JPH11218760A - Polarization plane light source device and liquid crystal display device - Google Patents

Polarization plane light source device and liquid crystal display device

Info

Publication number
JPH11218760A
JPH11218760A JP10036817A JP3681798A JPH11218760A JP H11218760 A JPH11218760 A JP H11218760A JP 10036817 A JP10036817 A JP 10036817A JP 3681798 A JP3681798 A JP 3681798A JP H11218760 A JPH11218760 A JP H11218760A
Authority
JP
Japan
Prior art keywords
light
layer
linearly polarized
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10036817A
Other languages
Japanese (ja)
Other versions
JP3303278B2 (en
Inventor
Shuji Yano
周治 矢野
Seiji Umemoto
清司 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12480325&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11218760(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP03681798A priority Critical patent/JP3303278B2/en
Publication of JPH11218760A publication Critical patent/JPH11218760A/en
Application granted granted Critical
Publication of JP3303278B2 publication Critical patent/JP3303278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarization plane light source device capable of effectively utilizing >=50% of light made to exit from a light transmission plate by utilizing a linearly polarized light separating element and forming a liquid crystal display(LCD) device or the like having high light utilization efficiency and high luminance. SOLUTION: The polarization plane light source device consists of a superposed body having at least a light transmission plate 1 capable of allowing incident light from a side face to exit from an upper face and having a reflection layer on the lower face side, a 1/4 wavelength plate 2 and a linearly polarized light separating layer 3 for separating natural light into reflected light consisting of linearly polarized light and transmitted light and an LCD device is composed of arranging a liquid crystal(LC) cell on the light exit side of the light source device. Since the reflected light separated by the separation layer 3 is made incident again upon the layer 3 as transmissive linearly polarized light through the reflection layer 11 of the plate 1 and the 1/4 wavelength plate 2 and transmitted and exit light is obtained by adding the transmitted light obtained by reincidence of the reflected light to the original transmitted light, the application efficiency of light can be improved and an LCD device having high luminance and high visibility can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、光利用効率に優れる偏光
面光源装置、及び明るさに優れて良視認性の液晶表示装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization plane light source device having excellent light use efficiency and a liquid crystal display device having excellent brightness and good visibility.

【0002】[0002]

【背景技術】従来、側面からの入射光を上下面の一方よ
り出射するサイドライト型の導光板の光出射面に、偏光
板を介して液晶セルを配置した液晶表示装置が知られて
いた。しかしながら、特定の振動面をもつ直線偏光のみ
を透過して他の光は吸収する偏光板の特性に基づき、液
晶セルに入射させて表示に利用しうる光量が導光板出射
光の45%程度で理論的にも50%を超えることがな
く、光の利用効率に乏しくて液晶表示装置等の輝度向上
を阻害する問題点があった。
2. Description of the Related Art Conventionally, there has been known a liquid crystal display device in which a liquid crystal cell is arranged via a polarizing plate on a light emitting surface of a side light type light guide plate for emitting incident light from a side surface from one of upper and lower surfaces. However, based on the characteristics of a polarizing plate that transmits only linearly polarized light having a specific vibration plane and absorbs other light, the amount of light that can be incident on the liquid crystal cell and used for display is about 45% of the light emitted from the light guide plate. Theoretically, it does not exceed 50%, and there is a problem that the light use efficiency is poor and the improvement in luminance of a liquid crystal display device or the like is hindered.

【0003】一方、自然光より直線偏光を取り出す素子
としては、誘電体の薄膜を重畳した多層膜を介してブリ
ュースター角により自然光を直線偏光からなる反射光と
透過光に分離するようにした直線偏光分離素子や、複屈
折性誘電体の薄膜を重畳した多層膜を介して自然光を直
線偏光からなる反射光と透過光に分離する直線偏光分離
素子が知られていた。
On the other hand, as an element for extracting linearly polarized light from natural light, a linearly polarized light which separates natural light into reflected light and transmitted light composed of linearly polarized light at a Brewster angle through a multilayer film on which a dielectric thin film is superimposed is used. 2. Description of the Related Art There has been known a linearly polarized light separating element that separates natural light into reflected light and transmitted light formed of linearly polarized light through a separating element or a multilayer film on which a birefringent dielectric thin film is superimposed.

【0004】[0004]

【発明の技術的課題】本発明は、前記の直線偏光分離素
子を利用して導光板出射光の50%以上を有効利用でき
て光の利用効率に優れ、輝度に優れる液晶表示装置等を
形成しうる偏光面光源装置の開発を課題とする。
SUMMARY OF THE INVENTION The present invention provides a liquid crystal display device and the like which can utilize 50% or more of the light emitted from a light guide plate by using the above-mentioned linearly polarized light separating element, and is excellent in light use efficiency and luminance. The objective is to develop a polarization plane light source device that can be used.

【0005】[0005]

【課題の解決手段】本発明は、側面からの入射光を上面
より出射し、下面側に反射層を有する導光板と、1/4
波長板と、自然光を直線偏光からなる反射光と透過光に
分離する直線偏光分離層を少なくとも有する重畳体から
なることを特徴とする偏光面光源装置、及びその偏光面
光源装置の光出射側に液晶セルを配置したことを特徴と
する液晶表示装置を提供するものである。
According to the present invention, there is provided a light guide plate which emits incident light from a side surface from an upper surface and has a reflective layer on a lower surface side.
A polarizing plate light source device comprising a superimposed body having at least a linearly polarized light separating layer for separating natural light into reflected light and transmitted light formed of linearly polarized light, and a light exit side of the polarizing surface light source device. An object of the present invention is to provide a liquid crystal display device having a liquid crystal cell arranged therein.

【0006】[0006]

【発明の効果】本発明の偏光面光源装置によれば、直線
偏光分離層にて反射された直線偏光も当該直線偏光分離
層を透過する直線偏光として利用することができる。す
なわち本発明による偏光面光源装置では、導光板より出
射した光が直線偏光分離層を介し直線偏光からなる反射
光と透過光に分離され、その透過光は直線偏光分離層よ
り出射される。
According to the polarization plane light source device of the present invention, the linearly polarized light reflected by the linearly polarized light separating layer can also be used as the linearly polarized light transmitted through the linearly polarized light separating layer. That is, in the polarization plane light source device according to the present invention, the light emitted from the light guide plate is separated into reflected light and transmitted light composed of linearly polarized light via the linearly polarized light separating layer, and the transmitted light is emitted from the linearly polarized light separating layer.

【0007】一方、前記直線偏光分離層による反射光は
導光板に戻され下面側の反射層を介し反射され、かつそ
の際の反射反転により直線偏光の振動面が変換されて直
線偏光分離層を透過しうる直線偏光となり、直線偏光分
離層に再入射して透過する。その結果、当初の透過光に
当該反射光の反転再入射光が加算された状態の出射光が
得られて光の利用効率が向上する。
On the other hand, the reflected light from the linearly polarized light separating layer is returned to the light guide plate and reflected through the lower reflective layer, and the reflection reversal at that time changes the plane of vibration of the linearly polarized light to form the linearly polarized light separating layer. It becomes linearly polarized light that can be transmitted, and re-enters the linearly polarized light separating layer to be transmitted. As a result, the emitted light is obtained in a state where the inverted re-incident light of the reflected light is added to the originally transmitted light, and the light use efficiency is improved.

【0008】前記において、直線偏光分離層による反射
光を1/4波長板を透過させることにより直線偏光の振
動面の統一に有効なためか、有効利用できる光量が増大
してより光の利用効率が向上する。その結果、導光板よ
り出射した光の50%以上を有効利用できる直線偏光と
して得ることができて光の利用効率に優れ、輝度に優れ
て良視認性の液晶表示装置を形成することができる。
In the above, the reflected light from the linearly polarized light separating layer is transmitted through a quarter-wave plate, which is effective in unifying the vibration plane of linearly polarized light. Is improved. As a result, 50% or more of the light emitted from the light guide plate can be obtained as linearly polarized light that can be effectively used, and a liquid crystal display device having excellent light use efficiency, excellent brightness, and good visibility can be formed.

【0009】[0009]

【発明の実施形態】本発明の偏光面光源装置は、側面か
らの入射光を上面より出射し、下面側に反射層を有する
導光板と、1/4波長板と、自然光を直線偏光からなる
反射光と透過光に分離する直線偏光分離層を少なくとも
有する重畳体からなる。その例を図1、図2に示した。
1が導光板、2が1/4波長板、3が直線偏光分離層で
あり、4は必要に応じての拡散層である。
BEST MODE FOR CARRYING OUT THE INVENTION The polarizing plane light source device of the present invention emits incident light from the side surface from the upper surface and comprises a light guide plate having a reflective layer on the lower surface side, a quarter wavelength plate, and natural light as linearly polarized light. It is composed of a superimposed body having at least a linearly polarized light separating layer for separating reflected light and transmitted light. Examples thereof are shown in FIGS.
1 is a light guide plate, 2 is a 1/4 wavelength plate, 3 is a linearly polarized light separation layer, and 4 is a diffusion layer as needed.

【0010】導光板としては、側面からの入射光を上面
より出射する適宜なものを用いうる。かかる導光板は、
例えば透明又は半透明の樹脂板の上面(光出射面)又は
下面にドット状やストライプ状に拡散体を設けたもの
や、樹脂板の下面に凹凸構造、就中、プリズムアレイか
らなる凹凸構造を付与したものなどとして得ることがで
きる。従って導光板は通例、上面、それに対向する下
面、及び上下面間の少なくとも一側端面からなる光入射
側面を有する板状物からなる。板内の伝送光を拡散や反
射、回折や干渉等により板の上面側に出射するようにし
た、液晶表示装置で公知のサイドライト型バックライト
などにおける導光板はその例である。
[0010] As the light guide plate, an appropriate one that emits incident light from the side surface from the upper surface can be used. Such a light guide plate,
For example, a transparent or translucent resin plate provided with a diffuser in the form of dots or stripes on the upper surface (light emitting surface) or lower surface thereof, or a concave / convex structure on the lower surface of the resin plate, particularly a concave / convex structure composed of a prism array. It can be obtained as a given one. Therefore, the light guide plate is generally formed of a plate-like object having a light incident side surface including an upper surface, a lower surface opposite thereto, and at least one end surface between upper and lower surfaces. An example is a light guide plate in a sidelight type backlight known in liquid crystal display devices, in which transmission light in the plate is emitted to the upper surface side of the plate by diffusion, reflection, diffraction, interference, or the like.

