JPH09269487A - Light transmission plate, polarizing light source and liquid crystal display device - Google Patents

Light transmission plate, polarizing light source and liquid crystal display device

Info

Publication number
JPH09269487A
JPH09269487A JP8104687A JP10468796A JPH09269487A JP H09269487 A JPH09269487 A JP H09269487A JP 8104687 A JP8104687 A JP 8104687A JP 10468796 A JP10468796 A JP 10468796A JP H09269487 A JPH09269487 A JP H09269487A
Authority
JP
Japan
Prior art keywords
light
polarized light
liquid crystal
guide plate
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8104687A
Other languages
Japanese (ja)
Other versions
JP3187714B2 (en
Inventor
Seiji Umemoto
清司 梅本
Hiroyuki Yoshimi
裕之 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP10468796A priority Critical patent/JP3187714B2/en
Publication of JPH09269487A publication Critical patent/JPH09269487A/en
Application granted granted Critical
Publication of JP3187714B2 publication Critical patent/JP3187714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently emit light incident on the side surface of a light transmission plate from the upper surface thereof and to efficiently emit the light incident again through a circularly polarized light separating layer so as to improve light utilization efficiency by setting a phase difference by double refraction in a thickness direction to a specified value in the light transmission plate reflecting the light incident on the side surface by the lower surface and emitting it from the upper surface. SOLUTION: In this light transmission plate 1, the light incident on the side surface 14 is reflected by the lower surface 12 and emitted from the upper surface 11, and the phase difference by the double refraction in the thickness direction is set to 0-30nm, desirably, <=20nm. The smaller the phase difference by the double refraction in the thickness direction of the plate 1 is, such as 0-20mm, the more desirable result is obtained. In the case it is <=30nm, the circularly polarized light incident again through the circularly polarized light separating layer is guided to the lower surface 12 while keeping nearly equal circularly polarized light state without influence by the phase difference in substance. The return path light reflected by the lower surface 12 is also emitted while maintaining the circularly polarized state. Therefore, the brightness of the display of a liquid crystal display device is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、光の利用効率に優れる導
光板、及びそれを用いた偏光光源装置、並びにそれらを
利用した明るさに優れる液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light guide plate excellent in light utilization efficiency, a polarized light source device using the same, and a liquid crystal display device excellent in brightness utilizing the light guide plate.

【0002】[0002]

【背景技術】従来、側面より光を入射させて上面より出
射させるようにしたサイドライト型の導光板としては、
下面にドット状等の拡散式や散乱式の反射層を設けたも
のが知られていた。下面の反射層は、フラットな面では
全反射のため側面からの入射光を上面に出射する能力に
乏しいので入射光を多重反射や屈折により乱反射させて
上面に出射させるようにしたものである。またかかる導
光板のままでは、斜め方向に出射する光が多く、有効利
用できる光に乏しいことから上面にプリズムシート等を
重畳して出射光の垂直化をはかる提案もなされている。
BACKGROUND ART Conventionally, as a side light type light guide plate in which light is incident from a side surface and emitted from an upper surface,
It is known that the lower surface is provided with a dot-like diffusion type or scattering type reflection layer. Since the reflection layer on the lower surface has a poor ability to emit incident light from the side surface to the upper surface due to total reflection on a flat surface, the incident light is diffusely reflected by multiple reflection or refraction and emitted to the upper surface. Further, with such a light guide plate, a large amount of light is emitted in an oblique direction, and light that can be effectively used is scarce. Therefore, a proposal has been made to superimpose a prism sheet or the like on the upper surface to make the emitted light vertical.

【0003】しかしながら、出射光を垂直化しても液晶
表示装置等に適用して偏光板を透過させた場合、出射光
の55%程度が吸収されて有効利用できる光に乏しく明
るい表示が困難な問題点があった。ちなみにTN型やS
TN型等の液晶表示装置などに用いる偏光板では、自然
光の場合、光量の約60%程度が吸収されて熱等に変換
され、光の利用効率としては35〜45%が通例で、理
論的にも50%を超えることがない。
However, even when the emitted light is made vertical, when it is applied to a liquid crystal display or the like and is transmitted through a polarizing plate, about 55% of the emitted light is absorbed, so that light that can be effectively used is scarce and a bright display is difficult. There was a point. By the way, TN type and S
In a polarizing plate used for a liquid crystal display device such as a TN type, in the case of natural light, about 60% of the amount of light is absorbed and converted into heat or the like, and it is customary that the utilization efficiency of light is 35 to 45%. However, it does not exceed 50%.

【0004】そのため、液晶表示装置等の明るさの向上
には照明システム全体の改善が必要となり、その目的の
下に光を偏光として偏光板に供給して光利用効率の向上
をはかる照明システムが提案されている(特開平3−4
5906号公報、特開平6−324333号公報、特開
平7−36032号公報)。これらは、導光板の下面に
反射層を密着付設し、上面にコレステリック液晶相から
なる円偏光分離層を設けて、その円偏光分離層を介し入
射光を左右の円偏光からなる透過光と反射光に分離し、
その反射光を下面の反射層を介し反射させて上面より再
出射させることにより光利用効率の向上を図るようにし
たものであ。
Therefore, in order to improve the brightness of a liquid crystal display device or the like, it is necessary to improve the entire illumination system, and for that purpose, an illumination system that supplies light as polarized light to a polarizing plate to improve the light utilization efficiency is provided. Proposed (Japanese Patent Laid-Open No. 3-4
5906, JP-A-6-324333, JP-A-7-36032). In these devices, a reflective layer is closely attached to the lower surface of the light guide plate, and a circularly polarized light separating layer made of a cholesteric liquid crystal phase is provided on the upper surface, and incident light is reflected by the left and right circularly polarized light through the circularly polarized light separating layer. Split into light,
The reflected light is reflected through the reflective layer on the lower surface and re-emitted from the upper surface to improve the light utilization efficiency.

【0005】しかしながら、いずれの場合も50%を超
える光利用効率を示すはずのものが期待値ほどの数値を
示さないことが判明した。特開平6−324333号公
報や特開平7−36032号公報では、下面を拡散式や
散乱式の反射層とすることから出射方向のランダム性や
偏光状態の解消化などによる再出射光量の低下が考えら
れるが、特開平3−45906号公報が教示する金属反
射層にても再出射効率に乏しい問題点があった。けだし
金属反射層は、反射を介して円偏光を効率よく偏光変換
し出射方向も規則的であるからである。
However, in any case, it was found that the ones which should show the light use efficiency of more than 50% do not show the expected values. In Japanese Unexamined Patent Publication No. 6-324333 and Japanese Unexamined Patent Publication No. 7-36032, since the lower surface is a reflective layer of a diffusion type or a scattering type, the amount of re-emitted light is reduced due to randomness of the emission direction or elimination of the polarization state. Although conceivable, even the metal reflective layer taught by JP-A-3-45906 has a problem that the re-emission efficiency is poor. This is because the bare metal reflection layer efficiently converts the circularly polarized light into the polarized light through reflection, and the emission direction is also regular.

【0006】[0006]

【発明の技術的課題】本発明は、側面からの入射光を上
面より効率よく出射し、円偏光分離層を介した再入射光
も効率よく出射して光利用効率に優れる導光板の開発を
課題とする。
DISCLOSURE OF THE INVENTION The present invention is directed to the development of a light guide plate that efficiently emits incident light from the side surface from the upper surface and also efficiently emits re-incident light that has passed through the circularly polarized light separation layer. It is an issue.

【0007】[0007]

【課題の解決手段】本発明は、側面からの入射光を下面
で反射して上面より出射するようにしてなり、厚さ方向
における複屈折による位相差が0〜30nmであることを
特徴とする導光板を提供するものである。
According to the present invention, incident light from a side surface is reflected on a lower surface and emitted from an upper surface, and a phase difference due to birefringence in a thickness direction is 0 to 30 nm. A light guide plate is provided.

【0008】[0008]

【発明の効果】本発明によれば、円偏光分離層を介し反
射して導光板に再入射した円偏光が位相差によりその偏
光状態の変化を受けにくく、下面部で金属反射層を介し
反射させて偏光状態を反転させた場合にその偏光状態の
変化なく円偏光分離層を透過しうる光として出射し、液
晶表示装置等の表示の明るさを向上させうる導光板を得
ることができる。
According to the present invention, the circularly polarized light reflected through the circularly polarized light separating layer and re-incident on the light guide plate is less susceptible to the change of its polarization state due to the phase difference, and is reflected at the lower surface portion through the metallic reflecting layer. Thus, when the polarization state is inverted, the light can be emitted as light that can pass through the circularly polarized light separation layer without changing the polarization state, and a light guide plate that can improve the display brightness of a liquid crystal display device or the like can be obtained.

【0009】前記において、導光板に大きな位相差があ
ると円偏光分離層を介して再入射した円偏光が楕円偏光
に変換され、その楕円偏光は下面で反射した帰路でさら
に楕円偏光化される。楕円偏光は、直線偏光成分と円偏
光成分の合成物であり、直線偏光成分は円偏光分離層を
透過しないからその分がまず再入射光の利用効率を低下
させる。また導光板が1/4波長板として機能する波長
範囲では、再入射光が偏光変換を受けないこととなるた
め、その場合にも円偏光分離層を透過しうる偏光状態の
光量は増加しない。
In the above, if the light guide plate has a large phase difference, the circularly polarized light that is re-incident through the circularly polarized light separating layer is converted into elliptically polarized light, and the elliptically polarized light is further converted into elliptically polarized light by the return path reflected by the lower surface. . The elliptically polarized light is a composite of a linearly polarized light component and a circularly polarized light component. Since the linearly polarized light component does not pass through the circularly polarized light separating layer, that amount first reduces the utilization efficiency of the re-incident light. Further, in the wavelength range in which the light guide plate functions as a quarter-wave plate, the re-incident light is not subjected to polarization conversion, so that the amount of light in the polarization state that can pass through the circularly polarized light separation layer does not increase in that case either.

【0010】さらに、導光板における光学軸の方向の不
規則性や、光の入射・透過角度による影響位相差の変
化、波長毎に位相差の影響が異なることなどが、円偏光
分離層を介して再入射した円偏光の偏光変換効率や楕円
偏光の長軸方向等を大きくばらつかせて、全体としての
偏光変換効率を大きく低下させ、再入射光の利用効率を
低下させると共に、導光板の位置により透過量や出射光
のスペクトルを大きく変化させて明暗ムラを生じさせ、
光源としての品質や液晶表示装置の表示品位を低下させ
る。
Further, the irregularity of the direction of the optical axis in the light guide plate, the change of the effected phase difference due to the incident / transmitted angle of light, the effect of the phase difference different for each wavelength, etc. are mediated by the circularly polarized light separating layer. The polarization conversion efficiency of circularly polarized light that has re-incident light and the long-axis direction of elliptically polarized light are greatly varied to significantly reduce the overall polarization conversion efficiency, which reduces the efficiency of re-incident light and reduces the light guide plate's use efficiency. Depending on the position, the amount of transmitted light and the spectrum of the emitted light are greatly changed to cause uneven brightness,
The quality as a light source and the display quality of a liquid crystal display device are degraded.

【0011】ちなみに導光板、特に下面に微細プリズム
構造等を有する導光板は、通例ポリメチルメタクリレー
トの如きプラスチックを射出成形して形成されるが、そ
の場合、ポリマーの流動に沿った光学軸を有する複屈折
パターンが生じ、その平均面内位相差は60nm程度とな
り、ゲート部付近では100nmにも及ぶと共に、光学軸
の方向も一定していない。
Incidentally, the light guide plate, especially the light guide plate having a fine prism structure on the lower surface is usually formed by injection molding of plastic such as polymethylmethacrylate, in which case it has an optical axis along the flow of the polymer. A birefringence pattern is generated, the average in-plane retardation is about 60 nm, reaches 100 nm near the gate portion, and the direction of the optical axis is not constant.

【0012】[0012]

【発明の実施形態】本発明の導光板は、側面からの入射
光を下面で反射して上面より出射するようにしたもので
あり、かつ厚さ方向における複屈折による位相差を0〜
30nm、好ましくは20nm以下としたものである。その
例を図1〜図4に示した。図例の如く導光板は通例、上
面、それに対向する下面、及び上面と下面間の少なくと
も一側端面からなる入射面を有する板状物からなる。図
中、11が上面、12,16,17,18が下面、13
が入射面である。なお、14は側面、15は入射面13
に対向する側端部である。
BEST MODE FOR CARRYING OUT THE INVENTION The light guide plate of the present invention is such that incident light from the side surface is reflected on the lower surface and emitted from the upper surface, and the phase difference due to birefringence in the thickness direction is 0 to 0.
The thickness is 30 nm, preferably 20 nm or less. Examples thereof are shown in FIGS. As shown in the figure, the light guide plate is usually formed of a plate having an upper surface, a lower surface facing the upper surface, and an incident surface including at least one side end surface between the upper surface and the lower surface. In the figure, 11 is an upper surface, 12, 16, 17, and 18 are lower surfaces, 13
Is the incident surface. In addition, 14 is a side surface and 15 is an incident surface 13.
Is a side end portion facing the side.

【0013】導光板の厚さ方向における複屈折による位
相差は、0〜20nmと小さいほど好ましいが30nm以下
であれば、円偏光分離層を介して再入射した円偏光を実
質的に位相差の影響なく、ほぼ等しい円偏光状態を維持
して下面に導くことができ、また下面で反射した帰路光
もその円偏光状態を維持したまま出射させることができ
る。
The phase difference due to birefringence in the thickness direction of the light guide plate is preferably as small as 0 to 20 nm, but if it is 30 nm or less, the circularly polarized light re-incident through the circularly polarized light separating layer has substantially no phase difference. It is possible to guide substantially the same circular polarization state to the lower surface without any influence, and it is also possible to emit the return light reflected on the lower surface while maintaining the circular polarization state.

【0014】導光板の形態は、上面よりの出射効率に優
れその出射光が上面に対する垂直性に優れて有効利用し
やすく、また円偏光分離層等を介した再入射光の出射効
率にも優れてその出射方向の初期出射方向との近似性な
どの点より、限定するものではないが図例の如く、下面
に長辺面と短辺面からなる凸部又は凹部を周期的に有す
る構造が好ましい。さらに入射面に対向する側端部の厚
さが入射面のそれよりも薄いもの、就中50%以下の厚
さであるものが好ましい。
The shape of the light guide plate is excellent in the emission efficiency from the upper surface, the emitted light is excellent in the perpendicularity to the upper surface, and can be effectively used, and the emission efficiency of the re-incident light through the circularly polarized light separating layer is also excellent. In view of the closeness of the outgoing direction to the initial outgoing direction, there is no limitation, but as shown in the figure, there is a structure that periodically has convex portions or concave portions having long side surfaces and short side surfaces on the lower surface. preferable. Furthermore, it is preferable that the thickness of the side end portion facing the incident surface is thinner than that of the incident surface, particularly, the thickness is 50% or less.

【0015】前記の入射面に対する対向側端部の薄型化
は、図5、図6に例示の太矢印の如く入射面より入射し
た光が伝送端としての当該対向側端部に至るまでに、下
面の短辺面に効率よく入射し、その反射を介し上面より
出射して入射光を目的面に効率よく供給できる点で有利
である。またかかる薄型化構造とすることで導光板を軽
量化でき、例えば下面が図2の如き直線面の場合、均一
厚の導光板の約75%の重量とすることができる。
The thinning of the end portion on the opposite side to the incident surface is achieved by the time when the light incident from the incident surface reaches the end portion on the opposite side as the transmission end, as shown by the thick arrows in FIGS. 5 and 6. This is advantageous in that the light can be efficiently incident on the short side surface of the lower surface, emitted from the upper surface via the reflection, and the incident light can be efficiently supplied to the target surface. Further, by adopting such a thin structure, the weight of the light guide plate can be reduced. For example, when the lower surface is a straight surface as shown in FIG. 2, the weight can be about 75% of the light guide plate having a uniform thickness.

