JP2002061803A - Structure of boiler furnace wall and method for preventing occurrence of crack at welded part - Google Patents

Structure of boiler furnace wall and method for preventing occurrence of crack at welded part

Info

Publication number
JP2002061803A
JP2002061803A JP2000248200A JP2000248200A JP2002061803A JP 2002061803 A JP2002061803 A JP 2002061803A JP 2000248200 A JP2000248200 A JP 2000248200A JP 2000248200 A JP2000248200 A JP 2000248200A JP 2002061803 A JP2002061803 A JP 2002061803A
Authority
JP
Japan
Prior art keywords
membrane
thickness
membrane bar
furnace wall
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248200A
Other languages
Japanese (ja)
Inventor
Masamitsu Hashimoto
昌光 橋本
Yoshiteru Abe
吉輝 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000248200A priority Critical patent/JP2002061803A/en
Publication of JP2002061803A publication Critical patent/JP2002061803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane bar structure which reduces occurrence and development of cracks at a welded part between a tube and a membrane bar, in a membrane panel structure of a boiler furnace wall which is constituted with a plurality of tubes and membrane bars. SOLUTION: The membrane panel of the boiler furnace wall is constituted with an airtight integrated tube bank wherein a plurality of waterwall tubes (6) are connected to membrane bars (9) each made of a narrow strip of steel and disposed along the longitudinal direction between the tubes through welded parts (8) that continue in the axial direction of the tubes. The thickness of the membrane bar at the central portion of its cross section is made larger than the thickness at both ends of the membrane bar, i.e., at the joints of the welded parts to the tubes, respectively, to constitute the membrane structure of the boiler furnace wall. In this way, occurrence and development of cracks at the welded parts between the tubes and the membrane bar are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数の管とメンブレ
ンバー(帯状の鋼材よりなる板状のひれ)で構成される
ボイラ炉壁のメンブレンパネルの構造に係り、特に管と
メンブレンバーとの溶接部での亀裂発生および進展を低
減することができるメンブレンバー構造およびその溶接
部における亀裂発生防止法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a membrane panel of a boiler furnace wall composed of a plurality of tubes and a membrane bar (a plate-shaped fin made of strip-shaped steel material), and more particularly to a welding of a tube and a membrane bar. The present invention relates to a membrane bar structure capable of reducing crack generation and propagation at a welded portion and a method for preventing crack generation at a welded portion thereof.

【0002】[0002]

【従来の技術】図5に発電所用ボイラの燃焼室および火
炉全体の概略構造を示す。この種のボイラは、管と管と
の間にメンブレンバーを溶接で接合したメンブレンパネ
ルを組み合わせ、気密性の高い箱型の燃焼室および火炉
を構成している。
2. Description of the Related Art FIG. 5 shows a schematic structure of a combustion chamber and a furnace of a power plant boiler. This type of boiler combines a membrane panel in which a membrane bar is welded between pipes to form a highly airtight box-shaped combustion chamber and a furnace.

【0003】図6に結合部5の詳細を示す。複数の水壁
管6、ケージ壁管7、ケージ底壁管10は、それぞれ伝
熱効果を上げるため、メンブレンバー9と呼ばれる板状
のフィン(ひれ状のもの)を管の両側に管の長手方向に
配設し、管軸の方向に連続した溶接部8によって結合
し、気密性を有する一体の管群を形成している。なお、
符号11はケージ壁管寄せである。
FIG. 6 shows details of the connecting portion 5. The plurality of water wall pipes 6, cage wall pipes 7, and cage bottom wall pipes 10 are each provided with a plate-like fin (fin-shaped) called a membrane bar 9 on both sides of the pipe in order to enhance the heat transfer effect. In the direction of the tube axis and joined by a welded portion 8 continuous in the direction of the tube axis to form an integral hermetic tube group. In addition,
Reference numeral 11 denotes a cage wall header.

【0004】結合部5は3種類の管群(水壁管群1、ケ
ージ壁管7、ケージ底壁管10)が3次元的に合体して
おり、複雑な構造をしていることから、構造物としては
強度的に最も注意しなければならない形状不連続部を構
成している。
The connecting portion 5 has a complicated structure in which three types of tube groups (water wall tube group 1, cage wall tube 7, and cage bottom wall tube 10) are three-dimensionally united and have a complicated structure. As a structure, it constitutes a shape discontinuity that requires the most attention in terms of strength.

