JPH11217602A - Manufacture of porous copper body and porous copper tube - Google Patents

Manufacture of porous copper body and porous copper tube

Info

Publication number
JPH11217602A
JPH11217602A JP2002598A JP2002598A JPH11217602A JP H11217602 A JPH11217602 A JP H11217602A JP 2002598 A JP2002598 A JP 2002598A JP 2002598 A JP2002598 A JP 2002598A JP H11217602 A JPH11217602 A JP H11217602A
Authority
JP
Japan
Prior art keywords
copper
tube
porous
copper powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002598A
Other languages
Japanese (ja)
Inventor
Toshiyuki Cho
俊之 長
Koji Hoshino
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002598A priority Critical patent/JPH11217602A/en
Publication of JPH11217602A publication Critical patent/JPH11217602A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently manufacturing a porous copper body and a porous copper tube, where mutual copper powder particles are subjected to metallic bond and large surface area and excellent thermal conduction are provided and also the improvement in the heat exchange efficiency of a thermal conductor is made possible by fitting in or on the thermal conductor. SOLUTION: This method of manufacture of the porous copper body has the following stages: (a) a stage where a copper powder is temporarily joined to a synthetic resin sheet with an organic binder to form a pretreated body; (b) a stage where the pretreated body is heated and held under an oxidizing atmosphere to form an oxidation treated body having a structure in which mutual copper powder particles are bridged by means of oxides formed on respective surfaces of the copper powder particles; (c) a stage where the oxidation treated body is heated and held under a reducing atmosphere to form the porous copper body in which mutual copper powder particles are joined to each other by means of metallic bond.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅粉末が接合し合
って板状等の各種形状に形成された銅多孔質体と、銅粉
末が接合し合って管状に形成された銅多孔質管の製造方
法に関する。本発明による銅多孔質体及び銅多孔質管
は、熱交換器用配管、ヒートパイプ、給水給湯用配管な
どの熱関連分野に適用される他、フィルターや防菌性を
利用した家庭用具、工場の製造設備の材料などに利用可
能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper porous body formed by joining copper powders into various shapes such as a plate, and a copper porous tube formed by joining copper powders into a tubular shape. And a method for producing the same. The copper porous body and the copper porous tube according to the present invention are applicable to heat-related fields such as heat exchanger piping, heat pipes, and hot and cold water supply piping, as well as household appliances and factories utilizing filters and sterilization. It can be used as a material for manufacturing equipment.

【0002】[0002]

【従来の技術】従来、金属素材の表面に金属からなる多
孔質層を形成する技術として、例えば次のものが知られ
ている。特開昭60−103187号公報には、鋼管の
表面に、銅-錫-ビスマス合金の被膜を形成することを特
徴とする熱交換器用管の製造方法が開示されている。特
開昭60−251390号公報には、銅管(エンペロー
プ)の内面に500メッシュ程度の低融点ハンダ(接合
粉体)と、200メッシュ以下の銅片からなる材料粉体
を入れ、銅管を周方向に回転させながら、これら粉体を
加熱溶着させることを特徴とするヒートパイプの製造方
法が開示されている。特開昭60−255983号公報
には、金属製の熱伝達基体の表面に、磁場を利用して低
融点の金属を被覆した磁性粉を散布し、加熱して、該磁
性粉を熱伝達面に密着接着させることを特徴とする熱交
換体の製造方法が開示されている。特開昭61−168
793号公報には、金属管の表面に、プラズマ溶射法に
よって銅粉を吹き付け、表面に微細な凹凸を形成した伝
熱管及びその製造方法が開示されている。特開昭62−
206382号公報には、銅管などの金属製管体の内表
面に、電気鍍金により樹枝状または粒状の多孔質層を形
成したヒートパイプが開示されている。特開平2−12
9488号公報には、銅−亜鉛合金製の管の内外表面を
脱亜鉛することにより、多数の微細な開孔面が形成され
た表面多孔質管が開示されている。特開平2−1758
81号公報には金属管の内面に低融点金属粉末(Sn粉
末)と高融点金属粉末(Cu粉末)の混合層を形成し、
これを加熱して微小空孔を形成させる内面多孔質管の製
造方法が開示されている。特開平5−214504号公
報には、素材管の表面に金属粉を溶射して多孔質溶射層
を形成しながら金属線を素材管に巻き付け、溶射層形成
後に金属線を除去する伝熱管の製造方法が開示されてい
る。
2. Description of the Related Art Conventionally, as a technique for forming a porous layer made of metal on the surface of a metal material, for example, the following techniques are known. Japanese Patent Application Laid-Open No. 60-103187 discloses a method for manufacturing a heat exchanger tube, which comprises forming a coating of a copper-tin-bismuth alloy on the surface of a steel tube. Japanese Patent Application Laid-Open No. S60-251390 discloses a method in which a low melting point solder (joining powder) of about 500 mesh and a material powder composed of copper pieces of 200 mesh or less are put on the inner surface of a copper tube (envelope). A method for manufacturing a heat pipe is disclosed in which these powders are heated and welded while being rotated in a circumferential direction. Japanese Patent Application Laid-Open No. 60-255983 discloses that a magnetic powder coated with a low melting point metal is sprayed on a surface of a metal heat transfer base by using a magnetic field and heated, so that the magnetic powder is transferred to a heat transfer surface. There is disclosed a method for producing a heat exchanger, which is characterized in that the heat exchanger is closely adhered to a heat exchanger. JP-A-61-168
No. 793 discloses a heat transfer tube in which copper powder is sprayed onto the surface of a metal tube by a plasma spraying method to form fine irregularities on the surface, and a method for manufacturing the same. JP-A-62-2
No. 206382 discloses a heat pipe in which a dendritic or granular porous layer is formed on the inner surface of a metal tube such as a copper tube by electroplating. JP-A-2-12
No. 9488 discloses a superficially porous tube in which a number of fine open surfaces are formed by dezincing the inner and outer surfaces of a copper-zinc alloy tube. JP-A-2-1758
No. 81 discloses that a mixed layer of a low melting point metal powder (Sn powder) and a high melting point metal powder (Cu powder) is formed on the inner surface of a metal tube.
There is disclosed a method of manufacturing an inner porous tube which heats this to form micropores. JP-A-5-214504 discloses a method of manufacturing a heat transfer tube in which a metal wire is wound around a material tube while spraying metal powder on the surface of the material tube to form a porous sprayed layer, and the metal wire is removed after the sprayed layer is formed. A method is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術のう
ち、銅管などの基体の表面に、ハンダやSnなどの低融
点金属を用いて、銅からなる多孔質層を形成する方法
は、銅管などの基体と、銅からなる多孔質層とがハンダ
やSnなどの低融点金属を介して接合されているので、
低融点金属の部分で熱伝導が悪くなり、その結果基体−
多孔質層間の熱伝導損失が大きくなるという問題があっ
た。さらに低融点ハンダ等を使用すると、耐熱性や耐薬
品性が悪くなるという問題があった。また、銅管など基
体の表面に、プラズマ溶射などの溶射法、或いは電気鍍
金によって銅の多孔質層や微細な凹凸を設ける方法は、
製造に手間がかかる問題があった。
Among the above-mentioned prior arts, the method of forming a porous layer made of copper on the surface of a substrate such as a copper tube using a low-melting metal such as solder or Sn is disclosed in US Pat. Since the base such as a tube and the porous layer made of copper are joined via a low melting point metal such as solder or Sn,
The heat conduction becomes poor at the low melting point metal, and as a result,
There is a problem that the heat conduction loss between the porous layers increases. Further, when low melting point solder or the like is used, there is a problem that heat resistance and chemical resistance are deteriorated. Further, a method of providing a copper porous layer or fine irregularities on the surface of a substrate such as a copper tube by a spraying method such as plasma spraying, or by electroplating,
There was a problem that it took time to manufacture.

