JPH11217273A - Production of fiber-reinforced ceramic-based composite material - Google Patents

Production of fiber-reinforced ceramic-based composite material

Info

Publication number
JPH11217273A
JPH11217273A JP10034269A JP3426998A JPH11217273A JP H11217273 A JPH11217273 A JP H11217273A JP 10034269 A JP10034269 A JP 10034269A JP 3426998 A JP3426998 A JP 3426998A JP H11217273 A JPH11217273 A JP H11217273A
Authority
JP
Japan
Prior art keywords
ceramic
fiber
spraying
composite material
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10034269A
Other languages
Japanese (ja)
Other versions
JP2876529B1 (en
Inventor
Masaru Sodeoka
賢 袖岡
Takahiro Inoue
貴博 井上
Kazuo Ueno
和夫 上野
Masahito Suzuki
雅人 鈴木
Isao Kondo
功 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10034269A priority Critical patent/JP2876529B1/en
Application granted granted Critical
Publication of JP2876529B1 publication Critical patent/JP2876529B1/en
Publication of JPH11217273A publication Critical patent/JPH11217273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a composite material having a high fracture energy without providing a heat damage to a reinforcing fiber at a short time by thermally spraying a ceramic material to the reinforcing fiber previously arranged in a prescribed position or shape to form a ceramic mother phase. SOLUTION: A carbon fiber, a ceramic fiber, a metal fiber or the like is oriented in uniaxial one dimensional, or two or more multiaxial two dimensional orientation to provide a reinforcing fiber. The reinforcing fibers are arranged on a metallic substrate, and a ceramic material such as an oxide ceramic such as alumina is thermally sprayed thereon. The thermally sprayed material in a molten state at a high temperature is quenched on the reinforcing fibers and accumulated to form a ceramic mother phase. Any of a plasma spraying, a glass-field flame spraying, a high-velocity flame spraying, an explosion spraying and a wire explosion spraying are suitable for the thermal spray method. A plurality of composite layers formed by repeating the method to laminate the layers and having a prescribed thickness is taken out from the substrate, and subjected to a necessary heat treatment and machine work to provide the objective fiber-reinforced ceramic-based composite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックスの脆
性破壊傾向を抑制するためにセラミックス母相を連続繊
維で強化した複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material in which a ceramic matrix is reinforced with continuous fibers in order to suppress the tendency of ceramics to brittle fracture.

【0002】[0002]

【従来の技術】セラミックス基複合材料の製造に際して
は、種々の手法により母相原料(通常は粉末)中に強化
用繊維を配列したグリーン成形体を得た後、最終的に通
常のセラミックス焼結体の製造におけると同様に、高温
で焼き固めるのが一般的である。この様な方法において
は、高融点材料であるセラミックスが母相となるので、
緻密な焼結体を得るためには、グリーン成形体を1000℃
以上の高温で焼成する必要がある。このため、焼成時に
強化用繊維が高温に曝されて損傷され、焼結体の性能が
劣化する傾向があり、優れた特性を有する複合材料を製
造することは困難であった。また、複合された繊維は、
母相セラミックスの焼結を抑制しやすいため、焼結時に
外部から加圧して焼結を促進させるために、ホットプレ
ス法などが多用されている。しかしながら、この方法
は、1軸加圧方法であるため、単純な形状の複合材料し
か製造できず、この種複合材料の幅広い応用が妨げられ
ている。
2. Description of the Related Art In the production of a ceramic matrix composite material, a green compact in which reinforcing fibers are arranged in a matrix material (usually a powder) is obtained by various methods, and finally a normal ceramic sintering is performed. As in the manufacture of the body, it is common to bake at high temperatures. In such a method, the ceramic, which is a high melting point material, becomes the matrix,
To obtain a dense sintered body, the green compact must be heated to 1000 ° C.
It is necessary to fire at the above high temperature. For this reason, the reinforcing fibers are exposed to high temperatures during firing, and are damaged, and the performance of the sintered body tends to deteriorate, and it has been difficult to produce a composite material having excellent properties. Also, the composite fiber is
Since the sintering of the matrix ceramic is easily suppressed, a hot press method or the like is often used in order to accelerate the sintering by applying an external pressure during sintering. However, since this method is a uniaxial pressing method, only a composite material having a simple shape can be manufactured, and wide application of this kind of composite material is hindered.

