JPH11218714A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH11218714A
JPH11218714A JP10019495A JP1949598A JPH11218714A JP H11218714 A JPH11218714 A JP H11218714A JP 10019495 A JP10019495 A JP 10019495A JP 1949598 A JP1949598 A JP 1949598A JP H11218714 A JPH11218714 A JP H11218714A
Authority
JP
Japan
Prior art keywords
magnet
coil
drive
fixed
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10019495A
Other languages
Japanese (ja)
Inventor
Junichi Morooka
淳一 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP10019495A priority Critical patent/JPH11218714A/en
Publication of JPH11218714A publication Critical patent/JPH11218714A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical deflector capable of suppressing the oscillation of a coil substrate on which a rotor and a driving coil are fixed. SOLUTION: An oscillation suppressing magnet 30 of which outer periphery is magnetized by alternately arraying S and N poles so that a magnetic pole having the same polarity as that of a driving magnet 20 is arranged in the radius direction of the magnet 20 is fixed on a position which is the same axis as the magnet 20 and opposed to the side face of a driving coil 28 on the side of a rotor 40. Since rotary shaft direction (vertical direction) force applied from the coil 28 fixed on a coil substrate 26 to the magnet 30 fixed on the rotor 40 side and rotary shaft direction (vertical direction) force applied from the coil 28 to the magnet 20 fixed on the rotor 40 side are mutually canceled, the oscillation of the rotor 40 and the coil substrate 26 can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばデジタル複
写機やファクシミリ等の画像読み取り系あるいはレーザ
ビームプリンタ等の画像書き込み系において、レーザ光
源から照射された光ビームで原稿画像あるいは感光体を
走査する光偏向器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading system such as a digital copying machine or a facsimile or an image writing system such as a laser beam printer for scanning a document image or a photosensitive member with a light beam emitted from a laser light source. It relates to an optical deflector.

【0002】[0002]

【従来の技術】図7に従来の光偏向器の構成を示す。同
図においてステータ50側のべ一ス部材18に立設され
た固定軸10に動圧軸受を介して外嵌されたスリーブ1
4には台座16が固設されており、台座16上に光ビー
ムを所定の方向に偏向する回転多面鏡100(ポリゴン
ミラー)が固設されている。固定軸10には動圧発生用
の溝10Aが設けられており、固定軸10とスリーブ1
4との間に設けられた間隙12に空気を供給することに
より固定軸10とスリーブ14との間に動圧を発生させ
て動圧軸受を形成し、この動圧軸受により回転多面鏡1
00を有するロータ(回転体)40を軸支している。
2. Description of the Related Art FIG. 7 shows a configuration of a conventional optical deflector. In FIG. 1, a sleeve 1 externally fitted via a dynamic pressure bearing to a fixed shaft 10 erected on a base member 18 on the stator 50 side.
A pedestal 16 is fixed to 4, and a rotating polygon mirror 100 (polygon mirror) for deflecting the light beam in a predetermined direction is fixed on the pedestal 16. The fixed shaft 10 is provided with a groove 10A for generating dynamic pressure.
Air is supplied to a gap 12 provided between the fixed shaft 10 and the sleeve 14 to generate a dynamic pressure between the fixed shaft 10 and the sleeve 14, thereby forming a dynamic pressure bearing.
And a rotor (rotating body) 40 having the same.

【0003】ロータ40を構成する台座16の下部に
は、リング状に中心角45度づつに8等分した各区分
に、相隣接する区分が異極となるようN極とS極とが交
互に着磁された駆動マグネット20が接着されている。
In the lower portion of the pedestal 16 constituting the rotor 40, N-poles and S-poles are alternately arranged so that adjacent sections have different polarities in each of eight sections each having a central angle of 45 degrees in a ring shape. The drive magnet 20 magnetized is adhered.

【0004】またステータ50側のべ一ス部材18には
コイル基板26が固設されており、このコイル基板26
上には駆動コイル28が駆動マグネット20の周方向に
対向して所定間隔で6個配置されると共に、この駆動コ
イル28を励磁制御する図示してない制御回路が設けら
れている。コイル基板26下部には各駆動コイル28の
コイル磁極(U相,V相,W相)を検出する磁極検出素
子(例えば、ホール素子)34が各駆動コイル28にに
対応して設けられている。32はヨークであり、22、
24はスラスト軸受用磁石である。
A coil substrate 26 is fixed to the base member 18 on the stator 50 side.
On the upper side, six drive coils 28 are arranged at predetermined intervals so as to oppose each other in the circumferential direction of the drive magnet 20, and a control circuit (not shown) for controlling the excitation of the drive coils 28 is provided. A magnetic pole detecting element (for example, a Hall element) 34 for detecting the coil magnetic pole (U-phase, V-phase, W-phase) of each drive coil 28 is provided below the coil substrate 26 so as to correspond to each drive coil 28. . 32 is a yoke, 22,
Reference numeral 24 denotes a thrust bearing magnet.