【0004】本発明は、銅粉同士が金属結合し、表面積
が大きく、熱伝導が良好で、伝熱体に内嵌或いは外嵌す
ることによって該伝熱体の熱交換効率を向上することが
可能な銅多孔質体並びに銅多孔質管を効率良く製造し得
る方法の提供を課題としている。また本発明は、銅粉同
士が金属結合して板状、筒状、容器状などの種々な形状
とすることができ、通気性、透液性及び防菌性を有し、
フィルターや防菌性を利用した家庭用具、工場の製造設
備の材料などに利用可能な銅多孔質体の製造方法の提供
を課題としている。
According to the present invention, it is possible to improve the heat exchange efficiency of a heat transfer body by fitting the copper powder to each other, having a large surface area, good heat conduction, and fitting inside or outside the heat transfer body. It is an object of the present invention to provide a possible copper porous body and a method for efficiently producing a copper porous tube. Further, the present invention can be formed into various shapes such as a plate shape, a tubular shape, a container shape, and the like, by bonding copper powders to each other, and has a gas permeability, a liquid permeability, and a bactericidal property,
It is an object of the present invention to provide a method for producing a porous copper body that can be used as a filter, a household tool utilizing antibacterial properties, and a material for manufacturing equipment in a factory.

【0005】[0005]

【課題を解決するための手段】本発明による銅多孔質体
の製造方法は、(a)合成樹脂シート上に銅粉を有機バ
インダーによって仮接合して前処理体を作製する工程、
(b)前記前処理体を酸化性雰囲気下で加熱保持し、前
記銅粉同士が各々の表面に生じた酸化物によって架橋さ
れた構造を有する酸化処理体を形成する工程、(c)前
記酸化処理体を還元性雰囲気下で加熱保持し、前記銅粉
同士が金属結合により接合した銅多孔質体を形成する工
程、の各工程を備えたことを特徴とする。
According to the present invention, there is provided a method for producing a porous copper body, comprising the steps of: (a) temporarily preparing copper powder on a synthetic resin sheet with an organic binder to produce a pretreated body;
(B) a step of heating and holding the pre-treated body in an oxidizing atmosphere to form an oxidized body having a structure in which the copper powders are cross-linked by oxides generated on respective surfaces; A step of heating and maintaining the treated body in a reducing atmosphere to form a copper porous body in which the copper powders are joined by metal bonding.

【0006】本発明による銅多孔質管の製造方法は、
(i)合成樹脂シート上に銅粉を有機バインダーによっ
て仮接合すると共に、合成樹脂シート上の銅粉を、銅の
酸化物と焼結しない材料からなる管状または柱状をなす
支持体の表面に移し代えて前処理管を作製する工程、
(ii)前記前処理管を酸化性雰囲気下で加熱保持し、前
記銅粉同士が各々の表面に生じた酸化物によって架橋さ
れた構造を有する酸化処理管を形成する工程、(iii)
前記支持体表面から前記酸化処理管を抜き出す工程、
(iv)前記酸化処理管を還元性雰囲気下で加熱保持し、
前記銅粉同士が金属結合により接合した銅多孔質管を形
成する工程、の各工程を備えたことを特徴としている。
これによって製造される銅多孔質管は、銅粉同士が金属
結合して筒状とされたものであり、銅管に内挿したり外
挿するなどして取り付け、両者を接合することによっ
て、銅管の表面積を増大させ、熱交換効率を高めること
ができる。
The method for producing a copper porous tube according to the present invention comprises:
(I) Copper powder is temporarily bonded to a synthetic resin sheet with an organic binder, and the copper powder on the synthetic resin sheet is transferred to the surface of a tubular or columnar support made of a material that does not sinter with copper oxide. A process of preparing a pretreatment tube instead;
(Ii) a step of heating and maintaining the pretreatment tube in an oxidizing atmosphere to form an oxidation treatment tube having a structure in which the copper powders are cross-linked by oxides generated on respective surfaces; (iii)
Withdrawing the oxidation treatment tube from the support surface,
(Iv) heating and maintaining the oxidation treatment tube under a reducing atmosphere;
A step of forming a copper porous tube in which the copper powders are joined by metal bonding.
The copper porous tube manufactured by this method is a tube in which copper powder is metal-bonded to each other to form a tubular shape. The surface area of the tube can be increased, and the heat exchange efficiency can be increased.

【0007】[0007]

【発明の実施の形態】本発明では、合成樹脂シート上に
銅粉を有機バインダーによって仮接合し、銅粉の表面を
一旦酸化する。これによって銅粉−銅粉間が酸化物で架
橋(ブリッジ)された構造になる。その後、これを還元
雰囲気で加熱することによって、銅粉の表面が還元され
ると共に、銅粉−銅粉間の酸化物結合が金属結合とな
り、銅粉同士が金属結合により強固に接合したメッシュ
状の銅多孔質体が製造される。この銅多孔質体は、銅管
内に内挿したり外挿してヒートパイプや熱交換器用配管
に適用することで、熱交換効率に優れた銅管とすること
ができる。また、板状、筒状、容器状などの種々な形状
とすることができ、通気性、透液性及び防菌性を有し、
フィルターや防菌性を利用した家庭用具、工場の製造設
備の材料などに利用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, copper powder is temporarily joined to a synthetic resin sheet with an organic binder, and the surface of the copper powder is once oxidized. As a result, a structure in which the copper powder is cross-linked (bridged) with the oxide is obtained. Then, by heating this in a reducing atmosphere, the surface of the copper powder is reduced, and at the same time, the oxide bond between the copper powder and the copper powder becomes a metal bond, and the copper powder is tightly bonded to each other by the metal bond. Is produced. This copper porous body can be made into a copper tube with excellent heat exchange efficiency by being inserted or extrapolated into a copper tube and applied to a heat pipe or a pipe for a heat exchanger. In addition, it can be formed into various shapes such as a plate, a tube, and a container, and has air permeability, liquid permeability, and antibacterial property,
It can be used as a filter, a household tool using antibacterial properties, and a material for manufacturing equipment in a factory.