【0016】下面における前記した凸部又は凹部は通
例、入射面に沿う方向の長辺面と短辺面からなる斜面に
て形成される。ちなみに下面における凸部又は凹部の例
を図5(a)〜(d)、図6(a)〜(d)に示した。
図5、図6において、21,22,23及び24が凸
部、25,26,27及び28が凹部であり、31,3
3,35,37,42,44,46及び48が長辺面を
形成する斜面、32,34,36,38,41,43,
45及び47が短辺面を形成する斜面である。
The above-mentioned convex portion or concave portion on the lower surface is usually formed by an inclined surface consisting of a long side surface and a short side surface along the incident surface. By the way, examples of convex portions or concave portions on the lower surface are shown in FIGS. 5 (a) to 5 (d) and 6 (a) to 6 (d).
In FIGS. 5 and 6, 21, 22, 23 and 24 are convex portions, 25, 26, 27 and 28 are concave portions, and 31, 3
3, 35, 37, 42, 44, 46 and 48 are slopes forming long sides, 32, 34, 36, 38, 41, 43,
45 and 47 are slopes forming the short side surface.

【0017】前記の下面における凸部又は凹部は、周期
的に形成される。すなわち例えば図1及び図5(a)又
は図6(a)に基づく場合、図1に示した矢印の如く入
射面13に沿う方向の斜面31,32又は41,42か
らなる凸部21又は凹部25を周期的に有する下面とさ
れる。
The protrusions or recesses on the lower surface are formed periodically. That is, for example, when based on FIG. 1 and FIG. 5 (a) or FIG. 6 (a), the convex portion 21 or the concave portion formed of the inclined surfaces 31, 32 or 41, 42 in the direction along the incident surface 13 as shown by the arrow in FIG. The lower surface has 25 periodically.

【0018】なお前記の凸部又は凹部は、その凸部又は
凹部を形成する斜面の下面との交点を結ぶ直線に基づ
き、斜面の交点(頂点)が当該直線よりも突出している
か(凸)、窪んでいるか(凹)による。すなわち図5、
図6に例示のものに基づく場合、凸部(21,22,2
3,24)又は凹部(25,26,27,28)を形成
する斜面(31と32、33と34、35と36、37
と38、41と42、43と44、45と46、47と
48)の下面との交点を結ぶ仮想線で示した直線20に
基づき、斜面の交点(頂点)が当該直線20よりも突出
しているか(凸)、窪んでいるか(凹)による。
The above-mentioned convex portion or concave portion is based on a straight line connecting the intersection points of the slope forming the convex portion or the concave portion with the lower surface, and whether the intersection point (vertex) of the slope surface protrudes from the straight line (convex), It depends on whether it is dented (concave). That is, FIG.
In the case based on the example shown in FIG. 6, the protrusions (21, 22, 2
3, 24) or slopes (31 and 32, 33 and 34, 35 and 36, 37) forming recesses (25, 26, 27, 28)
, 38, 41 and 42, 43 and 44, 45 and 46, 47 and 48), the intersection (vertex) of the slope protrudes beyond the straight line 20 indicated by an imaginary line connecting the intersection with the lower surface. It depends on whether it is convex (convex) or concave (concave).

【0019】また前記の凸部又は凹部を形成する斜面の
長辺面と短辺面は、下面との交点と頂点を結ぶ直線に基
づいて判断されるが、光の利用効率を向上させる点など
よりその長辺面の上面に対する投影面積が短辺面のそれ
の3倍以上、就中5倍以上とすることが好ましい。さら
にその長辺面を凸部の場合には入射面側に、凹部の場合
には入射面に対向する側端側に位置するように配置する
こと、従って入射面側に凸部の場合には長辺面が、凹部
の場合には短辺面が位置するように配置することが好ま
しい。
Further, the long side surface and the short side surface of the slope forming the convex portion or the concave portion are judged based on the straight line connecting the intersection with the lower surface and the apex, but the point that the utilization efficiency of light is improved, etc. More preferably, the projected area of the long side surface on the upper surface is 3 times or more, and especially 5 times or more that of the short side surface. Further, the long side surface is arranged so as to be located on the incident surface side in the case of a convex portion, and to be located on the side end side opposite to the incident surface in the case of a concave portion. When the long side surface is a concave portion, it is preferable to arrange the short side surface.

【0020】すなわち前記斜面、例えば図1及び図5
(a)又は図6(a)に基づく場合、凸部21又は凹部
25を形成する斜面31と32、又は41と42は、下
面(仮想線20に相当)との交点と頂点を結ぶ直線(図
5及び図6のb,c,dの場合には仮想線に相当)に基
づいて長辺面31,42と短辺面32,41からなるも
のとし、その長辺面31,42を、上面11に対する投
影面積が短辺面32,41のそれの3倍以上となるよう
に形成すると共に、凸部21の場合には長辺面31が入
射面13の側に、凹部25の場合には長辺面42が入射
面に対向する側端側15に位置するように配置すること
が好ましい。
That is, the slope, for example, FIGS. 1 and 5
In the case of FIG. 6A or FIG. 6A, the slopes 31 and 32 or 41 and 42 forming the convex portion 21 or the concave portion 25 are straight lines that connect the intersections with the lower surface (corresponding to the virtual line 20) and the vertices ( In the case of b, c, and d of FIGS. 5 and 6, it is assumed that the long side surfaces 31 and 42 and the short side surfaces 32 and 41 are based on the virtual line), and the long side surfaces 31 and 42 are The projection area on the upper surface 11 is three times or more that of the short side surfaces 32 and 41, and in the case of the convex portion 21, the long side surface 31 is on the incident surface 13 side and in the case of the concave portion 25. Is preferably arranged such that the long side surface 42 is located on the side end side 15 facing the incident surface.

【0021】前記により、短辺面に直接入射する伝送光
に加えて、長辺面に入射してその反射を介し短辺面に入
射する伝送光もその短辺面を介した反射にて上面に供給
(出射)することができ、その分の光利用効率の向上を
はかりうる。また長辺面は、偏光光源装置とした場合に
円偏光分離層で反射された再入射光を再出射させるため
に機能する部分であり、かかる点より長辺面の上面に対
する好ましい投影面積は、短辺面のそれの5倍以上、特
に10〜100倍である。
As described above, in addition to the transmitted light which is directly incident on the short side face, the transmitted light which is incident on the long side face and is reflected by the short side face is reflected on the upper side face. Can be supplied to (output from), and the light utilization efficiency can be improved accordingly. Further, the long side surface is a portion that functions to re-emit the re-incident light reflected by the circularly polarized light separation layer in the case of a polarized light source device. It is 5 times or more, especially 10 to 100 times, that of the short side surface.

【0022】導光板の下面の形状は、適宜に決定してよ
い。好ましくは上記したように傾斜面として、入射面よ
りもその対向側端部を薄型化したものである。その場
合、傾斜面の形状は任意に決定してよく、図2に例示の
如き直線面や、図3、図4に例示の如き曲面などのよう
に適宜な面形状とすることができる。直線面でない場
合、上面よりの出射光の出射方向を均一化する点などよ
りは、下面の全位置で平均傾斜角度より5度以内の範囲
にあることが好ましい。
The shape of the lower surface of the light guide plate may be appropriately determined. Preferably, as described above, the inclined surface is made thinner at the end on the opposite side than the incident surface. In that case, the shape of the inclined surface may be arbitrarily determined, and may be an appropriate surface shape such as a linear surface illustrated in FIG. 2 or a curved surface illustrated in FIGS. 3 and 4. If the surface is not a straight surface, it is preferable that the angle is within 5 degrees of the average inclination angle at all positions on the lower surface, rather than the point of making the emission direction of the emitted light from the upper surface uniform.

【0023】下面に設ける凸部又は凹部の形状も、図5
(a)〜(d)や図6(a)〜(d)に例示した如く直
線状の斜面で形成されている必要はなく、屈折面や湾曲
面等を含む斜面にて形成されていてもよい。また凸部又
は凹部は、下面の全体で凸凹やその形状等が同じである
必要はなく、垂直性に優れる出射光を得る点よりは入射
側から徐々にその形状や角度が変化する構造が好まし
い。
The shape of the convex portion or the concave portion provided on the lower surface is also shown in FIG.
It is not necessary to be formed by a linear slope as illustrated in (a) to (d) and FIGS. 6 (a) to (d), and it may be formed by a slope including a refraction surface or a curved surface. Good. The projections or depressions do not need to have the same irregularities or the same shape on the entire lower surface, and a structure in which the shape or angle gradually changes from the incident side rather than the point at which emitted light with excellent perpendicularity is obtained is preferable. .

【0024】下面における凸部又は凹部は、出射光がそ
の凸部又は凹部を介しストライプ状に放出されるため小
さいほど好ましく、間隔が大きいと明暗ムラを生じて面
全体における明るさの均等性が低下しやすくなる。明暗
ムラの防止による明るさの均等性に優れる上面を得る点
より好ましい凸部又は凹部の周期は、500μm以下、
就中400μm以下、特に5〜300μmである。なおそ
の周期が5μm未満では回折による分散が大きくて液晶
表示装置用のバックライトに不向きとなる。
The projections or recesses on the lower surface are preferably as small as possible because the emitted light is emitted in stripes through the projections or recesses, and if the spacing is large, uneven brightness occurs and the brightness of the entire surface is uniform. It tends to decrease. The period of the convex portions or concave portions, which is preferable from the viewpoint of obtaining an upper surface excellent in brightness uniformity by preventing uneven brightness, is 500 μm or less,
In particular, it is 400 μm or less, especially 5 to 300 μm. If the period is less than 5 μm, the dispersion due to diffraction is large, making it unsuitable for a backlight for a liquid crystal display device.

【0025】また凸部又は凹部を形成する斜面における
上記した長辺面は、図5、図6に例示の如くその上面1
1に対する傾斜角θ1が0〜10度、就中5度以下、特
に2度以下であることが好ましい。かかる傾斜角の範囲
とすることにより、図5(a)、図6(a)に折線矢印
で例示した如く、当該傾斜角より大きい角度で伝送され
る光が長辺面31,42に入射して反射され、その場合
に当該長辺面の傾斜角に基づいて上面11に、より平行
な角度で反射されて短辺面32,41に入射し、反射さ
れて上面11より出射する。
The above-mentioned long side surface of the slope forming the convex portion or the concave portion is the upper surface 1 as illustrated in FIGS.
It is preferable that the inclination angle θ1 with respect to 1 be 0 to 10 degrees, particularly 5 degrees or less, particularly 2 degrees or less. By setting the range of the tilt angle, as shown by the broken line arrows in FIGS. 5A and 6A, light transmitted at an angle larger than the tilt angle enters the long side surfaces 31, 42. In that case, the light is reflected by the upper surface 11 based on the inclination angle of the long side surface, is reflected at a more parallel angle, enters the short side surfaces 32, 41, and is reflected and emitted from the upper surface 11.

【0026】前記の結果、短辺面に入射する光の入射角
を一定化でき、反射角のバラツキを抑制できて出射光の
平行光化をはかることができる。従って、凸部又は凹部
を形成する斜面における長辺面と短辺面の当該傾斜角を
調節することにより、出射光に指向性をもたせることが
でき、それにより上面に対して垂直方向ないしそれに近
い角度で光を出射させることが可能になる。
As a result, the incident angle of the light incident on the short side surface can be made constant, the variation in the reflection angle can be suppressed, and the emitted light can be made parallel. Therefore, by adjusting the angle of inclination of the long side surface and the short side surface of the slope forming the convex or concave portion, it is possible to give directivity to the emitted light, whereby the direction is perpendicular to or close to the upper surface. Light can be emitted at an angle.

【0027】ちなみにアクリル樹脂からなる導光板で
は、その屈折率(約1.5)に基づいて端面入射光の伝
送される光の最大角は41.8度であり、導光板の屈折
率が増大するに伴い伝送される光の最大角は小さくな
る。そのため前記長辺面の傾斜角が10度を超えると、
長辺面の上面に対する投影面積の割合が減少して長辺面
を介し出射方向を制御しうる伝送光の割合が低下し、ま
た長辺面を経由して短辺面に入射した伝送光と、短辺面
に直接入射した伝送光との反射角のバラツキが大きくな
り、出射光を平行光化する制御性が低下して出射光の指
向性に乏しくなる。なお当該長辺面の傾斜角が0度で
は、出射光の平行化に不利となるが、本発明においては
許容される。
By the way, in the light guide plate made of acrylic resin, the maximum angle of the transmitted light of the end face incident light is 41.8 degrees based on the refractive index (about 1.5), and the refractive index of the light guide plate increases. As a result, the maximum angle of the transmitted light becomes smaller. Therefore, when the inclination angle of the long side surface exceeds 10 degrees,
The ratio of the projected area to the upper surface of the long side surface is reduced, and the ratio of the transmission light that can control the emission direction through the long side surface is reduced, and the transmission light incident on the short side surface via the long side surface is also reduced. In addition, the dispersion of the reflection angle with the transmission light directly incident on the short side surface becomes large, and the controllability of making the outgoing light parallel is reduced, and the directivity of the outgoing light becomes poor. If the inclination angle of the long side surface is 0 degree, it is disadvantageous for the parallelization of the emitted light, but is allowed in the present invention.

【0028】従って従来の導光板の如く出射効率の向上
を目的に、伝送光を反射して上面に供給する役割の斜面
(本発明での短辺面に相当)を大きくして上面への投影
面積比を増やし、そのために他方の斜面(本発明での長
辺面に相当)の傾斜角を20度以上とした構造では、こ
の斜面への伝送光の入射確率が極めて小さく平行光化を
はかりにくくて出射光に垂直性の指向性をもたせること
は困難になる。
Therefore, for the purpose of improving the emission efficiency as in the conventional light guide plate, the slope (corresponding to the short side surface in the present invention) for reflecting the transmitted light and supplying it to the upper surface is enlarged and projected onto the upper surface. In the structure in which the area ratio is increased, and for that reason, the inclination angle of the other slope (corresponding to the long side surface in the present invention) is 20 degrees or more, the incidence probability of the transmitted light on this slope is extremely small and parallelization is achieved. It is difficult to give the emitted light a vertical directivity.

【0029】一方、凸部又は凹部を形成する斜面におけ
る上記した短辺面は、図5、図6に例示の如くその上面
11に対する傾斜角θ2が25〜50度、就中30度以
上であることが好ましい。かかる傾斜角の範囲とするこ
とにより、図5(a)、図6(a)に折線矢印で例示し
た如く、直接又は長辺面を介して入射する伝送光をその
短辺面32,41を介し上面11に対して垂直又はそれ
に近い角度に反射して、液晶表示装置等の視認性の向上
に有効に作用する方向の光を効率よく出射させることが
できる。短辺面の傾斜角が前記範囲外では垂直方向との
ずれが大きくなり、出射光に垂直性の指向性をもたせる
ことが困難で、伝送光の出射効率(利用効率)も低下す
る。
On the other hand, the above-mentioned short side surface of the inclined surface forming the convex portion or the concave portion has an inclination angle θ 2 with respect to the upper surface 11 of 25 to 50 degrees, preferably 30 degrees or more, as illustrated in FIGS. Preferably there is. By setting such an inclination angle range, as shown in FIG. 5 (a) and FIG. 6 (a) by the broken line arrow, the transmitted light incident directly or through the long side surface is transmitted through the short side surface 32, 41. It is possible to efficiently emit light in a direction in which the light is reflected perpendicularly to the upper surface 11 or at an angle close thereto and effectively acts to improve the visibility of the liquid crystal display device or the like. If the inclination angle of the short side face is out of the range, the deviation from the vertical direction becomes large, and it is difficult to give the emitted light vertical directivity, and the emission efficiency (utilization efficiency) of the transmission light is reduced.