【0011】光の利用効率に優れて明るい偏光光源を得
る点などよりは、下面に光入射側面に沿う方向のプリズ
ム状凹凸を周期的に有する導光板が好ましく用いうる。
その例を図3(a)〜(c)に示した。またプリズム状
凹凸の例を図4(a)〜(c)に示した。図3におい
て、21が上面、22,26,27が下面、23が光入
射側面、24が横側面、25が光入射側面23に対向す
る側端部である。また図4において、28,29は凸
部、30は凹部であり、32,35,36が上り斜面、
31,33(34),37が対向面である。
Rather than obtaining a bright polarized light source with excellent light use efficiency, a light guide plate having periodically formed prismatic irregularities on the lower surface in a direction along the light incident side surface can be preferably used.
Examples are shown in FIGS. 3 (a) to 3 (c). FIGS. 4A to 4C show examples of prismatic irregularities. In FIG. 3, 21 is the upper surface, 22, 26, 27 are the lower surface, 23 is the light incident side surface, 24 is the lateral side surface, and 25 is the side end facing the light incident side surface 23. In FIG. 4, reference numerals 28 and 29 denote convex portions, reference numeral 30 denotes concave portions, and reference numerals 32, 35, and 36 denote upward slopes,
31, 33 (34) and 37 are opposing surfaces.

【0012】上下面及び上下面間の光入射側面を有して
導光板を形成する前記の板状物は、同厚板等でもよい
が、好ましくは図例の如く、光入射側面23に対向する
側端部25の厚さが光入射側面のそれよりも薄いもの、
就中50%以下の厚さとしたものである。
The above-mentioned plate-like member having the upper and lower surfaces and the light incident side surface between the upper and lower surfaces to form the light guide plate may be a thick plate or the like, but is preferably opposed to the light incident side surface 23 as shown in the figure. The side end 25 having a thickness smaller than that of the light incident side surface,
In particular, the thickness is 50% or less.

【0013】当該対向側端部の薄厚化により、図4
(a)に示した太矢印の如く、光入射側面より入射した
光が伝送端としての当該対向側端部に至るまでに、下面
の上り斜面に効率よく入射し、その反射を介し上面より
出射して入射光を目的面に効率よく供給でき、また導光
板を軽量化することができる利点などがある。ちなみ
に、下面が図3(a)の如き直線面の場合、均一厚の導
光板の約75%の重量とすることができる。
[0013] By reducing the thickness of the opposite side end, FIG.
As shown by the thick arrow in (a), the light incident from the light incident side surface efficiently enters the upward slope of the lower surface and reaches the upper end surface through the reflection before reaching the opposite end portion as the transmission end. Thus, there are advantages that the incident light can be efficiently supplied to the target surface, and that the light guide plate can be reduced in weight. Incidentally, when the lower surface is a straight surface as shown in FIG. 3A, the weight can be about 75% of the light guide plate having a uniform thickness.

【0014】前記板状物の下面に設けられるプリズム状
凹凸は、光入射側面に沿う方向の斜面にて凸部又は凹部
として周期的に形成される。なお凸部又は凹部は、その
凸部又は凹部を形成する斜面の下面との交点を結ぶ直線
20に基づき、斜面の交点(頂点)が当該直線よりも突
出しているか(凸)、窪んでいるか(凹)による。
The prism-shaped irregularities provided on the lower surface of the plate-like object are periodically formed as convex portions or concave portions on an inclined surface along a light incident side surface. In addition, based on the straight line 20 connecting the intersection with the lower surface of the slope forming the projection or the recess, the projection or the recess has an intersection (apex) of the slope protruding (convex) or depressed from the straight line (convex). Concave).

【0015】また前記の凸部又は凹部を形成する斜面
は、下面との交点と頂点を結ぶ直線に基づいて上り斜面
とその対向面とからなるものとされる。これにより、上
り斜面に直接入射する伝送光に加えて、対向面に入射し
てその反射を介し上り斜面に入射する伝送光もその上り
斜面を介した反射にて出射面に供給することができ、そ
の分の光利用効率の向上をはかりうる。前記の上り斜面
は、光源から遠ざかる方向に上り傾斜する斜面であるこ
とによる。なお対向面は通例、光源から遠ざかる方向に
下り傾斜する斜面か、水平面とされる。
Further, the slope forming the above-mentioned convex portion or concave portion is formed of an upward slope and an opposing surface based on a straight line connecting the intersection and the apex with the lower surface. Thus, in addition to the transmission light directly incident on the upward slope, the transmission light incident on the opposite surface and incident on the upward slope through reflection thereof can be supplied to the emission surface by reflection via the upward slope. The light use efficiency can be improved accordingly. This is because the upward slope is an upward slope that moves away from the light source. Note that the facing surface is generally a slope inclined downward in a direction away from the light source or a horizontal surface.

【0016】プリズム状凹凸を設ける導光板の面は通
例、上記した如く傾斜面とされるが、その傾斜形状は任
意であり、図3(a)に例示の如き直線面や、図3
(b),(c)に例示の如き曲面などのように適宜な面
形状とすることができる。直線面でない場合、出射光の
出射方向を均一化する(指向性)点などよりは、プリズ
ム状凹凸を設ける面の全位置で平均傾斜角度より5度以
内の範囲にあることが好ましい。
The surface of the light guide plate on which the prismatic irregularities are provided is generally inclined as described above, but the inclined shape is arbitrary, and a linear surface as illustrated in FIG.
An appropriate surface shape such as a curved surface as illustrated in (b) and (c) can be used. When the surface is not a straight surface, it is preferable that the angle is within 5 degrees from the average inclination angle at all positions of the surface on which the prismatic irregularities are provided, rather than at a point where the emission direction of emitted light is made uniform (directivity).

【0017】プリズム状凹凸を形成する凸部又は凹部の
形状も、図4(a)〜(c)に例示した如く直線状の斜
面で形成されている必要はなく、屈折面や湾曲面等を含
む斜面にて形成されていてもよい。また凸部又は凹部
は、面の全体で凸凹やその形状等が同じである必要はな
く、出射光の垂直性の向上等の点よりは、光入射側から
徐々にその形状や角度が変化する構造が好ましく、特に
上り斜面の導光板上面に対する傾斜角が光伝送方向に、
従って光入射側より後端側に向かって順次大きくなる構
造が好ましい。
The shape of the projections or depressions forming the prismatic irregularities does not need to be formed as straight slopes as shown in FIGS. 4 (a) to 4 (c). It may be formed on an inclined surface including. Also, the projections or depressions do not need to have the same irregularities or the same shape or the like over the entire surface, and the shape or angle gradually changes from the light incident side rather than from the viewpoint of improving the perpendicularity of the emitted light. The structure is preferable, and particularly the inclination angle of the upward slope with respect to the upper surface of the light guide plate is in the light transmission direction,
Therefore, a structure in which the size gradually increases from the light incident side toward the rear end side is preferable.

【0018】凸部又は凹部の周期は、出射光におけるス
トライプ状の輝線の間隔に関係し、面全体における明る
さの平均化などの点よりその周期は、500μm以下、
就中10〜400μm、特に50〜300μmが好まし
い。
The period of the convex portion or the concave portion is related to the interval between the striped bright lines in the emitted light, and the period is 500 μm or less from the point of averaging the brightness over the entire surface.
Especially, it is preferably 10 to 400 μm, particularly preferably 50 to 300 μm.

【0019】一方、凸部又は凹部を形成する上記した上
り斜面は、図4(a)に例示の如く導光板上面に対する
傾斜角θ1が30〜50度、就中35〜45度であるこ
とが好ましい。かかる傾斜角の範囲とすることにより、
図4(a)に折線矢印で例示した如く、直接又は対向面
を介して入射する伝送光をその上り斜面32を介し出射
面21に対して垂直に近い角度で反射して、光を効率よ
く出射させることができる。上り斜面の傾斜角が前記範
囲外では垂直方向とのずれが大きくなり、出射光に垂直
に近い指向性をもたせることが困難で、伝送光の出射効
率(利用効率)が低下する場合がある。
On the other hand, the upward slope forming the convex or concave portion has an inclination angle θ 1 of 30 to 50 degrees, particularly 35 to 45 degrees with respect to the upper surface of the light guide plate as illustrated in FIG. Is preferred. By setting the range of the inclination angle,
As exemplified by the broken line arrow in FIG. 4A, the transmission light incident directly or via the opposing surface is reflected at an angle close to perpendicular to the emission surface 21 via the upward slope 32, thereby efficiently transmitting the light. It can be emitted. If the inclination angle of the upward slope is out of the above range, the deviation from the vertical direction becomes large, making it difficult to give the emitted light directivity close to the vertical, and the emission efficiency (utilization efficiency) of the transmitted light may decrease.

【0020】また凸部又は凹部を形成する上記した対向
面は、図4(a)に例示の如くその導光板上面に対する
傾斜角θ2が10度以下、就中5度以下、特に2度以下
であることが好ましい。なお図4(b)に例示の如く、
対向面は当該傾斜角が0度であることも許容する。図例
では傾斜角0度の部分34を部分的に設けてあるが、垂
直面等からなる段差部分を介して上り斜面間の全体が傾
斜角0度の水平面であってもよい。従って本発明におけ
る対向面には傾斜角0度の水平面も含まれる。
As shown in FIG. 4 (a), the above-mentioned opposing surface forming the projection or the depression has an inclination angle θ 2 with respect to the upper surface of the light guide plate of 10 degrees or less, particularly 5 degrees or less, particularly 2 degrees or less. It is preferred that In addition, as illustrated in FIG.
The opposite surface also allows the inclination angle to be 0 degrees. In the illustrated example, the portion 34 having the inclination angle of 0 ° is partially provided. However, the entire portion between the upward slopes may be a horizontal plane having the inclination angle of 0 ° via a step portion formed of a vertical surface or the like. Therefore, the opposed surface in the present invention includes a horizontal surface having an inclination angle of 0 °.