【0003】比較的低い温度条件下に複合材料を製造す
ることを目的として、母相原料としてガスを用いて、化
学反応により母相を生成させるCVI法、有機物の熱分解
によりセラミックスを得るポリマープレカーサー法など
の手法も試みられている。しかしながら、これらの方法
は、製造プロセスに長時間を要すること、原料ガスの導
入或いは分解生成ガスの排出のための経路が必要である
ため、緻密な複合体が得られ難いこと、製造される材料
の寸法に比較して極めて大型でかつ高価な製造装置を必
要とすること、また製造時にしばしば有毒なガスを利用
もしくは排出するため、材料コストが極めて高くなる傾
向があることなどの問題点を有している。従って、これ
らの点も、この種の複合材料の幅広い応用にとって重大
な障害となっていた。
[0003] For the purpose of producing a composite material under relatively low temperature conditions, a CVI method in which a gas is used as a matrix material to generate a matrix by a chemical reaction, and a polymer precursor for obtaining ceramics by thermal decomposition of organic substances Methods such as the law have also been tried. However, these methods require a long time in the manufacturing process, require a route for introducing a raw material gas or discharging a decomposition product gas, and thus it is difficult to obtain a dense composite, However, there are problems such as the necessity of extremely large and expensive production equipment compared to the size of the material, and the fact that toxic gases are often used or exhausted during production, and the material cost tends to be extremely high. doing. Therefore, these points have also been a serious obstacle to wide application of such composite materials.

【0004】[0004]

【本発明が解決しようとする課題】本発明は、短時間
で、しかも強化用繊維に与える損傷が少ない繊維強化セ
ラミックス基複合材料の新しい製造方法を提供すること
を主な目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new method for producing a fiber-reinforced ceramic-based composite material in a short time and with little damage to reinforcing fibers.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の課題
を達成するために種々研究を重ねた結果、予め所定の位
置ないし形状に配置した強化用繊維に対し、溶射法によ
りセラミックス母相原料を付与することにより、繊維に
殆ど損傷を与えることなく、所望の繊維強化セラミック
ス基複合材料を製造できることを見い出し、本発明を完
成するにいたった。
Means for Solving the Problems The present inventor has conducted various studies to achieve the above-mentioned object, and as a result, a ceramic matrix was formed on a reinforcing fiber arranged in a predetermined position or shape in advance by a thermal spraying method. It has been found that by adding the raw materials, a desired fiber-reinforced ceramic-based composite material can be produced with almost no damage to the fibers, and the present invention has been completed.

【0006】すなわち、本発明は、下記の繊維強化セラ
ミックス基複合材料の製造方法を提供する。
That is, the present invention provides the following method for producing a fiber-reinforced ceramic-based composite material.

【0007】1.強化用繊維とセラミックス母相とから
なる繊維強化セラミックス基複合材料の製造方法におい
て、セラミックス母相を溶射法により生成することを特
徴とする複合材料の製造方法。
[0007] 1. A method for producing a fiber-reinforced ceramic matrix composite material comprising a reinforcing fiber and a ceramic matrix, wherein the ceramic matrix is generated by a thermal spraying method.

【0008】2.セラミックス母相が酸化物セラミック
スである上記項1に記載の複合材料の製造方法。
[0008] 2. Item 2. The method for producing a composite material according to Item 1, wherein the ceramic matrix is an oxide ceramic.

【0009】3.強化用繊維が炭素繊維、セラミックス
繊維および金属繊維の少なくとも1種である上記項1ま
たは2に記載の複合材料の製造方法。
3. Item 3. The method for producing a composite material according to Item 1 or 2, wherein the reinforcing fibers are at least one of carbon fibers, ceramic fibers, and metal fibers.