【0030】本発明において導光板における入射面の形
状については、特に限定はなく、適宜に決定してよい。
一般には、上面に対して垂直な面とされるが、例えば湾
曲凹形などの光源の外周等に応じた形状として、入射光
率の向上をはることもできる。また、光源との間に介在
する導入部を有する入射面構造などとすることもでき
る。その導入部は、光源などに応じて適宜な形状とする
ことができる。
In the present invention, the shape of the incident surface of the light guide plate is not particularly limited and may be appropriately determined.
In general, the surface is perpendicular to the upper surface. However, for example, a shape corresponding to the outer periphery of the light source, such as a curved concave shape, can be used to improve the incident light rate. Further, an incident surface structure having an introduction portion interposed between the light source and the light source may be employed. The introduction portion can have an appropriate shape according to the light source and the like.

【0031】なお上面の形状は、フラット面などが一般
的であるが、必要に応じて表面に散乱目的の拡散層を有
する構造などとすることもできる。ただし偏光光源装置
を形成する場合には、下面や上面、あるいは導光板の中
間層を含む入射面以外の部分に散乱目的の拡散層ないし
拡散反射層を有しない導光板が光の利用効率の点などよ
り好ましい。従って下面の凸部又は凹部を形成する斜面
や上面は滑らかであることが好ましい。
The shape of the upper surface is generally a flat surface or the like, but it may be a structure having a diffusion layer for the purpose of scattering on the surface if necessary. However, when forming a polarized light source device, a light guide plate that does not have a diffusing layer or a diffusing reflecting layer for scattering purposes on the lower surface or the upper surface, or a portion other than the incident surface including the intermediate layer of the light guiding plate is effective in terms of light utilization. Are more preferable. Therefore, it is preferable that the slope and the upper surface forming the convex portion or the concave portion on the lower surface are smooth.

【0032】導光板は、光源の波長領域に応じそれに透
明性を示す適宜な材料にて形成しうる。ちなみに可視光
域では、例えばポリメチルメタクリレートの如きアクリ
ル系樹脂、ポリカーボネートやポリカーボネート・ポリ
スチレン共重合体の如きポリカーボネート系樹脂、エポ
キシ系樹脂等で代表される透明樹脂やガラスなどの如く
約400〜700nmの波長範囲で透明性を示すものがあ
げられる。
The light guide plate can be formed of an appropriate material that is transparent according to the wavelength range of the light source. By the way, in the visible light region, for example, acrylic resin such as polymethyl methacrylate, polycarbonate resin such as polycarbonate and polycarbonate / polystyrene copolymer, about 400 to 700 nm like transparent resin and glass represented by epoxy resin and the like. Those exhibiting transparency in the wavelength range are exemplified.

【0033】複屈折による位相差が0〜30nmの導光板
の形成は、例えばポリカーボネート・ポリスチレン共重
合体やゼオネックス(商品名、日本ゼオン社製)やオプ
トレッツ(商品名、日立化成社製)の如き複屈折性を発
生しにくい材料を用いて射出成形等の適宜な方式で成形
する方式、複屈折を示す導光板を高温下でアニールして
複屈折性を低下させる方式、エポキシ系樹脂等を用いて
注型方式にて成形する方式、ゲート位置の工夫等により
複屈折性を生じにくくした射出成形方式で成形する方
式、予め大きい射出成形品を形成してその中央部等の位
相差の小さい部分を切り出して用いる方式、位相差は複
屈折の屈折率差と厚さの積であることより薄膜化により
位相差を小さくする方式などの適宜な方式で行うことが
できる。
A light guide plate having a phase difference of 0 to 30 nm due to birefringence can be formed, for example, by using a polycarbonate / polystyrene copolymer, Zeonex (trade name, manufactured by Zeon Corporation), or Optrez (trade name, manufactured by Hitachi Chemical Co., Ltd.). Such as injection molding using a material that does not easily generate birefringence, a method of lowering birefringence by annealing a light guide plate exhibiting birefringence at high temperature, epoxy resin, etc. Molding by casting method, injection molding method in which birefringence is less likely to occur by devising gate position, etc., large injection molded product is formed in advance and the phase difference of the central part etc. is small An appropriate method such as a method of cutting out a portion and a phase difference being a product of a refractive index difference of birefringence and a thickness to reduce the phase difference by thinning can be used.

【0034】従って導光板は、適宜な製造方法で形成し
うる。量産性等の点より好ましい製造方法としては、例
えば熱や紫外線ないし放射線等で重合処理しうる液状樹
脂を、所定の下面形状を形成しうる型に充填ないし流延
して重合処理する方法や、熱可塑性樹脂を所定の下面形
状を形成しうる金型に加熱下に押付て形状を転写する方
法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介
して流動化させた樹脂を所定の形状に成形しうる金型に
充填する方法などがあげられる。なお前記した導光板の
薄膜化は、軽量化や必要材料の減量化などの点よりも有
利であるが、入射面の減少で入射光量が低減することか
ら必要な入射光量の確保の点よりの限界や、射出成形で
は金型による影響が大きくなって複屈折性が増大したり
成形性が低下したりするためかかる点よりの限界などが
ある。
Therefore, the light guide plate can be formed by an appropriate manufacturing method. As a preferable manufacturing method from the viewpoint of mass productivity and the like, for example, a method in which a liquid resin that can be polymerized by heat, ultraviolet rays, radiation, or the like is polymerized by filling or casting in a mold capable of forming a predetermined lower surface shape, A method of transferring a shape by pressing a thermoplastic resin to a mold capable of forming a predetermined lower surface shape under heating, a thermoplastic resin that is heated and melted or a resin fluidized through heat or a solvent to a predetermined shape. Examples include a method of filling a mold that can be molded. Although the thinning of the light guide plate described above is more advantageous in terms of weight reduction and reduction of necessary materials, the amount of incident light is reduced by the reduction of the incident surface, so that the required amount of incident light is secured. There is a limit, and there is a limit from this point because the influence of the mold becomes large in injection molding to increase birefringence and decrease moldability.

【0035】本発明の導光板においては、上記した短辺
面と長辺面の面積比や傾斜角、下面の形状や曲率等の制
御に基づいて出射光の角度分布や面内分布等の特性を調
節することができる。ちなみに屈折率が1.5で下面が
曲率を有しない傾斜面であり、初期出射光が垂直に出射
する導光板の場合、長辺面の出射面に対する傾斜角を
6.6度以下とすることで、円偏光分離層を介した再入
射光を10度以内の角度変化で再出射させることができ
る。またその場合、下面が曲率を有するときには当該傾
斜角が6.6度以下となる部分を上記した所定面積以上
の割合で有することにより、当該再入射光を10度以内
の角度変化で再出射させることができる。
In the light guide plate of the present invention, the characteristics such as the angular distribution and the in-plane distribution of the emitted light are controlled based on the control of the area ratio of the short side surface and the long side surface, the inclination angle, the shape and the curvature of the lower surface, and the like. Can be adjusted. By the way, in the case of a light guide plate having a refractive index of 1.5 and a lower surface having no curvature, and a light guide plate from which the initial emission light is emitted vertically, the inclination angle of the long side surface with respect to the emission surface should be 6.6 degrees or less. Thus, the re-incident light passing through the circularly polarized light separating layer can be re-emitted with an angle change within 10 degrees. Further, in this case, when the lower surface has a curvature, the re-incident light is re-emitted with an angle change of 10 degrees or less by having a portion having the inclination angle of 6.6 degrees or less at a ratio of the predetermined area or more. be able to.

【0036】なお本発明において導光板は、例えば光の
伝送を担う導光部に、下面形成用のシートを接着したも
のの如く、異種材料の積層体などとして形成されていて
もよく、1種の材料による一体的単層物として形成され
ている必要はない。導光板の厚さは、使用目的による導
光板のサイズや光源の大きさなどにより適宜に決定する
ことができる。
In the present invention, the light guide plate may be formed as a laminated body of different materials, such as a light guide portion for transmitting light and a sheet for forming a lower surface adhered thereto. It need not be formed as an integral monolayer of material. The thickness of the light guide plate can be appropriately determined depending on the size of the light guide plate and the size of the light source depending on the purpose of use.

【0037】液晶表示装置等に用いる場合の導光板の一
般的な厚さは、その入射面に基づき20mm以下、就中
0.1〜10mm、特に0.5〜8mmである。また入射面
と上面の一般的な面積比は、前者/後者に基づき1/5
〜1/100、就中1/10〜1/80、特に1/15
〜1/50である。ちなみに入射面より平行光を入射さ
せた場合、入射面の厚さに相当する積算厚さの短辺面と
することで入射光の全部を短辺面に入射させることがで
き、その場合、短辺面の傾斜角を45度、長辺面の傾斜
角を0度とすると入射面/上面の面積比は1/30程度
となる。
When used in a liquid crystal display device or the like, the light guide plate generally has a thickness of 20 mm or less, preferably 0.1 to 10 mm, particularly 0.5 to 8 mm, based on the incident surface thereof. Also, the general area ratio between the incident surface and the upper surface is 1/5 based on the former / the latter.
1/1/100, especially 1/10 to 1/80, especially 1/15
~ 1/50. By the way, when the parallel light is incident from the incident surface, all of the incident light can be incident on the short side surface by making the short side surface of the integrated thickness corresponding to the thickness of the incident surface. When the inclination angle of the side surface is 45 degrees and the inclination angle of the long side surface is 0 degrees, the area ratio of the incident surface / upper surface is about 1/30.

【0038】また前記において導光板の屈折率を1.5
とすると、入射伝送光は上記したように41.8度以内
であり、その角度が小さい光ほど強度が大きいことか
ら、上面の投影面積に基づいて短辺面/長辺面の面積比
が1/15程度にても殆どの入射光を長辺面を介するこ
となく短辺面に直接入射させることができ、高い出射効
率を得ることができる。
In the above, the refractive index of the light guide plate is 1.5.
Then, as described above, the incident transmission light is within 41.8 degrees, and the smaller the angle, the greater the intensity. Therefore, the area ratio of the short side / long side is 1 based on the projected area of the upper surface. Even at about / 15, most of the incident light can be directly incident on the short side without passing through the long side, and high emission efficiency can be obtained.

【0039】なお前記の場合、傾斜角45度の短辺面を
介して上面の法線方向に出射するが、その円偏光分離層
を介した再入射光は、その殆どが長辺面に入射する。そ
の結果、上面の投影面積に基づいて短辺面/長辺面の面
積比を1/5としても、理想的には円偏光分離層を介し
た再入射光の83%が長辺面に入射し、かつ反射されて
そのまま再出射光として利用することができる。
In the above case, the light is emitted in the normal direction of the upper surface through the short side surface having an inclination angle of 45 degrees, but most of the re-incident light that has passed through the circularly polarized light separating layer is incident on the long side surface. To do. As a result, even if the area ratio of the short side / long side is set to 1/5 based on the projected area of the upper surface, ideally 83% of the re-incident light through the circularly polarized light separating layer is incident on the long side. The light is reflected and can be used as it is as re-emitted light.

【0040】導光板の下面には、必要に応じて反射層、
好ましくは金属反射層を配置することができる。その例
を図7に示した。2が反射層であり、図例では金属層か
らなる。かかる反射層は、下面からの漏れ光の発生を防
止して出射効率の向上に有効である。また偏光光源装置
の場合には、偏光変換手段としても機能する。反射層
は、下面に一体化されていてもよいし、反射シート等と
して重ね合されていてもよく、本発明にては適宜な配置
形態を採ることができる。
On the lower surface of the light guide plate, if necessary, a reflective layer,
Preferably, a metal reflection layer can be provided. An example is shown in FIG. Reference numeral 2 denotes a reflective layer, which is a metal layer in the illustrated example. Such a reflective layer is effective in preventing the generation of light leakage from the lower surface and improving the emission efficiency. In the case of a polarized light source device, it also functions as polarized light conversion means. The reflection layer may be integrated on the lower surface, or may be laminated as a reflection sheet or the like, and in the present invention, an appropriate arrangement form can be adopted.

【0041】前記の偏光変換手段として機能させる場合
には、金属からなる反射層が特に好ましい。かかる金属
反射層によれば、反射時に偏光特性を効率的に反転させ
ることができ、その偏光変換効率が屈折率相違の界面を
介した全反射や拡散反射による場合よりも優れている。
ちなみに金属面に概ね垂直に円偏光が入射すると、円偏
光の左右の変換効率は100%近い値となり、入射角3
0度位までは90%以上の変換効率を示す。
When functioning as the above-mentioned polarization converting means, a reflecting layer made of a metal is particularly preferable. With such a metal reflection layer, the polarization characteristics can be efficiently inverted at the time of reflection, and the polarization conversion efficiency thereof is superior to that obtained by total reflection or diffuse reflection via the interface having a different refractive index.
Incidentally, when circularly polarized light is incident on the metal surface substantially perpendicularly, the conversion efficiency of the left and right circularly polarized light becomes nearly 100%, and the incident angle is 3
A conversion efficiency of 90% or more is shown up to 0 degree.

【0042】偏光変換効率の点より好ましい金属反射層
は、アルミニウム、銀、金、銅又はクロムなどからなる
高反射率の金属の少なくとも1種を含有する金属面を有
するものである。導光板の下面との密着性に優れる金属
反射層は、バインダ樹脂による金属粉末の混入塗工層
や、蒸着方式等による金属薄膜の付設層などとして形成
することができる。金属反射層は、多層干渉薄膜などと
して形成されていてもよく、その片面又は両面には、必
要に応じ反射率の向上や酸化防止等を目的とした適宜な
コート層を設けることもできる。
A metal reflecting layer which is preferable from the viewpoint of polarization conversion efficiency has a metal surface containing at least one metal having a high reflectance, such as aluminum, silver, gold, copper or chromium. The metal reflection layer having excellent adhesion to the lower surface of the light guide plate can be formed as a mixed coating layer of metal powder with a binder resin or an attached layer of a metal thin film by a vapor deposition method or the like. The metal reflective layer may be formed as a multilayer interference thin film or the like, and one or both surfaces thereof may be provided with an appropriate coat layer for the purpose of improving reflectance, preventing oxidation, and the like, if necessary.

【0043】本発明による上記した導光板によれば、そ
れを用いて高精度に平行化された光を視認に有利な垂直
性に優れる方向に出射し、光源からの光を効率よく利用
して明るさに優れる面光源装置や偏光光源装置、さらに
は明るくて見やすく低消費電力性に優れる液晶表示装置
などの種々の装置を形成することができる。
According to the above-mentioned light guide plate of the present invention, the light parallelized with high precision is emitted in the direction excellent in verticality, which is advantageous for visual recognition, and the light from the light source is efficiently used. It is possible to form various devices such as a surface light source device and a polarized light source device which are excellent in brightness, and a liquid crystal display device which is bright and easy to see and is excellent in low power consumption.