【0021】前記の傾斜角θ2の範囲とすることによ
り、図4(a)に折線矢印で例示した如く、当該傾斜角
より大きい角度で伝送される光が対向面31に入射して
反射され、その場合に当該対向面の傾斜角に基づいて出
射面21により平行な角度で反射されて上り斜面32に
入射し、反射されて出射面より出射する。その結果、上
り斜面に入射する光の入射角を一定化でき、反射角のバ
ラツキを抑制できて出射光の平行光化をはかることがで
きる。
By setting the range of the inclination angle θ 2 as described above, light transmitted at an angle larger than the inclination angle is incident on the opposing surface 31 and reflected as illustrated by the broken line arrow in FIG. In this case, the light is reflected by the exit surface 21 at a parallel angle based on the inclination angle of the facing surface, enters the upward slope 32, is reflected, and exits from the exit surface. As a result, the incident angle of the light incident on the upward slope can be made constant, the variation in the reflection angle can be suppressed, and the emitted light can be made parallel.

【0022】従って凸部又は凹部を形成する上り斜面と
対向面の当該傾斜角を調節することにより、出射光に指
向性をもたせることができ、それにより出射面に対して
垂直方向に近い角度で光を出射させることが可能にな
る。なお直線偏光分離層による反射光を効率よく再出射
させる点などより対向面は、その導光板上面に対する投
影面積が上り斜面のそれの5倍以上、就中10〜300
倍、特に20〜150倍となるように形成することが好
ましい。
Therefore, by adjusting the angle of inclination between the upward slope and the facing surface that form the convex or concave portion, the emitted light can be given directivity, whereby the emitted light has an angle close to the direction perpendicular to the exit surface. Light can be emitted. In addition, the projected surface with respect to the upper surface of the light guide plate is at least five times as large as that of the upward slope, particularly 10 to 300, because the reflected light from the linearly polarized light separation layer is efficiently re-emitted.
It is preferable to form it so as to be 20 times, especially 20 to 150 times.

【0023】導光板における光入射側面の形状について
は、特に限定はなく、適宜に決定してよい。一般には、
上面(出射面)に対して垂直な面とされるが、例えば湾
曲凹形などの光源の外周等に応じた形状として、入射光
率の向上をはることもできる。また、光源との間に介在
する導入部を有する面構造などとすることもできる。そ
の導入部は、光源などに応じて適宜な形状とすることが
できる。
The shape of the light incident side surface of the light guide plate is not particularly limited, and may be appropriately determined. Generally,
Although the surface is perpendicular to the upper surface (emission surface), the incident light rate can be improved by adopting a shape corresponding to the outer periphery of the light source, such as a curved concave shape. Further, a surface structure having an introduction portion interposed between the light source and the light source may be employed. The introduction portion can have an appropriate shape according to the light source and the like.

【0024】導光板の形成には、入射光の波長領域など
に応じてそれに透明性を示す適宜な材料を用いうる。ち
なみに可視光域では、例えばアクリル系やカーボネート
系、セルロース系やビニルアルコール系、アミド系やイ
ミド系、スチレン系やアリレート系、エステル系やスル
ホン系、エーテルスルホン系やエポキシ系等で代表され
る透明樹脂やガラスなどが一般に用いられる。
In forming the light guide plate, an appropriate material exhibiting transparency according to the wavelength range of incident light or the like can be used. Incidentally, in the visible light range, for example, transparent represented by acrylic type, carbonate type, cellulose type, vinyl alcohol type, amide type, imide type, styrene type, allylate type, ester type, sulfone type, ether sulfone type, epoxy type, etc. Resin and glass are generally used.

【0025】また導光板は、適宜な方法にて形成するこ
とができる。ちなみにその例としては、所定のプリズム
状凹凸を形成しうる面を有する金型やロールによるプレ
ス成形方法、所定のプリズム状凹凸を形成しうる面を有
する金型に加熱溶融させた熱可塑性樹脂又は紫外線ない
し放射線等で重合処理しうる液状樹脂を供給する方法な
どがあげられる。
The light guide plate can be formed by an appropriate method. Incidentally, as an example, a press molding method using a mold or a roll having a surface capable of forming predetermined prismatic irregularities, a thermoplastic resin which is heated and melted in a mold having a surface capable of forming predetermined prismatic irregularities or A method of supplying a liquid resin that can be polymerized by ultraviolet light or radiation, or the like, may be used.

【0026】なお導光板は、例えば光の伝送を担う導光
部にプリズム状凹凸を形成したシートを接着したものの
如く、同種又は異種の材料の積層体などとして形成され
ていてもよく、1種の材料による一体的単層物として形
成されている必要はない。従って導光板は、単層形態や
複層形態等の適宜な形態を有するものであってよい。
The light guide plate may be formed as a laminate of the same or different materials, such as a light guide portion for transmitting light and a sheet formed with prismatic irregularities adhered thereto. Need not be formed as an integral monolayer of the above material. Therefore, the light guide plate may have an appropriate form such as a single-layer form or a multi-layer form.

【0027】導光板の厚さは、使用目的による導光板の
サイズや光源の大きさなどにより適宜に決定することが
できる。液晶表示装置等に用いる場合の一般的な厚さ
は、その光入射側面に基づき20mm以下、就中0.1〜
10mm、特に0.5〜8mmである。
The thickness of the light guide plate can be appropriately determined according to the size of the light guide plate and the size of the light source depending on the purpose of use. A typical thickness when used for a liquid crystal display device or the like is 20 mm or less based on the light incident side surface thereof, and especially 0.1 to
It is 10 mm, especially 0.5-8 mm.

【0028】導光板の下面には、図例の如く必要に応じ
て反射層11、好ましくは金属反射層を付設することも
できる。かかる反射層は、プリズム状凹凸等を形成した
下面からの漏れ光の発生を防止して出射効率の向上に有
効である。また直線偏光分離層による反射光の偏光振動
面を変換する手段としても機能する。
A reflection layer 11, preferably a metal reflection layer, can be provided on the lower surface of the light guide plate as required, as shown in the figure. Such a reflective layer is effective in preventing the generation of light leaking from the lower surface on which the prismatic irregularities are formed and improving the emission efficiency. It also functions as means for converting the plane of polarization oscillation of the reflected light by the linearly polarized light separating layer.

【0029】前記した偏光振動面の変換手段としては、
金属からなる反射層が特に好ましい。かかる金属反射層
によれば、反射時に直線偏光の振動面を効率的に反転さ
せることができ、その偏光変換効率が屈折率相違の界面
を介した全反射や拡散反射による場合よりも優れてい
る。ちなみに金属面に概ね垂直に直線偏光が入射する
と、振動面の反転効率は100%近い値となり、直線偏
光分離層を透過しうる直線偏光に効率よく変換すること
ができる。
The means for converting the polarization vibration plane includes:
A reflective layer made of metal is particularly preferred. According to such a metal reflection layer, the vibration plane of linearly polarized light can be efficiently inverted at the time of reflection, and its polarization conversion efficiency is superior to that of total reflection or diffuse reflection through an interface having a difference in refractive index. . Incidentally, when linearly polarized light is substantially perpendicular to the metal surface, the reversal efficiency of the vibrating surface becomes a value close to 100%, and it can be efficiently converted into linearly polarized light that can pass through the linearly polarized light separating layer.

【0030】前記の偏光変換効率などの点より好ましい
金属反射層は、アルミニウム、銀、金、銅又はクロムな
どからなる高反射率の金属の少なくとも1種を含有する
金属面を有するものである。導光板との密着性に優れる
金属反射層は、バインダ樹脂による金属粉末の混入塗工
層や、蒸着方式等による金属薄膜の付設層などとして形
成することができる。金属反射層の片面又は両面には、
必要に応じ反射率の向上や酸化防止等を目的とした適宜
なコート層を設けることもできる。
The metal reflection layer, which is preferable from the viewpoint of the polarization conversion efficiency and the like, has a metal surface containing at least one kind of metal having a high reflectivity such as aluminum, silver, gold, copper or chromium. The metal reflective layer having excellent adhesion to the light guide plate can be formed as a coating layer in which a metal powder is mixed with a binder resin, or a layer provided with a metal thin film by a vapor deposition method or the like. On one or both sides of the metal reflective layer,
If necessary, an appropriate coat layer for the purpose of improving the reflectance and preventing oxidation can be provided.

【0031】導光板の光入射側面には通例、図1,2に
例示の如く光源12が配置される。その光源としては、
適宜なものを用いうるが例えば(冷,熱)陰極管等の線
状光源や、発光ダイオード等の点光源、あるいはその線
状又は面状等のアレイ体などが好ましく用いうる。低消
費電力性や耐久性等の点よりは、冷陰極管が特に好まし
い。
A light source 12 is usually arranged on the light incident side of the light guide plate as shown in FIGS. As the light source,
An appropriate one can be used, but for example, a linear light source such as a (cold or hot) cathode tube, a point light source such as a light emitting diode, or a linear or planar array thereof can be preferably used. A cold cathode tube is particularly preferable from the viewpoint of low power consumption and durability.

