JPH1121690A - Method for refining metallic uranium - Google Patents

Method for refining metallic uranium

Info

Publication number
JPH1121690A
JPH1121690A JP18086197A JP18086197A JPH1121690A JP H1121690 A JPH1121690 A JP H1121690A JP 18086197 A JP18086197 A JP 18086197A JP 18086197 A JP18086197 A JP 18086197A JP H1121690 A JPH1121690 A JP H1121690A
Authority
JP
Japan
Prior art keywords
uranium
molten salt
lif
molten
naf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18086197A
Other languages
Japanese (ja)
Inventor
Hiroshi Takazawa
寛 高澤
Kazuaki Ota
和明 太田
Naoki Teramae
直樹 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP18086197A priority Critical patent/JPH1121690A/en
Publication of JPH1121690A publication Critical patent/JPH1121690A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a radioactive waste liq. or waste solvent by eliminating the need for water and org. solvent and to reduce the refining cost by simplifying the refining process. SOLUTION: An anode and a cathode are provided in a fluoride molten salt in which the impurity elements and uranium in an electrolytic cell are dissolved, a voltage is impressed between the anode and cathode to electrolyze the molten salt, and the uranium dissolved in the molten salt is deposited on the anode surface. The voltage is controlled in two stages to electrolyze the molten salt, the impurity elements are recovered in the first stage, then the cathodes are exchanged, and metallic uranium is recovered in the second stage. The molten salt is preferably selected from the binary molten salts of LiF-NaF, LiF-KF, LIF-BEF2 , NaF-BeF2 and KF-BeF2 and the ternary molten salts of LiF-NaF-KF, LiF-NaF-BeF2 , NaF-KF-BeF2 , LiF-NaF-CaF2 and LiF-KF-BaF2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属ウラン製造施
設及び加工施設において発生する不純物元素を含む金属
ウランの精製方法に関するものである。
The present invention relates to a method for purifying metallic uranium containing impurity elements generated in a metallic uranium production facility and a processing facility.

【0002】[0002]

【従来の技術】金属ウラン製造施設及び加工施設では、
金属ウランの加工、切断、切削等に伴い、スクラップウ
ランが発生する。このスクラップウランには加工の工程
で不純物が含まれる。従来このスクラップウランは硝酸
に溶解され、トリブチルリン酸(TBP)を用いた溶媒
抽出法により不純物元素を含む金属ウランからウラン元
素を分離精製して精製金属ウランとしている。即ち、従
来の溶媒抽出法では、図5に示すように、スクラップウ
ランを硝酸に溶解して不純物元素を含む硝酸ウラニル溶
液にした後、溶媒を用いて溶媒抽出処理を行い、精製硝
酸ウラニル溶液と不純物元素を分離する。硝酸ウラニル
溶液はその後脱硝及び還元の処理が行われて精製二酸化
ウランとした後、フッ化水素処理により精製四フッ化ウ
ランに転換される。この精製四フッ化ウランは更にMg
によるテルミット還元法により金属加熱還元処理されて
精製金属ウランを得るようになっている。
2. Description of the Related Art In a metal uranium manufacturing facility and a processing facility,
Scrap uranium is generated with the processing, cutting, cutting, and the like of metal uranium. This scrap uranium contains impurities in the processing step. Conventionally, this scrap uranium is dissolved in nitric acid, and the uranium element is separated and purified from metal uranium containing impurity elements by a solvent extraction method using tributylphosphoric acid (TBP) to obtain purified metal uranium. That is, in the conventional solvent extraction method, as shown in FIG. 5, after scrap uranium is dissolved in nitric acid to form a uranyl nitrate solution containing an impurity element, a solvent extraction treatment is performed using a solvent, and a purified uranyl nitrate solution is obtained. Separate impurity elements. The uranyl nitrate solution is then subjected to denitration and reduction to obtain purified uranium dioxide, and then converted to purified uranium tetrafluoride by a hydrogen fluoride treatment. This purified uranium tetrafluoride further contains Mg
And a reduction treatment with a metal by thermite reduction method to obtain purified uranium metal.