【0005】[0005]

【発明が解決しようとする課題】このような燃焼室およ
び火炉においては、水壁管群1、ケージ側壁管群2、ケ
ージ底壁管群3、天井壁管群4の各管壁の温度差から熱
変形が生じ、特に水壁管群1とケージ側壁管群2の結合
部5に亀裂が発生することが問題となっている。発見さ
れた亀裂は、その都度補修され、さらに適宜補強も施さ
れているが、補修および補強後も定期検査を行う度に、
同一の水壁管群1とケージ側壁管群2の結合部5に新た
な亀裂が発見されたりして、亀裂の発生を未然に防止す
ることができないという問題があった。
In such a combustion chamber and a furnace, the temperature difference between the pipe walls of the water wall tube group 1, the cage side wall tube group 2, the cage bottom wall tube group 3, and the ceiling wall tube group 4. This causes a problem that thermal deformation occurs, and cracks are generated particularly at the joint portion 5 between the water wall tube group 1 and the cage side wall tube group 2. The cracks found are repaired and reinforced as needed, but every time a regular inspection is performed after repair and reinforcement,
There has been a problem that a new crack is found in the joint portion 5 between the same water wall tube group 1 and the cage side wall tube group 2, and the generation of the crack cannot be prevented beforehand.

【0006】もともと、水壁管群1とケージ側壁管群2
の結合部5は形状の不連続から応力が集中しやすい形状
を有しており、ボイラ停止時と運転時の伸び差から結合
部5を開こうとする引張り力(すなわち、股裂き現象)
と、水壁管群1とケージ側壁管群2との温度差による伸
び差から結合部5に生じる剪断力とが複雑に関係して働
き、結合部5に亀裂が発生するものと考えられている。
[0006] Originally, the water wall tube group 1 and the cage side wall tube group 2
Has a shape in which stress tends to concentrate due to discontinuity of the shape, and a tensile force for opening the joint 5 due to a difference in elongation between when the boiler is stopped and during operation (that is, a crotch phenomenon).
It is considered that the shearing force generated in the joint portion 5 due to the difference in elongation due to the temperature difference between the water wall tube group 1 and the cage side wall tube group 2 works in a complicated manner, and a crack occurs in the joint portion 5. I have.

【0007】このようにメンブレンバー9は、水壁管等
に比べてメタル温度が高く、かつ形状の不連続等により
応力集中が発生しやすい部位でもあり、このような部位
に亀裂が生じると、ボイラ炉壁から燃焼ガスが外部に漏
れ出したり、亀裂が伝熱管に伝播して蒸気漏れが生じ、
ボイラの停止を余儀なくされるという問題があった。
As described above, the membrane bar 9 is a portion where the metal temperature is higher than that of a water wall tube and the like, and stress concentration is apt to occur due to discontinuity of the shape and the like. Combustion gas leaks from the boiler furnace wall to the outside, or cracks propagate to the heat transfer tubes, causing steam leakage,
There was a problem that the boiler had to be stopped.

【0008】本発明の目的は、上記従来技術における問
題点を解消し、複数の管とメンブレンバーで構成される
ボイラ炉壁のメンブレンパネルの構造において、管とメ
ンブレンバーとの溶接部での亀裂発生および進展を低減
することができるメンブレンバー構造を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and in a structure of a membrane panel of a boiler furnace wall composed of a plurality of tubes and a membrane bar, a crack at a weld between the tube and the membrane bar. An object of the present invention is to provide a membrane bar structure capable of reducing generation and development.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は特許請求の範囲に記載のような構成とする
ものである。すなわち、請求項1に記載のように、複数
の管と、該管と管の間の長手方向に、帯状の鋼材よりな
るメンブレンバーを管軸方向に連続した溶接により結合
して気密性を有する一体の管群で構成されるボイラ炉壁
のメンブレンパネルにおいて、上記メンブレンバーの横
断面中央部の肉厚を、該メンブレンバー両端の上記管と
の溶接付け根部における肉厚よりも厚く構成したボイラ
炉壁のメンブレンバー構造とするものである。ここで、
メンブレンバーとは、板状の鋼材よりなるフィン(ひれ
状のもの)を意味し、このフィンをボイラ水壁管を構成
する管の両側に、該管の管軸方向に連続した溶接により
気密に結合したものをメンブレンバー構造と言う。
Means for Solving the Problems In order to achieve the above object, the present invention is configured as described in the claims. That is, as described in claim 1, a plurality of pipes and a membrane bar made of a band-shaped steel material are joined in the longitudinal direction between the pipes by continuous welding in the pipe axis direction to have airtightness. In a membrane panel of a boiler furnace wall composed of an integral pipe group, a boiler in which a thickness of a central portion of a cross section of the membrane bar is thicker than a thickness of a welded root portion of both ends of the membrane bar with the pipe. The furnace wall has a membrane bar structure. here,
The membrane bar means a fin (fin) made of a plate-like steel material, and the fin is air-tightly welded to both sides of a pipe constituting a boiler water wall pipe by continuous welding in the pipe axis direction of the pipe. The combination is called a membrane bar structure.