【0032】偏光面光源装置の形成に際しては、必要に
応じて線状光源からの発散光を導光板の側面に導くため
に光源を包囲する光源ホルダ13、均等な面発光を得る
ための拡散板4、漏れ光防止用の反射層11などの適宜
な補助手段を適宜な位置に配置した組合せ体とすること
もできる。
In forming the polarization plane light source device, a light source holder 13 surrounding the light source for guiding divergent light from the linear light source to the side surface of the light guide plate as necessary, and a diffusion plate for obtaining uniform surface emission. 4. A combination body in which appropriate auxiliary means such as a reflection layer 11 for preventing light leakage may be arranged at appropriate positions.

【0033】光源ホルダとしては、高反射率金属薄膜を
付設した樹脂シートや金属箔などが一般に用いられる。
拡散板の配置は、明暗ムラの発生を防止して明るさの均
等性により優れる偏光面光源装置の形成に有利であり、
出射光の指向性の維持性などの点より拡散角(拡散範
囲)の小さいものが好ましい。
As the light source holder, a resin sheet or a metal foil provided with a high-reflectance metal thin film is generally used.
The arrangement of the diffuser plate is advantageous for forming a polarization plane light source device that prevents the occurrence of light and dark unevenness and is more excellent in brightness uniformity,
It is preferable that the diffusion angle (diffusion range) is small from the viewpoint of maintaining the directivity of the emitted light.

【0034】なお反射層については、上記した反射層1
1に代えて、あるいはその反射層と共に、導光板の下面
に沿って反射シートを設けることもできる。その反射シ
ートについては、導光板で説明した反射層に準じること
ができ、従って偏光面光源装置では金属反射面を有する
反射シートが好ましく用いうる。
As for the reflection layer, the reflection layer 1 described above is used.
Instead of 1, or together with the reflection layer, a reflection sheet can be provided along the lower surface of the light guide plate. The reflection sheet can conform to the reflection layer described for the light guide plate. Therefore, a reflection sheet having a metal reflection surface can be preferably used in the polarization plane light source device.

【0035】1/4波長板は、直線偏光分離層により反
射した直線偏光を円偏光に変換し、それが導光板の下面
側で反射されて再び1/4波長板に入射した際、円偏光
を直線偏光に戻すが、その場合に直線偏光の振動面(偏
光方向)を直線偏光分離層を透過しやすい状態に変換す
るものと考えられる。
The quarter-wave plate converts the linearly polarized light reflected by the linearly polarized light separating layer into circularly polarized light, and when it is reflected on the lower surface side of the light guide plate and re-enters the quarter-wavelength plate, it becomes circularly polarized light. Is returned to linearly polarized light. In this case, it is considered that the vibration plane (polarization direction) of the linearly polarized light is converted into a state in which the linearly polarized light is easily transmitted through the separation layer.

【0036】前記の点より、すなわち当該反射光を直線
偏光分離層を透過しやすい状態に変換する点などより、
1/4波長板は、直線偏光分離層の偏光軸、すなわちそ
の透過光の偏光方向に対して光学軸が30〜60度、就
中35〜55度、特に40〜50度の角度で交差する状
態に配置することが好ましい。従って図1,2に例示の
如く1/4波長板2は、導光板1の上面側における導光
板と直線偏光分離層3との間に配置することが光利用効
率の向上などの点より好ましい。
From the above-mentioned point, that is, from the point that the reflected light is converted into a state where the reflected light is easily transmitted through the linearly polarized light separating layer,
The 波長 wavelength plate has an optical axis crossing the polarization axis of the linearly polarized light separating layer, that is, the polarization direction of the transmitted light, at an angle of 30 to 60 degrees, preferably 35 to 55 degrees, particularly 40 to 50 degrees. It is preferable to arrange them in a state. Therefore, as shown in FIGS. 1 and 2, it is preferable that the 波長 wavelength plate 2 is disposed between the light guide plate and the linearly polarized light separating layer 3 on the upper surface side of the light guide plate 1 from the viewpoint of improving light use efficiency. .

【0037】1/4波長板としては、適宜なものを用い
うる。好ましくは少なくとも波長400〜700nmの範
囲にある単色光又は所定波長範囲の可視光域に対して1
/4波長板として機能するものが用いられる。1/4波
長板は、適宜な材質からなる位相差層などとして得るこ
とができ、透明で均一な位相差を与えるものが好まし
い。一般には、高分子系素材からなる位相差板が用いら
れる。
An appropriate quarter-wave plate can be used. Preferably, at least monochromatic light having a wavelength in the range of 400 to 700 nm or visible light in a predetermined wavelength range.
What functions as a / 4 wavelength plate is used. The quarter-wave plate can be obtained as a retardation layer or the like made of an appropriate material, and is preferably one that gives a transparent and uniform retardation. Generally, a retardation plate made of a polymer material is used.

【0038】前記の位相差板の例としては、ポリカーボ
ネート系、ポリエステル系、ポリイミド系、ポリエーテ
ルスルホン系、ポリスルホン系、ポリスチレン系、ポリ
ビニルアルコール系、ポリアリレート系、ポリ塩化ビニ
ル系、ポリ塩化ビニリデン系、ポリアクリル系、ポリア
ミド系、エポキシ系、セルロース系、ポリエチレンやポ
リプロピレンの如きポリオレフィン系等のプラスチック
からなる延伸フィルムや、液晶ポリマーの配向フィルム
などがあげられる。
Examples of the retardation plate include polycarbonate, polyester, polyimide, polyethersulfone, polysulfone, polystyrene, polyvinyl alcohol, polyarylate, polyvinyl chloride, and polyvinylidene chloride. And a stretched film made of a plastic such as polyacryl, polyamide, epoxy, cellulose, polyolefin such as polyethylene and polypropylene, and an oriented film of a liquid crystal polymer.

【0039】1/4波長板の厚さは、その位相差などに
応じて適宜に決定しうるが、柔軟性や薄型化などの点よ
り1〜500μm、就中5〜400μm、特に10〜30
0μmの厚さが好ましい。なお発光強度や発光色を広い
視野角で均一に維持する点よりは、1/4波長板の面内
における位相差の誤差が小さいほど好ましい。
The thickness of the quarter-wave plate can be appropriately determined according to the phase difference and the like, but is 1 to 500 μm, preferably 5 to 400 μm, particularly 10 to 30 μm in view of flexibility and thinness.
A thickness of 0 μm is preferred. Note that it is preferable that the error of the phase difference in the plane of the quarter-wave plate is smaller than maintaining the emission intensity and emission color uniformly at a wide viewing angle.

【0040】上記した透過光、特に斜め透過光の着色防
止等の点より特に好ましく用いうる1/4波長板は、
(nx−nz)/(nx−ny)=Nz(以下同じ)と定義
したとき、式:−1≦Nz≦1.5を満足するものであ
る。なお前記において、nxは面内の最大屈折率、ny
xに直交方向の屈折率、nzは厚さ方向の屈折率を意味
する。厚さ方向の屈折率を制御した位相差板は、例えば
熱収縮性フィルムとの接着下に高分子フィルムを延伸処
理したフィルムなどとして得ることができる。
The 波長 wavelength plate, which can be particularly preferably used from the viewpoint of preventing coloring of transmitted light, particularly obliquely transmitted light, is as follows:
(N x -n z) / ( n x -n y) = when defined as Nz (hereinafter the same), the formula: is intended to satisfy -1 ≦ Nz ≦ 1.5. Note in the above, n x is the maximum in-plane refractive index, n y is a refractive index in the perpendicular direction to the n x, n z denotes a refractive index in the thickness direction. The retardation plate in which the refractive index in the thickness direction is controlled can be obtained as, for example, a film obtained by stretching a polymer film while being bonded to a heat-shrinkable film.

【0041】なお上記した所定波長範囲の可視光域に対
して1/4波長板として機能する広帯域型の1/4波長
板は、例えば波長が550nmの光の如く特定波長の可視
光に対して1/4波長板として機能する位相差層と、そ
れとは位相差が相違する位相差層との重畳化の如く、位
相差相違の2層以上の位相差層を重畳する方式などの適
宜な方式で形成することができる。広帯域型の1/4波
長板は、利用光の着色化の防止や光の利用効率のより向
上などに有効である。
The above-mentioned wide-band quarter-wave plate functioning as a quarter-wave plate with respect to the visible light region in the above-mentioned predetermined wavelength range is provided for a visible light having a specific wavelength such as light having a wavelength of 550 nm. Appropriate method such as a method of superimposing two or more retardation layers having different phase differences, such as superimposition of a retardation layer functioning as a 波長 wavelength plate and a retardation layer having a different phase difference from the retardation layer. Can be formed. The broadband quarter-wave plate is effective for preventing coloring of the used light and improving the light use efficiency.

【0042】ちなみに前記した広帯域型1/4波長板を
形成するための1/4波長板としては、位相差が100
〜180nm、就中110〜150の位相差層などがあげ
られ、それを用いる場合には1層以上の奇数層として含
ませることが、1/4波長板機能の広帯域化などの点よ
り好ましい。また前記1/4波長板と組合せる位相差相
違の位相差層としては、200nm以上の位相差を与える
位相差層、就中1/2波長の位相差を与える位相差層が
1/4波長板機能の広帯域化などの点より好ましいが、
これに限定するものではない。なお2層以上の位相差層
からなる1/4波長板の場合、上記した配置関係におけ
る光学軸は、1/4波長板に基づく。
By the way, a quarter-wave plate for forming the above-mentioned wide-band quarter-wave plate has a phase difference of 100.
A phase difference layer having a wavelength of from 180 to 180 nm, especially from 110 to 150, may be used. When such a phase difference layer is used, it is preferably contained as one or more odd-numbered layers from the viewpoint of broadening the band of a quarter-wave plate function. Further, as the retardation layer having a retardation difference combined with the 波長 wavelength plate, a retardation layer providing a phase difference of 200 nm or more, especially a retardation layer providing a 位相 wavelength phase difference, is a 波長 wavelength layer. Although it is preferable from the point of broadening the board function,
It is not limited to this. In the case of a quarter-wave plate including two or more retardation layers, the optical axis in the above-described arrangement relationship is based on the quarter-wave plate.