【0008】粒径が0.1mm以上の粗い銅粉は、単に
不活性雰囲気或いは還元性雰囲気中で加熱しても焼結し
難い。そこで本発明では銅粉を有機バインダーで仮接合
した後、酸化・還元の2段階焼結によって銅粉同士焼結
(焼着)している。酸化工程で全ての銅を酸化させる
と、銅粉自体の強度が低下してしまうので、銅粉の表面
のみを酸化させている。また、一旦高温酸化した状態で
降温すると、CuとCu酸化物の熱膨張係数の差によっ
て、銅粉表面から表面酸化物が剥がれ落ちてしまう。そ
こで本発明においては、酸化後に、高温に保持したまま
還元することが望ましい。
[0008] Coarse copper powder having a particle size of 0.1 mm or more does not easily sinter even when simply heated in an inert atmosphere or a reducing atmosphere. Therefore, in the present invention, after the copper powder is temporarily joined with an organic binder, the copper powder is sintered (sintered) together by two-stage sintering of oxidation and reduction. If all the copper is oxidized in the oxidation step, the strength of the copper powder itself is reduced, so only the surface of the copper powder is oxidized. Further, if the temperature is lowered once in a state of being oxidized at a high temperature, the surface oxide is peeled off from the surface of the copper powder due to the difference in thermal expansion coefficient between Cu and Cu oxide. Therefore, in the present invention, it is desirable that after oxidation, reduction is performed while maintaining the temperature at a high temperature.

【0009】本発明において、材料の銅粉は、純銅(C
u)、Cu-P合金(リン青銅)、Cu-Be合金(ベリ
リウム青銅)、Cu-Sn合金(青銅)、Cu-Al合
金、Cu-Si合金、Cu-Ni合金、或いは銅を主体と
して2種以上の元素を添加した合金などを使用し得る
が、特に純銅を用いることが望ましい。また、銅粉の粒
径は、製造するべき銅多孔質体に求められる機能、すな
わち熱交換効率の向上や表面積の増大などが達成でき、
しかも形成された銅多孔質体が十分な機械強度となるよ
うに適宜選択して良く、通常は平均粒径が0.1〜3m
m、好ましくは0.2〜2mm程度のものが望ましい。
さらに銅粉3を緻密に配列するために、銅粉3の粒径を
なるべく均一にしておくことが望ましい。
In the present invention, the copper powder of the material is pure copper (C
u), Cu-P alloy (phosphor bronze), Cu-Be alloy (beryllium bronze), Cu-Sn alloy (bronze), Cu-Al alloy, Cu-Si alloy, Cu-Ni alloy, or mainly copper Although an alloy to which more than one kind of element is added can be used, it is particularly preferable to use pure copper. In addition, the particle size of the copper powder can achieve the function required for the copper porous body to be produced, that is, an improvement in heat exchange efficiency and an increase in surface area,
Moreover, the copper porous body formed may be appropriately selected so as to have sufficient mechanical strength, and usually has an average particle size of 0.1 to 3 m.
m, preferably about 0.2 to 2 mm.
Further, in order to arrange the copper powder 3 densely, it is desirable to make the particle diameter of the copper powder 3 as uniform as possible.

【0010】本発明による銅多孔質体の製造方法の例を
図1〜図3を参照して説明する。この方法では、まず、
合成樹脂シート1上に有機バインダーを塗布し、次いで
銅粉3を撒き、銅粉3同士を有機バインダー2で仮接合
し、平板状や筒状など所望形状の銅粉シート10とする
(a)工程を行う。合成樹脂シート1はポリエチレン、
ポリプロピレン、EVA樹脂、塩化ビニル樹脂、塩化ビ
ニリデン樹脂、フッ素樹脂などの種々の材質のものを使
用できる。また有機バインダー2としては、以後の酸化
性雰囲気下で銅粉を加熱保持する工程で容易に無くな
り、その跡に余分な灰分や炭素が残留することのない材
料が好ましく、例えばグリセリン、油(鉱物油、動植物
性油脂)、アクリル樹脂系やセルロース樹脂系などの有
機系粘着剤などである。簡便には、市販のスプレー式ア
クリル樹脂粘着剤を用い、合成樹脂シート1上に撒いた
銅粉3の上からスプレー塗布しても良い。
An example of a method for producing a porous copper body according to the present invention will be described with reference to FIGS. In this method, first,
An organic binder is applied onto the synthetic resin sheet 1, then copper powder 3 is scattered, and the copper powders 3 are temporarily joined with the organic binder 2 to obtain a copper powder sheet 10 having a desired shape such as a flat plate shape or a tubular shape (a). Perform the process. The synthetic resin sheet 1 is made of polyethylene,
Various materials such as polypropylene, EVA resin, vinyl chloride resin, vinylidene chloride resin, and fluororesin can be used. Further, as the organic binder 2, a material which is easily lost in the subsequent step of heating and holding the copper powder in an oxidizing atmosphere and does not leave extra ash or carbon in its traces is preferable. For example, glycerin, oil (mineral Oils, animal and vegetable fats and oils), and organic adhesives such as acrylic resin-based and cellulose resin-based adhesives. For convenience, a commercially available spray-type acrylic resin adhesive may be used to spray-coat the copper powder 3 spread on the synthetic resin sheet 1.

【0011】銅粉シート10の酸化処理工程は、銅の酸
化物と焼結しない材料からなる支持体5の表面に移し代
えた後、酸化処理工程を行うことが望ましい。この支持
体5の材料としては、ステンレス鋼、Ni基合金、Co
基合金、ガラス、カーボン、BN(ボロンナイトライ
ド)などが使用される。銅粉シート10を支持体5に移
し代える場合、合成樹脂シート1の表面にシリコーン系
やフッ素樹脂系の離型材を塗布しておくことが望まし
い。
In the oxidation treatment step of the copper powder sheet 10, it is desirable to perform the oxidation treatment step after transferring to the surface of the support 5 made of a material that does not sinter with the copper oxide. The material of the support 5 is stainless steel, Ni-based alloy, Co
Base alloy, glass, carbon, BN (boron nitride) and the like are used. When the copper powder sheet 10 is transferred to the support 5, it is desirable to apply a silicone-based or fluororesin-based release material to the surface of the synthetic resin sheet 1.

【0012】次に、銅粉シート10を載せた支持体5を
雰囲気加熱炉等に入れ、酸化性雰囲気下、好ましくは空
気中、400〜700℃で加熱保持し、図2に示すよう
に銅粉3同士が、各々の表面に生じた酸化物4によって
架橋された構造を有する酸化処理体11を形成する
(b)工程を実施する。この酸化性雰囲気下での加熱温
度が400℃未満であると、銅粉3表面の酸化物の生成
量が少なくなり、銅粉3同士の結合力が弱くなり、崩れ
易くなる。また、加熱温度が700℃を超えると、銅粉
3が軟化して、変形したり強度が減少する場合がある。
酸化性雰囲気下で銅粉シート10を加熱保持する時間
は、上述した通り銅粉3同士が酸化物による架橋構造で
十分に接合した構造が得られれば、特に限定されない
が、通常は10分〜3時間程度、好ましくは15分〜1
時間程度とする。この(b)工程で使用する酸化性ガス
としては、上記空気以外にも、純酸素ガス、窒素ガスや
炭酸ガスで薄めた酸素ガス、一酸化二窒素ガスなどが使
用可能である。
Next, the support 5 on which the copper powder sheet 10 is placed is placed in an atmosphere heating furnace or the like, and is heated and maintained at 400 to 700 ° C. in an oxidizing atmosphere, preferably in air. The step (b) of forming an oxidized body 11 having a structure in which the powders 3 are crosslinked by the oxides 4 generated on the respective surfaces is performed. When the heating temperature in this oxidizing atmosphere is lower than 400 ° C., the amount of oxides generated on the surface of the copper powder 3 is reduced, the bonding strength between the copper powders 3 is reduced, and the copper powders 3 are easily broken. On the other hand, when the heating temperature exceeds 700 ° C., the copper powder 3 is softened and may be deformed or have reduced strength.
The time for heating and holding the copper powder sheet 10 under an oxidizing atmosphere is not particularly limited as long as a structure in which the copper powders 3 are sufficiently bonded to each other by the cross-linking structure of the oxide is obtained as described above. About 3 hours, preferably 15 minutes to 1
About an hour. As the oxidizing gas used in the step (b), pure oxygen gas, oxygen gas diluted with nitrogen gas or carbon dioxide gas, nitrous oxide gas, and the like can be used in addition to the above air.