【0010】また、請求項2に記載のように、請求項1
において、上記メンブレンバーの中央部の肉厚と上記溶
接付け根部における肉厚との比率を1.25ないし1.5
以上にしたボイラ炉壁のメンブレンバー構造とするもの
である。
[0010] Further, as described in claim 2, claim 1
In the above, the ratio of the thickness of the central portion of the membrane bar to the thickness of the welded root portion is 1.25 to 1.5.
The membrane wall structure of the boiler furnace wall described above is adopted.

【0011】また、請求項3に記載のように、請求項1
において、上記メンブレンバーの中央部の肉厚と上記溶
接付け根部における肉厚との比率を1.5ないし2.0以
上にしたボイラ炉壁のメンブレンバー構造とするもので
ある。
[0011] Further, as described in claim 3, claim 1
Wherein the ratio of the thickness of the central part of the membrane bar to the thickness of the welded root part is 1.5 to 2.0 or more, so that the boiler furnace wall has a membrane bar structure.

【0012】また、請求項4に記載のように、請求項1
ないし請求項3のいずれか1項において、メンブレンバ
ーの横断面形状を、片面が直線状で、他方の面が円弧状
もしくは三角状としたボイラ炉壁のメンブレンバー構造
とするものである。
Further, as described in claim 4, claim 1 is
In any one of the third to third aspects, the cross-sectional shape of the membrane bar is a membrane wall structure of a boiler furnace wall in which one surface is linear and the other surface is arc or triangular.

【0013】また、請求項5に記載のように、複数の管
と、該管と管の間の長手方向に、帯状の鋼材よりなるメ
ンブレンバーを管軸方向に連続した溶接により結合して
気密性を有する一体の管群で構成されるボイラ炉壁のメ
ンブレンパネルにおいて、上記メンブレンバーの横断面
中央部の肉厚を、上記管との溶接付け根部のメンブレン
バーの肉厚よりも厚く構成することにより、上記メンブ
レンバーの肉厚を増すことによる熱伝播の断面積を増加
して熱をメンブレンバーの両端に伝達されやすくし、メ
ンブレンバーの温度の低下と、上記溶接付け根部に生じ
る温度勾配を小さくして、溶接部に生じる熱応力を低減
させ、該溶接部の疲労もしくはクリープ強度を増大させ
たボイラ炉壁のメンブレンバー構造の溶接部の亀裂発生
防止法とするものである。
According to a fifth aspect of the present invention, a plurality of pipes and a membrane member made of a strip-shaped steel material are joined in a longitudinal direction between the pipes by continuous welding in the pipe axis direction to be airtight. In the membrane panel of the boiler furnace wall composed of an integral pipe group having a property, the thickness of the central part of the cross section of the membrane bar is set to be thicker than the thickness of the membrane bar at the root portion welded to the pipe. By increasing the thickness of the membrane bar, the cross-sectional area of the heat propagation is increased, so that heat is easily transmitted to both ends of the membrane bar, so that the temperature of the membrane bar decreases and the temperature gradient generated at the welding root portion. A method for preventing cracks in the welded part of the membrane-bar structure of the boiler furnace wall, in which the thermal stress generated in the welded part is reduced and fatigue or creep strength of the welded part is increased. A.

【0014】本発明のボイラ炉壁のメンブレンバー構造
は、例えば、図1(a)、(b)、(c)に示すよう
に、メンブレンバー9の中央部の肉厚を両端の肉厚より
も厚くするものである。
As shown in FIGS. 1 (a), 1 (b) and 1 (c), the membrane wall structure of the boiler furnace wall of the present invention is such that the thickness of the central portion of the membrane bar 9 is smaller than the thickness of both ends. Also to make it thicker.