【0043】直線偏光分離層としては、上記した如く誘
電体の薄膜を重畳した多層膜を介してブリュースター角
により自然光を直線偏光からなる反射光と透過光に分離
するようにしたものや、複屈折性誘電体の薄膜を重畳し
た多層膜を介して自然光を直線偏光からなる反射光と透
過光に分離するようにしたものなどの適宜なものを用い
うる。従って公知の直線偏光分離素子のいずれも用いう
る。ちなみにかかる直線偏光分離素子には、例えばD−
BEF(商品名、3M社製)などの市販品もある。
As the linearly polarized light separating layer, as described above, natural light is separated into reflected light and transmitted light composed of linearly polarized light by Brewster's angle through a multilayer film on which a dielectric thin film is superimposed, An appropriate device such as a device that separates natural light into reflected light and transmitted light composed of linearly polarized light through a multilayer film on which a thin film of a refractive dielectric is superimposed may be used. Therefore, any known linearly polarized light separating element can be used. Incidentally, for example, D-
There are also commercially available products such as BEF (trade name, manufactured by 3M).

【0044】本発明の偏光面光源装置は、図2に例示し
た如くそれに拡散層4等の適宜な光学層の1種又は2種
以上を配置して、種々の重畳形態に形成することができ
る。ちなみに拡散層は、発光(出射光)を平準均一化し
て明暗ムラを抑制することなどを目的とする。
The polarization plane light source device of the present invention can be formed in various superposed forms by arranging one or more appropriate optical layers such as the diffusion layer 4 thereon as illustrated in FIG. . Incidentally, the purpose of the diffusion layer is to level out the light emission (emitted light) to suppress uneven brightness.

【0045】拡散層は、導光板と1/4波長板の間や1
/4波長板と直線偏光分離層の間、又は直線偏光分離層
の光透過側などの適宜な箇所に1層又は2層以上配置す
ることができる。なお拡散層の配置は、偏光面光源装置
を液晶セル等に適用した場合に、液晶セル等の画素と発
光周期が干渉してモアレによるギラギラした視認が生じ
ることの防止などにも有効である。
The diffusion layer is provided between the light guide plate and the 1 / wavelength plate,
One or two or more layers can be disposed between the 波長 wavelength plate and the linearly polarized light separating layer, or at an appropriate place such as the light transmitting side of the linearly polarized light separating layer. Note that the arrangement of the diffusion layer is also effective in preventing, when the polarization plane light source device is applied to a liquid crystal cell or the like, interference between pixels of the liquid crystal cell or the like and the light emission cycle to cause glare due to moiré.

【0046】前記の拡散層としては、例えば屈折率相違
の透明粒子を分散含有する樹脂層、サンドブラストや化
学エッチング等により表面に微細凹凸構造を付与したも
の、機械的ストレスの付与や溶剤処理等によりクレイズ
を発生させたもの、金型による転写方式等にて表面に微
細凹凸構造を付与したものなどの如く、任意な方式で形
成した適宜なものを用いうる。従って拡散層は、導光板
や1/4波長板や直線偏光分離層等に付与した付属状態
で配置することもできるし、拡散シート等の独立素材な
どとして配置することもできる。
The diffusion layer is, for example, a resin layer containing transparent particles having different refractive indices dispersed therein, a layer having a fine concavo-convex structure formed on the surface by sandblasting or chemical etching, or the like, by applying mechanical stress or by solvent treatment. Appropriate ones formed by an arbitrary method, such as ones in which craze is generated, those in which a fine uneven structure is provided on the surface by a transfer method using a mold, and the like, can be used. Therefore, the diffusion layer can be arranged in an attached state provided to a light guide plate, a quarter wavelength plate, a linearly polarized light separation layer, or the like, or can be arranged as an independent material such as a diffusion sheet.

【0047】拡散層の厚さは、適宜に決定でき特に限定
はないが、直線偏光の偏光状態を維持する点などより、
式(nx−ny)dで表わされる面内位相差と式(nx
z)dで表わされる厚さ方向位相差とが50nm以下、
就中40nm以下、特に30nm以下であることが好まし
い。かかる点より拡散層の一般的な厚さは、30〜20
0μm、就中75〜150μmである。なお前記の式にお
いて、nx、ny、nzは拡散層における前記1/4波長
板の場合に準じ、dは拡散層の厚さを意味する。
The thickness of the diffusion layer can be appropriately determined and is not particularly limited. However, from the viewpoint of maintaining the polarization state of linearly polarized light,
Formula (n x -n y) plane retardation represented by d and equation (n x -
n z ) d is less than or equal to 50 nm in the thickness direction,
In particular, it is preferably 40 nm or less, particularly preferably 30 nm or less. From this point, a typical thickness of the diffusion layer is 30 to 20.
0 μm, especially 75-150 μm. Note in the above formulas, n x, n y, n z is analogous in the case of the quarter-wave plate in the diffusion layer, d represents the thickness of the diffusion layer.

【0048】従って拡散層を前記した拡散シート等の独
立素材として形成する場合、特に透明基材の片面又は両
面に拡散層を設けてなる拡散板を形成する場合、その透
明基材として前記した面内位相差と厚さ方向位相差が5
0nm以下、就中40nm以下、特に30nm以下であるもの
を用いることが好ましい。
Therefore, when the diffusion layer is formed as an independent material such as the above-described diffusion sheet, particularly when a diffusion plate having a diffusion layer provided on one or both sides of a transparent substrate is formed, the surface described above as the transparent substrate is used. Internal phase difference and thickness direction phase difference are 5
It is preferable to use those having a thickness of 0 nm or less, particularly 40 nm or less, particularly 30 nm or less.

【0049】本発明による偏光面光源装置は、輝度に優
れる直線偏光を提供し、液晶表示装置の形成などに好ま
しく用いることができる。図5に本発明による偏光面光
源装置を用いた液晶表示装置を例示した。5,51は偏
光板、6は液晶セル、7は表示光の拡散層である。図例
の如く液晶セル6は、偏光面光源装置の光出射側に配置
される。
The plane-polarized light source device according to the present invention provides linearly polarized light having excellent luminance and can be preferably used for forming a liquid crystal display device. FIG. 5 illustrates a liquid crystal display device using the polarization plane light source device according to the present invention. Reference numerals 5 and 51 denote polarizing plates, 6 a liquid crystal cell, and 7 a display light diffusion layer. As shown in the drawing, the liquid crystal cell 6 is arranged on the light emission side of the polarization plane light source device.

【0050】ちなみに前記の液晶表示装置によれば、光
源12からの偏光特性を示さない光が導光板1の側面か
ら入射し、上面より出射して拡散層4と1/4波長板2
を介し直線偏光分離層3に入射する。直線偏光分離層3
に入射した偏光特性を示さない光は、偏光方向が直交す
る二方向の振動面の直線偏光の内その一方が透過し、他
方が反射されて、その透過と反射を介し偏光方向が直交
する直線偏光に分離される。
According to the liquid crystal display device described above, light having no polarization characteristics from the light source 12 enters from the side surface of the light guide plate 1, exits from the upper surface, and is diffused by the diffusion layer 4 and the 波長 wavelength plate 2.
And enters the linearly polarized light separating layer 3 through the. Linear polarized light separation layer 3
The light which does not show the polarization characteristics is transmitted through one of the linearly polarized lights of the vibrating surface in two directions in which the polarization directions are orthogonal to each other, and the other is reflected, and the straight line in which the polarization directions are orthogonal through the transmission and reflection. Separated into polarized light.

【0051】直線偏光分離層にて反射された直線偏光
は、戻り光として導光板1に再入射し、1/4波長板2
を透過する際に左右一方の円偏光に変換されて導光板下
面の反射層11に至り反射されて再び1/4波長板2に
至り円偏光が直線偏光に変換されて直線偏光分離層3に
入射する。
The linearly polarized light reflected by the linearly polarized light separating layer re-enters the light guide plate 1 as return light,
When the light passes through, the light is converted into one of left and right circularly polarized light, is reflected by the reflection layer 11 on the lower surface of the light guide plate, is reflected again, reaches the 波長 wavelength plate 2 again, and is converted into linearly polarized light. Incident.

【0052】前記において、円偏光が反射層で反射され
る際にその左右が反転し、それが1/4波長板にて直線
偏光に変換された際に直線偏光分離層で反射されたとき
とは振動面が90度変化する変換を受けて直線偏光分離
層を透過しうる直線偏光となり、従って反射層を介して
再び直線偏光分離層に戻されたときには直線偏光分離層
を透過しうる直線偏光となっていて直線偏光分離層を透
過する。
In the above, when circularly polarized light is reflected by the reflective layer, the right and left are inverted, and when it is converted into linearly polarized light by the quarter-wave plate, it is reflected by the linearly polarized light separating layer. Is converted into linearly polarized light which can be transmitted through the linearly polarized light separating layer after being converted by a change of the vibration plane by 90 degrees, and therefore linearly polarized light which can be transmitted through the linearly polarized light separating layer when returned to the linearly polarized light separating layer again via the reflection layer. And transmits through the linearly polarized light separating layer.

【0053】その結果、最初は直線偏光分離層にて反射
された直線偏光も反射層を介して再入射した際には、当
初より透過性の直線偏光と共に直線偏光分離層を透過
し、前記再入射光分に基づく光の利用効率の向上で透過
光量が増量し、出射光の輝度が向上する。
As a result, when the linearly polarized light initially reflected by the linearly polarized light separating layer is re-entered through the reflecting layer, the linearly polarized light is transmitted through the linearly polarized light separating layer together with the transparent linearly polarized light from the beginning. The amount of transmitted light increases due to the improvement of the light use efficiency based on the incident light, and the luminance of the emitted light improves.