【0003】[0003]

【発明が解決しようとする課題】しかし従来の溶媒抽出
方法ではいずれもウランを含んだ硝酸塩を水で適切に希
釈した後、溶媒などの液体と作用させる必要があり、従
ってこれに伴う放射性廃液、又は廃溶媒が発生し、これ
らの放射性廃液又は廃溶媒を処理する蒸発濃縮及び固化
等の工程が必要となる問題点がある。本発明の目的は、
水や有機溶媒を不要にして放射性廃液又は廃溶媒を発生
させず、精製工程を簡素化して精製費用を低減する金属
ウランの精製方法を提供することにある。
However, in any of the conventional solvent extraction methods, it is necessary to appropriately dilute uranium-containing nitrate with water and then to react with a liquid such as a solvent. Alternatively, there is a problem that a waste solvent is generated, and steps such as evaporation, concentration, and solidification for treating the radioactive waste liquid or the waste solvent are required. The purpose of the present invention is
An object of the present invention is to provide a method for purifying metallic uranium, which does not require water or an organic solvent, does not generate a radioactive waste liquid or a waste solvent, simplifies a purification step, and reduces purification costs.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1、図3及び図4に示すように、電解槽11の内部の
不純物元素とウランが溶解されたフッ化物溶融塩13中
に陽極17a,17bと陰極16,18とを備え、陽極
17a,17bと陰極16,18間に電圧を印加して溶
融塩電解することにより溶融塩13中に溶解したウラン
を陰極17表面に析出させる金属ウランの精製方法の改
良である。その特徴ある構成は、電圧を2段階に制御し
て溶融塩電解を行い、図3に示すように、第1段階の溶
融塩電解により陰極16に不純物元素を回収した後、図
4に示すように、陰極16を別の陰極18に交換して第
2段階の溶融塩電解によりその別の陰極18に金属ウラ
ンを回収するところにある。水や有機溶媒を使用するこ
となく、溶融塩電解によりウランを陰極表面に析出させ
る。第1段階の溶融塩電解により陰極16に不純物元素
を回収した後、第2段階の溶融塩電解により交換した陰
極18に金属ウランを回収する。これにより溶媒抽出法
に比較して精製工程を簡素化することができる。
The invention according to claim 1 is
As shown in FIGS. 1, 3 and 4, anodes 17 a and 17 b and cathodes 16 and 18 are provided in a molten fluoride 13 in which an impurity element and uranium in an electrolytic cell 11 are dissolved. This is an improvement in a method for purifying metallic uranium in which uranium dissolved in the molten salt 13 is precipitated on the surface of the cathode 17 by applying a voltage between the cathode 17b and the cathodes 16 and 18 to perform electrolysis of the molten salt. The characteristic configuration is that the molten salt electrolysis is performed by controlling the voltage in two stages, and as shown in FIG. 3, after the impurity element is recovered in the cathode 16 by the first stage molten salt electrolysis, as shown in FIG. Then, the cathode 16 is replaced with another cathode 18 and the metal uranium is recovered in the other cathode 18 by the second stage molten salt electrolysis. Uranium is deposited on the cathode surface by molten salt electrolysis without using water or an organic solvent. After recovering the impurity element to the cathode 16 by the molten salt electrolysis in the first stage, metallic uranium is recovered to the cathode 18 exchanged by the molten salt electrolysis in the second stage. Thereby, the purification step can be simplified as compared with the solvent extraction method.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、図1及び図2に示すように不純物元素を含
む金属ウラン12をバスケット14に装荷して電解槽1
1の内部のフッ化物溶融塩13に浸漬することにより不
純物元素を含む金属ウラン12をフッ化物溶融塩13に
溶解させる金属ウランの精製方法である。請求項3に係
る発明は、請求項2に係る発明であって、バスケット1
4をフッ化物溶融塩13に浸漬時にフッ化物溶融塩13
中にフッ素ガスを吹込んで不純物元素を含む金属ウラン
12の溶解を促進する金属ウランの精製方法である。不
純物元素を含む金属ウラン12をバスケット14に装荷
してフッ化物溶融塩13に浸漬して溶解させることによ
り、金属ウラン12をフッ化物溶融塩13に容易かつ安
全に溶解させることができ、フッ化物溶融塩13中にフ
ッ素ガスを吹込めば、金属ウラン12の溶解を促進させ
ることができる。
The invention according to claim 2 is the invention according to claim 1, wherein a metal uranium 12 containing an impurity element is loaded in a basket 14 as shown in FIGS.
This is a method for purifying metal uranium in which the metal uranium 12 containing an impurity element is dissolved in the fluoride molten salt 13 by dipping in the fluoride molten salt 13 inside 1. The invention according to claim 3 is the invention according to claim 2, wherein the basket 1
4 is immersed in the molten fluoride 13
This is a method for purifying metal uranium in which fluorine gas is blown into the metal uranium to promote the dissolution of metal uranium 12 containing an impurity element. By loading the metal uranium 12 containing the impurity element into the basket 14 and immersing and dissolving it in the fluoride molten salt 13, the metal uranium 12 can be easily and safely dissolved in the fluoride molten salt 13. If fluorine gas is blown into the molten salt 13, dissolution of the metal uranium 12 can be promoted.