【0005】コイル基板26上に設けられたコアレスコ
イルである駆動コイル28を制御回路により励磁切換え
制御し、駆動コイル28とロータ40側の駆動マグネッ
ト20との間に働く磁力によって、ロータ40を回転駆
動するように構成されている。
A drive circuit 28, which is a coreless coil provided on a coil substrate 26, is subjected to excitation switching control by a control circuit, and the rotor 40 is rotated by a magnetic force acting between the drive coil 28 and the drive magnet 20 on the rotor 40 side. It is configured to be driven.

【0006】図8はステータ50側の駆動コイル28と
ロータ40側の駆動マグネット20との間に働く力の関
係を模式的に示しており、駆動コイル28の断面と駆動
マグネット20のみを取り出して示している。図8に示
すタイミングの時、駆動コイル28の断面の28Aの部
分には紙面裏から表に向かう方向に電流が流れており、
28Bの部分には紙面表から裏に向う方向に電流が流れ
ている。この時駆動コイル28には矢印X方向に磁界が
発生しており、図上、駆動コイル28の上側(マグネッ
ト側)がN極で下側がS極である。
FIG. 8 schematically shows the relationship between the force acting between the drive coil 28 on the stator 50 and the drive magnet 20 on the rotor 40. The cross section of the drive coil 28 and only the drive magnet 20 are taken out. Is shown. At the timing shown in FIG. 8, a current flows in a direction from the back of the paper toward the front at a portion 28A of the cross section of the drive coil 28,
A current flows through the portion 28B in a direction from the front to the back of the page. At this time, a magnetic field is generated in the drive coil 28 in the direction of the arrow X. In the figure, the upper side (the magnet side) of the drive coil 28 is the N pole and the lower side is the S pole.

【0007】一方、駆動マグネット20のN極における
磁界の向きは矢印P方向であり、S極における磁界の向
きは矢印Q方向である。この時、フレミングの左手の法
則により駆動コイル28の断面の28Aの部分には図
上、右方向に磁力F4が、また駆動コイル28の断面の
28Bの部分には磁力F4と同方向に磁力F5が作用す
る。駆動コイル28はステータ50側に固定されている
ために駆動マグネット20のN極、S極には磁力F4、
F5による反作用により図上、左方向に回転力F4’、
F5’が作用し、この結果駆動マグネット20が固設さ
れたロータ40は矢印Y方向に回転する。
On the other hand, the direction of the magnetic field at the N pole of the drive magnet 20 is in the direction of arrow P, and the direction of the magnetic field at the S pole is in the direction of arrow Q. At this time, according to Fleming's left-hand rule, a magnetic force F4 is directed to the right in the drawing at the portion 28A of the cross section of the drive coil 28, and a magnetic force F5 is applied to the portion 28B of the cross section of the drive coil 28 in the same direction as the magnetic force F4. Works. Since the drive coil 28 is fixed to the stator 50 side, a magnetic force F4 is applied to the N pole and the S pole of the drive magnet 20.
Due to the reaction caused by F5, the rotational force F4 'in the left direction on the drawing,
F5 'acts, and as a result, the rotor 40 on which the drive magnet 20 is fixed is rotated in the arrow Y direction.

【0008】ところで、光偏向器を駆動させる際にロー
タ40には、回転方向に作用する力以外に回転軸方向
(上下方向)にも力が作用する。これは駆動コイル28
に流れる電流の方向によって駆動コイル28上面にS極
またはN極が形成されるが、これがロータ14側に固定
されている駆動マグネット20の磁極に作用し、吸引力
及び反発力によりロータ40に上下方向の力が発生す
る。この上下方向の力によりロータ40及びその作用反
作用でステータ50側に固設されたコイル基板26が振
動を起こす。この振動はロータ40の定常回転中はもち
ろん、特に起動時に著しく発生し、ロータ40がステー
タ50側に衝突することもある。
When the optical deflector is driven, a force acts on the rotor 40 in the direction of the rotation axis (vertical direction) in addition to the force acting on the rotor in the rotation direction. This is the drive coil 28
An S-pole or an N-pole is formed on the upper surface of the drive coil 28 depending on the direction of the current flowing through the rotor, and this acts on the magnetic pole of the drive magnet 20 fixed to the rotor 14 side. A directional force is generated. Due to the vertical force, the rotor 40 and the coil substrate 26 fixed to the stator 50 side vibrate due to the action and reaction thereof. This vibration occurs not only during steady rotation of the rotor 40 but also particularly at the time of startup, and the rotor 40 may collide with the stator 50 in some cases.

【0009】また定常回転中の振動は、コイル基板26
のビビリ(振動)による騒音や、レーザープリンタに用
いる場合に画質に悪影響を与える。
Further, the vibration during the steady rotation is generated by the coil substrate 26.
The noise caused by chattering (vibration) and the image quality are adversely affected when used in a laser printer.