【0010】4.強化用繊維が1軸1次元或いは2軸以
上の多軸2次元配向している上記項1、2および3のい
ずれかに記載の複合材料の製造方法。
[0010] 4. Item 4. The method for producing a composite material according to any one of Items 1, 2 and 3, wherein the reinforcing fibers are uniaxially and one-dimensionally or multiaxially and two-dimensionally or multiaxially oriented.

【0011】5.母相セラミックスを成形する溶射法と
して、プラズマ溶射、ガス燃焼フレーム溶射、高速フレ
ーム溶射、爆発溶射および線爆溶射のいずれか1種を用
いる上記項1〜4のいずれかに記載の複合材料の製造方
法。
5. 5. The production of a composite material according to any one of the above items 1 to 4, which uses any one of plasma spraying, gas combustion flame spraying, high-speed flame spraying, explosive spraying and wire explosion spraying as a spraying method for forming a matrix ceramic. Method.

【0012】[0012]

【発明の実施の形態】本発明において、セラミックス母
相の形成を行う溶射法としては、特に限定はなく、プラ
ズマ溶射法、フレーム溶射法、爆発溶射法、線爆溶射法
など種々の手法が挙げられる。これらの手法は、公知技
術なので詳細な説明は行わないが、例えば、プラズマ溶
射法は、数十μmの粉末原料を直流アークプラズマジェ
ット中に投入し、プラズマの熱で粉末を瞬時に溶融させ
るとともに、高速のガスジェットにより加速して被覆対
象物に吹き付け、その表面で凝固・堆積させることによ
り皮膜を形成させる方法である。この方法は、溶射材料
として粉末(本発明では、母相原料となる)を用いるた
め、CVD法、PVD法などに比して、著しく高速での成膜が
可能であり、セラミックスのコーティングで広く用いら
れている技術である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a thermal spraying method for forming a ceramic matrix is not particularly limited, and various methods such as a plasma spraying method, a flame spraying method, an explosive spraying method, and a line explosive spraying method are exemplified. Can be These methods are well-known techniques and will not be described in detail.For example, in the plasma spraying method, a powder material of several tens of μm is charged into a DC arc plasma jet, and the powder is instantaneously melted by the heat of the plasma. This is a method in which a coating is formed by accelerating and spraying the object to be coated with a high-speed gas jet and solidifying and depositing on the surface. This method uses powder (which is used as a matrix material in the present invention) as a thermal spraying material, so it can form a film at a significantly higher speed than CVD, PVD, etc. This is the technology used.

【0013】プラズマ溶射法の実施時には、セラミック
ス粉末は、溶融状態まで加熱され、非常な高温状態とな
るが、個々の粒子が微細であって熱容量が小さいので、
強化用繊維上への堆積時には急冷され、繊維にはほとん
ど熱損傷を与えない。
[0013] When the plasma spraying method is carried out, the ceramic powder is heated to a molten state and brought to a very high temperature state. However, since the individual particles are fine and the heat capacity is small,
It is quenched during deposition on the reinforcing fibers and causes little thermal damage to the fibers.

【0014】他の溶射法により母相セラミックスを形成
する場合もほぼ同様であるが、それぞれの手法に応じて
および/または形成すべきセラミックス材料の種類に応
じて、原料粉末の最適な粒径を選択し、必要ならば線状
もしくは棒状原料を使用し、溶射条件を最適化するなど
の条件調整を行えばよい。この様な選択および調整は、
当業者が適宜なし得るところである。
The same applies to the case of forming a matrix ceramic by another spraying method, but the optimum particle size of the raw material powder is determined according to each method and / or the type of ceramic material to be formed. Selection and, if necessary, adjustment of conditions such as optimizing thermal spraying conditions using a linear or rod-shaped raw material may be performed. Such choices and adjustments
Those skilled in the art can appropriately do so.