【0013】次に、酸化処理体11の周囲を還元性雰囲
気として加熱保持し、図3に示すように銅粉3が他の銅
粉3に金属結合により接合し、メッシュ状構造を有する
銅多孔質体12とする(c)工程を実施する。ここで、
酸化性雰囲気下での加熱工程の後、酸化処理体11を入
れた雰囲気加熱炉内に直ちに水素ガスなどの還元ガスを
導入すると燃焼する場合がある。それを防ぐために、上
記(b)工程の後、酸化処理体11の温度を維持したま
ま、或いは(c)工程の処理温度に移行させながら、酸
化処理体11の周囲を不活性ガス雰囲気で置換し、その
後、還元性雰囲気に置換して前記(c)工程を実施する
ことが望ましい。銅粉3の温度を変えることなく、酸化
性雰囲気から還元性雰囲気に変更することで、銅と銅酸
化物の熱膨張係数の差によって銅酸化物が剥離してバラ
バラになる不都合を防ぐことができる。ここで使用する
不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウ
ムガス等が用いられ、好ましくは窒素ガスが用いられ
る。また、還元性雰囲気を形成するための還元ガスとし
ては、水素ガス、窒素ガスで希釈した水素ガス、ブタン
分解ガス、一酸化炭素ガス、水性ガス、発生炉ガスなど
の一酸化炭素含有ガスが使用可能であり、特に水素ガ
ス、窒素ガスで希釈した水素ガスが好適である。
Next, the surroundings of the oxidized body 11 are heated and held in a reducing atmosphere, and as shown in FIG. 3, the copper powder 3 is bonded to other copper powder 3 by metal bonding to form a copper porous material having a mesh structure. Step (c) for forming the body 12 is performed. here,
After a heating step in an oxidizing atmosphere, if a reducing gas such as hydrogen gas is immediately introduced into an atmosphere heating furnace in which the oxidized body 11 is placed, combustion may occur. In order to prevent this, after the step (b), the surroundings of the oxidized body 11 are replaced with an inert gas atmosphere while maintaining the temperature of the oxidized body 11 or while shifting to the processing temperature of the step (c). After that, it is desirable to carry out the step (c) by replacing the atmosphere with a reducing atmosphere. By changing the oxidizing atmosphere to the reducing atmosphere without changing the temperature of the copper powder 3, it is possible to prevent the inconvenience that the copper oxide is separated due to the difference in the thermal expansion coefficient between the copper and the copper oxide. it can. As the inert gas used here, nitrogen gas, argon gas, helium gas or the like is used, and preferably, nitrogen gas is used. In addition, as a reducing gas for forming a reducing atmosphere, a carbon monoxide-containing gas such as hydrogen gas, hydrogen gas diluted with nitrogen gas, butane decomposition gas, carbon monoxide gas, water gas, and generator gas is used. Hydrogen gas and hydrogen gas diluted with nitrogen gas are particularly suitable.

【0014】酸化処理体11を還元性雰囲気下で加熱す
る際の加熱温度は、300〜700℃、好ましくは40
0〜600℃程度とする。加熱温度が300℃未満であ
ると、還元が十分でなくなり、銅酸化物が残ったり、
(b)工程との温度差が大きくなって酸化物が剥離し易
くなる。加熱温度が700℃を超えると銅粉が軟化し
て、変形したり強度が減少する場合がある。還元性雰囲
気下で酸化処理体11を加熱保持する時間は、上述した
通り銅粉3同士が金属結合により強固に接合した構造が
得られれば特に限定されないが、通常は10分〜3時間
程度、好ましくは15分〜1時間程度とする。
The heating temperature when heating the oxidized body 11 in a reducing atmosphere is 300 to 700 ° C., preferably 40 to 700 ° C.
The temperature is set to about 0 to 600 ° C. When the heating temperature is lower than 300 ° C., the reduction is not sufficient, and the copper oxide remains,
(B) The temperature difference from the step is increased, and the oxide is easily peeled. When the heating temperature exceeds 700 ° C., the copper powder is softened and may be deformed or its strength may be reduced. The time during which the oxidized body 11 is heated and held under a reducing atmosphere is not particularly limited as long as a structure in which the copper powders 3 are firmly joined to each other by metal bonding is obtained as described above, but is usually about 10 minutes to 3 hours. Preferably, it is about 15 minutes to 1 hour.

【0015】以上の(a)〜(c)工程を順次実施し、
還元雰囲気下で放冷して炉内から取り出すことによっ
て、図3に示すように銅粉3同士が強固な金属結合によ
って縦横に接合した銅多孔質体12が得られる。この銅
多孔質体12は、接合した銅粉間に開孔を有しており、
この開孔によって通気性及び透液性を有している。ま
た、銅または銅合金からなり、各銅粉間が金属結合によ
って接合されているので、熱伝導に優れ、表面積が大き
い。さらに、銅を用いたことによって、細菌等の微生物
の繁殖を防止する防菌性をも有している。これらの特徴
から、この銅多孔質体12は、銅管内に内挿したり外挿
してヒートパイプや熱交換器用配管に適用することで、
熱交換効率に優れた銅管とすることができる。また、板
状、筒状、容器状などの種々な形状とすることができ、
通気性、透液性及び防菌性を有し、フィルターや防菌性
を利用した家庭用具、工場の製造設備の材料などに利用
可能である。
The above steps (a) to (c) are sequentially performed,
By leaving it to cool in a reducing atmosphere and taking it out of the furnace, a copper porous body 12 in which copper powders 3 are joined vertically and horizontally by strong metal bonding as shown in FIG. 3 is obtained. This copper porous body 12 has an opening between the joined copper powders,
The openings have air permeability and liquid permeability. Moreover, since it consists of copper or a copper alloy, and each copper powder is joined by metal bonding, it is excellent in heat conduction and has a large surface area. In addition, the use of copper has antibacterial properties for preventing the growth of microorganisms such as bacteria. From these characteristics, this copper porous body 12 can be inserted or extrapolated into a copper pipe and applied to a heat pipe or a pipe for a heat exchanger,
A copper tube having excellent heat exchange efficiency can be obtained. In addition, it can be formed into various shapes such as a plate, a tube, and a container,
It has air permeability, liquid permeability, and antibacterial properties, and can be used as a filter, a household tool using antibacterial properties, a material for manufacturing equipment in a factory, and the like.

