JPH11218302A - Seal structure of furnace wall through part - Google Patents

Seal structure of furnace wall through part

Info

Publication number
JPH11218302A
JPH11218302A JP2106798A JP2106798A JPH11218302A JP H11218302 A JPH11218302 A JP H11218302A JP 2106798 A JP2106798 A JP 2106798A JP 2106798 A JP2106798 A JP 2106798A JP H11218302 A JPH11218302 A JP H11218302A
Authority
JP
Japan
Prior art keywords
sleeve
heat transfer
transfer tube
thickness
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2106798A
Other languages
Japanese (ja)
Inventor
Takaharu Kurumachi
隆治 車地
Masamitsu Hashimoto
昌光 橋本
Masato Mukai
正人 向井
Tsutomu Kyo
力 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2106798A priority Critical patent/JPH11218302A/en
Publication of JPH11218302A publication Critical patent/JPH11218302A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of cracks, by simultaneously solving thermal stress and bending stress caused by the difference of thermal expansion. SOLUTION: In the seal structure of a furnace wall through part, a heat conductive pipe 1 of special steel with a sleeve 4 of a specified length set is made to pierce the seal member 3 of a boiler furnace 2 and one end of the sleeve 4 is welded to the seal member 3 of the ferrite material, and the sleeve 4 is made thin by employing the special steel of the same quality as the heat conductive pipe 1 so as to absorb the difference of thermal expansion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラに係り、特
に天井室より火炉内に吊り下げられる伝熱管を貫通する
天井壁の火炉壁貫通部のシール構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler, and more particularly to a seal structure for a furnace wall penetration portion of a ceiling wall penetrating a heat transfer tube suspended from a ceiling room into a furnace.

【0002】[0002]

【従来の技術】発電用大型ボイラの代表的な構造を図8
に示す。このような大型ボイラでは、複数の管とメンブ
レンバーとを交互に溶接することによって火炉側壁22
と火炉25の天井壁2とを形成し、鉄骨21からハンガ
19で吊り下げ支持することにより、密閉した火炉25
を形成する。天井壁2の上方の天井室20内には伝熱管
群11に接続された管寄せ6とマニホールド15とが設
置されている。管寄せ6に接続する伝熱管群11は天井
壁2の火炉壁貫通部を通って火炉25に至り、熱交換器
である過熱器(SH)又は再熱器(RH)となる。
2. Description of the Related Art A typical structure of a large-sized boiler for power generation is shown in FIG.
Shown in In such a large boiler, a plurality of tubes and membrane bars are alternately welded to form a furnace side wall 22.
And the ceiling wall 2 of the furnace 25, and are supported by being hung from the steel frame 21 by the hanger 19, thereby forming a closed furnace 25.
To form A header 6 and a manifold 15 connected to the heat transfer tube group 11 are installed in a ceiling room 20 above the ceiling wall 2. The heat transfer tube group 11 connected to the header 6 reaches the furnace 25 through the furnace wall penetration of the ceiling wall 2 and becomes a superheater (SH) or a reheater (RH) as a heat exchanger.

【0003】従来の火炉壁貫通部のシール構造において
は、図9に示すように、ボイラの天井壁2を貫通した伝
熱管1と、天井壁2との隙間をフェライト系材質のシー
ル板(シール部材)3を用いて溶接する構造が採られて
いる。一方、天井壁2を貫通する伝熱管1は、管内を流
れる内部流体の蒸気温度の関係で炭素鋼やCr−Mo鋼
が採用されるのに対し、過熱器や再熱器の最終段付近で
はオーステナイト系ステンレス鋼の伝熱管1が用いられ
る。このため、伝熱管1と天井壁2との隙間をシール溶
接しようとした場合、不可避的に異材継手が存在し、ボ
イラの起動停止が繰り返えされると、各部材の熱膨張差
により熱応力が発生し、熱疲労破壊を引き起こす危険性
がある。この熱疲労破壊が伝熱管に生じるのがプラント
として損傷が大きいところから、スリーブは伝熱管と同
材質のオーステナイト系ステンレス鋼とし、スリーブと
シール板とを異材の隅肉溶接部とする手段がもっとも簡
易なシール手段である。しかし、この手段にすると、異
材としての熱応力と隅肉溶接としての応力集中が重畳す
るため、熱疲労破壊に対するポテンシャルとしては非常
に大きなものとなる。
In a conventional seal structure for a furnace wall penetration portion, as shown in FIG. 9, a gap between the heat transfer tube 1 penetrating the ceiling wall 2 of the boiler and the ceiling wall 2 is made of a ferrite-based seal plate (seal). A member 3 is used for welding. On the other hand, the heat transfer tube 1 penetrating the ceiling wall 2 is made of carbon steel or Cr-Mo steel in relation to the steam temperature of the internal fluid flowing in the tube, whereas the heat transfer tube 1 near the last stage of the superheater or reheater is used. A heat transfer tube 1 of austenitic stainless steel is used. For this reason, when trying to seal-weld the gap between the heat transfer tube 1 and the ceiling wall 2, there is inevitably a dissimilar joint, and if the boiler is repeatedly started and stopped, the thermal expansion difference of each member causes a thermal stress. This may cause thermal fatigue fracture. Since the thermal fatigue fracture occurs in the heat transfer tube, which is very damaging as a plant, the most suitable means is to use austenitic stainless steel of the same material as the heat transfer tube and to make the sleeve and the seal plate a fillet weld of dissimilar materials. This is a simple sealing means. However, with this method, thermal stress as dissimilar material and stress concentration as fillet welding are superimposed, so that the potential for thermal fatigue fracture becomes very large.