【0015】複合材料において母相を形成すべきセラミ
ック材料は、特に限定されない。例えば、酸化物系材料
として、アルミナ、ジルコニア、チタニア、マグネシア
などの単一金属の酸化物;スピネル、ムライト、ジルコ
ンなどの複金属酸化物;硼珪酸ガラス,石英ガラスなど
酸化物系ガラスなどが使用できる。また、炭化クロム、
炭化タングステン、硼化ジルコニウム、硼化チタンなど
の非酸化物系材料も、使用可能である。
The ceramic material for forming the matrix in the composite material is not particularly limited. For example, as the oxide material, an oxide of a single metal such as alumina, zirconia, titania, and magnesia; a double metal oxide such as spinel, mullite, and zircon; and an oxide glass such as borosilicate glass and quartz glass are used. it can. Also, chromium carbide,
Non-oxide materials such as tungsten carbide, zirconium boride, titanium boride and the like can also be used.

【0016】強化用繊維としても、特に限定はなく、例
えば、炭素繊維;炭化ケイ素、アルミナ、ジルコニア、
SiTiCOなどのセラミックス系繊維;モリブデン、タンタ
ル、インコネルなどの金属系繊維などが使用できる。
The reinforcing fibers are not particularly limited, and include, for example, carbon fibers; silicon carbide, alumina, zirconia,
Ceramic fibers such as SiTiCO; metal fibers such as molybdenum, tantalum, and inconel can be used.

【0017】また、繊維の形状、寸法なども、長繊維で
あって、複合材料を所定の方向に貫通する長さを有し、
適当な間隔で配置する手段が適用できるものであれば、
特に限定されず、1軸1次元、2軸以上の多軸2次元配
向繊維であれば良い。より具体的には、モノフィラメン
ト、ヤーン、2次元編織物、不織布などが使用可能であ
る。
The shape and size of the fibers are also long fibers, and have a length that penetrates the composite material in a predetermined direction.
If the means for arranging at appropriate intervals can be applied,
There is no particular limitation, as long as it is a uniaxial one-dimensional, two- or more-axial multiaxial two-dimensional oriented fiber. More specifically, a monofilament, a yarn, a two-dimensional knitted fabric, a nonwoven fabric, or the like can be used.

【0018】本発明方法においては、通常、母相材料と
ほぼ熱膨張率の等しい金属基材(平板、平板を角柱状に
組み上げたもの、パイプなど)上に以下の順序で複合材
料を形成する。母相材料の種類に応じて選択される金属
基材としては、普通鋼、ステンレス鋼、インバー合金な
どが例示される。
In the method of the present invention, a composite material is usually formed on a metal substrate (a flat plate, a flat plate assembled into a prismatic shape, a pipe, etc.) having substantially the same coefficient of thermal expansion as the matrix material in the following order. . Examples of the metal base material selected according to the type of the matrix material include ordinary steel, stainless steel, and Invar alloy.

【0019】(1)必要ならば内側仕上げ研磨しろを考慮
して、溶射法により基材上に所定の厚さの母相セラミッ
ク層を形成する。
(1) If necessary, a matrix ceramic layer having a predetermined thickness is formed on a base material by a thermal spraying method in consideration of an inner finish polishing margin.

【0020】(2)上記で形成した母相セラミック層上
に、所定の間隔でテンションを掛けながら強化用繊維を
配置し、固定する(基材が角柱状或いはパイプ状の場合
には、巻き付けが有効である)。
(2) The reinforcing fibers are arranged and fixed on the matrix ceramic layer formed as described above while applying tension at predetermined intervals. (If the base material is in the shape of a prism or a pipe, winding is performed. It is valid).

【0021】(3)上記で形成した強化用繊維層上に、溶
射法により所定の厚さの母相セラミック層を形成する。
(3) A matrix ceramic layer having a predetermined thickness is formed on the reinforcing fiber layer formed above by a thermal spraying method.

【0022】(4)複合体の厚さが所定値に達するまで、
(2)と(3)の操作を交互に適宜回数繰り返す。
(4) Until the thickness of the composite reaches a predetermined value,
The operations (2) and (3) are alternately repeated as appropriate.

【0023】(5)特に最後の溶射操作に際しては、必要
ならば外側仕上げ研磨しろを考慮して、繊維層上に所定
の厚さの母相セラミック層を形成する。
(5) In the final thermal spraying operation, a matrix ceramic layer having a predetermined thickness is formed on the fiber layer in consideration of an outer finish polishing margin, if necessary.

