の測定を行った。
Example 16 Example 16 was repeated except that 1 part of a phenoxy resin (PKHH manufactured by Union Carbide Co.) and 100 parts of cyclohexanone were used in place of the modified vinyl chloride-vinyl acetate copolymer constituting the charge generation layer 1. A photoconductor similar to that of 15 is prepared,
The same measurement was performed.

【0051】実施例17 電荷発生層1を構成する前記変性塩化ビニル−酢酸ビニ
ル共重合体の代わりに変性エーテル型ポリエステル樹脂
(富士写真フィルム社製:STAFIX NLC−2)
1部とシクロヘキサノン100部を用いた以外は、実施
例15と同様の感光体を作製し、同様の測定を行った。
Example 17 A modified ether type polyester resin (manufactured by Fuji Photo Film Co., Ltd .: STAFIX NLC-2) was used instead of the modified vinyl chloride-vinyl acetate copolymer constituting the charge generation layer 1.
A photoconductor similar to that of Example 15 was prepared except that 1 part and 100 parts of cyclohexanone were used, and the same measurement was performed.

【0052】比較例6 実施例13において得られたクロロガリウムフタロシア
ニン結晶の代わりに比較例2で得られたクロロガリウム
フタロシアニン結晶を用いた以外は、実施例15と同様
の感光体を作製し、同様の測定を行った。
Comparative Example 6 A photoconductor was prepared in the same manner as in Example 15, except that the chlorogallium phthalocyanine crystal obtained in Comparative Example 2 was used instead of the chlorogallium phthalocyanine crystal obtained in Example 13. Was measured.

【0053】[0053]

【表2】 [Table 2]

【0054】実施例18〜22 実施例11、13、15〜17と同一の条件でドラム型
感光体を作製し、この電子写真用感光体を半導体レーザ
ープリンター(富士ゼロックス社製:FX XP−1
5)に装着して複写画像を形成し、複写を1万回繰り返
した。その結果を下記の比較例7〜9と併せて表3に示
す。
Examples 18 to 22 Drum type photoconductors were prepared under the same conditions as in Examples 11, 13 and 15 to 17, and the electrophotographic photoconductors were used as semiconductor laser printers (Fuji Xerox: FX XP-1).
It was mounted on 5) to form a copied image, and copying was repeated 10,000 times. The results are shown in Table 3 together with Comparative Examples 7 to 9 below.

【0055】比較例7〜9 比較例4〜6と同一の条件でドラム型感光体を作製し、
実施例18と同様な評価を行った。
Comparative Examples 7 to 9 Drum type photoconductors were prepared under the same conditions as in Comparative Examples 4 to 6,
The same evaluation as in Example 18 was performed.

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【発明の効果】本発明のクロロガリウムフタロシアニン
結晶は、前記のように新規な結晶型を有するものであっ
て、感光波長域が長波長まで伸びているため、半導体レ
ーザーを利用するプリンター等の電子写真感光体用光導
電材料として非常に有用である。また、上記の新規な結
晶型を有するクロロガリウムフタロシアニン結晶を用い
て作製される本発明の電子写真感光体は、高感度で、残
留電位が低く、帯電性が高く、かつ繰り返しによる変動
が少ないことから、耐久性に優れた感光体として用いる
ことができる。さらに、電荷発生材料としてクロロガリ
ウムフタロシアニン結晶とその結着樹脂としてポリビニ
ルアセタール系樹脂、塩化ビニル−酢酸ビニル系共重合
体、フェノキシ樹脂及び変性エーテル型ポリエステル樹
脂から選ばれる少なくとも1種とを感光層に含有する電
子写真感光体は、感度が高く、電荷保持性が良好で、画
質欠陥が少ないので、画像特性に著しく優れた電子写真
感光体を提供することができる。
The chlorogallium phthalocyanine crystal of the present invention has a novel crystal type as described above, and since the photosensitive wavelength region extends to a long wavelength, it can be used in electronic devices such as printers utilizing semiconductor lasers. It is very useful as a photoconductive material for photographic photoreceptors. Further, the electrophotographic photoreceptor of the present invention produced by using the chlorogallium phthalocyanine crystal having the above-mentioned novel crystal form has high sensitivity, low residual potential, high chargeability, and little fluctuation due to repetition. Therefore, it can be used as a photoreceptor having excellent durability. Further, a chlorogallium phthalocyanine crystal as a charge generating material and at least one selected from a polyvinyl acetal resin, a vinyl chloride-vinyl acetate copolymer, a phenoxy resin and a modified ether type polyester resin as a binder resin are used as a photosensitive layer. The electrophotographic photosensitive member containing the electrophotographic photosensitive member has high sensitivity, good charge retention, and few image quality defects. Therefore, an electrophotographic photosensitive member having remarkably excellent image characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる電子写真感光体の模式的断面
図を示す。
FIG. 1 shows a schematic sectional view of an electrophotographic photosensitive member according to the present invention.