【0004】この問題を回避するため、スリーブの長さ
方向を二つに分けてこの円筒同士の突合せ溶接を異材継
手とする手段が開発されている(実開平4−13850
6号公報参照)。図11にその構造を示す。オーステナ
イト系ステンレス鋼の伝熱管1は、オーステナイト系ス
テンレス鋼のスリーブ24と隅肉溶接7されるが、同材
質の溶接なので線膨張係数の差による熱応力は発生せ
ず、起動停止の繰返しによる応力は小さい。次に問題の
異材継手部は、オーステナイト系ステンレス鋼のスリー
ブ24とフェライト系材質のスリーブ5との突合せ溶接
部に存在するが、溶接開先を採った完全溶け込み溶接が
可能なので熱応力に対する強度を向上することができ
る。また、フェライト系材質のスリーブ5とフェライト
系材質のシール板3との溶接は、隅肉溶接となるが異材
継手ではないため、前記の伝熱管1とスリーブ24との
溶接と同様、起動停止に伴い発生する応力を小さくでき
る。
In order to avoid this problem, a means has been developed in which the lengthwise direction of the sleeve is divided into two and the butt welding of the cylinders is made a dissimilar material joint (Japanese Utility Model Laid-Open No. 4-13850).
No. 6). FIG. 11 shows the structure. The heat transfer tube 1 made of austenitic stainless steel is welded to the fillet weld 7 with the sleeve 24 made of austenitic stainless steel. However, since the same material is used for welding, no thermal stress is generated due to a difference in linear expansion coefficient. Is small. Next, the dissimilar material joint in question exists at the butt weld between the austenitic stainless steel sleeve 24 and the ferrite-based material sleeve 5. However, since full penetration welding using a welding groove is possible, the strength against thermal stress is reduced. Can be improved. The welding between the ferrite-based material sleeve 5 and the ferrite-based material sealing plate 3 is fillet welding, but not a dissimilar material joint. The accompanying stress can be reduced.

【0005】しかしながら、この伝熱管貫通部において
は、起動停止に伴う熱応力だけではなく、天井壁と管寄
せとの熱膨張差によって大きな曲げ荷重が作用する。図
10にそのメカニズムを示す。すなわち、天井壁2に比
べ管寄せ6の方が相対的に内部流体温度が高いため、支
点となる管中央を中心として管寄せ6及び天井壁2とも
に炉幅方向に熱膨張するが、管寄せ6の方が熱膨張量が
大きいため、伝熱管貫通部において、伝熱管1に曲げモ
ーメントMによる曲げ応力が発生する。このため、図9
に示すように異材継手位置をスリーブの中央の突合せ溶
接部に設ける工夫をしても、図10のD部詳細に示すよ
うに、伝熱管1とスリーブ24との隅肉溶接7に大きな
曲げ応力が発生し、この応力が繰り返えされ疲労亀裂の
発生に至る恐れがある。
[0005] However, a large bending load acts on the heat transfer tube penetrating portion due to the difference in thermal expansion between the ceiling wall and the header, in addition to the thermal stress caused by starting and stopping. FIG. 10 shows the mechanism. That is, since the header 6 has a relatively higher internal fluid temperature than the ceiling wall 2, both the header 6 and the ceiling wall 2 thermally expand in the furnace width direction around the center of the pipe serving as a fulcrum. 6 has a larger thermal expansion amount, so that a bending stress due to the bending moment M is generated in the heat transfer tube 1 in the heat transfer tube penetrating portion. Therefore, FIG.
As shown in FIG. 10, even when the dissimilar material joint is provided at the butt-welded portion at the center of the sleeve, as shown in detail D in FIG. 10, a large bending stress is applied to the fillet weld 7 between the heat transfer tube 1 and the sleeve 24. This stress is repeated, which may lead to the generation of fatigue cracks.