【0016】この銅多孔質体12は、使用用途に応じ
て、丸め加工、打抜加工、浅絞り加工、溶接加工などの
適宜な成形加工を施すことができる。図4は、その一例
として、板状に形成した銅多孔質体12の母材を円形に
打ち抜いて、フィルターとして好適な形状とした銅多孔
質体12を示している。その他、丸め加工で作製した円
筒体と円板体とを溶接またはろう付け接合して、透液性
の容器体(有底円筒体)に形成することもできる。この
容器体は透液性と防菌性を利用して、家庭での排水用フ
ィルターやシンク用ゴミ箱としても利用可能である。
The copper porous body 12 can be subjected to an appropriate forming process such as rounding, punching, shallow drawing, welding, etc., depending on the intended use. FIG. 4 shows, as an example, the copper porous body 12 formed by punching out a base material of the copper porous body 12 formed in a plate shape into a circle and forming a suitable shape as a filter. In addition, a cylindrical body produced by rounding and a disk body can be welded or brazed to form a liquid-permeable container body (bottomed cylindrical body). This container body can be used as a drain filter at home and a trash can for a sink, utilizing its liquid permeability and antibacterial properties.

【0017】次に、本発明による銅多孔質管の製造方法
の例を図5〜図7を参照して説明する。この方法では、
上述した銅多孔質材の製造方法の例と同様の銅粉3、合
成樹脂シート1及び有機バインダー2を使用することが
できる。この方法では、まず、合成樹脂シート1上に有
機バインダーを塗布し、銅粉を仮接合し、図1に示す平
板状の銅粉シート10とし、次いで合成樹脂シート1を
円筒または円柱状の支持体6の外周面に巻付けて、銅粉
シート10を支持体6外周面に移し代え、図5に示すよ
うに支持体6外周に、銅粉3同士が仮接合されて円筒状
になった前処理管13を作製する(i)工程を行う。合
成樹脂シート1上には、銅粉シート10を剥離し易くす
るために離型材を塗布しておくことが望ましい。また銅
粉シート10を移し代える際、銅粉シート10上または
支持体6の外周面に有機バインダーを塗布しておくこと
が望ましい。支持体6としては、上述した銅多孔質材の
製造方法の例で用いた支持体5と同様の材質、特に好ま
しくはステンレス鋼からなる円筒又は円柱が用いられ
る。
Next, an example of a method for manufacturing a porous copper tube according to the present invention will be described with reference to FIGS. in this way,
The same copper powder 3, synthetic resin sheet 1, and organic binder 2 as in the example of the method for producing a porous copper material described above can be used. In this method, first, an organic binder is applied onto the synthetic resin sheet 1 and copper powder is temporarily joined to form a flat copper powder sheet 10 shown in FIG. 1, and then the synthetic resin sheet 1 is supported in a cylindrical or columnar shape. The copper powder sheet 10 was wound around the outer peripheral surface of the body 6 and transferred to the outer peripheral surface of the support 6, and the copper powder 3 was temporarily joined to the outer periphery of the support 6 to form a cylindrical shape as shown in FIG. 5. Step (i) of preparing the pretreatment tube 13 is performed. It is desirable to apply a release material on the synthetic resin sheet 1 in order to facilitate the peeling of the copper powder sheet 10. When transferring the copper powder sheet 10, it is desirable to apply an organic binder on the copper powder sheet 10 or on the outer peripheral surface of the support 6. As the support 6, a cylinder or a column made of the same material as the support 5 used in the above-described example of the method for producing a porous copper material, particularly preferably stainless steel, is used.

【0018】次いで、前処理管13が巻付けられた支持
体6を雰囲気加熱炉等に入れ、酸化性雰囲気下、好まし
くは空気中、400〜700℃で加熱保持し、銅粉3同
士が各々の表面に生じた酸化物4によって架橋された構
造を有する酸化処理管14を形成する(ii)工程を実施
する。この工程の所要時間は特に限定されないが、通常
は10分〜3時間程度、好ましくは15分〜1時間程度
とする。また使用するガスは空気の他、純酸素ガス、窒
素ガスや炭酸ガスで薄めた酸素ガス、一酸化二窒素ガス
などが使用可能である。
Next, the support 6 around which the pretreatment tube 13 is wound is placed in an atmosphere heating furnace or the like, and heated and maintained at 400 to 700 ° C. in an oxidizing atmosphere, preferably in air, so that the copper powders 3 (Ii) step of forming an oxidation treatment tube 14 having a structure cross-linked by the oxide 4 generated on the surface of the substrate. The time required for this step is not particularly limited, but is usually about 10 minutes to 3 hours, preferably about 15 minutes to 1 hour. As the gas to be used, besides air, pure oxygen gas, oxygen gas diluted with nitrogen gas or carbon dioxide gas, nitrous oxide gas, or the like can be used.

【0019】次いで、図6に示すように支持体6から酸
化処理管14を抜き出す(iii)工程を行う。酸化処理
を施すと、銅粉3表面の酸化物4の生成によって、各銅
粉3間にブリッジ構造が形成されるとともに、各銅粉3
が僅かながら膨張する。その結果、酸化処理管14は支
持体6の外周面から剥離して抜き出し易くなる。酸化処
理管14を支持体6に付けたまま、次の還元処理を施す
と、銅粉3間の酸化物が還元されて銅粉3同士の金属結
合が形成されて銅粉3間が収縮し、その結果支持体6か
ら銅多孔質管が外れなくなるおそれがある。先の(ii)
工程を終えた後であれば、支持体6から酸化処理管14
を容易に抜き出すことができる。この際、酸化処理管1
4の温度を急激に低下させないように、酸化処理管14
を炉内に残し、支持体6を炉外に引張り出すようにする
ことが望ましい。
Next, as shown in FIG. 6, a step (iii) of extracting the oxidation treatment tube 14 from the support 6 is performed. When the oxidation treatment is performed, a bridge structure is formed between the copper powders 3 due to the formation of the oxide 4 on the surface of the copper powders 3 and the copper powders 3 are formed.
Slightly expands. As a result, the oxidation treatment tube 14 is easily separated from the outer peripheral surface of the support 6 and is easily extracted. When the next reduction treatment is performed with the oxidation treatment tube 14 attached to the support 6, the oxide between the copper powders 3 is reduced to form a metal bond between the copper powders 3 and the copper powders 3 shrink. As a result, the copper porous tube may not come off from the support 6. (Ii)
After the completion of the process, the oxidation treatment tube 14 is removed from the support 6.
Can be easily extracted. At this time, the oxidation treatment tube 1
4 so that the temperature of the oxidation treatment tube 14 is not suddenly lowered.
Is desirably left in the furnace, and the support 6 is pulled out of the furnace.