【図2】 本発明にかかる電子写真感光体の別の模式的
断面図を示す。
FIG. 2 shows another schematic cross-sectional view of the electrophotographic photosensitive member according to the present invention.

【図3】 本発明にかかる電子写真感光体の他の模式的
断面図を示す。
FIG. 3 shows another schematic cross-sectional view of the electrophotographic photosensitive member according to the present invention.

【図4】 本発明にかかる電子写真感光体のさらに他の
模式的断面図を示す。
FIG. 4 shows still another schematic cross-sectional view of the electrophotographic photosensitive member according to the present invention.

【図5】 合成例で得られたクロロガリウムフタロシア
ニン結晶の粉末X線回折図を示す。
FIG. 5 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in the synthesis example.

【図6】 実施例1で得られたクロロガリウムフタロシ
アニン結晶の粉末X線回折図を示す。
FIG. 6 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Example 1.

【図7】 実施例2で得られたクロロガリウムフタロシ
アニン結晶の粉末X線回折図を示す。
7 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Example 2. FIG.

【図8】 実施例3で得られたクロロガリウムフタロシ
アニン結晶の粉末X線回折図を示す。
8 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Example 3. FIG.

【図9】 実施例4で得られたクロロガリウムフタロシ
アニン結晶の粉末X線回折図を示す。
FIG. 9 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Example 4.

【図10】 実施例5で得られたクロロガリウムフタロ
シアニン結晶の粉末X線回折図を示す。
FIG. 10 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Example 5.