【0024】(6)次いで、機械的もしくは化学的手法に
より、複合体を金属基材から外す。
(6) Next, the composite is removed from the metal substrate by mechanical or chemical means.

【0025】(7)必要ならば、応力の解放、相変態によ
る結晶相の変化、緻密化などのために、複合体の熱処理
を行う。
(7) If necessary, a heat treatment is performed on the composite to release stress, change the crystal phase due to phase transformation, and increase the density.

【0026】(8)必要ならば、内外側の仕上げ研磨を行
い、複合材料を所定寸法に仕上げる。
(8) If necessary, finish polishing the inner and outer surfaces to finish the composite material to predetermined dimensions.

【0027】[0027]

【発明の効果】本発明方法によれば、熱容量の非常に小
さい原料粒子が、急速に凝固して積層することによりマ
トリクスが形成されるため、強化用繊維が熱損傷により
性能劣化することはほとんど無い。
According to the method of the present invention, since the matrix is formed by rapidly solidifying and laminating the raw material particles having a very small heat capacity, the performance of the reinforcing fibers hardly deteriorates due to thermal damage. There is no.

【0028】さらに、必要ならば、形成過程の複合材料
に圧縮空気を吹き付けたり、或いは基材を水冷したりす
ることにより、複合材料の温度を室温近くに維持するこ
とも可能である。この手法によっても、強化用繊維の劣
化を最小に抑えることができるので、強化用繊維本来の
強度、弾性率などの特性を当該複合材料中で十分に発揮
させることが可能となる。
Further, if necessary, the temperature of the composite material can be kept close to room temperature by blowing compressed air on the composite material in the course of forming or by cooling the substrate with water. Even with this method, the deterioration of the reinforcing fiber can be suppressed to a minimum, so that the properties such as the original strength and elastic modulus of the reinforcing fiber can be sufficiently exhibited in the composite material.

【0029】また、本発明方法によれば、通常の溶射の
場合と同様に、粉末の投入量、溶射ガンの移動速度、溶
射繰り返し回数などの調整により、強化繊維層間の母相
セラミック層の厚みを比較的容易に制御できるので、複
合材料中の繊維含有率をコントロールすることも容易で
ある。
According to the method of the present invention, the thickness of the matrix ceramic layer between the reinforcing fiber layers is adjusted by adjusting the amount of powder charged, the moving speed of the thermal spray gun, the number of times of thermal spraying, and the like, as in the case of normal thermal spraying. Can be controlled relatively easily, so that the fiber content in the composite material can be easily controlled.

【0030】さらにまた、本発明方法では、電気炉の内
容積などによる制限を受けないので、作成する複合材料
には、寸法上の制約がほとんどない。
Furthermore, in the method of the present invention, since there is no limitation due to the inner volume of the electric furnace, the composite material to be produced has almost no dimensional restrictions.

【0031】さらに、本発明方法では、焼結法による場
合とは異なって、製造過程での複合体の体積収縮がほと
んどないため、必要な寸法の複合体が高精度で得られ
る。
Further, in the method of the present invention, unlike in the case of the sintering method, since the volume shrinkage of the composite during the manufacturing process is almost nil, the composite having the required dimensions can be obtained with high precision.

【0032】[0032]

【実施例】以下に、実施例を示し、本発明の特徴とする
ところを一層明確にする。
The following examples are provided to further clarify the features of the present invention.

【0033】実施例1 40mm×40mm×3mmの一般構造用鋼(SS400)の平板6枚を六
角柱状に組み、これを基材としてプラズマ溶射成形法に
よる複合材料の作製を行った。強化用繊維として炭化ケ
イ素繊維を使用し、母相セラミック材料として平均粒径
20μmの溶射用アルミナ粉末を用いた。
EXAMPLE 1 Six flat plates of 40 mm × 40 mm × 3 mm general structural steel (SS400) were assembled in a hexagonal column shape, and a composite material was produced by plasma spray molding using this as a base material. Silicon carbide fiber is used as the reinforcing fiber, and the average particle size is used as the matrix ceramic material.
20 μm alumina powder for thermal spraying was used.