【0015】図4に示す、従来のメンブレンバー9の肉
厚が一定である場合は、メンブレンバー中央部の熱量は
断面積が小さく両端に熱が流れ難いので、メンブレンバ
ーのメタル温度(特に中央部)は上昇する。また、断面
積が急激に変化する水壁管6とメンブレンバー9との溶
接部8には大きな温度勾配に伴って大きな熱応力が発生
する。この熱応力により、メンブレンバー9の溶接部8
に亀裂が生じる。
When the thickness of the conventional membrane 9 shown in FIG. 4 is constant, the heat quantity at the center of the membrane has a small cross-sectional area and the heat hardly flows to both ends. Part) rises. Further, a large thermal stress is generated in the welded portion 8 between the water wall tube 6 and the membrane 9 whose cross-sectional area changes rapidly due to a large temperature gradient. This thermal stress causes the welded portion 8 of the membrane 9
Cracks in the

【0016】一方、本発明のメンブレンバー構造のよう
に、メンブレンバー9の中央部の肉厚を増すことによ
り、熱の伝播に大きく関係する断面積を増加させて熱を
メンブレンバー9の両端に逃げやすい形にする。このこ
とから、メンブレンバー9のメタル温度は、従来構造に
比べて相対的に低下し、伝熱管6とメンブレンバー9の
溶接部8のメタル温度は相対的に上昇する。したがっ
て、溶接部8に生じる温度勾配が従来に比べて小さくな
ることから、熱応力は大きく減少する。以上のことか
ら、メンブレンバー9の中央部の肉厚を厚くすること
で、メンブレンバー9の溶接部8に発生する熱応力を大
きく減少させることができ、かつ、当該部位の温度も低
下することから、溶接部8の疲労あるいはクリープ寿命
を一段と向上させることができる。
On the other hand, as in the membrane bar structure of the present invention, by increasing the thickness of the central portion of the membrane bar 9, the cross-sectional area largely related to the propagation of heat is increased and heat is applied to both ends of the membrane bar 9. Make it easy to escape. Therefore, the metal temperature of the membrane 9 is relatively lower than that of the conventional structure, and the metal temperature of the welded portion 8 between the heat transfer tube 6 and the membrane 9 is relatively higher. Therefore, since the temperature gradient generated in the welded portion 8 is smaller than that in the related art, the thermal stress is greatly reduced. From the above, by increasing the thickness of the central portion of the membrane 9, the thermal stress generated in the welded portion 8 of the membrane 9 can be greatly reduced, and the temperature of the portion also decreases. Therefore, the fatigue or creep life of the welded portion 8 can be further improved.

【0017】[0017]

【発明の実施の形態】〈実施の形態1〉本発明の実施の
形態の一例を図1(a)に示す。有限要素法によりメン
ブレンバー9の肉厚の変化による温度変化と熱応力変化
を求めた。解析条件は、ボイラの定常運転時を想定して
いる。解析条件の詳細は以下の通りである。 (1)水壁管の寸法:外径50.8mm、厚さ10.8m
m (2)水壁管の材質:2.25Cr−1Mo鋼(重量%
でCr2.25%、Mo1%含有する鋼) (3)メンブレンバーの寸法:幅50mm、厚さ10m
m メンブレンバー中央部の板厚(mm)は、10、12.
5、15、17.5、20、22.5および25の7種類
のものを使用。 (4)メンブレンバーの材質:ボイラ用圧延鋼材SB4
10 (5)水壁管内部流体温度:300℃ (6)水壁管内面熱伝達率:14100×1.1627
9W/(m・K)〔14100kcal/mh℃〕 (7)燃焼ガス温度:1000℃ (8)燃焼ガス側熱伝達率:300×1.16279W
/(m・K)〔300kcal/mh℃〕 図2に、メンブレンバー中央部の肉厚(両端の肉厚で正
規化してある)に対する最も高温となるメンブレンバー
9中央部の温度変化と、水壁管6とメンブレンバー9の
溶接部8の温度変化を示す。ここで、中央部の肉厚:端
部の肉厚の比率が1のメンブレンバーは、従来から用い
られている肉厚が一定のメンブレンバーを示している。
Embodiment 1 FIG. 1A shows an example of an embodiment of the present invention. The temperature change and the thermal stress change due to the change in the thickness of the membrane 9 were obtained by the finite element method. The analysis conditions assume a steady operation of the boiler. The details of the analysis conditions are as follows. (1) Dimension of water wall pipe: outer diameter 50.8mm, thickness 10.8m
m (2) Material of water wall tube: 2.25Cr-1Mo steel (% by weight)
(Steel containing 2.25% of Cr and 1% of Mo) (3) Dimensions of membrane bar: width 50 mm, thickness 10 m
m The plate thickness (mm) at the center of the membrane bar is 10, 12.
5, 15, 17.5, 20, 22.5 and 25 types are used. (4) Material of membrane bar: Rolled steel for boiler SB4
10 (5) Fluid temperature inside water wall tube: 300 ° C (6) Heat transfer coefficient inside water wall tube: 14100 × 1.1627
9 W / (m 2 · K) [14100 kcal / m 2 h ° C.] (7) Combustion gas temperature: 1000 ° C. (8) Combustion gas side heat transfer coefficient: 300 × 1.1627 W
/ (M 2 · K) [300 kcal / m 2 h ° C.] FIG. 2 shows the temperature change at the center of the membrane bar 9 at the highest temperature relative to the thickness at the center of the membrane (normalized by the thickness at both ends). And the temperature change of the welded portion 8 between the water wall pipe 6 and the membrane 9. Here, a membrane bar having a ratio of the thickness of the center portion to the thickness of the end portion of 1 is a conventionally used membrane bar having a constant thickness.