【0044】図8、図9に本発明による導光板を有する
面光源装置を例示した。1が導光板、5がそれを用いた
面光源装置である。これは導光板の入射面13に対して
光源51が配置されており、サイドライト型のバックラ
イトなどとして用いうる。光源としては適宜なものを用
いうるが、例えば(冷,熱)陰極管等の線状光源や発光
ダイオード等の点光源、あるいはその線状又は面状等の
アレイ体などが好ましく用いうる。低消費電力性や耐久
性等の点よりは冷陰極管が特に好ましい。
8 and 9 illustrate a surface light source device having a light guide plate according to the present invention. 1 is a light guide plate and 5 is a surface light source device using it. In this, the light source 51 is arranged on the incident surface 13 of the light guide plate, and can be used as a sidelight type backlight or the like. As the light source, an appropriate one can be used. For example, a linear light source such as a (cold or hot) cathode tube, a point light source such as a light emitting diode, or a linear or planar array thereof can be preferably used. A cold cathode tube is particularly preferable from the viewpoint of low power consumption and durability.

【0045】面光源装置の形成に際しては、必要に応じ
て図例の如く、導光板下面の反射層2や、線状光源から
の発散光を導光板の側面に導くために光源を包囲する光
源ホルダ52、均等な面発光を得るために導光板の上面
上に配置した拡散層53や、光の出射方向制御用のプリ
ズムシートなどの適宜な補助手段を配置した組合せ体と
することもできる。
When forming the surface light source device, a light source that surrounds the light source, such as the reflection layer 2 on the lower surface of the light guide plate and the light source that guides the divergent light from the linear light source to the side surface of the light guide plate, as shown in the figure, if necessary. A holder 52, a diffusion layer 53 arranged on the upper surface of the light guide plate for obtaining uniform surface emission, and a suitable auxiliary means such as a prism sheet for controlling the emission direction of light may be used as a combination body.

【0046】反射層については、図9に例示の如く、前
記の反射層2に代えて、あるいはその反射層と共に、導
光板1の下面に沿って反射板54を設けることもでき
る。導光板の下面に反射板を設ける方式は、長辺面の傾
斜角が同一の場合、円偏光分離層を介した再入射光の再
出射角を小さくできる利点がある。その反射板について
は、導光板で説明した反射層に準じることができ、偏光
光源装置では、金属反射面を有する反射板が好ましく用
いうる。従って反射板としては、金属薄膜を付設した樹
脂シートや金属箔、金属板などの適宜なものを用いるこ
とができる。反射板の表面は、鏡面であることを必須と
せず、小さい角度の複数面や連続曲面などとして全体的
には均一に形成されていてもよい。
As for the reflection layer, as shown in FIG. 9, a reflection plate 54 may be provided along the lower surface of the light guide plate 1 instead of the reflection layer 2 or together with the reflection layer 2. The method of providing the reflection plate on the lower surface of the light guide plate has an advantage that the re-emission angle of the re-incident light through the circularly polarized light separating layer can be reduced when the long side surfaces have the same inclination angle. The reflection plate can be in accordance with the reflection layer described for the light guide plate. In the polarized light source device, a reflection plate having a metal reflection surface can be preferably used. Therefore, as the reflection plate, an appropriate material such as a resin sheet provided with a metal thin film, a metal foil, or a metal plate can be used. The surface of the reflector does not necessarily have to be a mirror surface, and may be formed as a whole with a plurality of surfaces having a small angle or a continuous curved surface.

【0047】また反射板としては、特に偏光光源装置等
を形成する場合の反射板としては、再出射光の広がりを
抑制する点などより、平行光を入射させた場合の反射光
の反射角の広がりの半値幅の半角が10度以内、就中5
度以内のものが好ましい。従って反射板としては、反射
率が高く、反射角の広がりが少なくて、拡散反射を生じ
ない適宜なものを用いうる。凹凸や圧延ロール等による
粗表面を有して反射光の反射角が若干広がるようにした
ものであってもよい。なお光源ホルダとしては、高反射
率金属薄膜を付設した樹脂シートや金属箔などが一般に
用いられる。光源ホルダを導光板の端部に接着剤等を介
して接着する場合には、その接着部分については下面に
おける凸部又は凹部の形成を省略することもできる。ま
た光源ホルダを導光板の下面に延設して反射板を兼ねさ
せることもできる。
Further, as the reflection plate, particularly in the case of forming a polarized light source device or the like, the reflection angle of the reflection light when parallel light is made incident is suppressed from the point of suppressing the spread of the re-emitted light. Half-width of half-width of spread is within 10 degrees, especially 5
Those within a degree are preferred. Therefore, as the reflection plate, an appropriate reflection plate having a high reflectance, a small spread of the reflection angle, and no diffuse reflection can be used. It may be one having a rough surface such as unevenness or a rolling roll so that the reflection angle of reflected light is slightly widened. As the light source holder, a resin sheet or a metal foil provided with a high reflectance metal thin film is generally used. In the case where the light source holder is bonded to the end of the light guide plate via an adhesive or the like, the formation of a convex portion or a concave portion on the lower surface of the bonding portion may be omitted. Further, the light source holder can be extended to the lower surface of the light guide plate so as to serve also as a reflection plate.

【0048】拡散層の配置は、明暗ムラの発生を防止し
て明るさの均等性により優れる上面の形成に有利であ
り、微細凹凸面や拡散板などによる適宜な拡散層として
形成することができる。ただし上記したように、偏光光
源装置の形成に用いる場合には、拡散層の配置は好まし
くない。
The arrangement of the diffusion layer is advantageous for forming an upper surface which is excellent in uniformity of brightness by preventing the occurrence of uneven brightness and can be formed as an appropriate diffusion layer such as a fine uneven surface or a diffusion plate. . However, as described above, the arrangement of the diffusion layer is not preferable when used for forming the polarized light source device.

【0049】本発明による偏光光源装置は、一般に偏光
特性を示さない入射光を円偏光分離層を介し透過光又は
反射光として左右の円偏光に分離することにより高効率
に偏光に変換して取出すことを目的とする。その場合に
本発明による上記した導光板は、高精度に平行化された
垂直性に優れる出射光を提供して、円偏光分離層を介し
た再入射光を角度変化の少ない状態で初期の出射光と方
向の一致性よく再出射させることを可能とする。
In the polarized light source device according to the present invention, incident light which generally does not exhibit polarization characteristics is separated into left and right circularly polarized light as transmitted light or reflected light through a circularly polarized light separating layer, and is efficiently converted into polarized light and taken out. The purpose is to In this case, the above-described light guide plate according to the present invention provides highly parallelized outgoing light with excellent perpendicularity, and allows the re-incident light via the circularly polarized light separating layer to be initially emitted with little angle change. It is possible to re-emit with good consistency with the direction of the emitted light.

【0050】図10、図11に本発明による偏光光源装
置を例示した。これは、上記した面光源装置5における
導光板1の上面11の上方に円偏光分離層61を配置し
たものからなる。実施例にて円偏光分離層は、導光板1
における拡散層を有しない上面11の直上に配置されて
いる。なお図11において、円偏光分離層61の上面に
設けたもの62は、直線偏光変換手段としての位相差層
である。
A polarized light source device according to the present invention is illustrated in FIGS. This comprises a circularly polarized light separating layer 61 disposed above the upper surface 11 of the light guide plate 1 in the above-mentioned surface light source device 5. In the embodiment, the circularly polarized light separating layer is the light guide plate 1.
Are disposed immediately above the upper surface 11 having no diffusion layer. In FIG. 11, a circularly polarized light separating layer 61 provided on the upper surface 62 is a retardation layer as a linearly polarized light converting means.

【0051】前記の装置によれば、導光板1の上面より
出射した光が円偏光分離層61に入射し、左右の内の所
定(仮に左)の円偏光は透過し、所定外(右)の円偏光
は反射され、その反射光は、戻り光として導光板に再入
射する。導光板に再入射した光は、下面の反射層等から
なる反射機能部分で反射されて再び円偏光分離層に入射
し、透過光と反射光(再々入射光)に再度分離される。
従って、反射光としての再入射光は、円偏光分離層を透
過しうる所定の円偏光となるまで円偏光分離層と導光板
との間に閉じ込められて反射を繰返すこととなるが、本
発明においては再入射光の利用効率等の点より、可及的
に少ない繰返し数で、就中、初回の再入射光が反射の繰
返しなく出射するようにしたものが好ましい。
According to the above apparatus, the light emitted from the upper surface of the light guide plate 1 is incident on the circularly polarized light separating layer 61, the predetermined (provisionally left) circularly polarized light in the left and right is transmitted, and the light outside the predetermined (right). The circularly polarized light of is reflected, and the reflected light re-enters the light guide plate as return light. The light that is re-incident on the light guide plate is reflected by the reflection function portion including the reflection layer on the lower surface, is incident on the circularly polarized light separating layer again, and is again separated into transmitted light and reflected light (re-incident light).
Therefore, the re-incident light as reflected light is confined between the circularly polarized light separation layer and the light guide plate and repeatedly reflected until the light becomes predetermined circularly polarized light that can pass through the circularly polarized light separation layer. In view of the above, it is preferable that the first re-incident light is emitted without repetition of reflection, especially with the repetition number as small as possible, in view of the utilization efficiency of the re-incident light.

【0052】前記において、本発明による上記した導光
板は高精度に平行化された垂直性に優れる出射光を提供
することから、円偏光分離層を介した再入射光の多くが
長辺面に入射し、その緩やかな傾斜角に基づいて角度を
大きく変えることなく反射し、その角度変化の少ない反
射で初期の出射光と近似した方向に、従って垂直性よく
再出射させることができる。その結果、初期出射光と再
出射光の方向の一致性に優れ、初回の再入射光を反射の
繰返しなく効率的に出射して偏光特性に優れる光をロス
の少ない利用効率に優れる状態で得ることができる。
In the above, since the above-mentioned light guide plate according to the present invention provides the emitted light which is highly accurately parallelized and has excellent verticality, most of the re-incident light that has passed through the circularly polarized light separating layer is incident on the long side surface. The incident light is reflected without changing the angle on the basis of the gentle inclination angle, and can be re-emitted in a direction similar to the initial emitted light by the reflection with a small angle change, and thus with good verticality. As a result, the direction of the initial emission light and the direction of the re-emission light are excellent, and the first re-incidence light is efficiently emitted without repetition of reflection to obtain light with excellent polarization characteristics in a state of low loss and excellent use efficiency. be able to.

【0053】導光板が金属反射層を有する場合には、再
入射光がそれによる反射反転により高効率に所定の円偏
光に変換され、従って光を効率よく取出すことができ
る。また垂直性に優れる出射光であることより、屈折率
が相違する界面での屈折による光の進行方向の変化が小
さい利点なども有している。
When the light guide plate has a metal reflection layer, the re-incident light is highly efficiently converted into a predetermined circularly polarized light by the reflection inversion due to the re-incident light, so that the light can be efficiently extracted. Further, since the emitted light is excellent in verticality, it has an advantage that a change in the traveling direction of light due to refraction at an interface having a different refractive index is small.

【0054】上記において従来の導光板では、円偏光分
離層を介した再入射光は、導光板の下面を介した散乱反
射ないし拡散反射(ドット)又は2回の全反射(プリズ
ム)を介して円偏光分離層に再入射することとなる。し
かし散乱反射式ないし拡散反射式の場合には、出射光が
指向性に乏しく、また散乱光として再入射するため円偏
光分離層を介した変換効率は50%を超え得ず、光の利
用効率を高める効果に乏しい。
In the above-mentioned conventional light guide plate, the re-incident light that has passed through the circularly polarized light separating layer is scattered or diffusely reflected (dots) or twice totally reflected (prisms) through the lower surface of the light guide plate. It will re-enter the circularly polarized light separation layer. However, in the case of the scattering reflection type or the diffuse reflection type, the emitted light has poor directivity, and since it re-enters as scattered light, the conversion efficiency through the circularly polarized light separation layer cannot exceed 50%, and the light utilization efficiency is high. The effect of increasing

【0055】一方、前記の全反射式の場合にも、例え屈
折率が1.5の導光板としても再入射の円偏光分離層を
介した変換効率は45%が最大であり、全反射による反
射角度によっては変換効率がさらに大きく低下する。ま
た入射角が全反射条件を超えると反射は殆ど生じないこ
となどにより、円偏光分離層を介した再入射光の角度に
よっては全く再出射せず、再入射光を再出射光として利
用できないために光の利用効率を高める効果は生じにく
い。
On the other hand, in the case of the total reflection type, the conversion efficiency through the re-incident circularly polarized light separating layer is 45% even if the light guide plate has a refractive index of 1.5. Depending on the reflection angle, the conversion efficiency will be further reduced. Also, when the incident angle exceeds the total reflection condition, reflection hardly occurs. Therefore, depending on the angle of the re-incident light that passes through the circularly polarized light separating layer, it does not re-emit at all, and the re-incident light cannot be used as re-emitted light. In addition, the effect of improving the light use efficiency is unlikely to occur.

【0056】さらに、前記再入射光の再出射不能を防止
するため、導光板の下面を再出射に有利なプリズム構造
とした場合には初期出射光の低下を招き、逆に初期出射
に有利なプリズム構造とした場合には再入射光の再出射
方向が初期出射光とは大きく変化することとなり、下面
を介した偏光の変換効率も低くなって、初期出射と再入
射光の再出射を良好に両立させうるプリズム構造を得る
ことが困難であり、この場合にも光の利用効率を高める
効果は生じにくい。
Further, in order to prevent the re-incident light from being unable to be re-emitted, when the lower surface of the light guide plate has a prism structure advantageous for the re-emission, the initial emission light is lowered, and conversely it is advantageous for the initial emission. When the prism structure is used, the re-emission direction of the re-incident light changes significantly from the initial emission light, the conversion efficiency of the polarized light through the lower surface also decreases, and the initial emission and re-injection light re-emission are good. It is difficult to obtain a prism structure that can satisfy both requirements, and even in this case, the effect of increasing the light utilization efficiency is unlikely to occur.

【0057】加えて散乱反射式ないし拡散反射式及び全
反射式のいずれの場合にも、円偏光分離層を介した出射
光に指向性をもたせることが困難で、その出射角度も垂
直性に乏しく、液晶表示等の視認性を低下させる表示に
不都合な、垂直方向と角度が大きくずれた例えば垂直方
向に対して45度以上の方向の出射光成分を多く含もの
となる。導光板の上面にプリズムシートを配置して垂直
性を高める補正をしたとしても、導光板下面の反射面に
対しては垂直方向から大きくずれた角度で入射するため
光の再利用効率を高める効果に乏しい。
In addition, in any of the scattering reflection type, the diffuse reflection type and the total reflection type, it is difficult to give directivity to the outgoing light through the circularly polarized light separating layer, and the outgoing angle thereof is poor in verticality. In this case, a large amount of emitted light components in the direction of 45 degrees or more with respect to the vertical direction, which is inconvenient for a display such as a liquid crystal display that reduces visibility, is largely deviated from the vertical direction. Even if a prism sheet is placed on the upper surface of the light guide plate to correct the verticality, the light is incident on the reflection surface of the lower surface of the light guide plate at an angle that is largely deviated from the vertical direction. Poor.

【0058】上記のように従来の導光板では、本発明に
おける如く、導光板を介し高精度に平行化された垂直性
に優れる出射光を形成して、それを円偏光分離層を介し
初期出射光と再入射光に分離し、その再入射光を初期出
射光と出射方向の整合性よく再出射させることは困難で
ある。
As described above, in the conventional light guide plate, as in the present invention, the outgoing light which is highly accurately parallelized and has excellent verticality is formed and is initially output through the circularly polarized light separating layer. It is difficult to separate the incident light and the re-incident light and re-emits the re-incident light with good matching in the emission direction with the initial emission light.