【図11】 比較例2で得られたクロロガリウムフタロ
シアニン結晶の粉末X線回折図を示す。
FIG. 11 shows a powder X-ray diffraction pattern of the chlorogallium phthalocyanine crystal obtained in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1‥‥電荷発生層、2‥‥電荷輸送層、3‥‥導電性支
持体、4‥‥下引層、5‥‥保護層。
1 ... Charge generation layer, 2 ... Charge transport layer, 3 ... Conductive support, 4 ... Undercoat layer, 5 ... Protective layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 彰 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松事業所内 (72)発明者 坂口 泰生 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松事業所内 (72)発明者 石井 徹 神奈川県南足柄市竹松1600番地 富士ゼロ ツクス株式会社竹松事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Imai 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Zero Tux Co., Ltd., Takematsu Plant (72) Inventor Yasushi Sakaguchi 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Zero Tux Co., Ltd. Takematsu Business (72) Inventor Toru Ishii 1600 Takematsu, Minamiashigara City, Kanagawa Prefecture Fuji Zero Tsukus Co., Ltd. Takematsu Office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 X線回折スペクトルにおいて、ブラッグ
角度(2θ±0.2°)が少なくとも7.4°、16.
6°、25.5°及び28.3°、または6.8°、1
7.3°、23.6°及び26.9°、または8.7°
〜9.2°、17.6°、24.0°、27.4°及び
28.8°に強い回折ピークを有するクロロガリウムフ
タロシアニン結晶。
1. In an X-ray diffraction spectrum, the Bragg angle (2θ ± 0.2 °) is at least 7.4 °, 16.
6 °, 25.5 ° and 28.3 °, or 6.8 °, 1
7.3 °, 23.6 ° and 26.9 °, or 8.7 °
A chlorogallium phthalocyanine crystal having strong diffraction peaks at ˜9.2 °, 17.6 °, 24.0 °, 27.4 ° and 28.8 °.
【請求項2】 請求項1に記載のクロロガリウムフタロ
シアニン結晶よりなる電子写真感光体用光導電材料。
2. A photoconductive material for an electrophotographic photosensitive member, comprising the chlorogallium phthalocyanine crystal according to claim 1.
【請求項3】 請求項1に記載のクロロガリウムフタロ
シアニン結晶を含有する感光層を導電性支持体上に被覆
してなることを特徴とする電子写真感光体。
3. An electrophotographic photoreceptor comprising a conductive support and a photosensitive layer containing the chlorogallium phthalocyanine crystal according to claim 1.
【請求項4】 前記感光層には、結着樹脂としてポリビ
ニルアセタール系樹脂、塩化ビニル−酢酸ビニル系共重
合体、フェノキシ樹脂及び変性エーテル型ポリエステル
樹脂から選ばれる少なくとも1種を含有する請求項3に
記載の電子写真感光体。
4. The photosensitive layer contains at least one selected from a polyvinyl acetal resin, a vinyl chloride-vinyl acetate copolymer, a phenoxy resin and a modified ether type polyester resin as a binder resin. The electrophotographic photoconductor according to item 1.
【請求項5】 前記ポリビニルアセタール系樹脂がポリ
ビニルブチラール樹脂、ポリビニルホルマール樹脂及び
部分アセタール化ポリビニルブチラール樹脂から選ばれ
る1種または2種以上よりなる請求項4に記載の電子写
真感光体。
5. The electrophotographic photosensitive member according to claim 4, wherein the polyvinyl acetal resin is one or more selected from polyvinyl butyral resin, polyvinyl formal resin, and partially acetalized polyvinyl butyral resin.
【請求項6】 前記塩化ビニル−酢酸ビニル系共重合体
が塩化ビニル−酢酸ビニル共重合体、ヒドロキシル変性
塩化ビニル−酢酸ビニル共重合体及びカルボキシル変性
塩化ビニル−酢酸ビニル共重合体から選ばれる1種また
は2種以上よりなる請求項4に記載の電子写真感光体。
6. The vinyl chloride-vinyl acetate copolymer is selected from vinyl chloride-vinyl acetate copolymer, hydroxyl-modified vinyl chloride-vinyl acetate copolymer and carboxyl-modified vinyl chloride-vinyl acetate copolymer. The electrophotographic photosensitive member according to claim 4, which comprises one kind or two or more kinds.
【請求項7】 前記感光層は電荷発生層及び電荷輸送層
が順次積層された積層構造からなり、前記クロロガリウ
ムフタロシアニン結晶と前記結着樹脂とを上記電荷発生
層に含有することを特徴とする請求項4に記載の電子写
真感光体。
7. The photosensitive layer has a laminated structure in which a charge generation layer and a charge transport layer are sequentially laminated, and the chlorogallium phthalocyanine crystal and the binder resin are contained in the charge generation layer. The electrophotographic photosensitive member according to claim 4.
JP04027449A 1902-01-13 1992-01-20 Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same Expired - Fee Related JP3123185B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04027449A JP3123185B2 (en) 1991-04-22 1992-01-20 Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same
US08/003,123 US5358813A (en) 1902-01-13 1993-01-12 Crystals of chlorogallium phthalocyanine and method of preparing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-116630 1991-04-22
JP11663091 1991-04-22
JP04027449A JP3123185B2 (en) 1991-04-22 1992-01-20 Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same

Publications (2)

Publication Number Publication Date
JPH0598181A true JPH0598181A (en) 1993-04-20
JP3123185B2 JP3123185B2 (en) 2001-01-09

Family

ID=26365366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04027449A Expired - Fee Related JP3123185B2 (en) 1902-01-13 1992-01-20 Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same

Country Status (1)

Country Link
JP (1) JP3123185B2 (en)