【0034】基材外表面上に母相セラミック層を約400
μm溶射し、その上に繊維(直径15μm)を約250本撚り合
わせた束(長さ5m)を2mm間隔で巻き付け、その上にまた
母相セラミック層を溶射するという過程を5回繰り返し
た。
On the outer surface of the substrate, a matrix ceramic layer of about 400
The process of spraying μm, and winding a bundle (length 5 m) of about 250 fibers (diameter 15 μm) twisted at intervals of 2 mm thereon, and spraying the matrix ceramic layer again thereon was repeated five times.

【0035】次いで、得られた複合材料を6枚の板に切
り離し、基材上の複合材料を塩酸に浸し、基材を溶解す
ることにより、5層の繊維層と6層の母相セラミック層
とを含む厚さ約3mmの複合体板6枚を作製した。
Next, the obtained composite material is cut into six plates, the composite material on the base material is immersed in hydrochloric acid, and the base material is dissolved to obtain five fiber layers and six matrix ceramic layers. And 6 composite plates each having a thickness of about 3 mm were prepared.

【0036】次いで、得られた複合体板の繊維長手方向
に試験片を切り出し、JIS R1601に準じた3点曲げ強度
試験、SENB(Single Edged Notched Bend Beam)法による
破壊靱性および破壊エネルギーの測定を行い、複合体の
物性を評価した。結果を表1に示す。また、曲げ試験に
おける当該複合材料の加重−変位線図を図1に示す。
Next, a test piece was cut out in the fiber longitudinal direction of the obtained composite plate, and a three-point bending strength test according to JIS R1601 and measurement of fracture toughness and fracture energy by SENB (Single Edged Notched Bend Beam) method were performed. Then, the physical properties of the composite were evaluated. Table 1 shows the results. FIG. 1 shows a load-displacement diagram of the composite material in the bending test.

【0037】比較例1 実施例1と同様の基材上に厚さ約3mmのアルミナ溶射膜
を作製し、実施例1と同様の方法で曲げ強度、破壊靱性
値および破壊エネルギーを測定した。結果を表1に併せ
て示す。また、曲げ試験における当該材料の加重−変位
線図を図1に併せて示す。
Comparative Example 1 A sprayed alumina film having a thickness of about 3 mm was formed on the same base material as in Example 1, and the bending strength, fracture toughness and fracture energy were measured in the same manner as in Example 1. The results are shown in Table 1. FIG. 1 also shows a load-displacement diagram of the material in the bending test.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示す結果は、本発明による複合体で
は、他の特性はほとんど変わらず、破壊エネルギーだけ
が約70倍にも向上し、脆性的な破壊が抑えられている
ことを示している。これは、強化用繊維にダメージを与
えることなく、複合体が形成されていることを裏付けて
いる。
The results shown in Table 1 show that in the composite according to the present invention, the other properties are almost unchanged, only the fracture energy is increased by about 70 times, and the brittle fracture is suppressed. I have. This confirms that the composite is formed without damaging the reinforcing fibers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例1で得られた複合材料の
加重−変位線図を示すグラフである。
FIG. 1 is a graph showing a weight-displacement diagram of the composite materials obtained in Example 1 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 雅人 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 近藤 功 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Suzuki 1-81-31 Midorioka, Ikeda-shi, Osaka Inside the Industrial Technology Research Institute Osaka Institute of Technology (72) Inventor Isao Kondo 1--8-3 Midorioka, Ikeda-shi, Osaka No. 31 in Osaka Institute of Technology