【0059】本発明において偏光光源装置の形成に好ま
しく用いうる導光板は、側面よりの入射光を高い効率で
上面より出射させ、その出射光が高い指向性、就中、上
面に対する垂直性に優れる指向性を示すと共に、円偏光
分離層を介した再入射光の再出射効率に優れ、その再出
射光の指向性と出射角度が初期出射光の指向性と出射角
度に可及的に一致し、かつ円偏光分離層を介した再入射
光を少ない反射繰返し数で、就中、反射の繰返しなく出
射するようにしたものである。
In the present invention, the light guide plate which can be preferably used for forming the polarized light source device allows incident light from the side surface to be emitted from the upper surface with high efficiency, and the emitted light has high directivity, and in particular, perpendicularity to the upper surface. In addition to exhibiting directivity, it has excellent re-emission efficiency of the re-incident light through the circularly polarized light separating layer, and the re-emission light has a directivity and an emission angle that match the directivity and the emission angle of the initial emission light as much as possible. In addition, the re-incident light that has passed through the circularly polarized light separating layer is emitted with a small number of reflection repetitions and, in particular, without repeated reflections.

【0060】前記において、再出射光と初期出射光の出
射角度の一致性に乏しく、出射方向が大きく異なるとそ
れらの輝度を加成できず、液晶表示装置等の視認性の向
上に有効利用できないし、むしろ角度の異なる方向に2
つのピーク輝度を示して視認性を低下させる。
In the above, the coincidence of the emission angles of the re-emitted light and the initial emitted light is poor, and if the emission directions are largely different, their brightness cannot be added, and it cannot be effectively used for improving the visibility of the liquid crystal display device or the like. But rather 2 in different directions
One peak luminance is shown, and visibility is reduced.

【0061】本発明において偏光光源装置を形成するた
めの円偏光分離層としては、透過光及び反射光として左
右の円偏光に分離する適宜なものを用いうる。好ましく
用いうる円偏光分離層としては、コレステリック液晶相
を有する層、就中コレステリック相を呈する液晶ポリマ
ーからなる層を有するシートや当該層をガラス板等の上
に展開したシート、あるいはコレステリック相を呈する
液晶ポリマーからなるフィルムなどがあげられる。
In the present invention, as the circularly polarized light separating layer for forming the polarized light source device, an appropriate layer for separating left and right circularly polarized light as transmitted light and reflected light can be used. As the circularly polarized light separating layer which can be preferably used, a layer having a cholesteric liquid crystal phase, a sheet having a layer composed of a liquid crystal polymer exhibiting a cholesteric phase, a sheet obtained by developing the layer on a glass plate or the like, or a cholesteric phase is exhibited. Examples include a film made of a liquid crystal polymer.

【0062】コレステリック液晶相によれば左右の円偏
光を透過・反射によりいずれか一方に選択的に分離で
き、コレステリック液晶を含む均一配向の液晶相は散乱
のない反射光を提供する。またコレステリック液晶相
は、視角変化に対する光学特性の変化が小さくて視野角
の広さに優れ、特に斜め方向からも直接観察される直視
型液晶表示装置等の形成に適している。
According to the cholesteric liquid crystal phase, the left and right circularly polarized light can be selectively separated into either one by transmission or reflection, and the uniformly aligned liquid crystal phase containing the cholesteric liquid crystal provides reflected light without scattering. The cholesteric liquid crystal phase has a small change in optical characteristics with respect to a change in viewing angle and is excellent in a wide viewing angle, and is particularly suitable for forming a direct-view liquid crystal display device which can be directly observed even in an oblique direction.

【0063】円偏光分離層は、単層物又は2層以上の重
畳物として形成することができる。重畳化は、分離機能
の広波長域化や斜め入射光の波長シフトに対処する点等
より有利であり、その場合には所定外の円偏光として反
射する光の中心波長が異なる組合せで重畳することが好
ましい。すなわち単層のコレステリック液晶層では通
例、選択反射性(円偏光二色性)を示す波長域に限界が
あり、その限界は約100nmの波長域に及ぶ広い範囲の
場合もあるが、その波長範囲でも液晶表示装置等に適用
する場合に望まれる可視光の全域には及ばないから、そ
のような場合に選択反射性の異なるコレステリック液晶
層を重畳させて円偏光二色性を示す波長域を拡大させる
ことができる。
The circularly polarized light separating layer can be formed as a single layer or as a laminate of two or more layers. Superimposition is advantageous from the viewpoint of widening the wavelength range of the separating function and addressing the wavelength shift of obliquely incident light. In this case, superimposition is performed in a combination in which the center wavelengths of light reflected as circular polarized light other than predetermined light are different. Is preferred. That is, a single-layer cholesteric liquid crystal layer usually has a limit in the wavelength range exhibiting selective reflection (circular dichroism), and the limit may be a wide range extending to a wavelength range of about 100 nm. However, when it is applied to liquid crystal display devices, etc., it does not reach the entire range of visible light, so in such a case a wavelength range showing circular dichroism is expanded by overlapping cholesteric liquid crystal layers with different selective reflection properties. Can be made.

【0064】ちなみにコレステリック液晶層の場合、そ
の液晶相に基づく選択反射の中心波長が300〜900
nmのものを同じ偏光方向の円偏光を反射する組合せで、
かつ選択反射の中心波長が異なる、就中それぞれ50nm
以上異なる組合せで用いて、その2〜6種類を重畳する
ことで可視光域等の広い波長域をカバーできる円偏光分
離層を効率的に形成することができる。前記した同じ偏
光方向の円偏光を反射するもの同士の組合せで重畳物と
する点は、各層で反射される円偏光の位相状態を揃えて
各波長域で異なる偏光状態となることを防止し、利用で
きる状態の偏光の増量を目的とする。
By the way, in the case of the cholesteric liquid crystal layer, the central wavelength of selective reflection based on the liquid crystal phase is 300 to 900.
A combination that reflects circularly polarized light of the same polarization direction with the nm one,
And the central wavelength of selective reflection is different, especially 50nm each.
A circularly polarized light separating layer capable of covering a wide wavelength range such as a visible light range can be efficiently formed by using the above different combinations and superimposing two to six types. The point that the combination of those that reflect the circularly polarized light in the same polarization direction as the superimposed product is such that the phase state of the circularly polarized light reflected by each layer is aligned to prevent a different polarization state in each wavelength range, The aim is to increase the available polarization.

【0065】従って円偏光分離層としては、それが所定
外の円偏光として反射しうる光の波長域が導光板に基づ
く出射光の波長域と可及的に一致したものが好ましく用
いうる。当該出射光に輝線スペクトル等の主波長がある
場合には、その1種又は2種以上の主波長に対してコレ
ステリック液晶相等に基づく反射光の波長を一致させる
ことが偏光分離の効率性等の点より次善策となり、必要
重畳数の減少化等による円偏光分離層の薄層化にも有利
である。その場合、反射光の波長の一致の程度は、導光
板の1種又は2種以上の主波長光に対してそれぞれ20
nm以内の範囲とすることが好ましい。
Therefore, as the circularly polarized light separating layer, a layer in which the wavelength range of the light which can be reflected as the circularly polarized light outside the predetermined range coincides with the wavelength range of the emitted light based on the light guide plate is preferably used. If the emitted light has a dominant wavelength such as a bright line spectrum, it is necessary to match the wavelength of the reflected light based on the cholesteric liquid crystal phase or the like to one or more dominant wavelengths such as efficiency of polarization separation. This is a sub-optimal measure from the point of view, and is also advantageous for reducing the thickness of the circularly polarized light separating layer by reducing the required number of superpositions. In this case, the degree of coincidence of the wavelengths of the reflected light is 20 times for one or more main wavelength lights of the light guide plate.
It is preferable to set the range within nm.

【0066】なおコレステリック液晶としては、適宜な
ものを用いてよく、特に限定はない。位相差の大きいコ
レステリック液晶分子ほど選択反射の波長域が広くな
り、層数の軽減や大視野角時の波長シフトに対する余裕
などの点より好ましく用いうる。また重さや自立性等の
点よりは液晶ポリマーが好ましく用いうる。ちなみにコ
レステリック液晶系の液晶ポリマーとしては、例えばポ
リエステル等の主鎖型液晶ポリマー、アクリル主鎖やメ
タクリル主鎖、シロキサン主鎖等からなる側鎖型液晶ポ
リマー、低分子カイラル剤含有のネマチック系液晶ポリ
マー、キラル成分導入の液晶ポリマー、ネマチック系と
コレステリック系の混合液晶ポリマーなどがあげられ
る。取扱い性の点より、ガラス転移温度が30〜150
℃の液晶ポリマーが好ましく用いうる。
As the cholesteric liquid crystal, an appropriate one may be used without any particular limitation. A cholesteric liquid crystal molecule having a larger phase difference has a wider wavelength range of selective reflection, and can be preferably used in terms of reduction of the number of layers and a margin for a wavelength shift at a large viewing angle. Further, a liquid crystal polymer can be preferably used in terms of weight, self-sustainability, and the like. Incidentally, examples of the cholesteric liquid crystal polymer include a main chain type liquid crystal polymer such as polyester, a side chain type liquid crystal polymer including an acrylic main chain, a methacryl main chain, and a siloxane main chain, and a nematic liquid crystal polymer containing a low molecular weight chiral agent. And chiral component-introduced liquid crystal polymers, and nematic and cholesteric mixed liquid crystal polymers. From the viewpoint of handleability, the glass transition temperature is 30 to 150.
The liquid crystal polymer of ° C. can be preferably used.

【0067】液晶ポリマーによるコレステリック液晶層
の形成は、従来の配向処理に準じた方法で行いうる。ち
なみにその例としては、基板上にポリイミドやポリビニ
ルアルコール等の膜を形成してレーヨン布等でラビング
処理したものやSiOの斜方蒸着層等からなる適宜な配
向膜の上に液晶ポリマーを展開してガラス転移温度以
上、等方相転移温度未満に加熱し、液晶ポリマー分子が
グランジャン配向した状態でガラス転移温度未満に冷却
してガラス状態とし、当該配向が固定化された固化層を
形成する方法などがあげられる。
The formation of the cholesteric liquid crystal layer from the liquid crystal polymer can be carried out by a method according to the conventional alignment treatment. Incidentally, as an example, a liquid crystal polymer is developed on a suitable alignment film composed of a film formed of polyimide or polyvinyl alcohol on a substrate and rubbed with a rayon cloth or an oblique vapor deposition layer of SiO. Is heated above the glass transition temperature, below the isotropic phase transition temperature, and cooled to below the glass transition temperature in a state in which the liquid crystal polymer molecules are in the state of the Grand Jean orientation, forming a solidified layer in which the orientation is fixed. Method.

【0068】前記の基板としては、例えばトリアセチル
セルロースやポリビニルアルコール、ポリイミドやポリ
アリレート、ポリエステルやポリカーボネート、ポリス
ルホンやポリエーテルスルホン、エポキシ系樹脂の如き
プラスチックからなるフイルム、あるいはガラス板など
の適宜なものを用いうる。
As the above-mentioned substrate, for example, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyether sulfone, a film made of a plastic such as an epoxy resin, or a suitable glass plate. Can be used.

【0069】基板上に形成した液晶ポリマーの固化層
は、基板との一体物としてそのまま円偏光分離層に用い
うるし、基板より剥離してフィルム等からなる円偏光分
離層として用いることもできる。フィルムからなる基板
との一体物として形成する場合には、偏光の状態変化の
防止性などの点より、位相差が可及的に小さいフィルム
を用いることが好ましい。なお円偏光分離層は、導光板
の出射面に直接設けることもできる。
The solidified layer of the liquid crystal polymer formed on the substrate can be used as a circularly polarized light separating layer as it is as an integrated body with the substrate, or can be peeled from the substrate and used as a circularly polarized light separating layer made of a film or the like. When it is formed as an integral body with a film substrate, it is preferable to use a film having a phase difference as small as possible from the viewpoint of prevention of a change in the state of polarization. Note that the circularly polarized light separating layer may be provided directly on the light emitting surface of the light guide plate.

【0070】液晶ポリマーの展開は、加熱溶融方式によ
ってもよいし、溶剤による溶液として展開することもで
きる。その溶剤としては、例えば塩化メチレンやシクロ
ヘキサノン、トリクロロエチレンやテトラクロロエタ
ン、N−メチルピロリドンやテトラヒドロフランなどの
適宜なものを用いうる。展開は、バーコーターやスピナ
ー、ロールコーター、グラビア印刷方式などの適宜な塗
工機にて行うことができる。展開に際しては、必要に応
じ配向膜を介したコレステリック液晶層の重畳方式など
も採ることができる。
The liquid crystal polymer may be developed by a heating and melting method or as a solution with a solvent. As the solvent, for example, an appropriate solvent such as methylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, tetrahydrofuran, or the like can be used. The development can be performed by an appropriate coating machine such as a bar coater, a spinner, a roll coater, or a gravure printing method. Upon development, a method of superposing a cholesteric liquid crystal layer with an alignment film interposed may be adopted if necessary.

【0071】コレステリック液晶層の厚さは、配向の乱
れや透過率低下の防止、選択反射性(円偏光二色性を示
す波長範囲)などの点より、0.5〜100μm、就中
1〜70μm、特に1〜50μmが好ましい。コレステリ
ック液晶層、ないし円偏光分離層の形成に際しては、安
定剤や可塑剤、あるいは金属類などからなる種々の添加
剤を必要に応じて配合することができる。
The thickness of the cholesteric liquid crystal layer is 0.5 to 100 μm, and preferably 1 to 100 μm, from the viewpoints of preventing alignment disorder and transmittance reduction, and selective reflectivity (wavelength range showing circular dichroism). 70 μm, particularly preferably 1 to 50 μm. In forming the cholesteric liquid crystal layer or the circularly polarized light separating layer, various additives such as stabilizers, plasticizers, and metals can be added as necessary.

【0072】本発明において用いる円偏光分離層は、例
えば低分子量体からなるコレステリック液晶層をガラス
やフィルム等の透明基材で挾持したセル形態、液晶ポリ
マーからなるコレステリック液晶層を透明基材で支持し
た形態、コレステリック液晶層の液晶ポリマーのフィル
ムからなる形態、それらの形態物を適宜な組合せで重畳
した形態などの適宜な形態とすることができる。
The circularly polarized light separating layer used in the present invention is, for example, a cell form in which a cholesteric liquid crystal layer made of a low molecular weight material is sandwiched between transparent substrates such as glass and film, and a cholesteric liquid crystal layer made of a liquid crystal polymer is supported by a transparent substrate. It is possible to adopt an appropriate form such as the above-mentioned form, a form made of a film of a liquid crystal polymer of the cholesteric liquid crystal layer, or a form in which those forms are superposed in an appropriate combination.

【0073】前記の場合、コレステリック液晶層をその
強度や操作性などに応じて1層又は2層以上の支持体で
保持することもできる。2層以上の支持体を用いる場合
には、偏光の状態変化を防止する点などより例えば無配
向のフィルムや、配向しても複屈折の小さいトリアセテ
ートフィルムなどの如く位相差が可及的に小さいものが
好ましく用いうる。
In the above-mentioned case, the cholesteric liquid crystal layer can be held by one or two or more supports depending on its strength and operability. When a support having two or more layers is used, the retardation is as small as possible, for example, a non-oriented film or a triacetate film having a small birefringence even when oriented, in order to prevent a change in the state of polarization. Those can be preferably used.

【0074】なお円偏光分離層は、上記の分離性能の均
一化や斜め入射光の波長シフトに対処する点等より平坦
な層として形成されていることが好ましく、重畳物の場
合にも各層は平坦なものであることが好ましい。コレス
テリック液晶層の重畳には、製造効率や薄膜化などの点
より液晶ポリマーの使用が特に有利である。
The circularly polarized light separating layer is preferably formed as a flat layer from the viewpoint of making the separation performance uniform and coping with the wavelength shift of obliquely incident light. It is preferably flat. For the superposition of the cholesteric liquid crystal layer, the use of a liquid crystal polymer is particularly advantageous from the viewpoints of production efficiency and thinning.