【0006】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、フッ化物溶融塩13がL
iF−NaF,LiF−KF,LiF−BeF2,Na
F−BeF2,KF−BeF2の二元系溶融塩及びLiF
−NaF−KF,LiF−NaF−BeF2,NaF−
KF−BeF2,LiF−NaF−CaF2,LiF−K
F−BaF2の三元系溶融塩から選ばれたいずれかの溶
融塩である金属ウランの精製方法である。フッ化物溶融
塩13が上述したいずれかの溶融塩であることにより、
溶融塩の融点を下げることができ、金属ウラン精製にお
ける操業温度を比較的低くすることができる。具体的
に、上述した溶融塩における好ましい組成比及びその組
成における融点の一例を表1に記載する。
[0006] The invention according to claim 4 is the invention according to claims 1 to 3.
The invention according to any one of the above, wherein the molten fluoride salt 13 is L
iF-NaF, LiF-KF, LiF-BeF 2, Na
F-BeF 2, KF-BeF 2 binary molten salts and LiF
-NaF-KF, LiF-NaF- BeF 2, NaF-
KF-BeF 2, LiF-NaF -CaF 2, LiF-K
Selected from ternary molten salt F-BaF 2 is a method for purifying a uranium metal is any molten salt. By the fluoride molten salt 13 being any of the molten salts described above,
The melting point of the molten salt can be lowered, and the operating temperature in uranium metal purification can be relatively low. Specifically, Table 1 shows an example of a preferable composition ratio in the above-described molten salt and an example of a melting point in the composition.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1及び図2に示すように、黒鉛製
の電解槽11の内部には不純物元素とウランが溶解され
たフッ化物溶融塩13が貯留される。図示しないが、電
解槽11の外側には槽内を所定の温度に加熱維持するた
めの加熱コイルが設けられる。フッ化物溶融塩13は電
解槽11に装荷され、図示しない加熱コイルにより、少
なくともフッ化物溶融塩の融点以上金属ウランの融点以
下に昇温されて溶融される。不純物元素を含むウラン金
属であるスクラップ金属ウラン12のフッ化物溶融塩1
3への溶解は、このスクラップ金属ウラン12を黒鉛製
のバスケット14に装荷して電解槽11の内部のフッ化
物溶融塩13に浸漬することにより行われる。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIGS. 1 and 2, a fluoride molten salt 13 in which an impurity element and uranium are dissolved is stored in an electrolytic cell 11 made of graphite. Although not shown, a heating coil for heating and maintaining the inside of the tank at a predetermined temperature is provided outside the electrolytic tank 11. The molten fluoride salt 13 is loaded into the electrolytic cell 11 and heated by a heating coil (not shown) to at least the melting point of the molten fluoride salt and not more than the melting point of metallic uranium to be melted. Fluoride molten salt of scrap metal uranium 12 which is uranium metal containing impurity element 1
Dissolution into 3 is carried out by loading the scrap metal uranium 12 into a graphite basket 14 and immersing it in a molten fluoride salt 13 inside the electrolytic cell 11.

【0009】なお、スクラップ金属ウラン12の溶解時
における電解槽11には別途ガス導入管15が設けられ
る。ガス導入管15は電解槽11の上方から下方に伸び
て下部がフッ化物溶融塩13中に設けられる。このガス
導入管15の下部は、電解槽11の底部に沿うように折
曲り、その折曲げられた箇所にガス噴出部15aが設け
られる。図2の矢印で示すように、バスケット14をフ
ッ化物溶融塩13に浸漬する際にガス導入管15にフッ
素ガスが供給され、フッ素ガスはガス噴出部15aから
吹出されてバスケット14内の不純物元素を含むスクラ
ップ金属ウラン12の溶解を促進するようになってい
る。
In addition, a gas introduction pipe 15 is separately provided in the electrolytic cell 11 when the scrap metal uranium 12 is dissolved. The gas introduction pipe 15 extends downward from above the electrolytic cell 11 and the lower part is provided in the fluoride molten salt 13. The lower part of the gas introduction pipe 15 is bent along the bottom of the electrolytic cell 11, and a gas ejection part 15a is provided at the bent part. As shown by the arrows in FIG. 2, when the basket 14 is immersed in the molten fluoride salt 13, fluorine gas is supplied to the gas introduction pipe 15, and the fluorine gas is blown out from the gas jetting portion 15 a to cause the impurity element in the basket 14. To promote the dissolution of scrap metal uranium 12 containing