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584753A3 (en) * 1992-08-26 1995-01-18 Fuji Xerox Co Ltd Process for preparing chlorogallium phthalocyanine crystals.
JPH07128889A (en) * 1993-11-01 1995-05-19 Fuji Xerox Co Ltd Electrophotographic photoreceptor
EP0686879A1 (en) 1994-06-10 1995-12-13 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
US5510217A (en) * 1993-01-01 1996-04-23 Fuji Xerox Co., Ltd. Gallium phthalocyanine halide crystals, method for preparing the same and electrophotographic photoreceptor using the same
US5588991A (en) * 1994-08-31 1996-12-31 Fuji Xerox Co., Ltd. Process for producing chlorogallium phthalocyanine crystal
US5639581A (en) * 1994-10-24 1997-06-17 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5654119A (en) * 1995-04-06 1997-08-05 Fuji Xerox Co., Ltd. Organic electronic device comprising charge-transporting polyester and image forming apparatus
US5677097A (en) * 1996-01-18 1997-10-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
US5731118A (en) * 1995-08-25 1998-03-24 Fuji Xerox Co., Ltd. Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same
US5759726A (en) * 1996-01-17 1998-06-02 Fuji Xerox Co., Ltd. Electrographic photosensitive member
US5770339A (en) * 1994-10-18 1998-06-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor using charge transporting copolyester
US5817739A (en) * 1995-10-18 1998-10-06 Fuji Xerox Co., Ltd. Charge transporting polymer and organic electronic device containing the same
US6245472B1 (en) 1997-09-12 2001-06-12 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6335132B1 (en) 1999-06-25 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus including the photosensitive member
US6447967B2 (en) 2000-01-31 2002-09-10 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6465143B2 (en) 2000-01-31 2002-10-15 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6656652B2 (en) 2000-09-29 2003-12-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6835520B2 (en) 2001-11-09 2004-12-28 Fuji Xerox Co., Ltd. Apparatus for forming image
US6881528B2 (en) 2001-09-20 2005-04-19 Fuji Xerox, Co., Ltd. Image formation method
JP2006008877A (en) * 2004-06-28 2006-01-12 Mitsubishi Chemicals Corp Method for producing phthalocyanine compound, electrophotographic photoreceptor, cartridge of electrophotographic photoreceptor and image-forming device
US7074540B2 (en) 2002-09-20 2006-07-11 Fuji Xerox Co., Ltd. Image forming apparatus
JP2006251418A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Image forming apparatus and image forming method
US7205080B2 (en) 2003-07-25 2007-04-17 Fuji Xerox Co., Ltd. Arylamine compound, charge transport material, electrophotographic photoreceptor, image forming apparatus and process cartridge
US7358016B2 (en) 2002-07-23 2008-04-15 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto-graphic apparatus equipped with the same
US7642026B2 (en) * 2006-09-20 2010-01-05 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7642025B2 (en) 2006-09-20 2010-01-05 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7672615B2 (en) 2006-12-27 2010-03-02 Fuji Xerox Co., Ltd. Image forming apparatus capable of adjusting a moving speed ratio
EP2180376A2 (en) 2008-10-24 2010-04-28 Fuji Xerox Co., Ltd. Electrostatic charging member, electrostatic charging device, process cartridge and image forming apparatus
EP2202582A1 (en) 2008-12-25 2010-06-30 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus
EP2219080A2 (en) 2008-12-25 2010-08-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP2233979A1 (en) 2009-03-27 2010-09-29 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
EP2267542A1 (en) 2009-06-26 2010-12-29 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US7887981B2 (en) 2006-10-27 2011-02-15 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7951516B2 (en) 2006-10-27 2011-05-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
US8055153B2 (en) 2006-10-16 2011-11-08 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
US8090287B2 (en) 2007-12-25 2012-01-03 Fuji Xerox Co., Ltd. Charging member cleaning unit, method of producing charging member cleaning unit, charging device, process cartridge and image forming apparatus
US8105739B2 (en) 2007-04-12 2012-01-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8110328B2 (en) 2007-04-09 2012-02-07 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8268521B2 (en) 2008-12-16 2012-09-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8273510B2 (en) 2010-02-10 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8283096B2 (en) 2009-03-27 2012-10-09 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8426093B2 (en) 2007-03-06 2013-04-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image-forming apparatus