【0010】上記振動を抑制するために図9に示すよう
に動圧軸受上部に空気溜まり70を形成する技術が特開
平6−43381号公報に、また図10に示すように騒
音低減のために回転多面鏡100を覆うようにカバー8
0を設ける技術が特開平3−9318号公報に開示され
ている。
A technique for forming an air reservoir 70 above the dynamic pressure bearing as shown in FIG. 9 to suppress the vibration is disclosed in Japanese Patent Laid-Open No. 6-43381, and as shown in FIG. The cover 8 covers the rotary polygon mirror 100.
A technique of providing 0 is disclosed in Japanese Patent Application Laid-Open No. Hei 3-9318.

【0011】更に図10に示すようにコイル基板26の
ビビリを押さえる目的で駆動コイル28をべ一ス部材1
8に接着剤90により接着することなどが行われてい
る。これらの技術は例としては一般的である。
Further, as shown in FIG. 10, the drive coil 28 is connected to the base member 1 for the purpose of suppressing the chatter of the coil substrate 26.
For example, the adhesive 8 is bonded to the substrate 8 with an adhesive 90. These techniques are common, for example.

【0012】[0012]

【発明が解決しようとする課題】上述した従来例におい
て、動圧軸受上部に空気溜まりを形成する技術を採用し
た場合には、空気溜まりがエアダンパとして機能するた
めにロータの振動を抑制する効果はあるが、コイル基板
の振動を押さえることはできない。また、加工が複雑で
コストアップとなるという問題がある。
In the above-mentioned conventional example, when the technique of forming an air pocket above the dynamic pressure bearing is adopted, the effect of suppressing the vibration of the rotor is because the air pocket functions as an air damper. However, vibration of the coil substrate cannot be suppressed. Further, there is a problem that processing is complicated and cost is increased.

【0013】また回転多面鏡を覆うようにカバーを設け
る技術を採用した場合には、騒音低減に対しては効果的
であるが、カバーはロータ全体を覆う必要があるために
大型化してしまい、部品点数の増加にもなるという問題
がある。
When a technique of providing a cover so as to cover the rotary polygon mirror is employed, it is effective for noise reduction, but the cover needs to cover the entire rotor, so that the cover becomes large. There is a problem that the number of parts also increases.

【0014】更に駆動コイルをべ一ス部材に接着する方
法は、コイル基板のビビリに対しては非常に効果的であ
るが、コイル基板を完全に固定してしまうため、ロータ
の振動は増加してしまうという問題がある。
Further, the method of bonding the drive coil to the base member is very effective against chattering of the coil substrate. However, since the coil substrate is completely fixed, the vibration of the rotor increases. Problem.

【0015】本発明はこのような事情に鑑みてなされた
ものであり、ロータ及び駆動コイルが固設されるコイル
基板の振動の抑制を図った光偏向器を提供することを目
的とする。
The present invention has been made in view of such circumstances, and has as its object to provide an optical deflector that suppresses vibration of a coil substrate on which a rotor and a drive coil are fixed.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の発明は、ロータ側に固設され、かつ
複数の異なる極性の磁極が周方向に交互に配列された駆
動マグネットと、回転トルクを発生させるように前記駆
動マグネットに対向してステータ側に固設された駆動コ
イルとを備え、かつステータ側に設けられた固定軸に動
圧軸受を介して外嵌されたスリーブに光ビームを所定の
方向に偏向する回転多面鏡が固設されてなり、前記駆動
コイルを励磁制御することにより前記回転多面鏡を回転
駆動する光偏向器において、前記駆動マグネットと同極
数で、かつ駆動マグネットの半径方向に駆動マグネット
の磁極と同一極性の磁極が位置するように複数の異なる
極性の磁極が円周方向に交互に配列された振動抑制用マ
グネットを前記駆動マグネットと同軸上で、かつロータ
側の前記駆動コイルの側面に対向する位置に固設したこ
とを特徴とする。
According to one aspect of the present invention, there is provided a drive magnet fixed to a rotor side and having a plurality of magnetic poles having different polarities alternately arranged in a circumferential direction. A drive coil fixed to the stator side facing the drive magnet so as to generate a rotational torque, and externally fitted via a dynamic pressure bearing to a fixed shaft provided on the stator side. A rotating polygon mirror that deflects the light beam in a predetermined direction is fixedly provided, and in an optical deflector that rotationally drives the rotating polygon mirror by excitingly controlling the drive coil, the same number of poles as the drive magnet is provided. And a vibration suppressing magnet in which a plurality of magnetic poles having different polarities are alternately arranged in the circumferential direction so that magnetic poles having the same polarity as the magnetic poles of the driving magnet are located in the radial direction of the driving magnet. On the magnet coaxially, and it is characterized in that fixedly provided at a position facing the side surface of the driving coil on the rotor side.