【0020】次いで、酸化処理管14の周囲を還元性雰
囲気として加熱保持し、銅粉3同士が強固な金属結合に
より接合し、円管状をなした銅多孔質管15を形成する
(iv)工程を実施する。酸化性雰囲気にある炉内を還元
性雰囲気に置換する際には、炉内温度を維持したまま、
炉内を一旦窒素ガスやアルゴンガスなどの不活性ガス雰
囲気とし、その後還元ガスを導入することが望ましい。
還元ガスとしては、水素ガス、窒素ガスで希釈した水素
ガス、一酸化炭素ガス、水性ガス、ブタン分解ガス、発
生炉ガスなどの一酸化炭素含有ガスが使用可能であり、
特に水素ガス、窒素ガスで希釈した水素ガスが好適であ
る。さらに、この還元処理の加熱温度は、300〜70
0℃、好ましくは400〜600℃程度とする。処理時
間は特に限定されないが、通常は10分〜3時間程度、
好ましくは15分〜1時間程度とする。
Next, the surroundings of the oxidation treatment tube 14 are heated and held in a reducing atmosphere, and the copper powders 3 are joined together by strong metal bonding to form a circular copper tubular tube 15 (iv). Is carried out. When replacing the furnace in an oxidizing atmosphere with a reducing atmosphere, while maintaining the furnace temperature,
It is desirable that the inside of the furnace is once set to an inert gas atmosphere such as a nitrogen gas or an argon gas, and then a reducing gas is introduced.
As the reducing gas, a hydrogen gas, a hydrogen gas diluted with a nitrogen gas, a carbon monoxide gas, a water gas, a butane decomposition gas, a carbon monoxide-containing gas such as a generating furnace gas can be used,
Particularly, hydrogen gas diluted with hydrogen gas or nitrogen gas is preferable. Further, the heating temperature of this reduction treatment is 300 to 70
0 ° C., preferably about 400 to 600 ° C. The processing time is not particularly limited, but is usually about 10 minutes to 3 hours,
Preferably, it is about 15 minutes to 1 hour.

【0021】以上の(i)〜(iv)の各工程を順次行う
ことによって、銅粉3同士が強固な金属結合により接合
し円管状をなした銅多孔質管15が得られる。この銅多
孔質管15は、接合した銅粉間に開孔を有しており、こ
の開孔によって通気性及び透液性を有している。また各
銅粉間が金属結合によって接合されているので、熱伝導
に優れ、表面積が大きい。さらに、銅を用いたことによ
って、細菌等の微生物の繁殖を防止する防菌性をも有し
ている。これらの特徴から、この銅多孔質管15は、銅
管内に内挿したり外挿してヒートパイプや熱交換器用配
管に適用することで、熱交換効率に優れた銅管とするこ
とができる。また、通気性、透液性及び防菌性を有して
いることから、フィルターや防菌性を利用した家庭用
具、工場の製造設備の材料などに利用可能である。
By sequentially performing the above steps (i) to (iv), a copper porous tube 15 having a circular tubular shape obtained by joining the copper powders 3 with each other by strong metal bonding is obtained. The copper porous tube 15 has openings between the joined copper powders, and has air permeability and liquid permeability due to the openings. In addition, since the copper powders are joined by metal bonding, they have excellent heat conduction and a large surface area. In addition, the use of copper has antibacterial properties for preventing the growth of microorganisms such as bacteria. Due to these features, the copper porous tube 15 can be made into a copper tube having excellent heat exchange efficiency by being inserted or extrapolated into the copper tube and applied to a heat pipe or a pipe for a heat exchanger. In addition, since it has air permeability, liquid permeability, and antibacterial properties, it can be used as a filter, a household tool using antibacterial properties, a material for manufacturing equipment in a factory, and the like.

【0022】図7は、銅多孔質管15を備え、熱交換効
率を高めた銅多孔質層を有する銅管16を例示するもの
である。この銅管16は、内外面が平滑な銅管7の管内
に、銅管7内径と同一かやや小さい外径を有する銅多孔
質管15を挿入すると共に、銅管7の外周面に、銅管7
の外径と同一かやや大きい内径を有する銅多孔質管15
を外嵌してなっている。銅管7と内外の銅多孔質管15,1
5とは、若干の圧延加工、或いはスポット溶接などの接
合手段によって固定しておくことが望ましい。この銅管
16は、銅多孔質管15,15を内挿及び外挿して銅多孔質
層を形成することで、表面積が向上し、熱交換効率を向
上させることができる。なお、銅管7に銅多孔質管15,1
5を接合する場合、銅多孔質管15は一層に限定されるこ
となく、2層以上積み重ねて接合一体化しても良い。
FIG. 7 exemplifies a copper tube 16 having a copper porous tube 15 and having a copper porous layer with improved heat exchange efficiency. The copper tube 16 has a copper tube 7 having an outer diameter equal to or slightly smaller than the inner diameter of the copper tube 7 inserted into the copper tube 7 having a smooth inner and outer surface. Tube 7
Copper porous tube 15 having an inner diameter equal to or slightly larger than the outer diameter of
Has been fitted. Copper tube 7 and inner and outer copper porous tubes 15,1
5 is desirably fixed by a slight rolling process or joining means such as spot welding. By forming the copper porous layer by interpolating and extrapolating the copper porous tubes 15, 15, the copper tube 16 has an improved surface area and an improved heat exchange efficiency. In addition, the copper tube 7 is connected to the copper porous tube 15,1.
When joining 5, the copper porous tube 15 is not limited to a single layer, and may be joined and integrated by stacking two or more layers.

【0023】[0023]

【実施例】以下、本発明に係る実施例を記すが、本発明
はこれらの例示に限定されるものでない。 (実施例1:板状銅多孔質体の製造)厚さ0.18mm
のポリエチレン製シート状に、シリコーン系離型材をス
プレー塗布し、アクリル系粘着剤をスプレー塗布し、そ
の上に平均粒径0.8mmの純銅からなる銅粉を撒き、
1〜3層の銅粉が仮接合した薄板状の銅粉シートを作製
した。粘着剤が硬化した後、200mm×300mmの
ステンレス鋼板上に銅粉シートを移し代えた。銅粉シー
トを載せたステンレス鋼板を電気炉に入れ、空気中、6
00℃に1時間加熱保持し、次いでそのままの温度を保
持したまま、炉心管内を一旦不活性ガス(N2)に置換
した後、還元性ガス(H2)に置換し、さらに600℃
に0.5時間保持した。炉内を還元性雰囲気に保ったま
ま、徐冷し、銅粉同士が金属結合によって強固に接合し
たメッシュ板状の銅多孔質体を得た。この板状多孔質体
は、通気性、透液性を有しており、フィルターなどとし
て十分に使用可能であった。またこの板状多孔質体は、
丸め加工、折曲げ加工が可能であった。
EXAMPLES Examples according to the present invention will be described below, but the present invention is not limited to these examples. (Example 1: Production of a plate-shaped copper porous body) Thickness 0.18 mm
Spray-coated silicone-based mold release material, spray-coated acrylic pressure-sensitive adhesive, spread copper powder made of pure copper with an average particle size of 0.8 mm on it,
A thin copper powder sheet was prepared by temporarily bonding one to three layers of copper powder. After the adhesive was cured, the copper powder sheet was transferred onto a 200 mm × 300 mm stainless steel plate. A stainless steel sheet on which a copper powder sheet is placed is placed in an electric furnace, and the
After heating and holding at 00 ° C. for 1 hour, and then keeping the temperature as it is, the inside of the furnace tube was once replaced with an inert gas (N 2 ), and then replaced with a reducing gas (H 2 ).
For 0.5 hours. While the furnace was kept in a reducing atmosphere, the furnace was gradually cooled to obtain a mesh plate-shaped copper porous body in which copper powders were strongly bonded by metal bonding. This plate-like porous body had air permeability and liquid permeability, and was sufficiently usable as a filter or the like. Also, this plate-shaped porous body is
Rounding and bending were possible.