US8450036B2 (en) 2011-03-28 2013-05-28 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8475981B2 (en) 2010-07-15 2013-07-02 Fuji Xerox, Co., Ltd. Image holding member for image forming apparatus, process cartridge, and image forming apparatus
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8557489B2 (en) 2009-12-28 2013-10-15 Ricoh Company, Ltd. Gallium phthalocyanine compound, gallium phthalocyanine composite pigment, method for preparing gallium phthalocyanine composite pigment, and electrophotographic photoconductor
US8609310B2 (en) 2009-03-16 2013-12-17 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8652716B2 (en) 2011-03-28 2014-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8655220B2 (en) 2008-03-19 2014-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8669028B2 (en) 2010-09-10 2014-03-11 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8673523B2 (en) 2010-02-19 2014-03-18 Fuji Xerox Co., Ltd. Image holding member for image forming apparatus, process cartridge, and image forming apparatus
US8679709B2 (en) 2007-06-28 2014-03-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
US8685600B2 (en) 2009-06-26 2014-04-01 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus and process cartridge
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8822114B2 (en) 2012-03-26 2014-09-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8900782B2 (en) 2011-08-10 2014-12-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method
US9250545B2 (en) 2014-03-24 2016-02-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9291923B2 (en) 2014-03-19 2016-03-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9389525B2 (en) 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US9740115B1 (en) 2016-02-19 2017-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9846378B2 (en) 2016-03-10 2017-12-19 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and conductive substrate that may be included in electrophotographic photoreceptor
US9857754B1 (en) 2016-09-20 2018-01-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US9904240B1 (en) 2016-09-26 2018-02-27 Fuji Xerox Co., Ltd. Image-forming apparatus and process cartridge
US9904187B2 (en) 2015-09-25 2018-02-27 Fuji Xerox Co., Ltd. Cylindrical member used in electrophotographic photoconductor, electrophotographic photoconductor, image forming apparatus, process cartridge, and method for producing cylindrical member used in electrophotographic photoconductor
US9939743B2 (en) 2016-09-05 2018-04-10 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9939745B2 (en) 2016-07-28 2018-04-10 Fuji Xerox Co., Ltd. Conductive support for electrophotographic photoreceptor, electrophotographic photoreceptor, and image forming apparatus
US10001714B2 (en) 2015-09-25 2018-06-19 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US10036969B2 (en) 2016-08-01 2018-07-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10073364B2 (en) 2016-10-04 2018-09-11 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor and image forming apparatus
US10095138B2 (en) 2017-01-23 2018-10-09 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10101678B2 (en) 2016-09-21 2018-10-16 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US10185276B2 (en) 2016-09-02 2019-01-22 Fuji Xerox Co., Ltd. Image forming apparatus having an interceptor to intercept toner particles
US10317809B2 (en) 2017-09-27 2019-06-11 Fuji Xerox Co., Ltd. Image forming apparatus and unit for image forming apparatus
US10372049B2 (en) 2017-03-22 2019-08-06 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US10409179B1 (en) 2018-04-04 2019-09-10 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3550366A1 (en) 2018-04-03 2019-10-09 Fuji Xerox Co., Ltd Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus
US10481526B2 (en) 2017-09-27 2019-11-19 Fuji Xerox Co., Ltd. Image-forming apparatus and image-forming method
EP3582012A1 (en) 2018-06-15 2019-12-18 Fuji Xerox Co., Ltd Dispersant attached polytetrafluoroethylene particle, composition, layered material, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10539895B2 (en) 2017-09-27 2020-01-21 Fuji Xerox Co., Ltd. Image forming apparatus
US10564556B2 (en) 2017-09-27 2020-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US20200133145A1 (en) * 2018-10-25 2020-04-30 Canon Kabushiki Kaisha Electrophotographic photoconductor, process cartridge, and electrophotographic apparatus
EP4063958A1 (en) 2021-03-25 2022-09-28 Fujifilm Business Innovation Corp. Electrophotographic photoconductor, process cartridge, and image forming apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383304B2 (en) 2010-02-24 2013-02-26 Ricoh Company, Ltd. Gallium phthalocyanine compound, and image bearing member, image forming method, image forming apparatus, and process cartridge using the gallium phthalocyanine compound
US9005856B2 (en) 2011-03-09 2015-04-14 Ricoh Company, Ltd. Hydroxygallium porphyrazine derivative mixture and electrophotographic photoconductor