【0006】[0006]

【発明が解決しようとする課題】従来の火炉壁貫通部の
シール構造にあっては、起動停止に伴う熱応力だけでは
なく、天井壁と管寄せとの熱膨張差によって伝熱管に大
きな曲げモーメントが発生する。このため、伝熱管とス
リーブとの隅肉溶接に大きな曲げ応力が発生し、この曲
げ応力が繰り返えされて疲労亀裂に至る恐れがある。
In the conventional sealing structure for a furnace wall penetration, not only the thermal stress caused by starting and stopping but also a large bending moment in the heat transfer tube due to the difference in thermal expansion between the ceiling wall and the header. Occurs. For this reason, a large bending stress is generated in the fillet welding between the heat transfer tube and the sleeve, and the bending stress may be repeated to cause fatigue cracks.

【0007】本発明の課題は、熱応力と熱膨張差に起因
する曲げ応力とを同時に解決し、亀裂の発生を防止する
火炉壁貫通部のシール構造を提供することにある。
An object of the present invention is to provide a sealing structure for a through-hole of a furnace wall which simultaneously solves thermal stress and bending stress caused by a difference in thermal expansion and prevents cracks from occurring.

【0008】[0008]

【課題を解決するための手段】前記の課題を達成するた
め、本発明に係る火炉壁貫通部のシール構造は、所定長
さのスリーブを嵌着した特殊鋼の伝熱管を火炉壁のシー
ル部材に貫通し、フェライト系材質のシール部材にスリ
ーブの一端を溶接する火炉壁貫通部のシール構造におい
て、スリーブは、熱膨張差を吸収するように特殊鋼によ
り薄手に形成される構成とする。
In order to achieve the above object, a sealing structure for a furnace wall penetration according to the present invention comprises a special steel heat transfer tube fitted with a sleeve of a predetermined length and a furnace wall sealing member. In the seal structure of the furnace wall penetration portion in which one end of the sleeve is welded to a seal member made of a ferrite-based material, the sleeve is thinly formed of special steel so as to absorb a difference in thermal expansion.

【0009】そしてスリーブは、伝熱管の厚さの1/1
0〜1/5の薄手に形成されるとともに、それぞれの端
部に前記厚さの特殊鋼のリングが嵌着され、それぞれの
リングが伝熱管及びシール部材に溶接される構成、又は
前記厚さを有するそれぞれの端部が形成され、それぞれ
の厚さの端部が伝熱管及びシール部材に溶接される構成
でもよい。
The sleeve is 1/1 of the thickness of the heat transfer tube.
A structure in which a special steel ring having the thickness described above is fitted to each end and each ring is welded to a heat transfer tube and a seal member, or the thickness is formed so that the thickness is 0 to 1/5. May be formed, and the ends having the respective thicknesses may be welded to the heat transfer tube and the seal member.

【0010】さらにボイラにあっては、前記いずれか一
つの火炉壁貫通部のシール構造を備え、複数の伝熱管よ
りなる伝熱管群と、伝熱管群に接続される管寄せとより
なる少なくとも過熱器及び再熱器を火炉内に収納してな
る構成とする。
Further, in the boiler, at least one of the above-mentioned furnace wall penetrating portions is provided with a seal structure, and at least an overheat is provided by a heat transfer tube group including a plurality of heat transfer tubes and a header connected to the heat transfer tube group. And the reheater are housed in a furnace.