【0018】図2において、A部はメンブレンバーの中
央部を示し、B部はメンブレンバーの付け根部(図1の
溶接部8)を示している。メンブレンバーの温度は、上
記A部、B部共に、メンブレンバー中央部の肉厚が厚く
なるにつれ低下していることが分かる。なお、温度の低
下率はメンブレンバー中央部(A部)の方が大きかっ
た。
In FIG. 2, part A shows the center of the membrane bar, and part B shows the base of the membrane bar (the welded portion 8 in FIG. 1). It can be seen that the temperature of the membrane decreases in both the portions A and B as the thickness of the central portion of the membrane increases. The rate of temperature decrease was higher at the center of the membrane (A).

【0019】表1に、図2に示したメンブレンバー中央
部の温度(℃)と中央部の肉厚:端部の肉厚の比率に関
するデータの詳細を示す。
Table 1 shows the details of the data relating to the temperature (° C.) at the center of the membrane and the ratio of the thickness at the center to the thickness at the end shown in FIG.

【0020】[0020]

【表1】 図3に、メンブレンバー中央部の肉厚(両端の肉厚で正
規化してある)に対する発生応力の変化を示す。メンブ
レンバー中央部(A部)、メンブレンバーの付け根部
(B部)の両方共、発生応力は肉厚が厚くなるにつれて
減少していた。発生応力の減少度合は、メンブレンバー
の付け根部(B部)の方が大きかった。これらのことか
ら、メンブレンバー中央部の肉厚を厚くすることによ
り、メンブレンバーの付け根部(B部)に発生する熱応
力を大きく低減させることができ、かつ、当該部位の温
度も低下する。一般的に温度が低下すると疲労強度やク
リープ強度が向上することから、発生応力の低減との相
乗効果により、水壁管6とメンブレンバー9の溶接部8
の疲労やクリープ寿命を大きく向上させることが可能と
なる。
[Table 1] FIG. 3 shows a change in generated stress with respect to the thickness at the center of the membrane (normalized by the thickness at both ends). In both the central part of the membrane bar (part A) and the root part of the membrane bar (part B), the generated stress decreased as the wall thickness increased. The degree of decrease in the generated stress was greater at the root (B) of the membrane bar. For these reasons, by increasing the thickness of the central portion of the membrane bar, the thermal stress generated at the root portion (B portion) of the membrane bar can be greatly reduced, and the temperature of the portion also decreases. Generally, when the temperature decreases, the fatigue strength and the creep strength are improved.
Fatigue and creep life can be greatly improved.

【0021】表2に、図3に示したメンブレンバーの発
生応力(MPa)と中央部の肉厚:端部の肉厚の比率に
関するデータの詳細を示す。
Table 2 shows details of data relating to the stress (MPa) generated in the membrane shown in FIG. 3 and the ratio of the thickness at the center to the thickness at the end shown in FIG.

【0022】[0022]

【表2】 図2において、メンブレンバー9の温度の低下率は、メ
ンブレンバーの中央部の肉厚:端部の肉厚の比率が1.
25程度から温度が低下(低下率1.9〜2.5%)し始
め、その比率が1.5以上となると温度の低下率は3.8
〜4.2%程度に増加し、さらに肉厚の比率が2.0以上
となると温度の低下率は6.3〜7.4%以上となってお
り、メンブレンバー中央部の肉厚は両端の肉厚の少なく
とも1.25倍以上とする必要があり、好ましくは1.5
倍以上、より好ましくは2.0倍以上とする必要があ
る。
[Table 2] In FIG. 2, the rate of decrease in the temperature of the membrane 9 is such that the ratio of the thickness at the center of the membrane to the thickness at the end is 1.
The temperature starts to decrease from about 25 (decrease rate: 1.9 to 2.5%), and when the ratio becomes 1.5 or more, the temperature decrease rate becomes 3.8.
When the ratio of the wall thickness becomes 2.0 or more, the temperature reduction rate becomes 6.3 to 7.4% or more. Should be at least 1.25 times the wall thickness, preferably 1.5
It is required to be at least twice, more preferably at least 2.0 times.