【0017】請求項1に記載の光偏向器によれば、ロー
タ側に固設された振動抑制用マグネットがステータ側の
コイル基板に固設された駆動コイルから受ける回転軸方
向(上下方向)の力と、ロータ側に固設された駆動マグ
ネットが駆動コイルから受ける回転軸方向(上下方向)
の力とが互いに打ち消し合うので、ロータおよびコイル
基板の振動を抑制することができる。
According to the optical deflector of the first aspect, the vibration suppressing magnet fixed on the rotor side receives the drive coil fixed on the coil substrate on the stator side in the rotation axis direction (vertical direction). The direction of the axis of rotation (vertical direction) that the force and the drive magnet fixed to the rotor side receive from the drive coil
Therefore, the vibrations of the rotor and the coil substrate can be suppressed.

【0018】また請求項1に記載の光偏向器によれば、
従来技術のように騒音低減のために回転多面鏡を覆うよ
うにカバーを設ける必要がなく、更にコイル基板のビビ
リを抑制するために駆動コイルをべ一ス部材に接着する
ための接着作業を必要としないため、光偏向器の小型化
及び組立ての簡略化が図れる。
According to the optical deflector of the first aspect,
There is no need to provide a cover to cover the rotating polygon mirror to reduce noise as in the prior art, and furthermore, an adhesive work is required to adhere the drive coil to the base member to suppress chattering of the coil substrate. Therefore, miniaturization of the optical deflector and simplification of assembly can be achieved.

【0019】また請求項2に記載の発明は、請求項1に
記載の光偏向器において、前記駆動マグネットの外径と
内径との和の1/2をL1、前記振動抑制用マグネット
の外径をL2、前記駆動コイルの外周部から軸中心まで
の距離と内周部から軸中心までの距離の和の1/2をM
1、内周部から軸中心までの距離をM2としたときにL
2/L1≒M2/M1となるように各部の寸法を設定す
ることを特徴とする。
According to a second aspect of the present invention, in the optical deflector of the first aspect, 1/2 of the sum of the outer diameter and the inner diameter of the drive magnet is L1, and the outer diameter of the vibration suppressing magnet is L1. Is L2, and 1/2 of the sum of the distance from the outer peripheral portion of the drive coil to the shaft center and the distance from the inner peripheral portion to the shaft center is M
1. When the distance from the inner periphery to the axis center is M2, L
The size of each part is set so that 2 / L1 ≒ M2 / M1.

【0020】請求項2に記載の光偏向器によれば、上記
のように各部の寸法を設定することにより駆動マグネッ
トの各磁極が駆動コイル上部を通過する時間と、振動抑
制用マグネットの各磁極が駆動コイル側面を通過する時
間を一致させることができるので、請求項1に記載の効
果に加えて、振動抑制用マグネットに作用する力と駆動
マグネットに作用する力とを最も効果的に打ち消すこと
ができる。
According to the optical deflector of the second aspect, by setting the dimensions of each part as described above, the time required for each magnetic pole of the drive magnet to pass above the drive coil and each magnetic pole of the vibration suppressing magnet are set. Since the time required for passing through the side surface of the drive coil can be matched, the force acting on the vibration suppressing magnet and the force acting on the drive magnet can be most effectively canceled in addition to the effect described in claim 1. Can be.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。図1に本発明の実施の形態
に係る光偏向器の構造を示す。先に説明した図7に示し
た従来の光偏向器と同一の要素には同一の符号を付し、
重複する説明は省略する。本発明の実施の形態に係る光
偏向器が図7に示した従来の光偏向器と構成上、異なる
のは駆動マグネット20と同極数で、かつ駆動マグネッ
ト20の半径方向に駆動マグネット20の磁極と同一極
性の磁極が位置するようにS極とN極とが円周方向に交
互に複数の磁極が配列されるように外周面に着磁された
振動抑制用マグネット30を駆動マグネット20と同軸
上で、かつ駆動コイル28側面に対向するようにロータ
40側のスリーブ14下部に設けた点であり、他の構成
は全く同一である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a structure of an optical deflector according to an embodiment of the present invention. The same elements as those of the conventional optical deflector shown in FIG.
Duplicate description will be omitted. The configuration of the optical deflector according to the embodiment of the present invention is different from that of the conventional optical deflector shown in FIG. The vibration suppressing magnet 30 magnetized on the outer peripheral surface so that the S pole and the N pole are alternately arranged in the circumferential direction so that the magnetic poles having the same polarity as the magnetic poles are located, is combined with the driving magnet 20. It is provided on the lower part of the sleeve 14 on the rotor 40 side so as to be coaxial and opposed to the side surface of the drive coil 28, and the other configuration is completely the same.