【0011】[0011]

【発明の実施の形態】本発明の一実施の形態を図1を参
照しながら説明する。図1に示すように、所定長さのス
リーブ4の他端を溶着して嵌着したオーステナイト系ス
テンレス鋼等の特殊鋼の伝熱管1を、ボイラ炉壁2のシ
ール部材(シール板)3に貫通し、フェライト系材質の
シール部材3にスリーブ4の一端を溶接する伝熱管貫通
部のシール構造であって、スリーブ4は、熱膨張差を吸
収するように伝熱管1と同材質の特殊鋼により薄手に形
成される構成とする。そして図2に示すように、スリー
ブ4は、伝熱管1の厚さの1/10〜1/5の薄手に形
成されるとともに、それぞれの端部に伝熱管1とほぼ同
一厚さの特殊鋼のリング8が嵌着され、それぞれのリン
グ8が伝熱管1及びシール部材3と溶接されるものとす
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a heat transfer tube 1 made of a special steel such as austenitic stainless steel in which the other end of a sleeve 4 having a predetermined length is welded and fitted is attached to a seal member (seal plate) 3 of a boiler furnace wall 2. A seal structure of a heat transfer tube penetrating portion which penetrates and welds one end of a sleeve 4 to a seal member 3 made of a ferrite material. The sleeve 4 is made of a special steel made of the same material as the heat transfer tube 1 so as to absorb a difference in thermal expansion. To make it thinner. As shown in FIG. 2, the sleeve 4 is formed as thin as 1/10 to 1/5 of the thickness of the heat transfer tube 1 and has a special steel plate having substantially the same thickness as the heat transfer tube 1 at each end. Of the heat transfer tube 1 and the seal member 3 are welded.

【0012】すなわち、スリーブの厚さは曲げ応力を低
減する面からは薄ければ薄いほど得策であるが、伝熱管
との溶接性及び据付け作業時のハンドリング性を考慮す
ると、伝熱管の厚さの1/10〜1/5の薄手の厚さが
理想的である。つまり伝熱管の厚さは5〜10mm程度
であり、スリーブの厚さは0.5〜2mmになる。
That is, it is better to reduce the thickness of the sleeve from the viewpoint of reducing the bending stress. However, considering the weldability with the heat transfer tube and the handling at the time of installation work, the thickness of the heat transfer tube is reduced. A thin thickness of 1/10 to 1/5 is ideal. That is, the thickness of the heat transfer tube is about 5 to 10 mm, and the thickness of the sleeve is 0.5 to 2 mm.

【0013】以下、本実施の形態の製作手順を説明す
る。薄肉(薄手)のスリーブ4と伝熱管1とを直接溶接
すると、スリーブ4のみ溶融し伝熱管1の溶融が生じな
いため、健全な溶接は難しい。そのため、まず薄肉のス
リーブ4の両端に伝熱管1の厚さと同等の特殊鋼のリン
グ8を予め溶接しておく必要がある。図3に図2のB部
拡大を示すが、伝熱管1とリング8とのはめ合わせ端面
において、他端のリング8側に溶接開先9を形成するこ
とにより、低入熱のTIG溶接法により容易に溶接する
ことができる。次に結果的に厚肉となった一方のスリー
ブ端部とシール板、あるいは他方のスリーブ端部と伝熱
管との溶接は特別な配慮を必要とせず、容易に溶接する
ことができる。
Hereinafter, a manufacturing procedure of this embodiment will be described. When the thin (thin) sleeve 4 and the heat transfer tube 1 are directly welded, only the sleeve 4 is melted and the heat transfer tube 1 is not melted, so that sound welding is difficult. Therefore, first, it is necessary to previously weld a special steel ring 8 having the same thickness as that of the heat transfer tube 1 to both ends of the thin-walled sleeve 4. FIG. 3 is an enlarged view of a portion B in FIG. 2, and a TIG welding method having low heat input is formed by forming a welding groove 9 on the other end of the ring 8 at the end face where the heat transfer tube 1 and the ring 8 are fitted. Can be welded more easily. Next, welding of the resulting one end of the sleeve and the seal plate or the other end of the sleeve and the heat transfer tube can be easily welded without requiring special consideration.