【0054】次に、前記にて直線偏光分離層より出射さ
れた直線偏光は、その直線偏光分離層を介して振動面が
統一制御されたものであることより、その振動面と透過
軸を一致させることで偏光板5を効率よく透過し、それ
が液晶セル6と他方の偏光板51を介し表示制御されて
輝度に優れる明るい表示が達成され、拡散層7を介し表
示光の放射角が拡大されて広い範囲での視認が可能とな
る。
Next, the linearly polarized light emitted from the linearly polarized light separating layer has a vibrating surface that is unified and controlled through the linearly polarized light separating layer, so that the vibrating surface coincides with the transmission axis. As a result, the light is efficiently transmitted through the polarizing plate 5, the display is controlled through the liquid crystal cell 6 and the other polarizing plate 51, and a bright display with excellent luminance is achieved, and the emission angle of the display light is expanded via the diffusion layer 7. As a result, a wide range can be visually recognized.

【0055】液晶表示装置は一般に、液晶シャッタとし
て機能する液晶セルとそれに付随の駆動装置、偏光板、
バックライト、及び必要に応じての補償用位相差板等の
構成部品の組立体などとして形成される。本発明におい
ては、上記した偏光面光源装置をバックライトに用いる
点を除いて特に限定はなく、従来に準じて形成でき、特
に直視型の液晶表示装置を好ましく形成しうる。
In general, a liquid crystal display device has a liquid crystal cell functioning as a liquid crystal shutter and a driving device, a polarizing plate,
It is formed as an assembly of components such as a backlight and, if necessary, a compensating phase plate. In the present invention, there is no particular limitation except that the above-mentioned polarizing plane light source device is used for a backlight, and it can be formed according to a conventional method. In particular, a direct-view type liquid crystal display device can be preferably formed.

【0056】従って用いる液晶セルについては特に限定
はなく、適宜なものを用いうる。就中、直線偏光を液晶
セルに入射させて表示を行うものに有利に用いられ、例
えばツイストネマチック液晶やスーパーツイストネマチ
ック液晶を用いた液晶セル等に好ましく用いうるが、非
ツイスト系の液晶や二色性染料を液晶中に分散させたゲ
ストホスト系の液晶、あるいは強誘電性液晶を用いた液
晶セルなどにも用いうる。液晶の駆動方式についても特
に限定はない。
Accordingly, the liquid crystal cell used is not particularly limited, and an appropriate one can be used. Above all, it is advantageously used for a display in which linearly polarized light is incident on a liquid crystal cell. For example, it can be preferably used for a liquid crystal cell using a twisted nematic liquid crystal or a super twisted nematic liquid crystal. It can also be used for a guest-host type liquid crystal in which a chromatic dye is dispersed in a liquid crystal, or a liquid crystal cell using a ferroelectric liquid crystal. There is no particular limitation on the driving method of the liquid crystal.

【0057】液晶表示装置の形成に際しては、例えば視
認側の偏光板の上に設ける拡散板やアンチグレア層、反
射防止膜や保護層や保護板、液晶セルと偏光板の間に設
ける補償用位相差板、偏光面光源装置の直線偏光分離層
上に設ける光路制御板などの適宜な光学層を適宜な位置
に配置することができる。
When a liquid crystal display device is formed, for example, a diffusion plate or an antiglare layer provided on the polarizing plate on the viewing side, an antireflection film, a protective layer or a protective plate, a compensating retardation plate provided between the liquid crystal cell and the polarizing plate, An appropriate optical layer such as an optical path control plate provided on the linearly polarized light separating layer of the polarization plane light source device can be arranged at an appropriate position.

【0058】前記の補償用位相差板は、複屈折の波長依
存性などを補償して視認性の向上等をはかることを目的
とするものである。本発明においては、視認側又は/及
びバックライト側の偏光板と液晶セルの間等に必要に応
じて配置される。なお補償用位相差板としては、波長域
などに応じて適宜なものを用いることができ、1層又は
2層以上の位相差層の重畳層として形成されていてよ
い。補償用位相差板は、上記した1/4波長板で例示の
延伸フィルムや液晶配向フィルムなどとして得ることが
できる。
The purpose of the compensating retardation plate is to improve the visibility by compensating the wavelength dependency of birefringence and the like. In the present invention, it is arranged as needed between the polarizing plate on the viewing side and / or the backlight side and the liquid crystal cell. As the compensation retardation plate, an appropriate retardation plate can be used according to a wavelength range or the like, and may be formed as a single layer or a superposed layer of two or more retardation layers. The compensating retardation plate can be obtained as a stretched film or a liquid crystal alignment film as exemplified by the above-described quarter-wave plate.

【0059】また光路制御板は、出射光の方向制御を目
的とするものであり、正面方向に集光性を示すレンズシ
ートや、斜め光の光路を正面方向に変換するプリズムシ
ートなどの適宜なものを用いうる。光路制御板は、偏光
面光源装置の直線偏光分離層上や、導光板と直線偏光分
離層の間などの適宜な位置に配置することができる。
The optical path control plate is provided for the purpose of controlling the direction of the emitted light, and may be a suitable sheet such as a lens sheet having a light condensing property in the front direction or a prism sheet for converting the light path of the oblique light in the front direction. Can be used. The optical path control plate can be disposed on an appropriate position such as on the linearly polarized light separating layer of the polarization plane light source device or between the light guide plate and the linearly polarized light separating layer.

【0060】光路制御板は、2層以上を配置することが
でき、その場合プリズムシートを上下の層でプリズムア
レイの配列方向が交差するように配置して面全体での光
出射方向を制御し、輝度の均一化をはかることなども行
うことができる。
The optical path control plate can be provided with two or more layers. In this case, the prism sheets are arranged so that the arrangement directions of the prism arrays in the upper and lower layers intersect to control the light emission direction on the entire surface. It is also possible to make the luminance uniform.

【0061】前記図例の液晶表示装置では、偏光面光源
装置と液晶セルの間に偏光板を配置したものを例示し
た。かかる偏光板は、液晶セルに対する視野角の変化で
発生する偏光特性の低下を防止して表示品位を維持する
光学層や、より高度な偏光度を実現してよりよい表示品
位を達成する光学層などとして機能するものである。
In the liquid crystal display device of the above-described example, a liquid crystal display device in which a polarizing plate is disposed between a polarizing plane light source device and a liquid crystal cell is exemplified. Such a polarizing plate is an optical layer that maintains display quality by preventing a decrease in polarization characteristics caused by a change in viewing angle with respect to a liquid crystal cell, and an optical layer that achieves a higher degree of polarization and achieves better display quality. It functions as such.

【0062】すなわち前記において、本発明の偏光面光
源装置では上記したように直線偏光分離層を介して偏光
方向が統一された直線偏光が得られることより、偏光板
を用いずに偏光面光源装置の出射光をそのまま液晶セル
に入射させて表示を達成することは可能であるが、偏光
板を介することで前記した表示品位の向上等をはかりう
ることから必要に応じて偏光板が用いられる。
That is, in the polarization plane light source device of the present invention, as described above, linearly polarized light having a uniform polarization direction is obtained via the linear polarization separation layer, so that the polarization plane light source device can be used without using a polarizing plate. Although it is possible to achieve display by directly emitting the emitted light into the liquid crystal cell, it is possible to improve the display quality as described above by using a polarizing plate, and a polarizing plate is used as necessary.

【0063】従って前記の偏光板としては、偏光度の高
いもの、就中95%以上のもの、特に99%以上のもの
が好ましく用いうる。ちなみにかかる高偏光度の偏光板
としては、例えばポリビニルアルコール系や部分ホルマ
ール化ポリビニルアルコール系、エチレン・酢酸ビニル
共重合体系部分ケン化物の如き親水性高分子のフィルム
に、ヨウ素及び/又は二色性染料を吸着させて延伸処理
した吸収型の偏光フィルムなどがあげられる。
Accordingly, as the above-mentioned polarizing plate, those having a high degree of polarization, especially those having a degree of polarization of 95% or more, particularly those having a degree of polarization of 99% or more can be preferably used. Incidentally, as a polarizing plate having a high degree of polarization, for example, a film of a hydrophilic polymer such as a polyvinyl alcohol-based, partially formalized polyvinyl alcohol-based, or a partially saponified ethylene-vinyl acetate copolymer-based film is coated with iodine and / or dichroism. Absorption type polarizing films that have been subjected to a stretching treatment by adsorbing a dye are exemplified.

【0064】用いる偏光板は、偏光フィルムの片面又は
両面を透明保護層等で被覆したものなどであってもよ
い。かかる透明保護層等は、偏光フィルムの補強や耐熱
性の向上、偏光フィルムを湿度等より保護することなど
の種々の目的を有するものであってよい。透明保護層
は、樹脂の塗布層や樹脂フィルムのラミネート層などと
して形成でき、拡散化や粗面化用等の微粒子を含有して
いてもよい。なお偏光板は、その透過軸が偏光面光源装
置より出射した直線偏光の振動面と可及的に一致するよ
うに配置することが光利用効率の向上による高輝度化な
どの点より好ましい。
The polarizing plate used may be one obtained by coating one or both sides of a polarizing film with a transparent protective layer or the like. Such a transparent protective layer or the like may have various purposes such as reinforcing the polarizing film, improving heat resistance, and protecting the polarizing film from humidity and the like. The transparent protective layer can be formed as a resin coating layer or a resin film laminate layer, and may contain fine particles for diffusion or surface roughening. It is preferable to arrange the polarizing plate so that its transmission axis matches the vibrating plane of the linearly polarized light emitted from the polarizing plane light source device as much as possible from the viewpoint of increasing the luminance by improving the light use efficiency.

【0065】上記において、補償用位相差板や光路制御
板や偏光板等の必要に応じて用いられる光学層は、本発
明による偏光面光源装置の形成層として適宜な位置に配
置されていてもよい。従って本発明による偏光面光源装
置は、上記したようにかかる光学層を含む適宜な層形態
を有するものであってよい。なお偏光板を設けた形態の
偏光面光源装置の場合には、液晶セルの光源側に設ける
偏光板を省略することができる。
In the above description, the optical layers used as necessary, such as the compensating retardation plate, the optical path control plate, and the polarizing plate, may be arranged at appropriate positions as the formation layer of the polarizing surface light source device according to the present invention. Good. Therefore, the polarization plane light source device according to the present invention may have an appropriate layer form including the optical layer as described above. In the case of a polarizing surface light source device provided with a polarizing plate, the polarizing plate provided on the light source side of the liquid crystal cell can be omitted.