【0023】また、図3において、メンブレンバー9の
発生応力の低下率は、メンブレンバーの中央部の肉厚:
端部の肉厚の比率が1.25程度から応力が減少(応力
減少率5.7〜9.7%)し始め、その比率が1.5以上
となると応力減少率は11.5〜19.4%程度に増加
し、さらに肉厚の比率が2.0以上となると応力の減少
率は25.3〜31.0%となっており、メンブレンバー
中央部の肉厚は両端の肉厚の少なくとも1.25倍以上
とする必要があり、好ましくは1.5倍以上、より好ま
しくは2.0以上とすることにより、応力の低減をはか
ることができる。
In FIG. 3, the rate of decrease in the stress generated in the membrane 9 is determined by the thickness of the central part of the membrane:
The stress starts to decrease (the stress reduction rate is 5.7 to 9.7%) when the thickness ratio of the end portion is about 1.25, and when the ratio becomes 1.5 or more, the stress reduction rate becomes 11.5 to 19. When the ratio of the wall thickness increases to about 2.0% or more, the stress reduction rate becomes 25.3 to 31.0%, and the wall thickness at the center of the membrane is the wall thickness at both ends. Is required to be at least 1.25 times or more, preferably 1.5 times or more, more preferably 2.0 or more, so that the stress can be reduced.

【0024】なお、本実施の形態では、図1(a)に示
すようなメンブレンバー9の片面が円弧状のもので熱応
力解析を実施したが、図1(b)に示した片面が三角状
のものにおいても同様の熱応力解析結果が得られてい
る。
In this embodiment, the thermal stress analysis is performed on one side of the membrane 9 as shown in FIG. 1A with an arc shape, but the one side shown in FIG. Similar thermal stress analysis results have been obtained for the shape-like material.

【0025】〈実施の形態2〉図1(c)に、本発明の
他の実施の形態を示す。図1(a)に示す実施の形態で
は、メンブレンバーの横断面形状は片面が直線状で他方
の面が円弧状であるメンブレンバー9を示したが、本実
施の形態では、図1(c)に示すように、両面とも円弧
状となっているメンブレンバー9を水壁管6に溶接した
ものを用いた。本実施の形態2においても、上記実施の
形態1で例示した図1(a)の場合と同様な熱応力解析
結果が得られている。ただし、メンブレンバー中央部の
肉厚、およびメンブレンバー端部の肉厚が図1(a)お
よび図1(c)の両者において等しい場合には、図1
(a)に示すように、片方にだけ厚みを持たせた方が発
生応力の低減効果は大きいという結果が得られた。
<Embodiment 2> FIG. 1C shows another embodiment of the present invention. In the embodiment shown in FIG. 1A, the cross-sectional shape of the membrane bar is shown as the membrane bar 9 in which one surface is linear and the other surface is arc-shaped. 2), a membrane bar 9 having an arc shape on both sides welded to the water wall tube 6 was used. Also in the second embodiment, the same thermal stress analysis results as in the case of FIG. 1A exemplified in the first embodiment are obtained. However, if the wall thickness at the center of the membrane bar and the wall thickness at the end of the membrane bar are equal in both FIG. 1 (a) and FIG. 1 (c), FIG.
As shown in (a), the result that the effect of reducing the generated stress was greater when only one side had a thickness was obtained.

【0026】[0026]

【発明の効果】本発明によれば、メンブレンバー中央部
の肉厚を端部の肉厚より厚くすることで、メンブレンバ
ーと水壁管との溶接部に発生する熱応力を大きく低減す
ることができ、かつ、当該部位の温度も低下させること
ができるので、水壁管とメンブレンバーとの溶接部の疲
労寿命、あるいはクリープ寿命を向上させることができ
る。したがって、上記溶接部の亀裂発生までの寿命を長
くすることができ、メンテナンス周期の延長がはかられ
る。このため、メンテナンスコストの大幅な低減が可能
となり、工業的利用価値は極めて大きい。
According to the present invention, the thermal stress generated at the welded portion between the membrane bar and the water wall tube is greatly reduced by making the thickness of the central portion of the membrane bar larger than the thickness of the end portion. And the temperature of the portion can be reduced, so that the fatigue life or creep life of the welded portion between the water wall tube and the membrane bar can be improved. Therefore, the life of the welded portion until crack generation can be extended, and the maintenance cycle can be extended. Therefore, the maintenance cost can be significantly reduced, and the industrial use value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で例示したボイラ炉壁のメ
ンブレンバー構造を示す模式図。
FIG. 1 is a schematic diagram showing a membrane bar structure of a boiler furnace wall exemplified in an embodiment of the present invention.