【0014】本発明の他の実施の形態を図4に示す。ス
リーブ14は、伝熱管1の厚さの1/10〜1/5の薄
手に形成されるとともに、伝熱管1とほぼ同一厚さを有
するそれぞれの端部が形成され、それぞれの厚さの端部
が伝熱管1及びシール部材3に溶接される構成である。
つまり各端部が厚肉で中央部が薄肉の円筒を機械加工又
は塑性加工で製作したものを用いることにより、図1に
示すスリーブ4と同等の効果を発揮できる。なお、スリ
ーブの長さについては規定するものではないが、できる
だけ長い方が前記の熱疲労破壊に対して大きな抵抗を有
することになる。
FIG. 4 shows another embodiment of the present invention. The sleeve 14 is formed as thin as 1/10 to 1/5 of the thickness of the heat transfer tube 1, and each end portion having substantially the same thickness as the heat transfer tube 1 is formed. The configuration is such that the portion is welded to the heat transfer tube 1 and the seal member 3.
That is, by using a cylinder having a thick wall at each end and a thin wall at the center formed by machining or plastic working, an effect equivalent to that of the sleeve 4 shown in FIG. 1 can be exerted. The length of the sleeve is not specified, but the longer the sleeve, the greater the resistance to the above-mentioned thermal fatigue fracture.

【0015】つぎに本発明の作用を図5を参照しながら
説明する。異材継手による熱応力と曲げ応力との問題を
同時に解決する手段として、スリーブの剛性に着目し、
剛性を簡易に低く抑える手段としてスリーブの薄肉化の
効果を図5にモデル的に示す。(a)に示すように、ス
リーブ24が伝熱管1と同程度の厚肉の場合は、起動時
にオーステナイト系ステンレス鋼のスリーブ24がフェ
ライト系材質のシール板3に比べて大きく熱膨張する
(図中点線で示す)のを溶接部で拘束する際、溶接部近
傍で局部的に曲げ変形せざるを得ないので大きな応力が
発生するのに対し、(b)に示すように、スリーブ4の
厚さが薄肉の場合は、溶接部から離れた部分で容易に変
形できるので異材継手における応力は小さいものにな
る。
Next, the operation of the present invention will be described with reference to FIG. Focusing on the rigidity of the sleeve, as a means to simultaneously solve the problem of thermal stress and bending stress due to dissimilar joints,
FIG. 5 shows a model of the effect of reducing the thickness of the sleeve as a means for simply reducing the rigidity. As shown in (a), when the sleeve 24 is as thick as the heat transfer tube 1, the austenitic stainless steel sleeve 24 expands more thermally at startup than the seal plate 3 made of ferrite material (FIG. (Indicated by the middle dotted line) is constrained by the welded portion, so that it must be locally bent and deformed in the vicinity of the welded portion, so that a large stress is generated. On the other hand, as shown in FIG. When the thickness is thin, the stress at the dissimilar joint becomes small because it can be easily deformed at a portion away from the weld.

【0016】以上のように、オーステナイト系材質から
なるスリーブと、フェライト系材質からなるシール板と
の異材継手としての熱応力はスリーブの薄肉化で軽減で
きるが、天井壁と管寄せとの間の熱膨張差に起因する曲
げ荷重が伝熱管に作用した場合も図6及び図7に示すよ
うに、薄肉化によって軽減できる。すなわち、従来構造
のように、スリーブ24が伝熱管1と同等の厚肉の場合
には、スリーブ24が嵌着している部分と、嵌着してい
ない部分との剛性の差が大きくなり、溶接止端部に曲げ
応力が集中するのに対し、本発明のように薄肉のスリー
ブ4を使用すると、スリーブ4の嵌着している部分と嵌
着していない部分との剛性の差が小さいので、スリーブ
4が嵌着している部分全体で均等に曲げ変形を生じ、溶
接部における応力集中は軽微なものとなる。
As described above, the thermal stress as a dissimilar joint between the sleeve made of austenitic material and the seal plate made of ferrite material can be reduced by reducing the thickness of the sleeve. A case where a bending load caused by a difference in thermal expansion acts on the heat transfer tube can also be reduced by reducing the wall thickness as shown in FIGS. That is, when the sleeve 24 has the same thickness as the heat transfer tube 1 as in the conventional structure, the difference in rigidity between the portion where the sleeve 24 is fitted and the portion where it is not fitted becomes large, Bending stress concentrates on the weld toe, whereas when a thin sleeve 4 is used as in the present invention, the difference in rigidity between the portion where the sleeve 4 is fitted and the portion where it is not fitted is small. Therefore, bending deformation occurs evenly in the entire portion where the sleeve 4 is fitted, and the stress concentration at the welded portion is slight.