【0066】本発明において、上記した偏光面光源装置
や液晶表示装置を形成する各部品は、全体的又は部分的
に積層一体化されて固着されていてもよいし、分離容易
な状態に配置したものであってもよい。光学系のズレ防
止等の点よりは固着されていることが好ましい。その固
着には、適宜な接着剤を用いうるが、熱による光学歪の
発生防止などの点よりは粘着剤が好ましく用いうる。
In the present invention, the components forming the above-mentioned polarization plane light source device and liquid crystal display device may be entirely or partially laminated and integrated and fixed, or may be arranged in an easily separable state. It may be something. It is preferable to fix the optical system from the viewpoint of preventing the optical system from shifting. An appropriate adhesive may be used for the fixation, but an adhesive is preferably used from the viewpoint of preventing optical distortion due to heat.

【0067】なお、液晶表示装置等の形成に際しては、
垂直性や平行光性に優れる出射光を供給し、直線偏光分
離層を介した反射光の再入射光も散乱等によるロスや角
度変化の少ない状態で、かつ初期の透過光と方向の一致
性よく再出射して、視認性の向上に有効な方向の出射光
を効率よく供給する偏光面光源装置が好ましく用いう
る。
When forming a liquid crystal display device or the like,
It supplies outgoing light with excellent perpendicularity and parallel light, and the re-incident light reflected through the linear polarization separation layer has little loss or angle change due to scattering, etc. A polarization plane light source device that efficiently re-emits and efficiently supplies emitted light in a direction effective for improving visibility can be preferably used.

【0068】[0068]

【実施例】実施例1 下面に拡散ドットを印刷した楔型導光板の光入射側面に
直径3mmの冷陰極管を配置して銀蒸着を施したポリエス
テルフィルムからなる光源ホルダにて包囲し、導光板の
下面に光源ホルダと同素材の反射シートを銀蒸着層側を
介し配置し、導光板の上面に1/4波長板を介してトリ
アセチルセルロースからなる厚さ100μmの透明基材
(面内位相差12nm)に拡散層を付設した拡散板を配置
し、その上に直線偏光分離素子(D−BEF)をその偏
光軸が1/4波長板の光学軸に対し45度の交差角とな
るように配置して偏光面光源装置を得た。
EXAMPLE 1 A cold cathode tube having a diameter of 3 mm was arranged on the light incident side surface of a wedge-shaped light guide plate on which diffusion dots were printed on the lower surface. The cold cathode tube was surrounded by a light source holder made of a silver-evaporated polyester film. A reflection sheet of the same material as the light source holder is arranged on the lower surface of the light plate via the silver vapor deposition layer side, and a transparent substrate of 100 μm thick made of triacetyl cellulose (in-plane) is formed on the upper surface of the light guide plate via a 1 / wavelength plate. A diffusing plate provided with a diffusing layer at a phase difference of 12 nm) is disposed thereon, and a linearly polarized light separating element (D-BEF) is disposed thereon. The polarization axis of the diffusing plate has a crossing angle of 45 degrees with the optical axis of the quarter-wave plate. And a polarizing plane light source device was obtained.

【0069】前記において導光板は、幅195mm、奥行
150mm、光入射側面の厚さ3mm、その対向端の厚さ1
mmのポリメチルメタクリレート(PMMA)板からな
る。また1/4波長板は、位相差が140nmでNzが
1.0の位相差板からなる。
In the above, the light guide plate has a width of 195 mm, a depth of 150 mm, a thickness of the light incident side surface of 3 mm, and a thickness of the opposite end of 1 mm.
It consists of a mm polymethyl methacrylate (PMMA) plate. The 1 / wavelength plate is a phase difference plate having a phase difference of 140 nm and Nz of 1.0.

【0070】実施例2 導光板として、PMMAを加熱熔融させて所定のプリズ
ム構造を形成した100℃の金属金型に注入し、1分間
放置後徐冷して得たものを用いたほかは実施例1に準じ
て偏光面光源装置を得た。前記の導光板は、幅195m
m、奥行150mm、光入射側面の厚さ3mm、その対向端
の厚さ1mmであり、出射面(上面)は平坦、下面は光入
射側面からその対向端に向かって平面に近い下側に突出
した湾曲面(図3b)の全面に光入射側面に平行な凸部
(図4a)を225μmの周期で有し、その上り斜面の
傾斜角が約40度で対向面の傾斜角が約5度であり、対
向面/上り斜面の出射面に対する投影面積比が8/1の
ものである。
Example 2 A light guide plate obtained by injecting PMMA into a metal mold at 100 ° C. formed by heating and melting to form a predetermined prism structure, leaving it to stand for 1 minute, and then gradually cooling was used. A polarizing plane light source device was obtained according to Example 1. The light guide plate is 195m wide
m, depth 150 mm, thickness of the light incident side surface 3 mm, thickness of the opposite end 1 mm, the exit surface (upper surface) is flat, and the lower surface projects downward from the light incident side surface toward the opposite end near the plane. A convex portion (FIG. 4a) parallel to the light incident side surface is formed at a period of 225 μm on the entire surface of the curved surface (FIG. 3b), the inclination angle of the upward slope is approximately 40 degrees, and the inclination angle of the opposite surface is approximately 5 degrees. And the projected area ratio of the facing surface / upward slope to the emission surface is 8/1.

【0071】比較例1 導光板上の1/4波長板と直線偏光分離素子を省略し
た、従って導光板上に拡散板のみを配置した構造とした
ほかは実施例1に準じて光源装置を得た。
Comparative Example 1 A light source device was obtained in the same manner as in Example 1 except that the quarter-wave plate and the linearly polarized light separating element on the light guide plate were omitted, and thus only the diffusion plate was arranged on the light guide plate. Was.

【0072】比較例2 導光板上の1/4波長板を省略した、従って導光板上に
拡散板と直線偏光分離素子のみを配置した構造としたほ
かは実施例1に準じて偏光面光源装置を得た。
Comparative Example 2 A polarization plane light source device according to Example 1 except that the quarter-wave plate on the light guide plate was omitted, and thus only the diffusion plate and the linearly polarized light separating element were arranged on the light guide plate. I got

【0073】比較例3 導光板上の1/4波長板と直線偏光分離素子を省略し
た、従って導光板上に拡散板のみを配置した構造とした
ほかは実施例2に準じて光源装置を得た。
Comparative Example 3 A light source device was obtained in the same manner as in Example 2 except that the 波長 wavelength plate and the linearly polarized light separating element on the light guide plate were omitted, and thus only the diffusion plate was arranged on the light guide plate. Was.

【0074】比較例4 導光板上の1/4波長板を省略した、従って導光板上に
拡散板と直線偏光分離素子のみを配置した構造としたほ
かは実施例2に準じて偏光面光源装置を得た。
Comparative Example 4 A polarization plane light source device according to Example 2 except that the 1/4 wavelength plate on the light guide plate was omitted, and thus only the diffusion plate and the linearly polarized light separating element were arranged on the light guide plate. I got

【0075】評価試験 実施例、比較例で得た(偏光)光源装置の光出射面に両
面に偏光板を有するTN液晶セルを配置し、白色表示時
における正面(垂直)方向の輝度(cd/m2)を調べた。そ
の結果を次表に示した。
Evaluation Test A TN liquid crystal cell having polarizing plates on both sides was disposed on the light emitting surface of the (polarized) light source device obtained in each of the examples and comparative examples, and the luminance (cd / cd) in the front (vertical) direction during white display was displayed. m 2 ) was investigated. The results are shown in the following table.

【図面の簡単な説明】[Brief description of the drawings]

【図1】偏光面光源装置例の断面図FIG. 1 is a cross-sectional view of an example of a polarization plane light source device.

【図2】他の偏光面光源装置例の断面図FIG. 2 is a cross-sectional view of another example of a polarization plane light source device.

【図3】導光板例の説明図FIG. 3 is an explanatory view of an example of a light guide plate.

【図4】導光板下面のプリズム状凹凸例の説明図FIG. 4 is an explanatory diagram of an example of prismatic irregularities on the lower surface of the light guide plate.

【図5】液晶表示装置例の断面図FIG. 5 is a cross-sectional view of an example of a liquid crystal display device.