【0075】本発明において図11に例示の如く、円偏
光分離層61の上方に直線偏光変換手段62を有する場
合、円偏光分離層より出射した円偏光は、直線偏光変換
手段に入射して位相変化を受ける。その場合、位相変化
が1/4波長に相当する波長の光は直線偏光に変換さ
れ、他の波長光は楕円偏光に変換される。変換されたそ
の楕円偏光は、前記の直線偏光に変換された光の波長に
近いほど扁平な楕円偏光となる。かかる結果、偏光板を
透過しうる直線偏光成分を多く含む状態の光が直線偏光
変換手段より出射される。
In the present invention, as illustrated in FIG. 11, when the linearly polarized light converting means 62 is provided above the circularly polarized light separating layer 61, the circularly polarized light emitted from the circularly polarized light separating layer is incident on the linearly polarized light converting means and the phase thereof is changed. Undergo a change. In this case, light having a wavelength whose phase change corresponds to 1 / wavelength is converted into linearly polarized light, and light of other wavelengths is converted into elliptically polarized light. The converted elliptically polarized light becomes flatter elliptically polarized light as it approaches the wavelength of the light converted to the linearly polarized light. As a result, light in a state containing a large amount of linearly polarized light components that can pass through the polarizing plate is emitted from the linearly polarized light conversion means.

【0076】前記の如く、円偏光分離層上に必要に応じ
て配置する直線偏光変換手段は、円偏光分離層より出射
した偏光を直線偏光成分の多い状態に変換することを目
的とするものである。直線偏光成分の多い状態に変換す
ることにより、偏光板を透過しやすい光とすることがで
きる。この偏光板は、例えば液晶表示装置の場合、液晶
セルに対する視野角の変化で発生する偏光特性の低下を
防止して表示品位を維持する光学素子や、より高度な偏
光度を実現してよりよい表示品位を達成する光学素子な
どとして機能するものである。
As described above, the linearly polarized light converting means arranged on the circularly polarized light separating layer as needed is intended to convert the polarized light emitted from the circularly polarized light separating layer into a state having a large amount of linearly polarized light components. is there. By converting into a state in which there is a large amount of linearly polarized light component, it is possible to make the light easily transmitted through the polarizing plate. In the case of a liquid crystal display device, for example, this polarizing plate is an optical element that prevents deterioration of polarization characteristics caused by a change in viewing angle with respect to a liquid crystal cell and maintains display quality, and realizes a higher degree of polarization. It functions as an optical element that achieves display quality.

【0077】すなわち前記において、偏光板を用いず
に、円偏光分離層よりの出射偏光をそのまま液晶セルに
入射させて表示を達成することは可能であるが、偏光板
を介することで前記した表示品位の向上等をはかりうる
ことから必要に応じて偏光板が用いられる場合がある。
その場合に、偏光板に対する透過率の高いほど表示の明
るさの点より有利であり、その透過率は偏光板の偏光軸
(透過軸)と一致する偏光方向の直線偏光成分を多く含
むほど高くなるので、それを目的に直線偏光変換手段を
介して円偏光分離層よりの出射偏光を所定の直線偏光に
変換するものである。
That is, in the above description, it is possible to achieve the display by directly entering the outgoing polarized light from the circularly polarized light separating layer into the liquid crystal cell without using the polarizing plate. A polarizing plate may be used as necessary because it can improve the quality.
In this case, the higher the transmittance of the polarizing plate, the more advantageous in terms of display brightness, and the higher the transmittance, the more the linear polarization component in the polarization direction coinciding with the polarization axis (transmission axis) of the polarizing plate. Therefore, for that purpose, the polarized light emitted from the circularly polarized light separating layer is converted into a predetermined linearly polarized light via the linearly polarized light converting means.

【0078】ちなみに通例のヨウ素系偏光板に自然光や
円偏光を入射させた場合、その透過率は約43%程度で
あるが、直線偏光を偏光軸を一致させて入射させた場合
には80%を超える透過率を得ることができ、従って光
の利用効率が大幅に向上して明るさに優れる液晶表示な
どが可能となる。またかかる偏光板では、99.99%
に達する偏光度も達成できる。円偏光分離層の単独で
は、かかる高偏光度の達成は困難で、特に斜めからの入
射光に対する偏光度が低下しやすい。
By the way, when natural light or circularly polarized light is made incident on a usual iodine type polarizing plate, its transmittance is about 43%, but when linearly polarized light is made incident with its polarization axes aligned, it is 80%. Therefore, it is possible to obtain a transmissivity of more than 100 .mu.m, so that the light utilization efficiency is significantly improved and a liquid crystal display or the like having excellent brightness can be realized. Also, in such a polarizing plate, 99.99%
Can be achieved. It is difficult to achieve such a high degree of polarization by using the circularly polarized light separation layer alone, and particularly the degree of polarization with respect to obliquely incident light tends to decrease.

【0079】直線偏光変換手段としては、その偏光特性
に応じて適宜なものを用いうる。円偏光の場合には、そ
の位相を変化させうる位相差層が好ましく用いうる。そ
の位相差層としては、円偏光分離層より出射した円偏光
を、1/4波長の位相差に相当して直線偏光を多く形成
しうると共に、他の波長の光を前記直線偏光と可及的に
パラレルな方向に長径方向を有し、かつ可及的に直線偏
光に近い扁平な楕円偏光に変換しうるものが好ましい。
直線偏光変換手段は、円偏光分離層、あるいは液晶セル
の偏光板と一体的に設けることもできる。
As the linearly polarized light converting means, any suitable means can be used according to its polarization characteristics. In the case of circularly polarized light, a retardation layer capable of changing its phase can be preferably used. As the phase difference layer, the circularly polarized light emitted from the circularly polarized light separating layer can form a large amount of linearly polarized light corresponding to the phase difference of ¼ wavelength, and other wavelengths can be combined with the linearly polarized light as much as possible. It is preferable to use the one having a major axis direction in a parallel direction and capable of converting into a flat elliptically polarized light which is as close to linearly polarized light as possible.
The linearly polarized light converting means may be provided integrally with the circularly polarized light separating layer or the polarizing plate of the liquid crystal cell.

【0080】前記の如き位相差層を用いることにより、
その出射光の直線偏光方向や楕円偏光の長径方向が偏光
板の透過軸と可及的に平行になるように配置して、偏光
板を透過しうる直線偏光成分の多い状態の光を得ること
ができる。位相差層は、適宜な材質で形成でき、透明で
均一な位相差を与えるものが好ましく、一般には位相差
板が用いられる。
By using the retardation layer as described above,
Arrange such that the direction of the linear polarization of the emitted light and the major axis direction of the elliptically polarized light are as parallel as possible to the transmission axis of the polarizing plate to obtain light with a large amount of linearly polarized components that can pass through the polarizing plate. Can be. The retardation layer can be formed of an appropriate material and preferably provides a transparent and uniform retardation. In general, a retardation plate is used.

【0081】位相差層にて付与する位相差は、円偏光分
離層より出射される円偏光の波長域などに応じて適宜に
決定しうる。ちなみに可視光域では波長範囲や変換効率
等の点より、殆どの位相差板がその材質特性より正の複
屈折の波長分散を示すものであることも加味して、その
位相差が小さいもの、就中100〜200nm、特に10
0〜160nmの位相差を与えるものが好ましく用いうる
場合が多い。
The retardation imparted by the retardation layer can be appropriately determined according to the wavelength range of the circularly polarized light emitted from the circularly polarized light separating layer. Incidentally, in view of the wavelength range and conversion efficiency in the visible light region, taking into consideration that most retardation plates exhibit positive birefringence wavelength dispersion than their material characteristics, the phase difference is small, Especially 100-200nm, especially 10
In many cases, a material that gives a phase difference of 0 to 160 nm can be preferably used.

【0082】位相差板は、1層又は2以上の重畳層とし
て形成することができる。1層からなる位相差板の場合
には、複屈折の波長分散が小さいものほど波長毎の偏光
状態の均一化をはかることができて好ましい。一方、位
相差板の重畳化は、波長域における波長特性の改良に有
効であり、その組合せは波長域などに応じて適宜に決定
してよい。
The retardation plate can be formed as one layer or as a superposed layer of two or more layers. In the case of a retardation plate composed of one layer, the smaller the wavelength dispersion of birefringence, the better the polarization state can be uniformed for each wavelength. On the other hand, the superposition of the retardation plates is effective for improving the wavelength characteristics in the wavelength range, and the combination may be determined as appropriate according to the wavelength range.

【0083】なお可視光域を対象に2層以上の位相差板
とする場合、上記の如く100〜200nmの位相差を与
える層を1層以上の奇数層として含ませることが直線偏
光成分の多い光を得る点より好ましい。100〜200
nmの位相差を与える層以外の層は、通例200〜400
nmの位相差を与える層で形成することが波長特性の改良
等の点より好ましいが、これに限定するものではない。
When a retardation plate having two or more layers for the visible light region is used, it is often the case that a layer giving a retardation of 100 to 200 nm is included as one or more odd-numbered layers because of a large amount of linearly polarized light components. It is preferable in terms of obtaining light. 100-200
Layers other than the layer giving a retardation of nm are usually 200 to 400
It is preferable to form the layer with a layer giving a phase difference of nm from the viewpoint of improvement of wavelength characteristics and the like, but it is not limited to this.

【0084】位相差板は、例えばポリカーボネート、ポ
リスルホン、ポリエステル、ポリメチルメタクリレー
ト、ポリアミド、ポリビニールアルコール等からなるフ
ィルムを延伸処理してなる複屈折性シートなどとして得
ることができる。発光強度や発光色を広い視野角で均一
に維持する点よりは、位相差層の面内における位相差の
誤差が小さいほど好ましく、就中、その誤差が±10nm
以下であることが好ましい。
The retardation plate can be obtained, for example, as a birefringent sheet obtained by stretching a film made of polycarbonate, polysulfone, polyester, polymethylmethacrylate, polyamide, polyvinyl alcohol or the like. It is preferable that the error of the phase difference in the plane of the retardation layer is smaller than the point of maintaining the emission intensity and the emission color uniformly at a wide viewing angle, and in particular, the error is ± 10 nm.
The following is preferred.

【0085】位相差層に設定する位相差や光学軸の方向
は、目的とする直線偏光の振動方向などに応じて適宜に
決定することができる。ちなみに135nmの位相差を与
える位相差層の場合、円偏光の向きに応じて光学軸に対
し振動方向が+45度又は−45度の直線偏光(波長5
40nm)が得られる。なお位相差層が2層以上からなる
場合、特にその外部側表面層を100〜200nmの位相
差を与える層が占める場合にはその層に基づいて配置角
度を設定することが好ましい。
The retardation set in the retardation layer and the direction of the optical axis can be appropriately determined according to the intended oscillation direction of the linearly polarized light. By the way, in the case of a retardation layer giving a phase difference of 135 nm, linearly polarized light (wavelength 5) whose vibration direction is +45 degrees or −45 degrees with respect to the optical axis according to the direction of circularly polarized light.
40 nm). When the retardation layer is composed of two or more layers, especially when the outer surface layer is occupied by a layer providing a retardation of 100 to 200 nm, it is preferable to set the arrangement angle based on the layer.

【0086】上記のように本発明による偏光光源装置
は、円偏光分離層による反射光(再入射光)を偏光変換
による出射光として再利用することで反射ロス等を防止
し、その出射光を必要に応じ位相差層等を介し直線偏光
成分をリッチに含む光状態に変換して偏光板を透過しや
すくし吸収ロスを防止して、光利用効率の向上をはかり
うるようにしたものである。この方式により、理想的に
は偏光板を透過する光量を約2倍に増量しうるが、光源
として利用する点よりは、偏光板を透過しうる直線偏光
成分を65%以上、就中70%以上含むことが好まし
い。
As described above, in the polarized light source device according to the present invention, the reflected light (re-incident light) by the circularly polarized light separating layer is reused as the emitted light by the polarization conversion to prevent the reflection loss and the like, and If necessary, it is possible to improve the light utilization efficiency by converting the linearly polarized light component into a rich optical state through a retardation layer or the like to easily transmit through a polarizing plate and prevent absorption loss. . By this method, the amount of light transmitted through the polarizing plate can be ideally increased about twice, but the linearly polarized light component that can be transmitted through the polarizing plate is more than 65%, particularly 70% It is preferable to include the above.

【0087】本発明による導光板やそれを用いた偏光光
源装置は、上記の如く光の利用効率に優れ明るくて垂直
性に優れる光を提供し、大面積化等も容易であることよ
り液晶表示装置等におけるバックライトシステムなどと
して種々の装置に好ましく用いることができる。その場
合、偏光状態を可及的に維持しうる拡散板などを偏光光
源装置上に配置することも可能である。
The light guide plate and the polarized light source device using the light guide plate according to the present invention provide light which is excellent in light utilization efficiency, is bright, and is excellent in verticality, and is easy to be enlarged in area. It can be preferably used in various devices such as a backlight system in the device. In that case, it is also possible to arrange a diffusion plate or the like capable of maintaining the polarization state as much as possible on the polarized light source device.

【0088】図12に本発明による偏光光源装置6をバ
ックライトシステムに用いた液晶表示装置7を例示し
た。71が下側の偏光板、72が液晶セル、73が上側
の偏光板、74が拡散板である。下側の偏光板71や拡
散板74は、必要に応じて設けられる。
FIG. 12 illustrates a liquid crystal display device 7 using the polarized light source device 6 according to the present invention in a backlight system. Reference numeral 71 is a lower polarizing plate, 72 is a liquid crystal cell, 73 is an upper polarizing plate, and 74 is a diffusion plate. The lower polarizing plate 71 and the diffusion plate 74 are provided as needed.

【0089】液晶表示装置は一般に、液晶シャッタとし
て機能する液晶セルとそれに付随の駆動装置、偏光板、
バックライト、及び必要に応じての補償用位相差板等の
構成部品を適宜に組立てることなどにより形成される。
本発明においては、上記した導光板、ないしそれを用い
た面光源装置や偏光光源装置を用いる点を除いて特に限
定はなく、従来に準じて形成することができる。特に、
直視型の液晶表示装置を好ましく形成することができ
る。
Generally, a liquid crystal display device includes a liquid crystal cell functioning as a liquid crystal shutter, a driving device associated with the liquid crystal cell, a polarizing plate,
It is formed by appropriately assembling components such as a backlight and a compensating retardation plate if necessary.
In the present invention, there is no particular limitation except that the above-described light guide plate, or a surface light source device or a polarized light source device using the light guide plate is used, and the light guide plate can be formed according to a conventional method. Especially,
A direct-view liquid crystal display device can be preferably formed.

【0090】従って用いる液晶セルについては特に限定
はなく、適宜なものを用いうる。偏光光源装置を用いる
場合には、偏光状態の光を液晶セルに入射させて表示を
行うものに有利に用いられ、例えばツイストネマチック
液晶やスーパーツイストネマチック液晶を用いた液晶セ
ル等に好ましく用いうるが、非ツイスト系の液晶や二色
性染料を液晶中に分散させたゲストホスト系の液晶、あ
るいは強誘電性液晶を用いた液晶セルなどにも用いう
る。液晶の駆動方式についても特に限定はない。
Therefore, the liquid crystal cell to be used is not particularly limited, and any suitable one can be used. When a polarized light source device is used, it is advantageously used for displaying by making light in a polarized state incident on a liquid crystal cell, and for example, it can be preferably used for a liquid crystal cell using a twisted nematic liquid crystal or a super twisted nematic liquid crystal. It can also be used for a non-twist liquid crystal, a guest-host liquid crystal in which a dichroic dye is dispersed in a liquid crystal, or a liquid crystal cell using a ferroelectric liquid crystal. The liquid crystal driving method is not particularly limited.