【0022】次に図2にスリーブ14下部、すなわちロ
ータ40下部に振動抑制マグネット30を設けたとき
に、駆動マグネット20及び振動抑制用マグネット30
に加わる力の関係を模式的に示す。図2において駆動マ
グネット20及び振動抑制用マグネット30は矢印A方
向に回転しており、図2に示すタイミングの時には、駆
動コイル28の上方にS極の磁極60が位置しており、
駆動コイル28の側面28Aには振動抑制用マグネット
30のS極の磁極61が対向している。このとき駆動コ
イル28の側面28Aには矢印B方向に電流が流れてい
るためにアンペアの右ねじの法則により矢印C方向に磁
界が発生し、駆動コイル28の上面はN極となり、下面
はS極となる。この結果、ロータ40側に固設された駆
動マグネット20の磁極60(S極)には吸引力F1が
作用し、図上、下向きの力が加わる。
Next, when the vibration suppressing magnet 30 is provided below the sleeve 14, that is, below the rotor 40 in FIG. 2, the driving magnet 20 and the vibration suppressing magnet 30
Fig. 4 schematically shows the relationship between the forces applied to the components. 2, the driving magnet 20 and the vibration suppressing magnet 30 are rotating in the direction of arrow A. At the timing shown in FIG. 2, the S pole magnetic pole 60 is located above the driving coil 28,
The magnetic pole 61 of the S pole of the vibration suppressing magnet 30 is opposed to the side surface 28A of the drive coil 28. At this time, since a current flows in the direction of the arrow B on the side surface 28A of the drive coil 28, a magnetic field is generated in the direction of the arrow C by the right-hand rule of ampere, and the upper surface of the drive coil 28 becomes the N pole and the lower surface becomes the S pole. Become a pole. As a result, the attractive force F1 acts on the magnetic pole 60 (S-pole) of the drive magnet 20 fixedly provided on the rotor 40 side, and a downward force is applied in the figure.

【0023】一方、駆動コイル28の側面28Aに対向
する振動抑制用マグネット30の側面に着磁された磁極
61(S極)の磁束は、矢印D方向を向き、駆動コイル
28の側面28Aを流れる電流(矢印B方向)と直角に
交差する。この結果、フレミングの左手の法則により駆
動コイル28の側面28Aには図上、下方に磁力F2が
作用する。この磁力F2の反作用でロータ40側、すな
わちスリーブ14下部に固設された振動抑制用マグネッ
ト30には図上、上方向に力F3が作用する。
On the other hand, the magnetic flux of the magnetic pole 61 (S-pole) magnetized on the side surface of the vibration suppressing magnet 30 facing the side surface 28A of the drive coil 28 flows in the direction of arrow D and flows on the side surface 28A of the drive coil 28. It intersects at right angles with the current (direction of arrow B). As a result, the magnetic force F2 acts on the side surface 28A of the drive coil 28 downward in the figure according to Fleming's left-hand rule. Due to the reaction of the magnetic force F2, a force F3 acts on the vibration-suppressing magnet 30 fixedly provided on the rotor 40 side, that is, below the sleeve 14, in the upward direction in the drawing.

【0024】この結果、駆動マグネット20と振動抑制
用マグネット30に逆方向に作用する2つの力の大きさ
を等しくなるようにすることにより、これら2つの力が
互いに打ち消し合うので、駆動コイルに発生する磁界に
より駆動マグネットが軸方向(上下方向)に力を受ける
ことにより発生していた振動を抑制することができる。
As a result, the two forces acting on the driving magnet 20 and the vibration suppressing magnet 30 in opposite directions are made equal to each other, so that these two forces cancel each other out, so that a driving coil is generated. Vibration generated when the driving magnet receives a force in the axial direction (vertical direction) by the generated magnetic field can be suppressed.

【0025】図5は、光偏向器が駆動されている際の、
U相、V相、W相の各駆動コイル28に流れるコイル電
流の向きとタイミング、その際の駆動コイル28上面に
発生する磁極、およびその磁極から駆動マグネット20
が受ける力の向きと大きさを示している。
FIG. 5 shows a state in which the optical deflector is driven.
The direction and timing of the coil current flowing through each of the U-phase, V-phase, and W-phase drive coils 28, the magnetic poles generated on the upper surface of the drive coil 28 at that time, and the drive magnet 20
It shows the direction and magnitude of the force that is received.

【0026】また図6は光偏向器が駆動されている際
の、U相、V相、W相の各駆動コイル28に流れる電流
の向きとタイミング、各駆動コイル28の側面を振動抑
制用マグネット30のN極、S極が通過するタイミン
グ、および振動抑制用マグネット30が各駆動コイル2
8の側面を流れる電流から受ける力の向きと大きさを示
している。
FIG. 6 shows the directions and timings of the currents flowing through the U-phase, V-phase, and W-phase drive coils 28 when the optical deflector is being driven, and the side surfaces of each drive coil 28 are magnetized for vibration suppression. The timing at which the N pole and the S pole of the driving coil 30 pass, and the vibration suppressing magnet 30
8 shows the direction and magnitude of the force received from the current flowing through the side surface of No. 8.