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584753A3 (en) * 1992-08-26 1995-01-18 Fuji Xerox Co Ltd Process for preparing chlorogallium phthalocyanine crystals.
US5510217A (en) * 1993-01-01 1996-04-23 Fuji Xerox Co., Ltd. Gallium phthalocyanine halide crystals, method for preparing the same and electrophotographic photoreceptor using the same
JPH07128889A (en) * 1993-11-01 1995-05-19 Fuji Xerox Co Ltd Electrophotographic photoreceptor
EP0686879A1 (en) 1994-06-10 1995-12-13 Fuji Xerox Co., Ltd. Charge-transporting polymer and organic electronic device using the same
US5588991A (en) * 1994-08-31 1996-12-31 Fuji Xerox Co., Ltd. Process for producing chlorogallium phthalocyanine crystal
US5688619A (en) * 1994-08-31 1997-11-18 Fuji Xerox Co., Ltd. Chlorogalium phthalocyanine crystal and electrophotographic photoreceptor containing same
US5770339A (en) * 1994-10-18 1998-06-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor using charge transporting copolyester
US5734003A (en) * 1994-10-24 1998-03-31 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5639581A (en) * 1994-10-24 1997-06-17 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5654119A (en) * 1995-04-06 1997-08-05 Fuji Xerox Co., Ltd. Organic electronic device comprising charge-transporting polyester and image forming apparatus
US5731118A (en) * 1995-08-25 1998-03-24 Fuji Xerox Co., Ltd. Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same
US5817739A (en) * 1995-10-18 1998-10-06 Fuji Xerox Co., Ltd. Charge transporting polymer and organic electronic device containing the same
US5759726A (en) * 1996-01-17 1998-06-02 Fuji Xerox Co., Ltd. Electrographic photosensitive member
US5677097A (en) * 1996-01-18 1997-10-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
US6472524B2 (en) 1997-09-12 2002-10-29 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6245472B1 (en) 1997-09-12 2001-06-12 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
EP1887047A1 (en) 1997-09-12 2008-02-13 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6335132B1 (en) 1999-06-25 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus including the photosensitive member
US6447967B2 (en) 2000-01-31 2002-09-10 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6465143B2 (en) 2000-01-31 2002-10-15 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6768006B2 (en) 2000-01-31 2004-07-27 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6656652B2 (en) 2000-09-29 2003-12-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6881528B2 (en) 2001-09-20 2005-04-19 Fuji Xerox, Co., Ltd. Image formation method
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6835520B2 (en) 2001-11-09 2004-12-28 Fuji Xerox Co., Ltd. Apparatus for forming image
US7358016B2 (en) 2002-07-23 2008-04-15 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto-graphic apparatus equipped with the same
US7074540B2 (en) 2002-09-20 2006-07-11 Fuji Xerox Co., Ltd. Image forming apparatus
US7205080B2 (en) 2003-07-25 2007-04-17 Fuji Xerox Co., Ltd. Arylamine compound, charge transport material, electrophotographic photoreceptor, image forming apparatus and process cartridge
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
JP2006008877A (en) * 2004-06-28 2006-01-12 Mitsubishi Chemicals Corp Method for producing phthalocyanine compound, electrophotographic photoreceptor, cartridge of electrophotographic photoreceptor and image-forming device
JP2006251418A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Image forming apparatus and image forming method
US7642026B2 (en) * 2006-09-20 2010-01-05 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7642025B2 (en) 2006-09-20 2010-01-05 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US8055153B2 (en) 2006-10-16 2011-11-08 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
US7951516B2 (en) 2006-10-27 2011-05-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7887981B2 (en) 2006-10-27 2011-02-15 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method of producing the same, process cartridge, and image-forming apparatus
US7672615B2 (en) 2006-12-27 2010-03-02 Fuji Xerox Co., Ltd. Image forming apparatus capable of adjusting a moving speed ratio
US8426093B2 (en) 2007-03-06 2013-04-23 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image-forming apparatus