【0024】(実施例2:銅多孔質管の製造)厚さ0.
18mmのポリエチレン製シート状に、シリコーン系離
型材をスプレー塗布し、アクリル系粘着剤をスプレー塗
布し、その上に平均粒径0.5mmの純銅からなる銅粉
を撒き、アクリル系粘着剤をスプレー塗布し、1〜3層
の銅粉が仮接合した薄板状の銅粉シートを作製した。粘
着剤が硬化した後、外径11mmφ、長さ1mのステン
レス鋼管の外周面上に銅粉シートを移し代えた。銅粉シ
ートを外周面に仮接合したステンレス鋼管を管状電気炉
に入れ、空気中、550℃に1時間加熱保持した。加熱
保持終了後、炉内に酸化処理された銅管を残すように、
ステンレス鋼管を抜き去った。次いでそのままの温度を
保持したまま、炉心管内を一旦不活性ガス(N2)に置
換した後、還元性ガス(H2)に置換し、さらに580
℃に0.5時間保持した。炉内を還元性雰囲気に保った
まま、徐冷し、銅粉同士が金属結合によって強固に接合
したメッシュ管状の銅多孔質管を得た。この銅多孔質管
を外径16mmφの銅管に外嵌し、圧延加工を施し、銅
管と銅多孔質管を圧着させた。これによって表面積が大
きい銅多孔質層を有する銅管が得られた。
(Example 2: Production of a porous copper tube)
Spray silicone release agent on 18mm polyethylene sheet, spray acrylic adhesive, spray copper powder made of pure copper with average particle size 0.5mm, spray acrylic adhesive A thin copper powder sheet was prepared by applying and temporarily bonding 1 to 3 layers of copper powder. After the adhesive was cured, the copper powder sheet was transferred onto the outer peripheral surface of a stainless steel tube having an outer diameter of 11 mm and a length of 1 m. A stainless steel pipe having a copper powder sheet temporarily bonded to the outer peripheral surface was placed in a tubular electric furnace, and heated and maintained at 550 ° C. for 1 hour in air. After heating and holding, so as to leave the oxidized copper tube in the furnace,
The stainless steel tube was pulled out. Next, while maintaining the temperature as it is, the inside of the furnace tube was temporarily replaced with an inert gas (N 2 ), and then replaced with a reducing gas (H 2 ).
C. for 0.5 hour. While the furnace was kept in a reducing atmosphere, the furnace was gradually cooled to obtain a mesh-shaped porous copper tube in which copper powders were strongly bonded by metal bonding. This copper porous tube was externally fitted to a copper tube having an outer diameter of 16 mmφ, rolled, and the copper tube and the copper porous tube were pressed. As a result, a copper tube having a copper porous layer having a large surface area was obtained.

【0025】[0025]

【発明の効果】本発明によれば銅粉同士が金属結合し、
表面積が大きく、熱伝導が良好で、伝熱体に内嵌或いは
外嵌することによって該伝熱体の熱交換効率を向上する
ことが可能な銅多孔質体並びに銅多孔質管を効率良く製
造し得る方法を提供することができる。また本発明によ
れば、銅粉同士が金属結合して板状、筒状、容器状など
の種々な形状の銅多孔質体及び銅多孔質管を製造するこ
とができ、通気性、透液性及び防菌性を有し、フィルタ
ーや家庭用具、工場の製造設備の材料などに利用可能な
銅多孔質体及び銅多孔質管を容易に製造することができ
る。
According to the present invention, copper powder is metal-bonded to each other,
Efficiently manufacture a copper porous body and a copper porous tube having a large surface area, good heat conduction, and capable of improving the heat exchange efficiency of the heat transfer body by being fitted inside or outside the heat transfer body. A possible method can be provided. Further, according to the present invention, copper powders are metal-bonded to each other to produce copper porous bodies and copper pipes of various shapes such as plate-like, tubular, and container-like shapes. It is possible to easily produce a porous copper body and a porous copper tube having properties and antibacterial properties, and which can be used as a material for a filter, a household tool, a manufacturing facility of a factory, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による銅多孔質体の製造方法の一例を
示し、銅粉シートを作製する(a)工程を示す拡大断面
図。
FIG. 1 is an enlarged cross-sectional view showing one example of a method for producing a porous copper body according to the present invention and showing a step (a) of producing a copper powder sheet.

【図2】 同じく酸化処理シートを形成する(b)工程
を示す拡大断面図。
FIG. 2 is an enlarged sectional view showing a step (b) of forming an oxidized sheet.

【図3】 同じく銅多孔質体を形成する(c)工程を示
す拡大断面図。
FIG. 3 is an enlarged sectional view showing a step (c) of forming a copper porous body.

【図4】 銅多孔質体の一例であるフィルターを示す斜
視図。
FIG. 4 is a perspective view showing a filter which is an example of a porous copper body.

【図5】 本発明による銅多孔質管の製造方法の一例を
示し、銅粉シートを支持体に移し代えた前処理管を作製
する(i)工程を示す正面図。
FIG. 5 is a front view showing one example of a method for producing a copper porous tube according to the present invention, and showing a step (i) of producing a pretreatment tube in which a copper powder sheet is transferred to a support.

【図6】 同じく支持体表面から酸化処理管を抜き出す
(iii)工程を示す正面図。
FIG. 6 is a front view showing the step (iii) of extracting the oxidation treatment tube from the surface of the support.

【図7】 銅多孔質管を銅管に取り付けた状態を示す斜
視図。
FIG. 7 is a perspective view showing a state in which a copper porous tube is attached to the copper tube.

【符号の説明】[Explanation of symbols]