【0091】なお高度な直線偏光の入射による良好なコ
ントラスト比の表示を得る点よりは偏光板として、特に
バックライト側の偏光板として、例えばヨウ素系や染料
系の吸収型直線偏光子などの如く偏光度の高いものを用
いた液晶表示装置が好ましい。また液晶表示装置の形成
に際しては、例えば視認側の偏光板の上に設ける拡散板
やアンチグレア層、反射防止膜、保護層や保護板、ある
いは液晶セルと偏光板の間に設ける補償用の位相差板な
どの適宜な光学素子を適宜に配置することができる。
From the viewpoint of obtaining a display of a good contrast ratio by the incidence of a high degree of linearly polarized light, as a polarizing plate, especially as a polarizing plate on the backlight side, for example, an iodine type or dye type absorption type linear polarizer, etc. A liquid crystal display device using one having a high degree of polarization is preferable. When forming a liquid crystal display device, for example, a diffusion plate or an antiglare layer, an antireflection film, a protective layer or a protective plate provided on a polarizing plate on the viewing side, or a compensating retardation plate provided between a liquid crystal cell and a polarizing plate. The appropriate optical element can be appropriately arranged.

【0092】前記の補償用位相差板は、複屈折の波長依
存性などを補償して視認性の向上等をはかることを目的
とするものである。本発明においては、視認側又は/及
びバックライト側の偏光板と液晶セルの間等に必要に応
じて配置される。なお補償用の位相差板としては、波長
域などに応じて適宜なものを用いることができ、1層又
は2層以上の重畳層として形成されていてよい。
The above-mentioned retardation plate for compensation is intended to compensate for the wavelength dependence of birefringence and improve the visibility. In the present invention, it is arranged as needed between the polarizing plate on the viewing side and / or the backlight side and the liquid crystal cell. As the retardation plate for compensation, an appropriate one may be used depending on the wavelength range and the like, and may be formed as one layer or a superposed layer of two or more layers.

【0093】液晶表示装置に用いる導光板は、上面より
垂直ないしそれに近い方向に光を出射するものが好まし
く用いうるが、その出射光が垂直方向よりズレる場合
は、プリズムシート等を介して出射方向を修正すること
ができる。その場合には、偏光状態を可及的に変化させ
ないものが好ましく用いうる。
The light guide plate used in the liquid crystal display device can preferably use one that emits light in a direction perpendicular to or closer to the upper surface. However, if the emitted light deviates from the vertical direction, the direction of emergence through a prism sheet or the like. Can be modified. In that case, those that do not change the polarization state as much as possible can be preferably used.

【0094】本発明において、上記した導光板や面光源
装置、あるいは偏光光源装置や液晶表示装置を形成する
光学素子ないし部品は、全体的又は部分的に積層一体化
されて固着されていてもよいし、分離容易な状態に配置
したものであってもよい。なお面光源装置の上面には種
々の拡散板などを配置しうるが、偏光光源装置の場合に
は偏光特性を維持しうる拡散板などがその上面に配置し
うる。
In the present invention, the optical elements or parts forming the above-mentioned light guide plate, surface light source device, polarized light source device or liquid crystal display device may be wholly or partially laminated and fixed integrally. However, it may be arranged in a state of being easily separated. It should be noted that various diffusing plates and the like can be arranged on the upper surface of the surface light source device, but in the case of the polarized light source device, a diffusing plate and the like that can maintain the polarization characteristics can be arranged on the upper surface.

【0095】上記の如く、側面からの入射伝送光を短辺
面を介し出射方向を制御して垂直又はそれに近い角度で
出射し、入射光を効率よく伝送して垂直性や平行光性に
優れる出射光を効率よく形成する本発明による低位相差
の導光板を用いて、光利用効率に優れて明るい偏光光源
装置を形成でき、さらには明るくて見やすく低消費電力
の液晶表示装置を形成することができる。
As described above, incident transmission light from the side surface is emitted at a vertical angle or an angle close to it by controlling the emission direction through the short side surface, and the incident light is efficiently transmitted, which is excellent in verticality and parallelism. By using the light guide plate of low phase difference according to the present invention that efficiently forms emitted light, it is possible to form a bright polarized light source device having excellent light utilization efficiency, and further to form a bright, easy-to-see liquid crystal display device with low power consumption. it can.

【0096】液晶表示装置等の形成に際しては、特に円
偏光分離層と組合せた偏光光源装置を用いる場合には、
垂直性や平行光性に優れる出射光を供給し、円偏光分離
層を介した再入射光も散乱等によるロスや角度変化の少
ない状態で、かつ初期出射光との方向の一致性よく再出
射して、視認性の向上に有効な方向の出射光を効率よく
供給する導光板が好ましく用いうる。また薄型で、かつ
出射光の面内均一性に優れて明暗ムラの少ない導光板が
好ましく用いうる。
When forming a liquid crystal display device or the like, especially when a polarized light source device combined with a circularly polarized light separating layer is used,
It supplies outgoing light with excellent perpendicularity and parallel light, and re-emits the re-incident light through the circularly polarized light separation layer with little loss and angle change due to scattering, etc., and with good consistency with the direction of the initial outgoing light. A light guide plate that efficiently supplies emitted light in a direction effective for improving visibility can be preferably used. Further, a light guide plate which is thin, has excellent in-plane uniformity of emitted light, and has little unevenness in brightness can be preferably used.

【0097】[0097]

【実施例】【Example】

参考例1 アクリル系の主鎖を有するガラス転移温度が57℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、130℃で30秒間加熱後さらに1
10℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、420〜505
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 1 After forming a side chain type cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 57 ° C. on a polyimide rubbing-treated surface of a triacetyl cellulose film by spin coating, heating at 130 ° C. for 30 seconds 1 more
It was heated at 10 ° C. for 2 minutes and then rapidly cooled to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 420-505
It shows good selective reflectivity in the wavelength range of nm, and 9
0% or more was selectively reflected in the regular reflection direction.

【0098】参考例2 アクリル系の主鎖を有するガラス転移温度が64℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、150℃で30秒間加熱後さらに1
30℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、500〜590
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 2 A side chain type cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 64 ° C. was spin-coated on the polyimide rubbing-treated surface of a triacetyl cellulose film, and then at 30 ° C. at 30 ° C. 1 second after heating for 1 second
It was heated at 30 ° C. for 2 minutes and rapidly cooled to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 500-590
It shows good selective reflectivity in the wavelength range of nm, and 9
0% or more was selectively reflected in the regular reflection direction.

【0099】参考例3 アクリル系の主鎖を有するガラス転移温度が75℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、170℃で30秒間加熱後さらに1
45℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、595〜705
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 3 A side chain type cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 75 ° C. was formed on the surface of a triacetylcellulose film treated with polyimide by a spin coating method, and then at 30 ° C. at 30 ° C. 1 second after heating for 1 second
It was heated at 45 ° C. for 2 minutes and cooled rapidly to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 595-705
It shows good selective reflectivity in the wavelength range of nm, and 9
0% or more was selectively reflected in the regular reflection direction.

【0100】参考例4 参考例1、参考例2及び参考例3で得た円偏光分離板を
積層して重畳型の円偏光分離板を得た。これは、420
〜705nmの波長範囲で良好な選択反射性を示し、この
領域で90%以上を正反射方向に選択反射するものであ
った。
Reference Example 4 The circularly polarized light separating plates obtained in Reference Example 1, Reference Example 2 and Reference Example 3 were laminated to obtain a superimposed circularly polarized light separating plate. This is 420
Good selective reflectivity was exhibited in the wavelength range of ˜705 nm, and 90% or more of this region was selectively reflected in the specular reflection direction.

【0101】実施例1 透明なエポキシ系樹脂を離型処理した金属金型に注入
し、100℃で2時間加熱後さらに150℃で3時間加
熱して硬化処理し、徐冷して導光板を得た。この導光板
は、幅195mm、奥行150mm、入射面の厚さ5mm、そ
の対向端の厚さ1mm、上面は平坦、下面は入射面からそ
の対向端に向かって平面に近い下側に突出した湾曲面
(図3)に、入射面に平行な凹部(図6a)を有効幅1
85mmで有してその凹部は表1に示した形態を有するも
のであった。
Example 1 A transparent epoxy resin was poured into a mold-treated metal mold, heated at 100 ° C. for 2 hours, further heated at 150 ° C. for 3 hours to be cured, and then slowly cooled to form a light guide plate. Obtained. This light guide plate has a width of 195 mm, a depth of 150 mm, a thickness of the entrance surface of 5 mm, a thickness of 1 mm at its opposite end, a top surface is flat, and a bottom surface is a curve protruding from the entrance surface toward the opposite end to a lower surface close to a plane. The surface (Fig. 3) is provided with a recess (Fig. 6a) parallel to the incident surface with an effective width
It had a size of 85 mm and the recess had the form shown in Table 1.

【0102】なお前記の凹部は、表面形状測定装置で測
定したものである。凹部の横断面における仮想下辺を基
準辺として、頂点(短辺面と長辺面の交点)からの基準
辺に対する法線で分割される左右の辺の長さに基づいて
短辺面と長辺面の上面への投影幅を決定し、頂点と基準
辺間の法線長さにより高さを決定した。なお上面に対す
る角度の、短辺面(θ2)と長辺面(θ1)とでの±の符
号の逆転は、上面を基準とした場合に計測方向が逆転す
ることを意味し、短辺面の計測方向を正方向としたこと
による。
The concave portion is measured by a surface shape measuring device. With the virtual lower side in the cross section of the recess as the reference side, the short side and the long side are determined based on the length of the left and right sides divided by the normal to the reference side from the vertex (the intersection of the short side and the long side). The projection width of the surface on the upper surface was determined, and the height was determined by the normal length between the vertex and the reference side. The reversal of the sign of ± between the short side surface (θ 2 ) and the long side surface (θ 1 ) with respect to the upper surface means that the measurement direction is reversed when the upper surface is used as a reference. This is because the measurement direction of the surface is the positive direction.

【0103】実施例2 型組した金型を加熱し、その側面から加熱溶融した流動
性のポリメチルメタクリレートを加圧充填し、加圧下に
170℃で2時間放置して導光板を得た。この導光板
は、幅195mm、奥行150mm、入射面の厚さ5mm、そ
の対向端の厚さ1mm、上面は平坦、下面は入射面からそ
の対向端に向かって平面に近い下側に突出し最厚部が入
射面より25mmの位置にある湾曲面(図3)に、入射面
に平行な凹部(図6a)を有効幅185mmで有してその
凹部は表1に示した如く、入射面より遠くなるほど短辺
面の角度が大きくなり、長辺面の角度が小さくなると共
に、それらの面積比が小さくなる形態を有するものであ
った。
Example 2 A mold set was heated, and from its side surface, a flowable polymethylmethacrylate that had been heated and melted was charged under pressure and left under pressure at 170 ° C. for 2 hours to obtain a light guide plate. This light guide plate has a width of 195 mm, a depth of 150 mm, a thickness of the entrance surface of 5 mm, a thickness of 1 mm at the opposite end, a top surface is flat, and a bottom surface projects from the entrance surface toward the opposite end to a lower side close to a plane and is the thickest. As shown in Table 1, the concave part (Fig. 6a) parallel to the incident surface has an effective width of 185mm on the curved surface (Fig. 3) located 25mm from the incident surface. The angle of the short side surface increases, the angle of the long side surface decreases, and the area ratio thereof decreases.

【0104】比較例1 加圧充填後、金型を急冷したほかは実施例2に準じて導
光板を得た。その凹部の形態を表1に示した。
Comparative Example 1 A light guide plate was obtained in the same manner as in Example 2 except that the mold was rapidly cooled after pressure filling. The form of the recess is shown in Table 1.

【0105】[0105]

【表1】 [Table 1]

【0106】実施例1,2、比較例1で得た導光板にお
ける位相差と光学軸を複屈折測定装置(オーク社製、A
DR−100XY)にて調べた。その結果を図13(実
施例1)、図14(実施例2)、図15(比較例1)に
示した。なお図示の如く実施例では全面で30nm以下の
位相差を維持するが、比較例では約70nmの平均位相差
であった。図中の数値が位相差で、線が光学軸の方向で
ある。
The phase difference and the optical axis of the light guide plates obtained in Examples 1 and 2 and Comparative Example 1 were measured by a birefringence measuring device (Oak Co., A
DR-100XY). The results are shown in FIG. 13 (Example 1), FIG. 14 (Example 2), and FIG. 15 (Comparative Example 1). As shown in the drawing, the retardation of 30 nm or less is maintained over the entire surface in the embodiment, but the average retardation is about 70 nm in the comparative example. The numerical value in the figure is the phase difference, and the line is the direction of the optical axis.

【0107】実施例3 実施例1で得た導光板の入射面に直径3mmの冷陰極管を
配置し、銀蒸着を施したポリエステルフィルムからなる
光源ホルダにて冷陰極管を包囲し、導光板の下面に銀蒸
着を施したポリエステルフィルムからなる反射シートを
配置してサイドライト型の面光源装置を得、その上面に
参考例4で得た円偏光分離板と、位相差が135nmの位
相差板と、偏光板(G1220DUN)を順次配置して
偏光光源装置を得た。なお偏光板は最大輝度を示すよう
に回転調節した。
Example 3 A cold cathode tube having a diameter of 3 mm was arranged on the incident surface of the light guide plate obtained in Example 1, and the cold cathode tube was surrounded by a light source holder made of a silver-deposited polyester film. A side-light type surface light source device is obtained by arranging a reflection sheet made of a polyester film on which silver is vapor-deposited on the lower surface of the above, and the phase difference of 135 nm with the circularly polarized light separating plate obtained in Reference Example 4 on the upper surface thereof. A plate and a polarizing plate (G1220DUN) were sequentially arranged to obtain a polarized light source device. The rotation of the polarizing plate was adjusted so as to exhibit the maximum luminance.

【0108】実施例4 実施例2で得た導光板を用いたほかは実施例3に準じて
偏光光源装置を得た。
Example 4 A polarized light source device was obtained in the same manner as in Example 3 except that the light guide plate obtained in Example 2 was used.

【0109】比較例2 比較例1で得た導光板を用いたほかは実施例3に準じて
偏光光源装置を得た。
Comparative Example 2 A polarized light source device was obtained according to Example 3 except that the light guide plate obtained in Comparative Example 1 was used.

【0110】評価試験1 実施例3,4、比較例2で得た偏光光源装置の光源を点
灯し、導光板の幅方向の中央部に沿って入射面より30
mm、70mm、110mmの各位置における上面での最大輝
度角度とその表面輝度を、色彩色差計(ミノルタ社製、
CS−100)を用いて暗室中にて調べた。なお角度
は、上面の法線方向を基準に光源側をマイナス方向、そ
の反対側をプラス方向とした。その結果を表2に示し
た。なお表には、円偏光分離板を配置しない場合の輝度
を基準にして、実施例3,4、比較例2の場合の輝度の
割合を光量比として示した。
Evaluation Test 1 The light sources of the polarized light source devices obtained in Examples 3 and 4 and Comparative Example 2 were turned on, and the light was passed through the incident surface along the center of the light guide plate in the width direction.
The maximum luminance angle on the upper surface and the surface luminance at each position of mm, 70 mm, and 110 mm are measured by a color difference meter (manufactured by Minolta Co.,
CS-100) was used and examined in a dark room. Regarding the angle, the light source side was the negative direction and the opposite side was the positive direction with reference to the normal direction of the upper surface. The results are shown in Table 2. In the table, the ratio of the luminance in the case of Examples 3, 4 and Comparative Example 2 is shown as the light amount ratio, based on the luminance in the case where the circularly polarized light separating plate is not arranged.