【0010】スクラップ金属ウラン12がフッ化物溶融
塩13に溶解されると、バスケット14とガス導入管1
5は電解槽11から取出され、引続いて溶融塩電解が行
われる。溶融塩電解は陽極と陰極間に印加される電圧を
制御することにより2段階に行われる。図1及び図3に
示すように、第1段階の溶融塩電解では不純物元素が回
収される。第1段階の溶融塩電解では黒鉛からなる棒状
の陽極17aと、同じく棒状の黒鉛からなる陰極16が
それぞれフッ化物溶融塩13中に設けられ、この陽極1
7aと陰極16との間に、電解電圧を印加して定電圧電
解を行う。この第1段階における溶融塩電解では陰極1
6表面にフッ化物溶融塩13中に溶解した不純物元素1
6aが回収される。
When the scrap metal uranium 12 is dissolved in the molten fluoride salt 13, the basket 14 and the gas introduction pipe 1
5 is taken out of the electrolytic cell 11, and subsequently, molten salt electrolysis is performed. Molten salt electrolysis is performed in two stages by controlling the voltage applied between the anode and the cathode. As shown in FIGS. 1 and 3, impurity elements are recovered in the first stage of molten salt electrolysis. In the molten salt electrolysis of the first stage, a rod-shaped anode 17a made of graphite and a cathode 16 also made of graphite are provided in the fluoride molten salt 13, respectively.
Electrolysis voltage is applied between 7a and the cathode 16 to perform constant voltage electrolysis. In the molten salt electrolysis in the first stage, the cathode 1
6 Impurity element 1 dissolved in fluoride molten salt 13 on the surface
6a is collected.

【0011】不純物元素16aを回収した後には第2段
階の溶融塩電解が行われる。図1及び図4に示すよう
に、この第2段階の溶融塩電解は不純物元素16aが表
面に析出した陰極16を新たな棒状のウラン金属からな
る陰極18に交換した後に行われ、新たな陰極18表面
上に固体状の金属ウラン18aを析出させる。なお、こ
の第2段階の溶融塩電解では第1段階における陰極16
を新たな陰極18に交換する際に陽極17aも溶融塩1
3中から引上げ、黒鉛製の新たな棒状陽極17bと交換
することが好ましい。第2段階の溶融塩電解では電解温
度が第1段階の溶融塩電解と同じであり、金属ウランの
融点以下であるために、金属ウラン18aは交換された
新たな陰極18の表面に固体状で回収される。
After recovering the impurity element 16a, a second stage of molten salt electrolysis is performed. As shown in FIGS. 1 and 4, the molten salt electrolysis in the second stage is performed after replacing the cathode 16 having the impurity element 16a deposited on the surface with a new rod-shaped cathode 18 made of uranium metal. A solid metal uranium 18a is deposited on the surface of the substrate. In the second stage of molten salt electrolysis, the cathode 16 in the first stage is used.
When the anode 17a is replaced with a new cathode 18, the molten salt 1
It is preferable to pull up from 3 and replace it with a new rod-shaped anode 17b made of graphite. In the second stage of molten salt electrolysis, the electrolysis temperature is the same as that of the first stage of molten salt electrolysis, and is equal to or lower than the melting point of metallic uranium. Collected.

【0012】第2段階の溶融塩電解終了後、新たな陰極
18に電解析出させた金属ウラン18aは、この陰極1
8を槽から取出して陰極表面から機械的に剥がし取る。
このようにして得られた金属ウランには支持塩成分が付
着しているので、これらのフッ化物塩を取除くために真
空雰囲気中で800℃まで加熱する。これによってフッ
化物塩は蒸発し、高純度の金属ウランが得られる。この
高純度の金属ウランはAr雰囲気中でウランの融点(1
132℃)以上の温度まで加熱し、溶融鋳造することに
よって、高純度の金属ウランインゴットを得ることがで
きる。
After completion of the molten salt electrolysis in the second stage, metal uranium 18a electrolytically deposited on a new cathode 18
8 is removed from the bath and mechanically peeled off the cathode surface.
Since the supporting salt component is attached to the uranium metal thus obtained, the metal uranium is heated to 800 ° C. in a vacuum atmosphere to remove these fluoride salts. As a result, the fluoride salt evaporates, and high-purity metallic uranium is obtained. This high-purity metallic uranium has a melting point of uranium (1
By heating to a temperature of 132 ° C. or higher and performing melt casting, a high-purity metal uranium ingot can be obtained.