【図2】本発明の実施の形態で例示したメンブレンバー
中央部の肉厚と温度との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a wall thickness and a temperature of a central portion of a membrane bar exemplified in the embodiment of the present invention.

【図3】本発明の実施の形態で例示したメンブレンバー
中央部の肉厚と発生応力との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between a thickness of a central portion of a membrane bar and a generated stress exemplified in the embodiment of the present invention.

【図4】従来のメンブレンバー構造を示す模式図。FIG. 4 is a schematic diagram showing a conventional membrane bar structure.

【図5】従来の発電所用ボイラの燃焼室および火炉の概
略構造を示す模式図。
FIG. 5 is a schematic diagram showing a schematic structure of a combustion chamber and a furnace of a conventional power plant boiler.

【図6】従来のボイラ炉壁の管壁結合部の詳細を示す模
式図。
FIG. 6 is a schematic view showing details of a tube wall connecting portion of a conventional boiler furnace wall.

【符号の説明】[Explanation of symbols]

1…水壁管群 2…ケージ側壁管群 3…ケージ底壁管群 4…天井壁管群 5…結合部 6…水壁管 7…ケージ壁管 8…溶接部 9…メンブレンバー 10…ケージ底壁管 11…ケージ壁管寄せ DESCRIPTION OF SYMBOLS 1 ... Water wall tube group 2 ... Cage side wall tube group 3 ... Cage bottom wall tube group 4 ... Ceiling wall tube group 5 ... Connection part 6 ... Water wall tube 7 ... Cage wall tube 8 ... Welded part 9 ... Membrane bar 10 ... Cage Bottom wall pipe 11… Cage wall pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の管と、該管と管の間の長手方向に、
帯状の鋼材よりなるメンブレンバーを管軸方向に連続し
た溶接により結合して気密性を有する一体の管群で構成
されるボイラ炉壁のメンブレンパネルにおいて、上記メ
ンブレンバーの横断面中央部の肉厚を、該メンブレンバ
ー両端の上記管との溶接付け根部における肉厚よりも厚
く構成してなることを特徴とするボイラ炉壁の構造。
1. A plurality of tubes and a longitudinal direction between the tubes,
In a membrane panel of a boiler furnace wall composed of an integral pipe group having airtightness by connecting a membrane bar made of a strip-shaped steel material by continuous welding in the pipe axis direction, a thickness of a central portion of a cross section of the membrane bar is provided. The thickness of the wall of the boiler furnace wall is larger than the thickness of the both ends of the membrane bar at the welding root portion with the pipe.
【請求項2】請求項1において、上記メンブレンバーの
中央部の肉厚と上記溶接付け根部における肉厚との比率
を1.25ないし1.5以上にしてなることを特徴とする
ボイラ炉壁の構造。
2. The boiler furnace wall according to claim 1, wherein the ratio of the thickness of the central portion of the membrane bar to the thickness of the welded root portion is 1.25 to 1.5 or more. Structure.
【請求項3】請求項1において、上記メンブレンバーの
中央部の肉厚と上記溶接付け根部における肉厚との比率
を1.5ないし2.0以上にしてなることを特徴とするボ
イラ炉壁の構造。
3. The boiler furnace wall according to claim 1, wherein the ratio of the thickness at the center of the membrane bar to the thickness at the welding root is 1.5 to 2.0 or more. Structure.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、メンブレンバーの横断面形状を、片面が直線状
で、他方の面が円弧状もしくは三角状としてなることを
特徴とするボイラ炉壁の構造。
4. A boiler according to claim 1, wherein the cross-sectional shape of the membrane is such that one surface is linear and the other surface is arc-shaped or triangular. Furnace wall structure.
【請求項5】複数の管と、該管と管の間の長手方向に、
帯状の鋼材よりなるメンブレンバーを管軸方向に連続し
た溶接により結合して気密性を有する一体の管群で構成
されるボイラ炉壁のメンブレンパネルにおいて、上記メ
ンブレンバーの横断面中央部の肉厚を、上記管との溶接
付け根部のメンブレンバーの肉厚よりも厚く構成するこ
とにより、上記メンブレンバーの肉厚を増すことによる
熱伝播の断面積を増加して熱をメンブレンバーの両端に
伝達されやすくし、メンブレンバーの温度の低下と、上
記溶接付け根部に生じる温度勾配を小さくして、溶接部
に生じる熱応力を低減させ、該溶接部の疲労もしくはク
リープ強度を増大することを特徴とするボイラ炉壁の溶
接部の亀裂発生防止法。
5. A plurality of tubes and a longitudinal direction between the tubes,
In a membrane panel of a boiler furnace wall composed of an integral pipe group having airtightness by connecting a membrane bar made of a strip-shaped steel material by continuous welding in the pipe axis direction, a thickness of a central portion of a cross section of the membrane bar is provided. Is thicker than the thickness of the membrane bar at the root of the weld to the pipe, thereby increasing the cross-sectional area of heat propagation due to the increase in the thickness of the membrane bar and transmitting heat to both ends of the membrane bar. And reducing the temperature of the membrane and reducing the temperature gradient generated at the weld root, reducing the thermal stress generated at the weld, and increasing the fatigue or creep strength of the weld. To prevent cracking of welds on boiler furnace walls.
JP2000248200A 2000-08-18 2000-08-18 Structure of boiler furnace wall and method for preventing occurrence of crack at welded part Pending JP2002061803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248200A JP2002061803A (en) 2000-08-18 2000-08-18 Structure of boiler furnace wall and method for preventing occurrence of crack at welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248200A JP2002061803A (en) 2000-08-18 2000-08-18 Structure of boiler furnace wall and method for preventing occurrence of crack at welded part