【0111】[0111]

【表2】 [Table 2]

【0112】表2より、実施例の偏光光源装置は比較例
のものに比べ最大出射方向の表面輝度が高いことがわか
る。また円偏光分離板を設けない場合との光量比におい
て、実施例ではその値が大きくて円偏光分離板の使用に
よる光利用効率の向上が大きいことがわかり、肉眼にて
も輝度の均一性に優れて金型のゲート付近に相当する部
分でも輝度の変化は殆どないものであった。これに対し
比較例では光量比の値が小さくて円偏光分離板の使用に
よる光利用効率の向上度に乏しことがわかり、肉眼にて
も輝度が不均一で金型のゲート付近に相当する部分では
輝度の変化の激しいものであった。さらにその輝度変化
は、色変化を伴って不均一性が目立つものであった。
It can be seen from Table 2 that the polarized light source device of the example has a higher surface brightness in the maximum emission direction than that of the comparative example. In addition, in the light amount ratio in the case where the circularly polarized light separating plate is not provided, it is found that the value is large in the example, and the improvement of the light utilization efficiency by the use of the circularly polarized light separating plate is large, and the uniformity of the brightness is even visible to the naked eye. Excellently, there was almost no change in luminance even in the portion corresponding to the vicinity of the gate of the mold. On the other hand, in the comparative example, it was found that the value of the light quantity ratio was small and the degree of improvement in light utilization efficiency by using the circularly polarized light separating plate was poor. Then, the change in the brightness was drastic. Further, the brightness change was notable for non-uniformity accompanied by color change.

【0113】前記の特性は、実施例では円偏光分離板を
介した再入射光がその導光板の全面で効率よく偏光変換
されて出射可能な円偏光とされていることを示し、比較
例ではその効果が小さくて面内で不均一であることを示
している。以上の結果より、円偏光分離板を用いた場合
には導光板の位相差が光の利用効率に大きく影響し、位
相差を小さくすることで均一で良好な偏光変換が達成さ
れて従来物では実現不能な高い光利用効率を達成できる
ことがわかる。
The above-mentioned characteristics show that the re-incident light that has passed through the circularly polarized light separating plate is circularly polarized light that can be efficiently polarized and emitted on the entire surface of the light guide plate in the examples, and in the comparative example. It shows that the effect is small and non-uniform in the plane. From the above results, when the circularly polarized light separating plate is used, the phase difference of the light guide plate greatly affects the light use efficiency, and by reducing the phase difference, uniform and good polarization conversion is achieved, and in the conventional product. It can be seen that an unrealizable high light utilization efficiency can be achieved.

【0114】評価試験2 実施例3,4、比較例2で得た偏光光源装置の上面に、
スーパーツイストネマチック液晶セルを配置して液晶表
示装置を得た。この液晶セルは、その両面に位相差板を
設けてノーマリーホワイトの白黒モードに調整したもの
である。この液晶表示装置の非選択状態における表面輝
度を比較した結果、実施例では比較例に比べて輝度が高
く、かつ均一性に優れる輝度であった。
Evaluation Test 2 On the upper surfaces of the polarized light source devices obtained in Examples 3 and 4 and Comparative Example 2,
A liquid crystal display was obtained by disposing a super twisted nematic liquid crystal cell. This liquid crystal cell is provided with retardation plates on both sides thereof and is adjusted to a normally white monochrome mode. As a result of comparing the surface luminances in the non-selected state of this liquid crystal display device, it was found that the example has a higher luminance than the comparative example and is excellent in uniformity.

【0115】上記の結果より総合的に、本発明による導
光板にて側面よりの入射光を効率よく垂直型の出射光に
方向変換して、垂直性と平行光性に優れる光を入射光の
利用効率よく発生する面光源装置を得ることができ、そ
の光を円偏光分離層を介し効率的に偏光化する偏光光源
装置が得られて、明るくて見やすい高表示品位の液晶表
示装置を形成できることがわかる。
From the above results, comprehensively, the light guide plate according to the present invention efficiently converts the incident light from the side surface into the vertical type emitted light, and converts the light excellent in verticality and parallelism into incident light. It is possible to obtain a surface light source device that can be efficiently used, and to obtain a polarized light source device that efficiently polarizes the light through a circularly polarized light separating layer, and to form a bright and easy-to-view high-quality liquid crystal display device. I understand.

【図面の簡単な説明】[Brief description of drawings]

【図1】導光板例の斜視説明図FIG. 1 is an explanatory perspective view of an example of a light guide plate.

【図2】他の導光板例の側面説明図FIG. 2 is an explanatory side view of another example of a light guide plate.

【図3】さらに他の導光板例の側面説明図FIG. 3 is an explanatory side view of still another example of the light guide plate.

【図4】さらに他の導光板例の側面説明図FIG. 4 is an explanatory side view of still another example of the light guide plate.

【図5】凸部例の側面説明図FIG. 5 is an explanatory side view of an example of a convex portion.

【図6】凹部例の側面説明図FIG. 6 is an explanatory side view of an example of a concave portion.

【図7】さらに他の導光板例の側面説明図FIG. 7 is an explanatory side view of still another light guide plate example.

【図8】面光源装置例の側面説明断面図FIG. 8 is a side sectional view illustrating an example of a surface light source device.

【図9】他の面光源装置例の側面説明断面図FIG. 9 is a side sectional view illustrating another example of the surface light source device.

【図10】偏光光源装置例の側面説明断面図FIG. 10 is a cross-sectional side view illustrating an example of a polarized light source device.

【図11】他の偏光光源装置例の側面説明断面図FIG. 11 is a side view sectional view of another example of the polarized light source device.

【図12】液晶表示装置例の側面説明断面図FIG. 12 is a side sectional view illustrating an example of a liquid crystal display device.

【図13】実施例1の導光板の位相差の平面説明図13 is an explanatory plan view of the phase difference of the light guide plate of Example 1. FIG.

【図14】実施例2の導光板の位相差の平面説明図FIG. 14 is an explanatory plan view of the phase difference of the light guide plate according to the second embodiment.

【図15】比較例1の導光板の位相差の平面説明図15 is an explanatory plan view of the phase difference of the light guide plate of Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1:導光板 11:上面 12,16,17,18:下面 21,22,23,24:下面における凸部 25,26,27,28:下面における凹部 31,33,35,37,42,44,46,48:長
辺面 32,34,36,38,41,43,45,47:短
辺面 13:入射面 2:反射層 5:面光源装置 51:光源 52:光源ホルダ 53:拡散層 54:反射板 6:偏光光源装置 61:偏光分離手段 62:位相差層(直線偏光変換手段) 7:液晶表示装置 71,74:偏光板 72:液晶セル 73:拡散層
1: light guide plate 11: upper surface 12, 16, 17, 18: lower surface 21, 22, 23, 24: convex portion on lower surface 25, 26, 27, 28: concave portion on lower surface 31, 33, 35, 37, 42, 44 , 46, 48: Long side surface 32, 34, 36, 38, 41, 43, 45, 47: Short side surface 13: Incident surface 2: Reflective layer 5: Surface light source device 51: Light source 52: Light source holder 53: Diffuse Layer 54: Reflection plate 6: Polarization light source device 61: Polarization separation means 62: Phase difference layer (linear polarization conversion means) 7: Liquid crystal display device 71, 74: Polarizing plate 72: Liquid crystal cell 73: Diffusion layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 側面からの入射光を下面で反射して上面
より出射するようにしてなり、厚さ方向における複屈折
による位相差が0〜30nmであることを特徴とする導光
板。
1. A light guide plate, characterized in that incident light from a side surface is reflected on a lower surface and emitted from an upper surface, and a phase difference due to birefringence in a thickness direction is 0 to 30 nm.
【請求項2】 請求項1において、位相差が20nm以下
であり、下面に長辺面と短辺面からなる凸部又は凹部を
周期的に有し、その長辺面の上面に対する傾斜角が0〜
10度、短辺面のそれが25〜50度であると共に、長
辺面の上面に対する投影面積が短辺面のそれの3倍以上
であり、光の入射面側に凸部の場合には長辺面が、凹部
の場合には短辺面が位置する導光板。
2. The retardation according to claim 1, wherein the phase difference is 20 nm or less, the lower surface periodically has convex portions or concave portions composed of long side surfaces and short side surfaces, and the inclination angle of the long side surface with respect to the upper surface. 0 to
In the case of 10 degrees, that of the short side surface is 25 to 50 degrees, the projected area of the long side surface with respect to the upper surface is three times or more of that of the short side surface, and there is a convex portion on the light incident surface side. A light guide plate in which the long side surface is the concave side surface when it is a recess.
【請求項3】 請求項1又は2において、拡散反射層を
具備せず、光の入射面の厚さが対向側端部のそれの2倍
以上である導光板。
3. The light guide plate according to claim 1, which does not include a diffuse reflection layer, and has a thickness of a light incident surface that is at least twice that of the end portion on the opposite side.
【請求項4】 請求項1〜3において、下面又はそれに
沿って金属反射層を有する導光板。
4. The light guide plate according to claim 1, which has a metal reflection layer on the lower surface or along the lower surface.
【請求項5】 請求項1〜4に記載の導光板の上面に、
コレステリック液晶相からなる円偏光分離層を有するこ
とを特徴とする偏光光源装置。
5. The upper surface of the light guide plate according to claim 1,
A polarized light source device having a circularly polarized light separating layer made of a cholesteric liquid crystal phase.
【請求項6】 請求項5において、円偏光分離層が液晶
ポリマーからなる偏光光源装置。
6. The polarized light source device according to claim 5, wherein the circularly polarized light separating layer is made of a liquid crystal polymer.
【請求項7】 請求項5又は6において、円偏光分離層
の上側に位相差層を有する偏光光源装置。
7. The polarized light source device according to claim 5, having a retardation layer above the circularly polarized light separating layer.
【請求項8】 請求項1〜4に記載の導光板を有するこ
とを特徴とする液晶表示装置。
8. A liquid crystal display device comprising the light guide plate according to claim 1.
【請求項9】 請求項5〜7に記載の偏光光源装置を有
することを特徴とする液晶表示装置。
9. A liquid crystal display device comprising the polarized light source device according to claim 5.
JP10468796A 1996-04-01 1996-04-01 Light guide plate, polarized light source device and liquid crystal display device Expired - Lifetime JP3187714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10468796A JP3187714B2 (en) 1996-04-01 1996-04-01 Light guide plate, polarized light source device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10468796A JP3187714B2 (en) 1996-04-01 1996-04-01 Light guide plate, polarized light source device and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH09269487A true JPH09269487A (en) 1997-10-14
JP3187714B2 JP3187714B2 (en) 2001-07-11

Family

ID=14387386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10468796A Expired - Lifetime JP3187714B2 (en) 1996-04-01 1996-04-01 Light guide plate, polarized light source device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3187714B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215314A (en) * 2000-02-02 2001-08-10 Nitto Denko Corp Optical film
US6369950B1 (en) 1999-11-02 2002-04-09 Nitto Denko Corporation Liquid-crystal display device and light pipe
JP2002174732A (en) * 2000-12-07 2002-06-21 Mark:Kk Light guide plate, display device using the same and method for manufacturing electronic device and light guide plate
JP2002303734A (en) * 2001-04-05 2002-10-18 Sumitomo Chem Co Ltd Light transmission plate
JP2006039056A (en) * 2004-07-23 2006-02-09 Hitachi Chem Co Ltd Liquid crystal display device
JP2008226829A (en) * 2007-02-14 2008-09-25 Matsushita Electric Ind Co Ltd Planar lighting system and liquid crystal display device
JP2008257259A (en) * 2008-05-15 2008-10-23 Nitto Denko Corp Liquid crystal display device and light guide plate
US7997782B2 (en) 2006-10-09 2011-08-16 Koninklijke Philips Electronics N.V. Lamp having plurality of optical extraction structures
WO2017002788A1 (en) * 2015-07-01 2017-01-05 富士フイルム株式会社 Backlight unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369950B1 (en) 1999-11-02 2002-04-09 Nitto Denko Corporation Liquid-crystal display device and light pipe
JP2001215314A (en) * 2000-02-02 2001-08-10 Nitto Denko Corp Optical film
JP2002174732A (en) * 2000-12-07 2002-06-21 Mark:Kk Light guide plate, display device using the same and method for manufacturing electronic device and light guide plate
JP2002303734A (en) * 2001-04-05 2002-10-18 Sumitomo Chem Co Ltd Light transmission plate
JP2006039056A (en) * 2004-07-23 2006-02-09 Hitachi Chem Co Ltd Liquid crystal display device
US7997782B2 (en) 2006-10-09 2011-08-16 Koninklijke Philips Electronics N.V. Lamp having plurality of optical extraction structures
US8388209B2 (en) 2006-10-09 2013-03-05 Koninklijke Philips Electronics N.V. Lamp and use thereof
JP2008226829A (en) * 2007-02-14 2008-09-25 Matsushita Electric Ind Co Ltd Planar lighting system and liquid crystal display device
JP2008257259A (en) * 2008-05-15 2008-10-23 Nitto Denko Corp Liquid crystal display device and light guide plate
WO2017002788A1 (en) * 2015-07-01 2017-01-05 富士フイルム株式会社 Backlight unit

Also Published As

Publication number Publication date
JP3187714B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
JP3286138B2 (en) Light guide plate, surface light source device, polarized light source device, and liquid crystal display device
JP4248974B2 (en) Light source device and liquid crystal display device
JP3260688B2 (en) Surface light source device, polarizing surface light source device, and liquid crystal display device
US8016445B2 (en) Planar light emitting element, image display element, and image display device using the same
US7027671B2 (en) Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
US6504589B1 (en) Backlight device and liquid crystal display device
JP2003534566A (en) Polarized emission waveguide
JP3361012B2 (en) Polarized light source device and liquid crystal display device
JPH09304770A (en) Separation layer for circular polarized light, optical element, polarization light source device and liquid crystal display device
JPH1054909A (en) Circularly polarized light separating layer, optical element, polarization light source device and liquid crystal display device
JPH11242908A (en) Lighting system and liquid crystal display using the same
JP3187714B2 (en) Light guide plate, polarized light source device and liquid crystal display device
KR100714518B1 (en) Liquid-crystal display device
JP2000147429A (en) Polarization surface light source device and liquid crystal display device
WO2004042273A1 (en) Lighting device and image display unit and light guide provided with it
JPH10282342A (en) Light conductive plate, surface light source device, polarization light source device, and liquid crystal display device
JPH10142407A (en) Reflection plate, surface light source apparatus and liquid crystal display device
JP3303278B2 (en) Polarization plane light source device and liquid crystal display device
JPH113608A (en) Method for illuminating display element, and liquid crystal display device
JPH10253833A (en) Light transmitting plate, surface light source device, polarizing light source device and liquid crystal display
JPH1152377A (en) Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JP3286239B2 (en) Light guide plate, surface light source device and liquid crystal display device
JP2002006143A (en) Light guide plate, surface light source device and reflective liquid crystal display device
JP3184103B2 (en) Light guide plate, surface light source device, polarized light source device, and liquid crystal display device
JP3808598B2 (en) Surface light source device, polarized light source device, and liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160511

Year of fee payment: 15

EXPY Cancellation because of completion of term