【0013】なお、第1段階の溶融塩電解における陽極
17aと陰極16間に印加される電圧及び第2段階の溶
融塩電解における陽極17bと陰極18間に印加される
電圧は溶融塩の組成、溶融温度、電極材料の抵抗等の電
解条件により異なるが、溶融塩電解における金属の析出
の難易度では、不純物元素が最も析出しやすく、次にウ
ランが析出し、溶融塩構成元素が最も析出し難い金属で
ある。従って、本発明の第1段階の溶融塩電解における
電圧は、不純物元素は析出するがウランは析出しない電
圧であり、第2段階の溶融塩電解における電圧は、ウラ
ンは析出するが溶融塩構成元素は析出しない電圧であ
る。このそれぞれの電圧は溶融塩の組成、溶融温度、電
極材料の抵抗等の電解条件によりそれぞれ定められる。
The voltage applied between the anode 17a and the cathode 16 in the first stage molten salt electrolysis and the voltage applied between the anode 17b and the cathode 18 in the second stage molten salt electrolysis are the composition of the molten salt, Depending on the electrolysis conditions such as the melting temperature and the resistance of the electrode material, the degree of difficulty of metal precipitation in molten salt electrolysis is such that impurity elements are most likely to precipitate, then uranium is precipitated, and molten salt constituent elements are most likely to precipitate. It is a difficult metal. Therefore, the voltage in the molten salt electrolysis in the first stage of the present invention is a voltage at which the impurity element is precipitated but uranium is not precipitated, and the voltage in the molten salt electrolysis in the second stage is that the uranium is precipitated but the molten salt constituent element Is the voltage at which no deposition occurs. The respective voltages are determined by the electrolytic conditions such as the composition of the molten salt, the melting temperature, and the resistance of the electrode material.

【0014】[0014]

【実施例】次に、本発明の実施例を説明する。図2に示
すように、先ず、黒鉛製電解槽11にLiFを142.
3g、NaFを59.1g及びKFを298.6g入
れ、図示しない加熱コイルにより昇温して温度500℃
において溶融させた。一方、バスケット14中に不純物
元素を含む金属ウラン(スクラップウラン)を100g
供給し、溶融したLiF、NaF及びKFにこのバスケ
ット14を浸漬させた。バスケット14をフッ化物溶融
塩13に浸漬する際にガス導入管15の上端からフッ素
ガスを供給してバスケット14の下方から吹出させてス
クラップ金属ウラン12の溶解を促進させた。図3に示
すように、この溶融塩に直径20mmの丸棒状の黒鉛製
陰極16と陽極17aとをそれぞれ60mm浸漬させて
第1段階の溶融塩電解を行った。この溶融塩電解は、フ
ッ化物溶融塩13を撹拌しながら電解電圧3.5Vにて
定電圧電解を2時間行い陰極16の表面に不純物16a
を析出させた。
Next, embodiments of the present invention will be described. As shown in FIG. 2, first, LiF was placed in a graphite electrolytic cell 11.
3 g, 59.1 g of NaF and 298.6 g of KF, and the temperature was raised by a heating coil (not shown) to a temperature of 500 ° C.
Was melted. On the other hand, 100 g of metallic uranium (scrap uranium) containing impurity elements in the basket 14
The basket 14 was immersed in the supplied and molten LiF, NaF and KF. When the basket 14 was immersed in the molten fluoride salt 13, fluorine gas was supplied from the upper end of the gas introduction pipe 15 and blown out from below the basket 14 to promote the dissolution of the scrap metal uranium 12. As shown in FIG. 3, a graphite rod 16 and an anode 17 a each having a round bar shape having a diameter of 20 mm were immersed in the molten salt by 60 mm, respectively, to perform a first-stage molten salt electrolysis. In this molten salt electrolysis, constant voltage electrolysis is performed at an electrolysis voltage of 3.5 V for 2 hours while stirring the fluoride molten salt 13, and impurities 16 a are formed on the surface of the cathode 16.
Was precipitated.

【0015】次に図4に示すように、陰極16及び陽極
17aを棒状のウラン金属からなる陰極18及び黒鉛か
らなる陽極17bにそれぞれ交換した後、第2段階の溶
融塩電解を行った。第2段階の溶融塩電解は、フッ化物
溶融塩13を撹拌しながら電解電圧8.0Vにて定電圧
電解を3時間行い、陰極18の表面に金属ウラン18a
を析出させた。陰極18の表面に析出させた金属ウラン
18aは、第2段階の溶融塩電解終了後、陰極18を槽
から取出して陰極表面から機械的に剥がし取った。剥が
し取った金属ウランを真空雰囲気中で800℃で加熱
し、付着していたフッ化物塩を蒸発させ、高純度の金属
ウランを得た。
Next, as shown in FIG. 4, the cathode 16 and the anode 17a were replaced with a rod-shaped cathode 18 made of uranium metal and an anode 17b made of graphite, respectively, and a second stage of molten salt electrolysis was performed. In the second stage of molten salt electrolysis, constant voltage electrolysis is performed at an electrolysis voltage of 8.0 V for 3 hours while stirring the fluoride molten salt 13, and metal uranium 18 a is formed on the surface of the cathode 18.
Was precipitated. The metal uranium 18a deposited on the surface of the cathode 18 was removed from the bath after the completion of the second-stage molten salt electrolysis, and was mechanically peeled off from the cathode surface. The peeled metal uranium was heated at 800 ° C. in a vacuum atmosphere to evaporate the attached fluoride salt, thereby obtaining high-purity metal uranium.