【符号の説明】[Explanation of symbols]

1:導光板 11:反射層 12:光源 2:1/4波長板 3:直線偏光分離層 4:拡散層 5,51:偏光板 6:液晶セル 1: light guide plate 11: reflective layer 12: light source 2: quarter wavelength plate 3: linearly polarized light separating layer 4: diffusion layer 5, 51: polarizing plate 6: liquid crystal cell

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 側面からの入射光を上面より出射し、下
面側に反射層を有する導光板と、1/4波長板と、自然
光を直線偏光からなる反射光と透過光に分離する直線偏
光分離層を少なくとも有する重畳体からなることを特徴
とする偏光面光源装置。
1. A light guide plate having incident light from a side surface emitted from an upper surface and having a reflective layer on a lower surface side, a quarter-wave plate, and linearly polarized light for separating natural light into reflected light and transmitted light composed of linearly polarized light. A polarizing surface light source device comprising a superimposed body having at least a separation layer.
【請求項2】 請求項1において、1/4波長板が、少
なくとも波長400〜700nmの範囲にある単色光又は
所定波長範囲の可視光域に対して1/4波長板として機
能し、かつ直線偏光分離層の偏光軸に対して光学軸が3
0〜60度の角度で交差する状態に配置された偏光面光
源装置。
2. The quarter-wave plate according to claim 1, wherein the quarter-wave plate functions as a quarter-wave plate at least for monochromatic light having a wavelength in the range of 400 to 700 nm or visible light in a predetermined wavelength range. The optical axis is 3 with respect to the polarization axis of the polarization separation layer.
A polarization plane light source device disposed so as to intersect at an angle of 0 to 60 degrees.
【請求項3】 請求項1又は2において、1/4波長板
が、面内の最大屈折率をnx、それに直交する方向の屈
折率をny、及び厚さ方向の屈折率をnzとしたとき、
式:−1≦(nx−nz)/(nx−ny)≦1.5を満足
するものである偏光面光源装置。
3. The quarter-wave plate according to claim 1, wherein the in-plane maximum refractive index is n x , the refractive index in a direction perpendicular thereto is n y , and the refractive index in the thickness direction is n z. And when
Formula: -1 ≦ (n x -n z ) / (n x -n y) plane of polarization light source device is to satisfy ≦ 1.5.
【請求項4】 請求項1〜3において、直線偏光分離層
が導光板の上面側に1/4波長板を介し配置されてなる
偏光面光源装置。
4. The polarization plane light source device according to claim 1, wherein a linearly polarized light separating layer is disposed on the upper surface side of the light guide plate via a quarter-wave plate.
【請求項5】 請求項1〜4において、導光板と1/4
波長板の間、1/4波長板と直線偏光分離層の間、又は
直線偏光分離層の光透過側の少なくとも一箇所に拡散層
を有する偏光面光源装置。
5. The light guide plate according to claim 1, wherein
A polarizing surface light source device having a diffusion layer between wavelength plates, between a quarter wavelength plate and a linearly polarized light separating layer, or at least one position on the light transmission side of the linearly polarized light separating layer.
【請求項6】 請求項5において、拡散層が、面内の最
大屈折率をnx、それに直交する方向の屈折率をny、厚
さ方向の屈折率をnz、及び層厚をdとしたとき、(nx
−ny)d及び(nx−nz)dが50nm以下のものであ
る偏光面光源装置。
6. The diffusion layer according to claim 5, wherein the in-plane maximum refractive index is n x , the refractive index in a direction perpendicular to the in-plane refractive index is n y , the refractive index in the thickness direction is n z , and the layer thickness is d. Then, (n x
-N y) d and (n x -n z) d is polarization plane light source apparatus is of 50nm or less.
【請求項7】 請求項5において、拡散層が透明基材の
片面又は両面に拡散層を有する拡散板からなり、前記透
明基材が面内の最大屈折率をnx、それに直交する方向
の屈折率をny、厚さ方向の屈折率をnz、及び層厚をd
としたとき、(nx−ny)d及び(nx−nz)dが50
nm以下のものである偏光面光源装置。
7. The method according to claim 5, wherein the diffusion layer comprises a diffusion plate having a diffusion layer on one or both surfaces of a transparent substrate, and the transparent substrate has a maximum in-plane refractive index of n x , a direction perpendicular to the direction. The refractive index is ny , the refractive index in the thickness direction is nz , and the layer thickness is d.
When a, 50 (n x -n y) d and (n x -n z) d
Polarization plane light source device of nm or less.
【請求項8】 請求項1〜7において、導光板が下面に
光入射側面に沿う方向のプリズム状凹凸を周期的に有
し、そのプリズム状凹凸が光伝送方向に導光板上面に対
し35〜45度の角度で傾斜した上り斜面を有する偏光
面光源装置。
8. The light guide plate according to claim 1, wherein the light guide plate periodically has, on the lower surface thereof, prismatic irregularities in a direction along the light incident side surface, and the prismatic irregularities have a height of 35 to 35 with respect to the upper surface of the light guide plate in the light transmission direction. A polarization plane light source device having an upward slope inclined at an angle of 45 degrees.
【請求項9】 請求項8において、上り斜面の導光板上
面に対する傾斜角が光伝送方向に順次大きくなる偏光面
光源装置。
9. The polarization plane light source device according to claim 8, wherein the inclination angle of the upward slope with respect to the upper surface of the light guide plate sequentially increases in the light transmission direction.
【請求項10】 請求項8又は9において、上り斜面と
共にプリズム状凹凸を形成する対向面の導光板上面に対
する傾斜角θ2が0<θ2≦10度であり、かつその対向
面の導光板上面に対する投影面積が上り斜面のそれの5
倍以上である偏光面光源装置。
10. The light guide plate according to claim 8, wherein the inclination angle θ 2 of the opposing surface, which forms the prismatic unevenness together with the upward inclined surface, to the upper surface of the light guide plate is 0 <θ 2 ≦ 10 degrees, and the opposing surface is the light guide plate. The projected area on the top surface is 5
Polarization plane light source device that is more than double.
【請求項11】 請求項1〜10に記載の偏光面光源装
置の光出射側に液晶セルを配置したことを特徴とする液
晶表示装置。
11. A liquid crystal display device, wherein a liquid crystal cell is arranged on the light emission side of the polarization plane light source device according to claim 1.
JP03681798A 1998-02-02 1998-02-02 Polarization plane light source device and liquid crystal display device Expired - Lifetime JP3303278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03681798A JP3303278B2 (en) 1998-02-02 1998-02-02 Polarization plane light source device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03681798A JP3303278B2 (en) 1998-02-02 1998-02-02 Polarization plane light source device and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH11218760A true JPH11218760A (en) 1999-08-10
JP3303278B2 JP3303278B2 (en) 2002-07-15

Family

ID=12480325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03681798A Expired - Lifetime JP3303278B2 (en) 1998-02-02 1998-02-02 Polarization plane light source device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3303278B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015612A (en) * 2000-04-12 2002-01-18 Semiconductor Energy Lab Co Ltd Illumination device
WO2002054119A1 (en) * 2000-12-28 2002-07-11 Fuji Electric Co., Ltd. Light guiding plate and liquid crystal display device with the light guiding plate
US7259803B2 (en) 2002-05-27 2007-08-21 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate comprising the same
JP2009140916A (en) * 2007-11-12 2009-06-25 Keio Gijuku Surface light-emitting device and polarized light source
WO2010116702A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Flat lighting device and liquid crystal display device using same
US8042984B2 (en) 2000-04-12 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Illumination apparatus
JP2015108827A (en) * 2007-03-21 2015-06-11 ハネウェル・インターナショナル・インコーポレーテッド Polarization plate for liquid crystal display
WO2017098718A1 (en) * 2015-12-07 2017-06-15 富士フイルム株式会社 Backlight unit
CN111736254A (en) * 2020-07-24 2020-10-02 京东方科技集团股份有限公司 Display device and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015612A (en) * 2000-04-12 2002-01-18 Semiconductor Energy Lab Co Ltd Illumination device
US9704996B2 (en) 2000-04-12 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8042984B2 (en) 2000-04-12 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Illumination apparatus
WO2002054119A1 (en) * 2000-12-28 2002-07-11 Fuji Electric Co., Ltd. Light guiding plate and liquid crystal display device with the light guiding plate
US7259803B2 (en) 2002-05-27 2007-08-21 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate comprising the same
JP2015108827A (en) * 2007-03-21 2015-06-11 ハネウェル・インターナショナル・インコーポレーテッド Polarization plate for liquid crystal display
US9285523B2 (en) 2007-03-21 2016-03-15 Honeywell International Inc. Polarization plate for use in a liquid crystal display
JP2009140916A (en) * 2007-11-12 2009-06-25 Keio Gijuku Surface light-emitting device and polarized light source
JP5457361B2 (en) * 2009-04-08 2014-04-02 パナソニック株式会社 Planar illumination device and liquid crystal display device using the same
US8233113B2 (en) 2009-04-08 2012-07-31 Panasonic Corporation Surface illumination apparatus and liquid crystal display using same
WO2010116702A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Flat lighting device and liquid crystal display device using same
WO2017098718A1 (en) * 2015-12-07 2017-06-15 富士フイルム株式会社 Backlight unit
CN111736254A (en) * 2020-07-24 2020-10-02 京东方科技集团股份有限公司 Display device and preparation method thereof
CN111736254B (en) * 2020-07-24 2022-11-04 京东方科技集团股份有限公司 Display device and preparation method thereof

Also Published As

Publication number Publication date
JP3303278B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
TWI566009B (en) Liquid crystal display device
US6724446B2 (en) Illumination device and/or a liquid crystal display device
EP1168051B1 (en) Back-lighting structure for liquid crystal display device
US6504589B1 (en) Backlight device and liquid crystal display device
EP1154306B1 (en) Reflection type liquid-crystal display device
JP3260688B2 (en) Surface light source device, polarizing surface light source device, and liquid crystal display device
TW201339704A (en) Liquid crystal display device
JP2002148615A (en) Optical film and reflection type liquid crystal display device
JP2001228315A (en) Reflecting plate and liquid crystal display device
JP2001183664A (en) Liquid crystal display device used for reflection as well as transmission
JP2000147429A (en) Polarization surface light source device and liquid crystal display device
JPH11242908A (en) Lighting system and liquid crystal display using the same
JP3361012B2 (en) Polarized light source device and liquid crystal display device
JP3303278B2 (en) Polarization plane light source device and liquid crystal display device
JP2001167625A (en) Sheet light source device and liquid crystal display device
JP2001147329A (en) Light guide plate, surface light source device and liquid crystal display device
JP2000321572A (en) Liquid crystal display device
JP2002006143A (en) Light guide plate, surface light source device and reflective liquid crystal display device
JPH1152377A (en) Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JPH10142407A (en) Reflection plate, surface light source apparatus and liquid crystal display device
JP2000147488A (en) Planar light source of polarized light and liquid crystal display device
JP3286239B2 (en) Light guide plate, surface light source device and liquid crystal display device
JPH09269487A (en) Light transmission plate, polarizing light source and liquid crystal display device
JPH10253833A (en) Light transmitting plate, surface light source device, polarizing light source device and liquid crystal display
JP2003066236A (en) Light transmission plate, polarization surface light source device and reflective liquid crystal display device