【0027】図5、図6から判るように、駆動マグネッ
ト20と振動抑制用マグネット30とは回転軸方向(上
下方向)に同じ周期で駆動コイルから力を受けており、
しかも2つのマグネット20、30に加わる力が反対で
ある。このように駆動マグネット20及び振動抑制用マ
グネット30を配置すればこれらのマグネット20、3
0に作用する力を互いに打ち消し合うことが可能であ
る。すなわち振動を抑制することができる。
As can be seen from FIGS. 5 and 6, the driving magnet 20 and the vibration suppressing magnet 30 receive a force from the driving coil at the same cycle in the rotation axis direction (vertical direction).
Moreover, the forces applied to the two magnets 20, 30 are opposite. By arranging the driving magnet 20 and the vibration suppressing magnet 30 in this manner, these magnets 20, 3
It is possible for the forces acting on zero to cancel each other out. That is, vibration can be suppressed.

【0028】図3は振動抑制用マグネット30と駆動マ
グネット20との位置関係、磁極の配列状態及び大きさ
の一例を示し、図4は駆動コイルの位置関係及び大きさ
の一例を示している。図3において、振動抑制用マグネ
ット30は駆動マグネット20と同極数で、かつ駆動マ
グネット20の半径方向に駆動マグネット20の磁極と
同一極性の磁極が位置するようにS極とN極とが円周方
向に交互に8つの磁極が配列されるように外周面に着磁
されている。これは図2を参照して既述したように2つ
のマグネット20、30に加わる力を反対方向に作用さ
せるためである。
FIG. 3 shows an example of the positional relationship between the vibration suppressing magnet 30 and the driving magnet 20 and the arrangement and size of the magnetic poles, and FIG. 4 shows an example of the positional relationship and the size of the driving coil. In FIG. 3, the vibration suppressing magnet 30 has the same number of poles as the driving magnet 20, and the S pole and the N pole are circular so that a magnetic pole having the same polarity as the magnetic pole of the driving magnet 20 is located in the radial direction of the driving magnet 20. The outer peripheral surface is magnetized so that eight magnetic poles are alternately arranged in the circumferential direction. This is because the forces applied to the two magnets 20 and 30 act in opposite directions as described above with reference to FIG.

【0029】また、図3において駆動マグネット20の
外径と内径との和の1/2をL1,振動抑制用マグネッ
ト30の外径をL2とし、図4に示す駆動コイル28の
外周部から回転軸中心66までの距離と内周部から回転
軸中心66までの距離との和の1/2をM1,内周部か
ら回転軸中心66までの距離をM2としたときに、L2
/L1≒M2/MIとなる振動抑制用マグネット30の
外径L2を設定し、駆動マグネット20の各磁極が駆動
コイル28上部を通過する時間と、振動抑制用マグネッ
トの各磁極が駆動コイル28側面を通過する時間を一致
させることにより最も効果的に2つのマグネット20、
30に作用する力を打ち消すことが可能となる。
In FIG. 3, the half of the sum of the outer diameter and the inner diameter of the drive magnet 20 is L1, and the outer diameter of the vibration suppressing magnet 30 is L2. Assuming that the half of the sum of the distance to the shaft center 66 and the distance from the inner periphery to the rotation shaft center 66 is M1, and the distance from the inner periphery to the rotation shaft center 66 is M2, L2
The outer diameter L2 of the vibration suppressing magnet 30 that satisfies / L1 ≒ M2 / MI is set, the time required for each magnetic pole of the driving magnet 20 to pass above the driving coil 28, and the time when each magnetic pole of the vibration suppressing magnet 30 Most effectively by matching the times of passage through the two magnets 20,
It is possible to negate the force acting on 30.

【0030】本実施の形態では駆動マグネット20と振
動抑制用マグネット30は別体として設けているが、一
体としてもよい。
In the present embodiment, the drive magnet 20 and the vibration suppressing magnet 30 are provided separately, but may be integrated.

【0031】[0031]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、請求項1に記載の光偏向器によれば、ロ
ータ側に固設された振動抑制用マグネットがステータ側
のコイル基板に固設された駆動コイルから受ける回転軸
方向(上下方向)の力と、ロータ側に固設された駆動マ
グネットが駆動コイルから受ける回転軸方向(上下方
向)の力とが互いに打ち消し合うので、ロータおよびコ
イル基板の振動を抑制することができる。
As described above, according to the first aspect of the present invention, according to the optical deflector of the first aspect, the vibration suppressing magnet fixed to the rotor is provided on the stator side. The force in the rotational axis direction (vertical direction) received from the drive coil fixed to the coil substrate and the force in the rotational axis direction (vertical direction) received from the drive coil by the drive magnet fixed to the rotor side mutually cancel each other. Therefore, vibration of the rotor and the coil substrate can be suppressed.