【0016】<評価及び考察>当初バスケット14中に
供給したスクラップウラン、第1段階の溶融塩電解によ
り陰極16の表面に析出した析出物(第1析出物)、第
2段階の溶融塩電解により得られた高純度の金属ウラ
ン、及び第2段階の溶融塩電解終了後のLiF、NaF
及びKFからなる溶融塩中のそれぞれの不純物濃度をI
CP発光分光分析により測定した。この結果を表2に示
す。
<Evaluation and Discussion> Scrap uranium initially supplied into the basket 14, precipitates deposited on the surface of the cathode 16 by the first stage molten salt electrolysis (first precipitates), and second stage molten salt electrolysis The obtained high-purity metallic uranium, and LiF and NaF after completion of the second-stage molten salt electrolysis
And the concentration of impurities in the molten salt consisting of KF
It was measured by CP emission spectroscopy. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】表2から明らかなように、スクラップウラ
ン中の不純物濃度より第1段階の溶融塩電解により析出
した析出物中の不純物濃度の方が大きい一方、金属ウラ
ン中の不純物濃度が極端に小さいことが判る。このこと
から、スクラップウラン中の不純物は第1段階の溶融塩
電解により回収され、金属ウラン中には移行しないこと
が明らかになった。また、LiF、NaF及びKFから
なる溶融塩中の不純物濃度は大きくても10ppmであ
って、第2段階の溶融塩電解後の溶融塩中には不純物元
素及び金属ウランの双方ともほとんど残存しないことが
判る。従って、有効にスクラップウランから高純度のウ
ラン金属を析出できることが判明した。なお、第2段階
の溶融塩電解により得られた高純度の金属ウランは後に
Ar雰囲気中でウランの融点(1132℃)以上の12
00℃まで加熱し、溶融鋳造することにより高純度の金
属ウランインゴットを得た。
As is clear from Table 2, the impurity concentration in the precipitate deposited by the first stage molten salt electrolysis is higher than the impurity concentration in scrap uranium, while the impurity concentration in metallic uranium is extremely low. You can see that. From this, it became clear that impurities in scrap uranium were recovered by the molten salt electrolysis in the first stage and did not migrate into metallic uranium. Further, the impurity concentration in the molten salt composed of LiF, NaF and KF is at most 10 ppm, and both the impurity element and the metallic uranium hardly remain in the molten salt after the molten salt electrolysis in the second stage. I understand. Therefore, it was found that high-purity uranium metal can be effectively deposited from scrap uranium. The high-purity metallic uranium obtained by the molten salt electrolysis in the second stage is heated to a temperature equal to or higher than the melting point of uranium (1132 ° C.) in an Ar atmosphere.
It was heated to 00 ° C. and melt-cast to obtain a high-purity metal uranium ingot.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、フ
ッ化物溶融塩中の陽極と陰極に電圧を印加して溶融塩電
解することによりウランを陰極表面に析出させるので、
水や有機溶媒を使用することはなく、水や有機溶媒を使
用することに起因する放射性廃液又は廃溶媒を発生させ
ることはない。また、電圧を2段階に制御して溶融塩電
解を行い、第1段階の溶融塩電解により不純物元素を回
収した後、陰極を交換して第2段階の溶融塩電解により
金属ウランを回収するので、従来実施されている溶媒を
使用する溶媒抽出法に比較して精製工程が簡素化され、
スクラップウランから高純度金属ウランを精製する費用
を低減することができる。
As described above, according to the present invention, uranium is deposited on the cathode surface by applying a voltage to the anode and the cathode in the molten fluoride salt and subjecting the molten salt to electrolysis.
No water or organic solvent is used, and no radioactive waste liquid or waste solvent resulting from the use of water or organic solvent is generated. Further, since the molten salt electrolysis is performed by controlling the voltage in two stages, and the impurity element is recovered by the first stage molten salt electrolysis, the cathode is exchanged, and the metal uranium is recovered by the second stage molten salt electrolysis. The purification step is simplified as compared with the solvent extraction method using a solvent conventionally used,
The cost of purifying high-purity metallic uranium from scrap uranium can be reduced.