【0017】本発明によれば、ステンレス鋼の伝熱管に
対し、スリーブとシール板との間に作用する異材として
の熱応力及び伝熱管とスリーブとの間に作用する曲げ応
力を軽減でき、溶接部の亀裂発生を防止することができ
る。
According to the present invention, thermal stress as a dissimilar material acting between the sleeve and the seal plate and bending stress acting between the heat exchanger tube and the sleeve can be reduced with respect to the stainless steel heat exchanger tube. The occurrence of a crack in the portion can be prevented.

【0018】[0018]

【発明の効果】本発明によれば、スリーブを特殊鋼の伝
熱管と同材質で薄手に形成することにより、スリーブと
シール板との間の熱応力及び伝熱管とスリーブとの間に
作用する曲げ応力が低減され、溶接部の亀裂発生を防止
することができる。
According to the present invention, the sleeve is made of the same material as the heat transfer tube made of special steel and is thin, so that the thermal stress between the sleeve and the seal plate and the heat transfer between the heat transfer tube and the sleeve are exerted. The bending stress is reduced, and the occurrence of cracks in the welded portion can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1のA部を拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing a portion A in FIG. 1;

【図3】図2のB部を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing a portion B of FIG. 2;

【図4】本発明の他の実施の形態を示す断面図である。FIG. 4 is a cross-sectional view showing another embodiment of the present invention.

【図5】厚肉及び薄肉のスリーブの曲げ応力を説明する
断面図である。
FIG. 5 is a cross-sectional view illustrating a bending stress of a thick and thin sleeve.

【図6】厚肉のスリーブの曲げ応力を説明する断面図で
ある。
FIG. 6 is a cross-sectional view illustrating a bending stress of a thick sleeve.

【図7】薄肉のスリーブの曲げ応力を説明する断面図で
ある。
FIG. 7 is a cross-sectional view illustrating the bending stress of a thin sleeve.

【図8】従来のボイラの構造を示す断面図である。FIG. 8 is a sectional view showing a structure of a conventional boiler.

【図9】従来の技術を示す図である。FIG. 9 is a diagram showing a conventional technique.

【図10】図9の一部を拡大した断面図である。FIG. 10 is an enlarged sectional view of a part of FIG. 9;

【図11】曲げ応力の発生を説明する図である。FIG. 11 is a diagram illustrating generation of bending stress.

【符号の説明】[Explanation of symbols]

1 伝熱管 2 天井壁 3 シール板 4,14 スリーブ 5,24 スリーブ 6 管寄せ 7 隅肉溶接 8 リング 9 溶接開先 11 伝熱管群 20 天井室 25 火炉 REFERENCE SIGNS LIST 1 heat transfer tube 2 ceiling wall 3 seal plate 4, 14 sleeve 5, 24 sleeve 6 header 7 fillet weld 8 ring 9 weld groove 11 heat transfer tube group 20 ceiling room 25 furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 姜 力 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ──────────────────────────────────────────────────の Continuing from the front page (72) Kang Inventor 6-9 Takara-cho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定長さのスリーブを嵌着した特殊鋼の
伝熱管を火炉壁のシール部材に貫通し、フェライト系材
質の該シール部材に前記スリーブの一端を溶接する火炉
壁貫通部のシール構造において、前記スリーブは、熱膨
張差を吸収するように前記特殊鋼により薄手に形成され
ることを特徴とする火炉壁貫通部のシール構造。
1. A furnace wall penetration seal for penetrating a heat transfer tube made of a special steel having a sleeve of a predetermined length fitted thereinto through a seal member of a furnace wall and welding one end of the sleeve to the seal member made of a ferrite material. In the structure, the sleeve is formed thinly of the special steel so as to absorb a difference in thermal expansion, and a seal structure for a furnace wall penetration portion.
【請求項2】 請求項1又は2記載の火炉壁貫通部のシ
ール構造において、スリーブは、伝熱管の厚さの1/1
0〜1/5の薄手に形成されるとともに、それぞれの端
部に前記厚さの特殊鋼のリングが嵌着され、それぞれの
リングが前記伝熱管及びシール部材に溶接されることを
特徴とする火炉壁貫通部のシール構造。
2. The sealing structure for a furnace wall penetration according to claim 1, wherein the sleeve has a thickness of 1/1 of a thickness of the heat transfer tube.
It is formed in a thin thickness of 0 to 1/5, and a ring of special steel having the above thickness is fitted to each end, and each ring is welded to the heat transfer tube and the seal member. Seal structure of the furnace wall penetration.
【請求項3】 請求項1又は2記載の火炉壁貫通部のシ
ール構造において、スリーブは、伝熱管の厚さの1/1
0〜1/5の薄手に形成されるとともに前記厚さを有す
るそれぞれの端部が形成され、それぞれの厚さの端部が
前記伝熱管及びシール部材に溶接されることを特徴とす
る火炉壁貫通部のシール構造。
3. A sealing structure for a furnace wall penetration according to claim 1, wherein the sleeve has a thickness of 1/1 of a thickness of the heat transfer tube.
A furnace wall characterized in that each end is formed to have a thickness of 0 to 1/5 and has the thickness described above, and the end of each thickness is welded to the heat transfer tube and the seal member. Sealing structure of the penetrating part.
JP2106798A 1998-02-02 1998-02-02 Seal structure of furnace wall through part Pending JPH11218302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106798A JPH11218302A (en) 1998-02-02 1998-02-02 Seal structure of furnace wall through part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106798A JPH11218302A (en) 1998-02-02 1998-02-02 Seal structure of furnace wall through part