【0032】また請求項1に記載の光偏向器によれば、
従来技術のように騒音低減のために回転多面鏡を覆うよ
うにカバーを設ける必要がなく、更にコイル基板のビビ
リを抑制するために駆動コイルをべ一ス部材に接着する
ための接着作業を必要としないため、光偏向器の小型化
及び組立ての簡略化が図れる。
According to the optical deflector of the first aspect,
There is no need to provide a cover to cover the rotating polygon mirror to reduce noise as in the prior art, and furthermore, an adhesive work is required to adhere the drive coil to the base member to suppress chattering of the coil substrate. Therefore, miniaturization of the optical deflector and simplification of assembly can be achieved.

【0033】請求項2に記載の光偏向器によれば、上記
のように各部の寸法を設定することにより駆動マグネッ
トの各磁極が駆動コイル上部を通過する時間と、振動抑
制用マグネットの各磁極が駆動コイル側面を通過する時
間を一致させることができるので、請求項1に記載の効
果に加えて、振動抑制用マグネットに作用する力と駆動
マグネットに作用する力とを最も効果的に打ち消すこと
ができる。
According to the optical deflector of the second aspect, by setting the dimensions of each part as described above, the time required for each magnetic pole of the drive magnet to pass above the drive coil and each magnetic pole of the vibration suppressing magnet are set. Since the time required for passing through the side surface of the drive coil can be matched, the force acting on the vibration suppressing magnet and the force acting on the drive magnet can be most effectively canceled in addition to the effect described in claim 1. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る光偏向器の構造を示
す断面図。
FIG. 1 is a sectional view showing a structure of an optical deflector according to an embodiment of the present invention.

【図2】図1における駆動マグネット及び振動抑制用マ
グネットが駆動コイルから受ける力の関係を模式的に示
した説明図。
FIG. 2 is an explanatory diagram schematically showing a relationship between forces applied to a driving magnet and a vibration suppressing magnet from a driving coil in FIG. 1;

【図3】振動抑制用マグネット30と駆動マグネット2
0との位置関係、磁極の配列状態及び大きさの一例を示
す説明図。
FIG. 3 shows a vibration suppressing magnet 30 and a driving magnet 2;
Explanatory drawing which shows an example of the positional relationship with 0, the arrangement | positioning state of a magnetic pole, and a magnitude | size.

【図4】駆動コイルの位置関係及び大きさの一例を示す
説明図。
FIG. 4 is an explanatory diagram showing an example of a positional relationship and a size of a drive coil.

【図5】各駆動コイルに流れるコイル電流の向きとタイ
ミング、その際の駆動コイル上面に発生する磁極、およ
びその磁極から駆動マグネットが受ける力の向きと大き
さを示す説明図。
FIG. 5 is an explanatory diagram showing directions and timings of coil currents flowing through each drive coil, magnetic poles generated on the upper surface of the drive coil at that time, and directions and magnitudes of forces applied to the drive magnet from the magnetic poles.

【図6】各駆動コイルに流れる電流の向きとタイミン
グ、各駆動コイルの側面を振動抑制用マグネットのN
極、S極が通過するタイミング、及び振動抑制用マグネ
ットが各駆動コイルの側面を流れる電流から受ける力の
向きと大きさを示す説明図。
FIG. 6 shows the direction and timing of a current flowing through each drive coil, and the side of each drive coil is indicated by N of a vibration suppressing magnet.
FIG. 4 is an explanatory diagram showing the timing at which the poles and S poles pass, and the direction and magnitude of the force that the vibration suppressing magnet receives from the current flowing through the side surface of each drive coil.

【図7】従来の光偏向器の構造を示す断面図。FIG. 7 is a sectional view showing the structure of a conventional optical deflector.

【図8】図7に示す光偏向器における駆動コイルとロー
タとの間に作用する力の関係を模式的に示す説明図。
FIG. 8 is an explanatory diagram schematically showing a relationship between forces acting between a drive coil and a rotor in the optical deflector shown in FIG. 7;

【図9】従来の光偏向器の構造の他の例を示す断面図。FIG. 9 is a sectional view showing another example of the structure of a conventional optical deflector.

【図10】従来の光偏向器の構造の他の例を示す断面
図。
FIG. 10 is a sectional view showing another example of the structure of the conventional optical deflector.