Publications (1)

Publication Number Publication Date
JP2002061803A true JP2002061803A (en) 2002-02-28

Family

ID=18738148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248200A Pending JP2002061803A (en) 2000-08-18 2000-08-18 Structure of boiler furnace wall and method for preventing occurrence of crack at welded part

Country Status (1)

Country Link
JP (1) JP2002061803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097928A (en) * 2004-09-28 2006-04-13 Babcock Hitachi Kk Boiler
CN112856477A (en) * 2021-01-18 2021-05-28 哈电发电设备国家工程研究中心有限公司 Water-cooled wall internal thread tube panel and processing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097928A (en) * 2004-09-28 2006-04-13 Babcock Hitachi Kk Boiler
CN112856477A (en) * 2021-01-18 2021-05-28 哈电发电设备国家工程研究中心有限公司 Water-cooled wall internal thread tube panel and processing method thereof
CN112856477B (en) * 2021-01-18 2022-05-27 哈电发电设备国家工程研究中心有限公司 Water-cooled wall internal thread tube panel and processing method thereof

Similar Documents

Publication Publication Date Title
JP2008116150A (en) Panel for boiler waterwall
JP6357706B2 (en) Heat exchanger
JP2008524539A (en) Method for joining members, joints, tube joints, wherein at least one member comprises a material that is difficult to weld or is composed of such a material
JP2002061803A (en) Structure of boiler furnace wall and method for preventing occurrence of crack at welded part
JP2019113166A (en) Pipeline welding part reinforcement structure and boiler plant including the same and pipeline welding part reinforcement method
JPH01318891A (en) Heat exchanger
JP6150380B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2002174401A (en) Membrane panel structure for furnace wall of boiler
JP2019184137A (en) Welded structure of boiler heat transfer tube and welding method
JPH1038205A (en) Fin structure of boiler wall pipe
JP2014018843A (en) Welded structure of high-strength low-alloy steel, boiler water wall panel, and method for manufacturing the same
JPH11218302A (en) Seal structure of furnace wall through part
JP5134393B2 (en) Marine boiler
JPS6023705A (en) Water wall tube for combustion apparatus
JP2007064608A (en) Membrane panel for boiler system, and boiler system using the same
JP6296501B2 (en) Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure
JPH01131814A (en) Membrane wall structure
JPH0631286Y2 (en) Boiler furnace wall
JPH07204843A (en) Welding structure for stub tube and header part using the same
JPH07214373A (en) Welding structure of steel tube plate and steel tube and welding structure of steel tube drawback and steel tube
KR101483019B1 (en) Supporting device for boiler tube wall
JPH07253285A (en) Heat exchanger tube
JP2015038413A (en) Welding structure of stub tube
JP2777277B2 (en) Steam valve
JP4260353B2 (en) Method of local annealing of welds in tube group