1 樹脂シート 2 有機バインダー 3 銅粉 4 酸化物 5 支持体 6 支持体 10 銅粉シート 11 酸化処理体 12 銅多孔質体 13 前処理管 14 酸化処理管 15 銅多孔質管 16 銅多孔質層を有する銅管 REFERENCE SIGNS LIST 1 resin sheet 2 organic binder 3 copper powder 4 oxide 5 support 6 support 10 copper powder sheet 11 oxidized body 12 copper porous body 13 pretreatment tube 14 oxidation treatment tube 15 copper porous tube 16 copper porous layer Copper tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B21D 53/06 B21D 53/06 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // B21D 53/06 B21D 53/06 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (a)合成樹脂シート上に銅粉を有機バ
インダーによって仮接合して前処理体を作製する工程、 (b)前記前処理体を酸化性雰囲気下で加熱保持し、前
記銅粉同士が各々の表面に生じた酸化物によって架橋さ
れた構造を有する酸化処理体を形成する工程、 (c)前記酸化処理体を還元性雰囲気下で加熱保持し、
前記銅粉同士が金属結合により接合した銅多孔質体を形
成する工程、の各工程を備えたことを特徴とする銅多孔
質体の製造方法。
(A) a step of temporarily bonding copper powder on a synthetic resin sheet with an organic binder to produce a pretreatment body; and (b) heating and holding the pretreatment body under an oxidizing atmosphere, A step of forming an oxidized body having a structure in which the powders are cross-linked by oxides generated on respective surfaces; (c) heating the oxidized body under a reducing atmosphere;
A step of forming a copper porous body in which the copper powders are joined together by metal bonding.
【請求項2】 請求項1記載の銅多孔質体の製造方法に
おいて、前記(a)工程で合成樹脂シート上の銅粉を、
銅の酸化物と焼結しない材料からなる支持体の表面に移
し代えて前記前処理体を形成し、前記(b)工程を実施
し、その後支持体から前記酸化処理体を取り外して前記
(c)工程を実施することを特徴とする銅多孔質体の製
造方法。
2. The method for producing a porous copper body according to claim 1, wherein the copper powder on the synthetic resin sheet is used in the step (a).
The pretreated body is formed by transferring to a surface of a support made of a material that does not sinter with copper oxide, the step (b) is performed, and then the oxidized body is removed from the support to remove the (c) A) producing a porous copper body, which comprises carrying out a step.
【請求項3】 請求項2記載の銅多孔質体の製造方法に
おいて、前記(a)工程で合成樹脂シート上に離型材を
塗布した後に銅粉を仮接合することを特徴とする銅多孔
質体の製造方法。
3. The method for producing a porous copper body according to claim 2, wherein a copper powder is temporarily bonded after applying a release material on the synthetic resin sheet in the step (a). How to make the body.
【請求項4】 請求項1記載の銅多孔質体の製造方法に
おいて、前記(c)工程の後に、得られた銅多孔質体に
丸め加工を施す工程を付加することを特徴とする銅多孔
質体の製造方法。
4. The method for producing a porous copper body according to claim 1, further comprising, after the step (c), a step of rounding the obtained porous copper body. Production method of the body.
【請求項5】 (i)合成樹脂シート上に銅粉を有機バ
インダーによって仮接合すると共に、合成樹脂シート上
の銅粉を、銅の酸化物と焼結しない材料からなる支持体
の表面に移し代えて前処理管を作製する工程、 (ii)前記前処理管を酸化性雰囲気下で加熱保持し、前
記銅粉同士が各々の表面に生じた酸化物によって架橋さ
れた構造を有する酸化処理管を形成する工程、 (iii)前記支持体表面から前記酸化処理管を抜き出す
工程、 (iv)前記酸化処理管を還元性雰囲気下で加熱保持し、
前記銅粉同士が金属結合により接合した銅多孔質管を形
成する工程、の各工程を備えたことを特徴とする銅多孔
質管の製造方法。
5. (i) Temporarily bonding copper powder on a synthetic resin sheet with an organic binder, and transferring the copper powder on the synthetic resin sheet to the surface of a support made of a material that does not sinter with copper oxide. A step of preparing a pretreatment tube instead; (ii) an oxidation treatment tube having a structure in which the pretreatment tube is heated and held in an oxidizing atmosphere, and the copper powders are crosslinked by oxides generated on respective surfaces. (Iii) extracting the oxidized tube from the surface of the support; (iv) heating the oxidized tube under a reducing atmosphere;
Forming a copper porous tube in which the copper powders are joined together by metal bonding.
【請求項6】 請求項5記載の銅多孔質管の製造方法に
おいて、前記(iv)工程で得られた銅多孔質管を、銅管
に取り付けて該銅管と銅多孔質管を接合することを特徴
とする銅多孔質管の製造方法。
6. The method for producing a copper porous tube according to claim 5, wherein the copper porous tube obtained in the step (iv) is attached to the copper tube, and the copper tube and the copper porous tube are joined. A method for producing a porous copper tube.
JP2002598A 1998-01-30 1998-01-30 Manufacture of porous copper body and porous copper tube Pending JPH11217602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002598A JPH11217602A (en) 1998-01-30 1998-01-30 Manufacture of porous copper body and porous copper tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002598A JPH11217602A (en) 1998-01-30 1998-01-30 Manufacture of porous copper body and porous copper tube

Publications (1)

Publication Number Publication Date
JPH11217602A true JPH11217602A (en) 1999-08-10

Family

ID=12015549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002598A Pending JPH11217602A (en) 1998-01-30 1998-01-30 Manufacture of porous copper body and porous copper tube

Country Status (1)

Country Link
JP (1) JPH11217602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139019A1 (en) 2006-05-26 2007-12-06 Daihatsu Motor Co., Ltd. Plasma reactor electrode
JP2012012696A (en) * 2010-06-29 2012-01-19 Bureijingu:Kk Method of manufacturing porous body, and porous body manufactured by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139019A1 (en) 2006-05-26 2007-12-06 Daihatsu Motor Co., Ltd. Plasma reactor electrode
JP2012012696A (en) * 2010-06-29 2012-01-19 Bureijingu:Kk Method of manufacturing porous body, and porous body manufactured by the same

Similar Documents

Publication Publication Date Title
EP0744586B1 (en) Method of manufacturing a heat transmitting device and a heat transmitting device
EP1756330B1 (en) Method for reducing metal oxide powder and attaching it to a heat transfer surface and the heat transfer surface
US6534194B2 (en) Method of making reactive multilayer foil and resulting product
JP4117127B2 (en) Aluminum-coated magnesium alloy material and manufacturing method thereof
JP3264240B2 (en) Method for producing copper tube having copper porous layer
JPH11217602A (en) Manufacture of porous copper body and porous copper tube
US6511759B1 (en) Means and method for producing multi-element laminar structures
JP3396737B2 (en) Control method of porosity distribution of metallic porous body by combining electric discharge machining and plastic machining
CN101817135B (en) Manufacturing method of TiAl-based alloy high-temperature double-layer oxygen-isolating sheath
GB2243621A (en) Process and apparatus for preparing metal layers
JP3262058B2 (en) Method for producing copper material having copper porous layer
JP3508527B2 (en) Method of manufacturing finned heat transfer tube
CN102922791A (en) Ni-Al alloy honeycomb material and preparation method thereof
JP2693973B2 (en) Diffusion bonding method for tubular laminated materials
JPH02155581A (en) Production of clad material of copper and iron or nickel alloy
JP2007284767A (en) Porous metal material and manufacturing method therefor
JPH1158072A (en) Manufacture of copper brazing sheet
JPH02192841A (en) Metallic net material and production thereof
JP2693974B2 (en) Diffusion bonding method for tubular laminated materials
JPS62116797A (en) Formation of porous layer
US3616524A (en) Method of making an article consisting at least superficially of copper suitable for the connection by means of spot welding
JPS613805A (en) Raw material sheet for sintered metallic body and its production
KR101689387B1 (en) Method for manufacturing metallic substrate having metal foam layer on the surface and metallic substrate manufactured thereby
JPS63219555A (en) Manufacture of titanium-alloy composite body
JPS6036652A (en) Manufacture of electrical contact

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030204