【0020】また、不純物元素を含む金属ウランをバス
ケットに装荷してフッ化物溶融塩に浸漬して溶解させれ
ば金属ウランをフッ化物溶融塩に容易かつ安全に溶解さ
せることができ、フッ化物溶融塩中にフッ素ガスを吹込
むことにより、金属ウランの溶解を促進させることもで
きる。更に、フッ化物溶融塩をLiF−NaF,LiF
−KF,LiF−BeF2,NaF−BeF2,KF−B
eF2の二元系溶融塩及びLiF−NaF−KF,Li
F−NaF−BeF2,NaF−KF−BeF2,LiF
−NaF−CaF2,LiF−KF−BaF2の三元系溶
融塩から選ばれたいずれかの溶融塩を使用することによ
り、溶融塩の融点を下げることができ、金属ウラン精製
における操業温度を低くすることができる。
Further, by loading metal uranium containing an impurity element into a basket and immersing it in a molten fluoride salt to dissolve it, the metal uranium can be easily and safely dissolved in the molten fluoride salt. By blowing fluorine gas into the salt, the dissolution of metallic uranium can be promoted. Further, the molten fluoride salt is converted to LiF-NaF, LiF
-KF, LiF-BeF 2, NaF -BeF 2, KF-B
eF 2 binary molten salt and LiF—NaF—KF, Li
F-NaF-BeF 2 , NaF-KF-BeF 2 , LiF
By using either of the molten salt selected from -NaF-CaF 2, ternary molten salt LiF-KF-BaF 2, it is possible to lower the melting point of the molten salt, the operating temperature in the metal uranium purification Can be lower.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属ウランの精製方法を説明する工程
図。
FIG. 1 is a process chart illustrating a method for purifying metallic uranium of the present invention.

【図2】不純物元素を含む金属ウランをフッ化物溶融塩
に溶解させる状態を示す電解槽の構成図。
FIG. 2 is a configuration diagram of an electrolytic cell showing a state in which metallic uranium containing an impurity element is dissolved in a molten fluoride salt.

【図3】その第1段階の溶融塩電解を示す電解槽の構成
図。
FIG. 3 is a configuration diagram of an electrolytic cell showing the first stage of molten salt electrolysis.

【図4】その第2段階の溶融塩電解を示す電解槽の構成
図。
FIG. 4 is a configuration diagram of an electrolytic cell showing the second-stage molten salt electrolysis.

【図5】従来の金属ウランの精製方法を説明する工程
図。
FIG. 5 is a process chart illustrating a conventional method for purifying metallic uranium.

【符号の説明】[Explanation of symbols]

11 電解槽 12 スクラップ金属ウラン 13 フッ化物溶融塩 14 バスケット 16,18 陰極 17a,17b 陽極 DESCRIPTION OF SYMBOLS 11 Electrolysis tank 12 Scrap metal uranium 13 Fluoride molten salt 14 Basket 16, 18 Cathode 17a, 17b Anode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺前 直樹 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Teramae 1002, 6-headed, Mukaiyama, Naka-cho, Naka-gun, Naka-gun, Ibaraki Prefecture 14 Mitsubishi Materials Corporation Naka Energy Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解槽(11)の内部の不純物元素とウラン
が溶解されたフッ化物溶融塩(13)中に陽極(17a,17b)と
陰極(16、18)とを備え、前記陽極(17a,17b)と前記陰極(1
6、18)間に電圧を印加して溶融塩電解することにより前
記溶融塩(13)中に溶解したウランを前記陰極(18)表面に
析出させる金属ウランの精製方法において、 前記電圧を2段階に制御して溶融塩電解を行い、第1段
階の溶融塩電解により前記陰極(16)に前記不純物元素を
回収した後、前記陰極(16)を別の陰極(18)に交換して第
2段階の溶融塩電解により前記別の陰極(18)に金属ウラ
ンを回収することを特徴とする金属ウランの精製方法。
An anode (17a, 17b) and a cathode (16, 18) are provided in a fluoride molten salt (13) in which an impurity element and uranium in an electrolytic cell (11) are dissolved, and the anode ( 17a, 17b) and the cathode (1
A method for purifying metallic uranium in which uranium dissolved in the molten salt (13) is precipitated on the surface of the cathode (18) by applying a voltage between 6, 18) to perform molten salt electrolysis, After the molten salt electrolysis is performed and the impurity element is collected on the cathode (16) by the molten salt electrolysis in the first stage, the cathode (16) is exchanged for another cathode (18) to perform the second electrolysis. A method for purifying metallic uranium, comprising recovering metallic uranium to said another cathode (18) by a step of molten salt electrolysis.
【請求項2】 不純物元素を含む金属ウラン(12)をバス
ケット(14)に装荷して電解槽(11)の内部のフッ化物溶融
塩(13)に浸漬することにより前記不純物元素を含む金属
ウラン(12)を前記フッ化物溶融塩(13)に溶解させる請求
項1記載の金属ウランの精製方法。
2. A metal uranium containing an impurity element is loaded in a basket (14) and immersed in a molten fluoride salt (13) inside an electrolytic cell (11) by loading the metal uranium (12) containing the impurity element. The method for purifying metallic uranium according to claim 1, wherein (12) is dissolved in the fluoride molten salt (13).
【請求項3】 バスケット(14)をフッ化物溶融塩(13)に
浸漬時に前記フッ化物溶融塩(13)中にフッ素ガスを吹込
んで不純物元素を含む金属ウラン(12)の溶解を促進する
請求項2記載の金属ウランの精製方法。
3. A method for promoting the dissolution of metal uranium (12) containing an impurity element by blowing fluorine gas into the molten fluoride salt (13) when the basket (14) is immersed in the molten fluoride salt (13). Item 4. The method for purifying metallic uranium according to Item 2.
【請求項4】 フッ化物溶融塩(13)がLiF−NaF,
LiF−KF,LiF−BeF2,NaF−BeF2,K
F−BeF2の二元系溶融塩及びLiF−NaF−K
F,LiF−NaF−BeF2,NaF−KF−Be
2,LiF−NaF−CaF2,LiF−KF−BaF
2の三元系溶融塩から選ばれたいずれかの溶融塩である
請求項1ないし3いずれか記載の金属ウランの精製方
法。
4. The molten fluoride salt (13) is LiF—NaF,
LiF-KF, LiF-BeF 2 , NaF-BeF 2, K
F-BeF 2 binary molten salts and LiF-NaF-K
F, LiF-NaF-BeF 2 , NaF-KF-Be
F 2, LiF-NaF-CaF 2, LiF-KF-BaF
The method for purifying metallic uranium according to any one of claims 1 to 3, wherein the molten salt is any molten salt selected from the ternary molten salts of (2).
JP18086197A 1997-07-07 1997-07-07 Method for refining metallic uranium Withdrawn JPH1121690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18086197A JPH1121690A (en) 1997-07-07 1997-07-07 Method for refining metallic uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18086197A JPH1121690A (en) 1997-07-07 1997-07-07 Method for refining metallic uranium