Publications (1)

Publication Number Publication Date
JPH11218302A true JPH11218302A (en) 1999-08-10

Family

ID=12044549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106798A Pending JPH11218302A (en) 1998-02-02 1998-02-02 Seal structure of furnace wall through part

Country Status (1)

Country Link
JP (1) JPH11218302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069333A1 (en) * 2009-12-09 2011-06-16 上海锅炉厂有限公司 Thermal insulation and sealing device between boiler platen heating surface tube bundle and furnace ceiling tubes
WO2011079503A1 (en) * 2009-12-28 2011-07-07 上海锅炉厂有限公司 Seal box
WO2021149196A1 (en) * 2020-01-22 2021-07-29 三菱パワー株式会社 Heat transfer panel structure for boiler
WO2022163075A1 (en) * 2021-01-26 2022-08-04 三菱重工業株式会社 Boiler device and boiler device penthouse support method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069333A1 (en) * 2009-12-09 2011-06-16 上海锅炉厂有限公司 Thermal insulation and sealing device between boiler platen heating surface tube bundle and furnace ceiling tubes
WO2011079503A1 (en) * 2009-12-28 2011-07-07 上海锅炉厂有限公司 Seal box
WO2021149196A1 (en) * 2020-01-22 2021-07-29 三菱パワー株式会社 Heat transfer panel structure for boiler
WO2022163075A1 (en) * 2021-01-26 2022-08-04 三菱重工業株式会社 Boiler device and boiler device penthouse support method

Similar Documents

Publication Publication Date Title
KR101233555B1 (en) Welded header/nozzle structure
JP2008116150A (en) Panel for boiler waterwall
JPH11218302A (en) Seal structure of furnace wall through part
US20100059483A1 (en) Asymmetric heat sink welding using a penetration enhancing compound
JP2000291903A (en) Seal plate structure of boiler ceiling wall penetrating part
JP2007064608A (en) Membrane panel for boiler system, and boiler system using the same
JPH08152290A (en) Method for welding different metals and welded structure thereof
JP3477665B2 (en) Welded structure between ferritic steel sheet and austenitic steel pipe
JPH07204843A (en) Welding structure for stub tube and header part using the same
JP2019209331A (en) Welding method for rectangular steel tube
JPS6023705A (en) Water wall tube for combustion apparatus
JP2002061803A (en) Structure of boiler furnace wall and method for preventing occurrence of crack at welded part
JPH11223303A (en) Sealing structure for heat transfer tube penetrating part through furnace wall of boiler
JP2000179801A (en) Boiler
JPH10281355A (en) Pipe joint and pipe connecting method by using the pipe joint
JPH08152291A (en) Welding structure of tube to header and welding method
JPH07214373A (en) Welding structure of steel tube plate and steel tube and welding structure of steel tube drawback and steel tube
JP2002174401A (en) Membrane panel structure for furnace wall of boiler
JPH1078201A (en) Swing defense metal fitting of heat transfer tube
JPS62172102A (en) Tie-in section structure of boiler furnace wall and rear-section heat transfer wall
JPH01305202A (en) Membrane wall structure
JPS58178196A (en) Insertion of fine heat transfer pipe
JPH0732309U (en) Sealing device for the boiler furnace wall penetration part of the heat exchanger tube
JPS60196265A (en) Welding method of pipe
JP2000213814A5 (en)