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】強化用繊維とセラミックス母相とからなる
繊維強化セラミックス基複合材料の製造方法において、
セラミックス母相を溶射法により生成することを特徴と
する複合材料の製造方法。
1. A method for producing a fiber-reinforced ceramic matrix composite comprising a reinforcing fiber and a ceramic matrix,
A method for producing a composite material, wherein a ceramic matrix is formed by a thermal spraying method.
【請求項2】セラミックス母相が酸化物セラミックスで
ある請求項1に記載の複合材料の製造方法。
2. The method according to claim 1, wherein the ceramic matrix is an oxide ceramic.
【請求項3】強化用繊維が炭素繊維、セラミックス繊維
および金属繊維の少なくとも1種である請求項1または
2に記載の複合材料の製造方法。
3. The method according to claim 1, wherein the reinforcing fiber is at least one of carbon fiber, ceramic fiber and metal fiber.
【請求項4】強化用繊維が1軸1次元或いは2軸以上の
多軸2次元配向している請求項1、2および3のいずれ
かに記載の複合材料の製造方法。
4. The method for producing a composite material according to claim 1, wherein the reinforcing fibers are oriented uniaxially one-dimensionally or multiaxially two-dimensionally with two or more axes.
【請求項5】母相セラミックスを成形する溶射法とし
て、プラズマ溶射、ガス燃焼フレーム溶射、高速フレー
ム溶射、爆発溶射および線爆溶射のいずれか1種を用い
る請求項1〜4のいずれかに記載の複合材料の製造方
法。
5. The method according to claim 1, wherein any one of plasma spraying, gas-fired flame spraying, high-speed flame spraying, explosive spraying and linear explosion spraying is used as the spraying method for forming the matrix ceramic. Of manufacturing a composite material.
JP10034269A 1998-01-30 1998-01-30 Method for producing fiber-reinforced ceramic matrix composite Expired - Lifetime JP2876529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10034269A JP2876529B1 (en) 1998-01-30 1998-01-30 Method for producing fiber-reinforced ceramic matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10034269A JP2876529B1 (en) 1998-01-30 1998-01-30 Method for producing fiber-reinforced ceramic matrix composite

Publications (2)

Publication Number Publication Date
JP2876529B1 JP2876529B1 (en) 1999-03-31
JPH11217273A true JPH11217273A (en) 1999-08-10

Family

ID=12409453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10034269A Expired - Lifetime JP2876529B1 (en) 1998-01-30 1998-01-30 Method for producing fiber-reinforced ceramic matrix composite

Country Status (1)

Country Link
JP (1) JP2876529B1 (en)

Also Published As

Publication number Publication date
JP2876529B1 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
Partridge et al. Processing of advanced continuous fibre composites: Current practice and potential developments
US5565052A (en) Method for the production of a reflector
Chawla et al. Ceramic matrix composites
Naslain Materials design and processing of high temperature ceramic matrix composites: state of the art and future trends
Bolelli et al. Plasma-sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties
US5427823A (en) Laser densification of glass ceramic coatings on carbon-carbon composite materials
Chawla et al. Ceramic matrix composites
Bai et al. Strong and tough ZrB2 materials using a heterogeneous ceramic–metal layered architecture
US5156725A (en) Method for producing metal carbide or carbonitride coating on ceramic substrate
Singh et al. Nanostructured component fabrication by electron beam-physical vapor deposition
JP2876529B1 (en) Method for producing fiber-reinforced ceramic matrix composite
Shanmugham et al. Oxidation‐resistant interfacial coatings for continuous fiber ceramic composites
JPH07252662A (en) High purity composite material and production thereof
EP0419151B1 (en) Sintered ceramic composite body and method of manufacturing same
US5281559A (en) Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite
JP3600642B2 (en) Reflector and method of manufacturing the same
Desu et al. High-temperature sapphire optical sensor fiber coatings
JP2754042B2 (en) Composite mold for optical component molding and method for producing the same
US5695830A (en) Process for improving the oxidative stability of a composite material having a fibrous reinforcement and a glass, glass-ceramic or ceramic matrix
US5171458A (en) Hot forming mold and method of manufacturing the same
Tobin et al. Focused Ion Beam-Prepared Transmission Electron Microscopy Examination of Atmospheric Chemical Vapor-Infiltrated Silicon Carbide Morphology
Miller et al. Fiber coatings and the fracture behavior of a continuous fiber ceramic composite
Shojaie-bahaabad et al. Ultra high temperature ceramic coatings in thermal protection systems (TPS)
JP3258843B2 (en) Ceramic composite material
CN114956869B (en) Preparation method of ceramic-based thermocouple protective sleeve with adjustable coating layer number

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term