【符号の説明】[Explanation of symbols]

10 固定軸 14 スリーブ 16 台座 18 ベース部材 20 駆動マグネット 28 駆動コイル 30 振動抑制用マグネット 40 ロータ 50 ステータ DESCRIPTION OF SYMBOLS 10 Fixed shaft 14 Sleeve 16 Pedestal 18 Base member 20 Drive magnet 28 Drive coil 30 Vibration suppression magnet 40 Rotor 50 Stator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロータ側に固設され、かつ複数の異なる
極性の磁極が周方向に交互に配列された駆動マグネット
と、回転トルクを発生させるように前記駆動マグネット
に対向してステータ側に固設された駆動コイルとを備
え、かつステータ側に設けられた固定軸に動圧軸受を介
して外嵌されたスリーブに光ビームを所定の方向に偏向
する回転多面鏡が固設されてなり、前記駆動コイルを励
磁制御することにより前記回転多面鏡を回転駆動する光
偏向器において、 前記駆動マグネットと同極数で、かつ駆動マグネットの
半径方向に駆動マグネットの磁極と同一極性の磁極が位
置するように複数の異なる極性の磁極が円周方向に交互
に配列された振動抑制用マグネットを前記駆動マグネッ
トと同軸上で、かつロータ側の前記駆動コイルの側面に
対向する位置に固設したことを特徴とする光偏向器。
1. A drive magnet fixed to a rotor side and having a plurality of magnetic poles of different polarities alternately arranged in a circumferential direction, and fixed to a stator side facing the drive magnet so as to generate a rotational torque. Provided with a driving coil provided, and a rotating polygon mirror that deflects the light beam in a predetermined direction is fixed to a sleeve externally fitted to a fixed shaft provided on the stator side via a dynamic pressure bearing, In the optical deflector that rotationally drives the rotary polygon mirror by excitingly controlling the drive coil, a magnetic pole having the same number of poles as the drive magnet and having the same polarity as the magnetic pole of the drive magnet is positioned in the radial direction of the drive magnet. As described above, a vibration suppressing magnet in which a plurality of magnetic poles having different polarities are alternately arranged in the circumferential direction is coaxial with the driving magnet, and is opposed to a side surface of the driving coil on the rotor side. Optical deflector, characterized in that fixedly provided at a position.
【請求項2】 前記駆動マグネットの外径と内径との和
の1/2をL1、前記振動抑制用マグネットの外径をL
2、前記駆動コイルの外周部から軸中心までの距離と内
周部から軸中心までの距離の和の1/2をM1、内周部
から軸中心までの距離をM2としたときにL2/L1≒
M2/M1となるように各部の寸法を設定することを特
徴とする請求項1に記載の光偏向器。
2. The half of the sum of the outer diameter and the inner diameter of the driving magnet is L1, and the outer diameter of the vibration suppressing magnet is L1.
2. When the sum of the distance from the outer periphery to the shaft center of the drive coil and the distance from the inner periphery to the shaft center is M1, the distance from the inner periphery to the shaft center is M2 / L2 / L2. L1 ≒
The optical deflector according to claim 1, wherein the dimensions of each part are set so as to be M2 / M1.
JP10019495A 1998-01-30 1998-01-30 Optical deflector Pending JPH11218714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10019495A JPH11218714A (en) 1998-01-30 1998-01-30 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10019495A JPH11218714A (en) 1998-01-30 1998-01-30 Optical deflector

Publications (1)

Publication Number Publication Date
JPH11218714A true JPH11218714A (en) 1999-08-10

Family

ID=12000965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10019495A Pending JPH11218714A (en) 1998-01-30 1998-01-30 Optical deflector

Country Status (1)

Country Link
JP (1) JPH11218714A (en)

Similar Documents

Publication Publication Date Title
US7586660B2 (en) DC brushless motor, light deflector optical scanning device, having an increased efficiency to reduce power consumption and heat generation using exactly six poles and stator with nine teeth and corresponding coils
US6281609B1 (en) Direct-current brushless motor, and polygon scanner and image forming apparatus having the same and a method thereof
JPH10184685A (en) Magnetic bearing
JPH11218714A (en) Optical deflector
JP6015248B2 (en) Optical scanning apparatus and image forming apparatus
JP3458638B2 (en) Optical deflector
JP3458667B2 (en) motor
JP3740821B2 (en) Hydrodynamic bearing motor
JP2000139066A (en) Brushless motor and light deflector
JP2001255485A (en) Light deflector
JP2006259446A (en) Optical deflector, optical scanner, and image forming apparatus
JP3608327B2 (en) Magnetic bearing device
JPH10221630A (en) Light deflector
JP2007133192A (en) Dc brushless motor, light deflector, optical scanning device, and image forming apparatus
JP2000241739A (en) Light deflector and manufacture of coreless coil
JPH11218711A (en) Light deflector
JPH11218712A (en) Optical deflector
JP2001061266A (en) Dc brushless motor
JP3459731B2 (en) Light deflection device
JPH06133494A (en) Dynamic pressure spindle motor
JPS6270811A (en) Air/magnetic bearing type optical deflector
JPH06130315A (en) Optical deflector
JPH09230269A (en) Bearing structure for polygon mirror and polygon scanner driving device having the bearing structure
JPH071346B2 (en) Optical deflector
JP2001255484A (en) Light deflector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11