Publications (1)

Publication Number Publication Date
JPH1121690A true JPH1121690A (en) 1999-01-26

Family

ID=16090645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18086197A Withdrawn JPH1121690A (en) 1997-07-07 1997-07-07 Method for refining metallic uranium

Country Status (1)

Country Link
JP (1) JPH1121690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550489B2 (en) * 2016-07-11 2020-02-04 Uchicago Argonne, Llc Actinide and rare earth drawdown system for molten salt recycle
WO2020193305A1 (en) * 2019-03-22 2020-10-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Engineering process for halogen salts, using two identical electrodes
CN113846355A (en) * 2021-09-06 2021-12-28 中国辐射防护研究院 Method for controlling uranium-containing calcium fluoride slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550489B2 (en) * 2016-07-11 2020-02-04 Uchicago Argonne, Llc Actinide and rare earth drawdown system for molten salt recycle
US11613823B2 (en) 2016-07-11 2023-03-28 Uchicago Argonne, Llc Actinide and rare earth drawdown system for molten salt recycle
WO2020193305A1 (en) * 2019-03-22 2020-10-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Engineering process for halogen salts, using two identical electrodes
CN113846355A (en) * 2021-09-06 2021-12-28 中国辐射防护研究院 Method for controlling uranium-containing calcium fluoride slag

Similar Documents

Publication Publication Date Title
US6712952B1 (en) Removal of substances from metal and semi-metal compounds
CA1326839C (en) Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels
RU2468104C2 (en) Method to produce metal zirconium
US6156183A (en) Method of processing spent reactor fuel with magnesium alloy cladding
CN116615578A (en) Method and apparatus for producing secondary aluminum, production system, secondary aluminum, and aluminum workpiece
JPH1121690A (en) Method for refining metallic uranium
KR101513652B1 (en) Method of processing composite wastes
DE1001005B (en) Process for removing oxygen from metals
KR101553895B1 (en) Method of processing composite wastes
JP2000080492A (en) Molten electrolytic cell and recovering method of uranium from uranium-iron alloy using the same
RU2211251C2 (en) Method of selective extraction of metals of platinum group from anode sludge
CN110629253A (en) Method for electrorefining lead bullion by using ionic liquid and method for recovering metal bismuth and silver
CN116837421A (en) Method for preparing high-purity beryllium through electrochemical purification of primary beryllium
AU2003206430B2 (en) Removal of substances from metal and semi-metal compounds
US3108934A (en) Process for the manufacture of antimony of high purity
CN118495609A (en) Failure IrO2-Ta2O5Method for rapidly recycling titanium anode
KR20240080561A (en) Electrolytic deoxidation method of titanium alloy
JPS6037866B2 (en) How to recover thallium
JPH07270586A (en) Method for separating noble metal produced through nuclear fission
NO117007B (en)
AU2006203344A1 (en) Removal of substances from metal and semi-metal compounds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907