US8110328B2 (en) 2007-04-09 2012-02-07 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8105739B2 (en) 2007-04-12 2012-01-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8679709B2 (en) 2007-06-28 2014-03-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
US8090287B2 (en) 2007-12-25 2012-01-03 Fuji Xerox Co., Ltd. Charging member cleaning unit, method of producing charging member cleaning unit, charging device, process cartridge and image forming apparatus
US8655220B2 (en) 2008-03-19 2014-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
EP2180376A2 (en) 2008-10-24 2010-04-28 Fuji Xerox Co., Ltd. Electrostatic charging member, electrostatic charging device, process cartridge and image forming apparatus
US8268521B2 (en) 2008-12-16 2012-09-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8309286B2 (en) 2008-12-25 2012-11-13 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP2202582A1 (en) 2008-12-25 2010-06-30 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of eletrcophotographic photoreceptor, processing cartridge, and image forming apparatus
US8273511B2 (en) 2008-12-25 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus
EP2219080A2 (en) 2008-12-25 2010-08-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8609310B2 (en) 2009-03-16 2013-12-17 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP2233979A1 (en) 2009-03-27 2010-09-29 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
US8283096B2 (en) 2009-03-27 2012-10-09 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8535861B2 (en) 2009-03-27 2013-09-17 Fuji Xerox Co., Ltd. Image forming apparatus and process cartridge
US8404416B2 (en) 2009-06-26 2013-03-26 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP2267542A1 (en) 2009-06-26 2010-12-29 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8685600B2 (en) 2009-06-26 2014-04-01 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus and process cartridge
US8557489B2 (en) 2009-12-28 2013-10-15 Ricoh Company, Ltd. Gallium phthalocyanine compound, gallium phthalocyanine composite pigment, method for preparing gallium phthalocyanine composite pigment, and electrophotographic photoconductor
US8273510B2 (en) 2010-02-10 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
US8673523B2 (en) 2010-02-19 2014-03-18 Fuji Xerox Co., Ltd. Image holding member for image forming apparatus, process cartridge, and image forming apparatus
US8475981B2 (en) 2010-07-15 2013-07-02 Fuji Xerox, Co., Ltd. Image holding member for image forming apparatus, process cartridge, and image forming apparatus
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8669028B2 (en) 2010-09-10 2014-03-11 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
US9389525B2 (en) 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US9829813B2 (en) 2011-03-09 2017-11-28 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8450036B2 (en) 2011-03-28 2013-05-28 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8652716B2 (en) 2011-03-28 2014-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8900782B2 (en) 2011-08-10 2014-12-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method
US8822114B2 (en) 2012-03-26 2014-09-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US9291923B2 (en) 2014-03-19 2016-03-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9250545B2 (en) 2014-03-24 2016-02-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10001714B2 (en) 2015-09-25 2018-06-19 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US9904187B2 (en) 2015-09-25 2018-02-27 Fuji Xerox Co., Ltd. Cylindrical member used in electrophotographic photoconductor, electrophotographic photoconductor, image forming apparatus, process cartridge, and method for producing cylindrical member used in electrophotographic photoconductor
US9740115B1 (en) 2016-02-19 2017-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9846378B2 (en) 2016-03-10 2017-12-19 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and conductive substrate that may be included in electrophotographic photoreceptor
US9939745B2 (en) 2016-07-28 2018-04-10 Fuji Xerox Co., Ltd. Conductive support for electrophotographic photoreceptor, electrophotographic photoreceptor, and image forming apparatus
US10036969B2 (en) 2016-08-01 2018-07-31 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10185276B2 (en) 2016-09-02 2019-01-22 Fuji Xerox Co., Ltd. Image forming apparatus having an interceptor to intercept toner particles
US9939743B2 (en) 2016-09-05 2018-04-10 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US9857754B1 (en) 2016-09-20 2018-01-02 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US10101678B2 (en) 2016-09-21 2018-10-16 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US9904240B1 (en) 2016-09-26 2018-02-27 Fuji Xerox Co., Ltd. Image-forming apparatus and process cartridge
US10073364B2 (en) 2016-10-04 2018-09-11 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor and image forming apparatus
US10095138B2 (en) 2017-01-23 2018-10-09 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10372049B2 (en) 2017-03-22 2019-08-06 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image-forming apparatus
US10539895B2 (en) 2017-09-27 2020-01-21 Fuji Xerox Co., Ltd. Image forming apparatus
US10481526B2 (en) 2017-09-27 2019-11-19 Fuji Xerox Co., Ltd. Image-forming apparatus and image-forming method
US10317809B2 (en) 2017-09-27 2019-06-11 Fuji Xerox Co., Ltd. Image forming apparatus and unit for image forming apparatus
US10564556B2 (en) 2017-09-27 2020-02-18 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3550366A1 (en) 2018-04-03 2019-10-09 Fuji Xerox Co., Ltd Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus
US10409179B1 (en) 2018-04-04 2019-09-10 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3582012A1 (en) 2018-06-15 2019-12-18 Fuji Xerox Co., Ltd Dispersant attached polytetrafluoroethylene particle, composition, layered material, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US20200133145A1 (en) * 2018-10-25 2020-04-30 Canon Kabushiki Kaisha Electrophotographic photoconductor, process cartridge, and electrophotographic apparatus
EP4063958A1 (en) 2021-03-25 2022-09-28 Fujifilm Business Innovation Corp. Electrophotographic photoconductor, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP3123185B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3123185B2 (en) Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same
JP3166293B2 (en) Novel hydroxygallium phthalocyanine crystal, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same
JP3166283B2 (en) Method for producing novel crystals of hydroxygallium phthalocyanine
JP3123184B2 (en) Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same
JP3139126B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP3635786B2 (en) Electrophotographic photoreceptor
JP3028004B2 (en) Method for producing novel crystal of chlorogallium phthalocyanine and electrophotographic photoreceptor using the crystal
JPH0530263B2 (en)
JPH09146288A (en) Electrophotographic photoreceptor
JPH10213912A (en) Electrophotographic photoreceptor
JP2813813B2 (en) Electrophotographic photoreceptor
JP3097293B2 (en) Electrophotographic photoreceptor
JPH10148954A (en) Electrophotographic photoreceptor and electrophotographic process
JP3084882B2 (en) Electrophotographic photoreceptor
JP3617195B2 (en) Chlorogallium tetra-2,3-pyridinoporphyrazine crystal, photoconductive material, and electrophotographic photoreceptor using the same
JP2001166505A (en) Coating liquid for production of electrophotographic photoreceptor and electrophotographic photoreceptor which uses that coating liquid
JPH07247441A (en) Chlorogallium phthalocyanine crystal, its production and electrophotographic receptor using the same
JP2003233206A (en) Electrophotographic photoreceptor
JPH0675408A (en) Electrophotographic sensitive body
JP3591139B2 (en) Magnesium tetra-2,3-pyrazinoporphyrazine crystal, photoconductive material and electrophotographic photoreceptor using the same
JP2001117248A (en) Electrophotographic photoreceptor and coating fluid for its electric charge generating layer
JPH03269063A (en) Vanadylphthalocyanine crystal, its production and electrophotographic photosensitive form therefrom
JPH04181258A (en) Electrophotographic sensitive body, electrophotographic apparatus, and facsimile using same
JPH04253065A (en) Electrophotographic sensitive body, electrophotographic apparatus and facsimile using same
JPH09165530A (en) New crystal of chlogallium-tetra-2,3-pyrazinoporphyrazine, photoconductive material made of the crystal and electrophotographic photoreceptor using these materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees