JPH11216791A - Steel structure member and its manufacture - Google Patents

Steel structure member and its manufacture

Info

Publication number
JPH11216791A
JPH11216791A JP2324898A JP2324898A JPH11216791A JP H11216791 A JPH11216791 A JP H11216791A JP 2324898 A JP2324898 A JP 2324898A JP 2324898 A JP2324898 A JP 2324898A JP H11216791 A JPH11216791 A JP H11216791A
Authority
JP
Japan
Prior art keywords
foam
steel
steel structure
rigidity
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2324898A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Fukui
清之 福井
Hirotatsu Kojima
啓達 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2324898A priority Critical patent/JPH11216791A/en
Publication of JPH11216791A publication Critical patent/JPH11216791A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel structure member particularly suitable to an application to an automotive body by improving an energy absorption capability at the time of rapidly deforming with a rigidity while suppressing an increase in a weight of a structure and an adhesive durability between a resin and a steel sheet. SOLUTION: The resin-poured foam steel structure member has an inner surface of a steel structure having a hollow part and electrodeposition painted and filled with any of an urethane foam, a phenol foam and a polyolefin foam therein with a compression strength of 0.5 kg/cm<2> or more. In this case, when a hard polyurethane foam using a water as a foaming agent is used, it is better.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に自動車車体用
に適する、中空部分に硬質の発泡体を充填した鋼構造部
材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel structural member having a hollow portion filled with a hard foam, and a method for producing the same, which is particularly suitable for an automobile body.

【0002】[0002]

【従来の技術】自動車の車体等に用いられている鋼構造
体は、通常薄鋼板をプレス加工、ロール成形などの方法
で成形した部品を接合して組み立てられる。これらの構
造体は、剛性向上と軽量化を両立させるために断面二次
モーメントへの寄与が少ない内部を空間にした、例えば
成形した鋼板を組み立てて箱型断面構造にしたものや、
鋼管、あるいは鋼管に曲げ加工や液圧バルジ加工などを
施して構成される場合が多い。
2. Description of the Related Art A steel structure used for an automobile body or the like is usually assembled by joining parts formed by pressing a thin steel plate by a method such as press forming or roll forming. These structures are made into a space with a small interior that contributes to the second moment of area in order to achieve both improvement in rigidity and weight reduction, for example, a molded steel plate assembled into a box-shaped cross-section structure,
In many cases, a steel pipe or a steel pipe is formed by bending or hydraulic bulging.

【0003】近年、自動車乗員の安全性をさらに向上さ
せるために、車体構造体の強度や剛性や衝突エネルギー
吸収能を高めるための検討が進められている。鋼構造体
の強度は、素材の寸法、強度や部品の接合強度などに大
きく影響される。その剛性は、上記の特性に加えて、鋼
構造体の断面二次モーメントなど、構造に依存する要因
にも大きく影響される。鋼構造体の剛性を高めるために
補強材を追加する方法があるが、補強材追加により車体
の重量が増すと自動車走行時の燃料消費率が低下するの
で、補強材による強化には限界がある。
[0003] In recent years, in order to further improve the safety of occupants of automobiles, studies have been made to increase the strength and rigidity of the vehicle body structure and the ability to absorb collision energy. The strength of a steel structure is greatly affected by the dimensions and strength of the material, the joining strength of parts, and the like. The rigidity is greatly affected by structurally dependent factors such as the second moment of area of the steel structure, in addition to the above characteristics. There is a method of adding reinforcement to increase the rigidity of the steel structure, but if the weight of the vehicle increases due to the addition of reinforcement, the fuel consumption rate during car driving decreases, so there is a limit to reinforcement by reinforcement. .

【0004】部品同士を接合する際に、接合されるフラ
ンジなどの重ね合わせ部分に構造用接着剤を塗布してス
ポット溶接するウエルドボンド法が、鋼構造体の高速変
形時の剛性や吸収エネルギーを改善するのに効果がある
とされている。しかしこの方法は、エポキシ系の熱硬化
型構造用接着剤が電着塗装時の昇熱により硬化する現象
を利用するものであり、剛性向上効果に限界があるうえ
接着耐久性に乏しく、コストも高いのが問題である。
[0004] When parts are joined together, the weld bond method of applying a structural adhesive to an overlapped portion such as a flange to be joined and performing spot welding is used to reduce the rigidity and absorbed energy of a steel structure during high-speed deformation. It is said to be effective for improvement. However, this method utilizes the phenomenon that an epoxy-based thermosetting type structural adhesive is cured by heating during electrodeposition coating, and has a limited rigidity improvement effect, poor adhesion durability, and low cost. High is the problem.

【0005】特開昭62−279932号公報には、補
強用樹脂ブロックを2枚のパネルの間に介在させて接着
してパネルを補強し、重量増加を抑制しつつ剛性を高め
たパネル構造体が開示されている。このパネル構造体
は、ゴム系の独立気泡を有する板状スポンジ成形物に多
数の孔をあけたものを鋼板に載せ、穿孔部分に熱硬化性
樹脂を充填した後、その上面に他の鋼板を重ねてこれら
を圧着し、加熱保持して熱硬化性樹脂を硬化させたもの
である。しかしながらこのパネル構造体の2枚の鋼板間
を保持する力は、分散して配列される熱硬化性樹脂の強
度に依存しているため、構造体としての剛性向上効果に
は限界がある。また、その製造の際には熱硬化性樹脂を
硬化させるための加熱処理や装置が必要であるなど、工
数と費用がかかる。
Japanese Patent Application Laid-Open No. 62-279932 discloses a panel structure in which a reinforcing resin block is interposed between two panels and bonded to reinforce the panel, thereby increasing rigidity while suppressing weight increase. Is disclosed. In this panel structure, a plate-shaped sponge having rubber-based closed cells with many holes is placed on a steel plate, the perforated portion is filled with a thermosetting resin, and then another steel plate is placed on the upper surface. These are stacked and pressed, and heated and held to cure the thermosetting resin. However, the force holding the two steel plates of the panel structure between the two steel plates depends on the strength of the thermosetting resin dispersed and arranged, and thus there is a limit to the rigidity improvement effect of the structure. In addition, the production requires a heat treatment and an apparatus for curing the thermosetting resin, which requires man-hours and costs.

【0006】特開平1−297387号公報には、中空
構造のフレームに吸音材または制振材を充填した小型車
両の中空車体フレームが開示されている。ここに開示さ
れているフレームでは、吸音作用および制振作用を得る
充填材の例として、粘弾性体である半硬質の発泡ポリウ
レタン樹脂が最も優れているとしている。しかしここで
は構造体の剛性改善や高速変形時のエネルギー吸収能の
向上などについては考慮されていない。また、発泡体と
車体フレームとの間の接着耐久性や構造耐久性について
も検討されていない。
Japanese Patent Application Laid-Open No. 1-29787 discloses a hollow body frame of a small vehicle in which a frame having a hollow structure is filled with a sound absorbing material or a vibration damping material. In the frame disclosed herein, a semi-rigid foamed polyurethane resin, which is a viscoelastic material, is considered to be the most excellent as an example of a filler that achieves a sound absorbing action and a vibration damping action. However, no consideration is given here to improving the rigidity of the structure or improving the energy absorbing ability during high-speed deformation. Further, neither the adhesion durability nor the structural durability between the foam and the body frame has been studied.

【0007】特開昭61−205119号公報には発泡
体の充填方法が開示されている。ここで開示されている
方法では、自動車のピラー、ロッカー、ホイールハウ
ス、フロントサイソメンバーなどの内部にポリスチレ
ン、ポリエチレン、ポリプロピレン等を充填し、一定の
圧力を加えて水蒸気を用いて加熱して発泡させる方法で
ある。しかしながらこの方法では、発泡体は発泡後収縮
し常温の大気中で再膨張するため、部品の寸法、形状が
変化するおそれがあるのが問題である。
Japanese Patent Application Laid-Open No. 61-205119 discloses a method for filling a foam. In the method disclosed here, polystyrene, polyethylene, polypropylene, and the like are filled in the interior of a pillar, a locker, a wheel house, a front tire member, or the like of an automobile, and are foamed by applying a certain pressure and heating using steam. Is the way. However, in this method, since the foam shrinks after foaming and re-expands in the air at room temperature, there is a problem that the size and shape of the component may change.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、特に自動車車体用途に適した、重量増加を
抑制しつつ剛性や高速変形時のエネルギー吸収能を向上
させた鋼構造部材およびその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel structural member which is particularly suitable for use in an automobile body and which has improved rigidity and energy absorbing ability at high speed deformation while suppressing weight increase. It is to provide a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は下記
(1)に記載した鋼構造部材および(2)に記載したそ
の製造方法にある。
The gist of the present invention resides in a steel structural member described in the following (1) and a method of manufacturing the same described in (2).

【0010】(1)内面が電着塗装された鋼構造体中空
部分に、ポリウレタンフォーム、フェノールフォームま
たはポリオレフィンフォームのいずれかからなる圧縮強
度が0.5kg/cm2 以上の発泡体が充填されている
鋼構造部材。
(1) The hollow portion of a steel structure whose inner surface is electrodeposited is filled with a foam made of polyurethane foam, phenol foam or polyolefin foam and having a compressive strength of 0.5 kg / cm 2 or more. Steel structural members.

【0011】(2)鋼構造体の中空部分の内面を電着塗
装したのち、その中空部分に、発泡剤として水を用いる
液状の発泡性ポリウレタン原料を注入、発泡させて、ポ
リウレタンフォームを充填することを特徴とする上記
(1)に記載の鋼構造部材の製造方法。
(2) After the inner surface of the hollow portion of the steel structure is electrodeposited, a liquid foamable polyurethane raw material using water as a foaming agent is injected into the hollow portion, foamed, and filled with polyurethane foam. The method for producing a steel structural member according to the above (1), wherein:

【0012】本発明者らは、自動車の構造体の剛性や構
造体が高速変形するときのエネルギー吸収能力を構造体
の重量増加を招くことなく向上させる方法について種々
検討した。その結果、例えば自動車車体のフロントサイ
ドメンバのような閉断面の鋼構造体の中空部分に、鋼と
の密着性に優れた硬質の樹脂発泡体を充填した鋼構造体
(以下、単に「鋼構造部材」と記す)は、軽量であるう
え、高速変形時の曲げ剛性に優れ、高速で軸方向に圧縮
した場合のエネルギー吸収能が大幅に向上することを見
いだした。
The present inventors have studied various methods for improving the rigidity of the structure of an automobile and the energy absorbing ability when the structure is rapidly deformed without increasing the weight of the structure. As a result, for example, a steel structure (hereinafter simply referred to as “steel structure”) in which a hollow portion of a steel structure having a closed cross section such as a front side member of an automobile body is filled with a hard resin foam excellent in adhesion to steel. Members) are light in weight, have excellent flexural rigidity during high-speed deformation, and significantly improve the energy absorption capacity when axially compressed at high speed.

【0013】内部に多数の気泡を包含する樹脂発泡体
(以下、「フォーム」とも記す)は、軟質フォームと硬
質フォームに区分される。軟質フォームは主として連続
気泡体で構成されるもので、軽量で、断熱性や吸音性が
優れる特性を有する。しかし、気泡が多く、構造部材用
の充填材料としては不適当である。硬質フォームは気泡
構造の90%以上が独立気泡であり、軟質フォームに較
べると軽さは劣るが、圧縮強度が高く構造部材用の充填
材料に適している。
A resin foam containing a large number of cells therein (hereinafter, also referred to as “foam”) is classified into a soft foam and a rigid foam. A flexible foam is mainly composed of open cells, and is lightweight and has excellent properties of heat insulation and sound absorption. However, it has many air bubbles and is not suitable as a filling material for structural members. Rigid foams are closed cells for at least 90% of the cell structure and are inferior in weight to flexible foams, but have high compressive strength and are suitable as filling materials for structural members.

【0014】硬質ポリウレタンフォームの形成に使用さ
れる発泡剤としては、従来、揮発性が大きいフロン、ま
たは、代替フロンが用いられてきた(以下、フロンおよ
び代替フロンを単に「フロン等」、発泡剤としてこれら
を用いた発泡体を「フロン系発泡体」と記す)。これ
は、例えば発泡剤として良く用いられるフロン11は沸
点が24℃と低く、イソシアネートとポリオールが混合
されたときに生じる反応熱で容易に気化してガス化し、
樹脂内部に気泡を形成する作用があるからである。気泡
内には熱伝導率が低いフロンガスが含まれるので発泡体
の断熱効果も極めて優れている。
As the foaming agent used for forming the rigid polyurethane foam, a fluorocarbon having a high volatility or an alternative fluorocarbon has been conventionally used (hereinafter, the fluorocarbon and the alternative fluorocarbon are simply referred to as “fluorocarbons, etc.” A foam using these is referred to as a “CFC-based foam”). This is because, for example, Freon 11, which is often used as a foaming agent, has a low boiling point of 24 ° C., and is easily vaporized and gasified by reaction heat generated when isocyanate and polyol are mixed,
This is because there is an action of forming bubbles inside the resin. Since the bubbles contain Freon gas having a low thermal conductivity, the heat insulating effect of the foam is extremely excellent.

【0015】しかし、フロン系発泡体を構造部材の充填
材料として用いるには問題点がある。最も大きい問題点
は、フロン等が地球環境を損なう原因物質の一つとされ
ていることである。さらに、気泡内のフロン11の凝縮
温度24℃であるので、この温度を挟んで環境温度が変
化すると発泡体の体積が著しく変化する。このため、フ
ロン系発泡体を充填した構造部材の寸法形状が環境温度
によって変化することがある。寸法形状の変化は外観が
変わると共に剛性にも悪影響することがあるので好まし
くない。発泡剤として水を用いればこの様な問題を避け
ることができる。発泡剤として水を用いると発泡反応時
に炭酸ガスが発生し、この炭酸ガスが基になって泡が形
成される。この場合泡には炭酸ガスが含まれている。
However, there is a problem in using a CFC-based foam as a filling material for a structural member. The biggest problem is that CFCs and the like are one of the causative substances that damage the global environment. Furthermore, since the condensation temperature of the CFC 11 in the air bubbles is 24 ° C., if the environmental temperature changes around this temperature, the volume of the foam changes significantly. For this reason, the dimension and shape of the structural member filled with the CFC-based foam may change depending on the environmental temperature. Changes in dimensions and shapes are not preferred because they change the appearance and may adversely affect rigidity. If water is used as the blowing agent, such a problem can be avoided. When water is used as a foaming agent, carbon dioxide gas is generated during the foaming reaction, and bubbles are formed based on the carbon dioxide gas. In this case, the foam contains carbon dioxide gas.

【0016】図5は、環境温度が変化した場合の発泡体
の寸法変化に及ぼす発泡剤の影響を調査した結果の一例
を示す図である。炭酸ガスの凝縮温度は−78℃であ
る。従って通常の環境温度の範囲内ではガス状であるの
で、フロン系と異なり、外気温が変化しても発泡体の体
積変化は殆ど生じない。高温になると、一般的には炭酸
ガスが飛散して発泡体の体積は収縮しやすくなるが、水
発泡の場合には、発泡体成形時に、鋼との界面に緻密な
非発泡スキン層が形成されるので炭酸ガスの飛散が防止
され、高温域での体積変化も少ない。
FIG. 5 is a diagram showing an example of the result of an investigation on the influence of the foaming agent on the dimensional change of the foam when the environmental temperature changes. The condensation temperature of carbon dioxide is -78 ° C. Therefore, since it is gaseous within the range of the normal environmental temperature, unlike the chlorofluorocarbon system, the volume of the foam hardly changes even if the external temperature changes. At high temperatures, carbon dioxide gas generally scatters and the volume of the foam tends to shrink, but in the case of water foaming, a dense non-foamed skin layer is formed at the interface with steel during foam molding. Therefore, scattering of carbon dioxide gas is prevented, and the volume change in a high temperature range is small.

【0017】さらに、樹脂を注入する前に鋼構造体の内
面を電着塗装しておくと、樹脂と鋼構造体との密着性が
さらに強固になり、鋼構造体としての剛性が飛躍的に改
善されうえ、腐食性環境に曝されても良好な密着性が確
保できる。本発明はこれらの知見を基にして完成された
ものである。
Further, if the inner surface of the steel structure is electrodeposited before injecting the resin, the adhesion between the resin and the steel structure is further strengthened, and the rigidity of the steel structure is dramatically increased. It is improved and good adhesion can be ensured even when exposed to a corrosive environment. The present invention has been completed based on these findings.

【0018】[0018]

【発明の実施の形態】以下に本発明の発泡体が充填され
ている鋼構造部材の内容を詳細に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The contents of a steel structural member filled with the foam of the present invention will be described in detail below.

【0019】鋼構造部材:本発明の発泡体が充填されて
いる鋼構造部材の外郭は、鋼板や鋼管、あるいはこれら
の成形品を用いて構成される。いくつかの成形品を接合
して組み立てたものでも構わない。鋼構造体の形状寸法
は特に規定するものではなく、梁状や、平面状またはこ
れらを組み合わせたものなど、任意の形状、任意の大き
さのものに適用できる。また、中空部分に補強用の部材
を設けたものでも構わない。
Steel structural member: The outer shell of the steel structural member filled with the foam of the present invention is made of a steel plate, a steel pipe, or a molded product thereof. It may be one formed by joining several molded products. The shape and dimensions of the steel structure are not particularly limited, and can be applied to any shape and any size, such as a beam, a plane, or a combination thereof. Further, a member provided with a reinforcing member in the hollow portion may be used.

【0020】鋼構造体の中空部分内面は、鋼表面の耐食
性と発泡体との密着性を向上させるために、鋼板の合わ
せ目や端末部への塗料の付き回り性に優れる電着塗装が
施される。塗料の種類はメラミン系塗料、エポキシ系塗
料など公知の塗料でよい。塗膜の厚さは特に規定するも
のではないが、塗装部の耐食性が向上するので20μm
以上とするのが好ましい。電着塗装の前処理として、鋼
表面には公知の燐酸塩処理などの化成処理を常法に従っ
て事前に施しておくのがよい。鋼表面にこの様な前処理
と塗装を施すので、発泡体を充填した直後のみならず、
二次密着性も含めた長期間にわたり、鋼と発泡体とは良
好な密着性を保持できる。
The inner surface of the hollow portion of the steel structure is subjected to an electrodeposition coating which is excellent in a joint property of the steel sheet and a coating property to the end portion in order to improve the corrosion resistance of the steel surface and the adhesion to the foam. Is done. The type of the paint may be a known paint such as a melamine paint or an epoxy paint. Although the thickness of the coating film is not particularly limited, it is 20 μm because the corrosion resistance of the painted portion is improved.
It is preferable to make the above. As a pretreatment for the electrodeposition coating, a chemical conversion treatment such as a known phosphate treatment is preferably applied to the steel surface in advance according to a conventional method. Because such a pretreatment and painting are applied to the steel surface, not only immediately after filling the foam,
For a long period of time including secondary adhesion, good adhesion between steel and foam can be maintained.

【0021】発泡体が充填されている鋼構造部材の剛性
強度と衝撃エネルギー吸収能力を向上させるために、鋼
構造体の内部に充填される発泡体は、その圧縮強度が
0.5kg/cm2 以上のものとする。発泡後の樹脂の
圧縮強度が0.5kg/cm2に満たない場合には構造
部材の剛性強度と衝撃エネルギー吸収能力向上効果が不
十分である。樹脂の圧縮強度が高いほどこれらの特性の
改善効果が大きくなるので、より好ましくは圧縮強度が
5kg/cm2 以上のものがよい。本発明で規定する発
泡体の圧縮強度は、鋼構造部材から切り出した発泡体サ
ンプルを25℃でJIS−K−7220に規定される方
法に従って圧縮試験に供し、圧縮歪が10%に達した時
の荷重を測定して求める。
In order to improve the rigidity and impact energy absorbing ability of the steel member filled with the foam, the foam filled inside the steel structure has a compressive strength of 0.5 kg / cm 2. The above is assumed. When the compression strength of the foamed resin is less than 0.5 kg / cm 2 , the rigidity of the structural member and the effect of improving the impact energy absorbing ability are insufficient. The higher the compressive strength of the resin, the greater the effect of improving these properties. Therefore, a resin having a compressive strength of 5 kg / cm 2 or more is more preferable. The compressive strength of the foam specified in the present invention is such that a foam sample cut out from a steel structural member is subjected to a compression test at 25 ° C. in accordance with the method specified in JIS-K-7220, and the compressive strain reaches 10%. The load is measured and determined.

【0022】本発明の鋼構造部材の内面には化成処理と
電着塗装が施されている。これらの塗膜の性能を損なわ
ないために、本発明では、外部から加熱する方法による
発泡処理はおこなわないで、外部からの加熱処理を必要
としないで発泡させることができる樹脂発泡原料を用い
る。無論、発泡後には上述の圧縮強度をもつものである
必要がある。発泡体の種類としてはこれらの要求を満た
せるものであればよく、ポリウレタンフォーム、ポリオ
レフィンフォームまたはフェノールフォームが好適であ
る。鋼との密着性に優れるポリウレタンフォームが特に
好ましい。
The inner surface of the steel structural member of the present invention has been subjected to chemical conversion treatment and electrodeposition coating. In order to avoid impairing the performance of these coating films, in the present invention, a resin foaming raw material which can be foamed without external heating is used without using a foaming treatment by an external heating method. Of course, after foaming, it is necessary to have the above-mentioned compressive strength. Any type of foam may be used as long as these requirements can be satisfied, and polyurethane foam, polyolefin foam or phenol foam is suitable. Polyurethane foam having excellent adhesion to steel is particularly preferred.

【0023】これらの発泡体はフロン系の発泡剤を用い
たものでもよいが、フロン系発泡体では環境温度の変化
による構造部材の寸法形状変化が生じることがある。ま
たフロン系発泡体を充填した鋼構造部材では、車体使用
時に鋼との接着界面に塩水が浸入すると化学反応が生じ
て塩素イオンが発生し、樹脂と鋼との間の密着性を損な
い、鋼構造部材の圧縮強度が劣化することがある(以
下、このような不良を単に「二次密着性不良」とも記
す)。これらの問題が生じるのを避けるために、水を発
泡剤として用いた発泡体がさらに好ましい。
These foams may use a CFC-based foaming agent. However, in the CFC-based foam, the dimensional shape of the structural member may change due to a change in environmental temperature. Also, in steel structural members filled with CFC-based foam, when salt water enters the bonding interface with steel when using a car body, a chemical reaction occurs and chlorine ions are generated, impairing the adhesion between the resin and the steel, The compressive strength of the structural member may be deteriorated (hereinafter, such a defect is also simply referred to as “secondary adhesion defect”). In order to avoid these problems, a foam using water as a foaming agent is more preferable.

【0024】製造方法:鋼構造部材の外郭を構成する鋼
構造体は、鋼板や鋼管を公知の方法で成形し、溶接その
他の公知の方法で接合して組み立てたもの、あるいは、
これらをさらに液圧成形加工して得られる。
Manufacturing method: The steel structure constituting the outer shell of the steel structural member is formed by forming a steel plate or a steel pipe by a known method and joining it by welding or other known methods, or
These are further obtained by hydroforming.

【0025】鋼構造体の中空部分の内面には、化成処理
と電着塗装を施す。化成処理は、例えば燐酸亜鉛系や燐
酸鉄系など、従来から一般的に用いられているものでよ
い。塗装は、鋼の合わせ目や端末部分への塗料の付き回
り性に優れる電着塗装方法で施す。電着塗装の塗膜の種
類は公知のものでよく、メラミン系塗料、エポキシ系塗
料など任意に選択できる。塗膜の厚さは特に規定するも
のではないが、塗装部の耐食性を確保するには乾燥膜厚
が20μm以上になるように塗装するのが好ましい。塗
装後の焼き付け条件は通常施されている条件であればよ
く、例えば焼き付け温度は170〜200℃、焼き付け
時間は20〜25分等の条件で施せばよい。中空部の内
面を塗装する際に、同時に鋼構造体の外面に所望の塗装
を施すのが好ましい。
The inner surface of the hollow portion of the steel structure is subjected to chemical conversion treatment and electrodeposition coating. The chemical conversion treatment may be a conventionally used one such as a zinc phosphate-based or iron phosphate-based treatment. The coating is performed by an electrodeposition coating method that is excellent in the ability of the paint to be applied to the joints and the ends of the steel. The kind of the coating film for electrodeposition coating may be a known one, and can be arbitrarily selected such as a melamine-based paint and an epoxy-based paint. Although the thickness of the coating film is not particularly limited, it is preferable to apply the coating so that the dry film thickness is 20 μm or more in order to secure the corrosion resistance of the coated portion. The baking conditions after coating may be any conditions that are normally applied, for example, a baking temperature of 170 to 200 ° C. and a baking time of 20 to 25 minutes. When coating the inner surface of the hollow portion, it is preferable to simultaneously apply a desired coating to the outer surface of the steel structure.

【0026】中空部分の内面に塗装した後液状の発泡原
料を注入して発泡させる。注入孔以外に開口部を有する
場合には、液状の発泡原料が洩出しないように開口部に
蓋を仮設する。本発明の鋼構造体は発泡時には加熱しな
いので、簡便な方法で蓋をすることができる。
After coating the inner surface of the hollow portion, a liquid foaming material is injected and foamed. When an opening is provided in addition to the injection hole, a lid is temporarily provided at the opening so that the liquid foaming material does not leak. Since the steel structure of the present invention is not heated during foaming, it can be covered with a simple method.

【0027】ポリウレタンフォームを形成する場合の発
泡原料素材は、NCO(イソシアネート)基を2個以上
有するイソシアネートを主体とする原液(以下、単に
「イソシアネート成分液」と記す)と、複数のOH基を
持つアルコール類などのポリオールを主体とする原液
(以下、単に「ポリオール成分液」と記す)の2種類の
原液を主素材とする。これらの原料素材は特に限定され
るものではなく、従来から発泡体製造時に使用されてい
るものを用いればよい。例えば、イソシアネートとして
は、トリレンジイソシアネート(TDI)、TMDの一
部をポリオールと反応させたもの、あるいは、メチレン
ジフェニルジイソシアネート(MDI)などのイソシア
ネート成分のものが使用できる。ポリオールとしては、
硬質用として従来から用いられているシュークローズ
系、ソルビトール系等の混合物を用いることができる。
ポリオール成分液は、これらのポリオールに、発泡剤、
触媒、安定剤など、通常ポリウレタンフォームの製造に
用いられる添加剤を混合してポリオール成分液とする。
When a polyurethane foam is formed, a foaming raw material comprises a stock solution mainly containing isocyanate having two or more NCO (isocyanate) groups (hereinafter simply referred to as “isocyanate component solution”) and a plurality of OH groups. Two kinds of undiluted solutions, which are mainly composed of polyols such as alcohols (hereinafter simply referred to as “polyol component solution”), are used as main materials. These raw materials are not particularly limited, and those that have been conventionally used in the production of foams may be used. For example, as the isocyanate, tolylene diisocyanate (TDI), a product obtained by reacting a part of TMD with a polyol, or an isocyanate component such as methylene diphenyl diisocyanate (MDI) can be used. As a polyol,
Mixtures of shoe-close type, sorbitol type and the like conventionally used for hardening can be used.
The polyol component liquid contains a foaming agent,
Additives usually used for the production of polyurethane foam, such as a catalyst and a stabilizer, are mixed to form a polyol component liquid.

【0028】発泡剤としては、従来から使用されている
フロン等(例えば、R−11)を用いてもよいが、環境
温度の変化による鋼構造部材の寸法形状変化や、鋼との
接着界面に塩水が浸入した場合に生じるおそれがある二
次密着性不良を避けるために水を用いるのがより好まし
い。水を用いると、イソシアネート成分液とポリオール
成分液を混合した時に、イソシアネート基と水が反応し
て炭酸ガスが発生し、この炭酸ガスが基になって泡が形
成される。水発泡によれば、フロン系と異なり、塩水と
反応しないので、界面に塩水が浸入しても二次密着性は
損なわれない。触媒は公知のものでよく、アミン類や有
機金属化合物が使用できる。これらの種類と量により発
泡の硬化時間を調整することができる。安定剤は緻密な
気泡を生成させる目的で添加するものであり、通常用い
られているシリコン油などでよい。ポリオール成分液に
は上記の添加剤の他に、小量の難燃剤やフィラーなどを
混合しても構わない。
As the foaming agent, a conventionally used fluorocarbon or the like (for example, R-11) may be used. However, the dimensional change of the steel structural member due to the change of the environmental temperature or the bonding interface with the steel may be used. It is more preferable to use water in order to avoid poor secondary adhesion which may occur when salt water enters. When water is used, when the isocyanate component liquid and the polyol component liquid are mixed, the isocyanate group reacts with water to generate carbon dioxide gas, and foam is formed based on the carbon dioxide gas. According to water foaming, unlike fluorocarbons, it does not react with salt water, so that even if salt water enters the interface, the secondary adhesion is not impaired. The catalyst may be a known one, and amines and organometallic compounds can be used. The curing time of foaming can be adjusted by these types and amounts. The stabilizer is added for the purpose of generating dense air bubbles, and may be a commonly used silicone oil or the like. The polyol component liquid may contain a small amount of a flame retardant, a filler, or the like, in addition to the above additives.

【0029】イシシアネート成分液とポリオール成分液
は、一定の割合で混合し、中空部分に注入または吹き付
けることにより発泡成形させる。混合および注入方法
は、それぞれの成分液をバッチ式に計量して混合撹拌し
たり、定比例ポンプ等により連続的に一定割合で混合機
に注入し、撹拌混合して注入する方法など、公知の方法
でおこなえばよい。一定の割合で送られてくる成分液を
スプレーガンを用いて吹き付けてもよい。液状の発泡原
料は、中空部分で化学反応により発泡し、常温で数分〜
20分間放置して硬化させる。
The isocyanate component liquid and the polyol component liquid are mixed at a predetermined ratio, and are foamed by injection or spraying into a hollow portion. Mixing and pouring methods are known in the art, such as a method of weighing and mixing each component liquid in a batch manner, or a method of continuously injecting into a mixer at a constant ratio by a constant proportional pump or the like, stirring, mixing and pouring. The method may be performed. The component liquid sent at a fixed rate may be sprayed using a spray gun. The liquid foaming material foams by chemical reaction in the hollow part,
Leave to cure for 20 minutes.

【0030】ポリウレタンフォームの圧縮強度は、ポリ
オールに対する発泡剤の混合比率を調整し、発泡倍率を
変えてフォームの密度を変更することにより調整でき
る。発泡剤として水を用いる場合には、圧縮強度の変更
は、水の混合比を変更して調整するのがよい。例えば、
圧縮強度を5kg/cm2 以上とするには、ポリオール
100重量部に対して水を1重量部以上混合すればよ
い。
The compressive strength of the polyurethane foam can be adjusted by adjusting the mixing ratio of the blowing agent to the polyol and changing the foaming ratio to change the density of the foam. When water is used as the foaming agent, it is preferable to change the compressive strength by changing the mixing ratio of water. For example,
To make the compressive strength 5 kg / cm 2 or more, water may be mixed in an amount of 1 part by weight or more with respect to 100 parts by weight of the polyol.

【0031】フェノールフォームはベンジルフェノール
を主原料とし、イソシアネートと水とによる“ウレア結
合(尿素結合)+炭酸ガス発生”の反応により、外部加
熱することなく、泡が形成される。ポリオレフィンフォ
ームは、その主原料液としてポリプロピレンを用い、発
泡剤としは水、フロン、およびブタンのいずれを用いて
もよい。これらのフォームは、ウレタンフォームの場合
と同様に、発泡剤、触媒、安定剤など、通常用いられる
添加剤を所定の割合で混合撹拌して注入して形成され
る。
Phenol foam is mainly composed of benzyl phenol, and foams are formed by the reaction of "urea bond (urea bond) + carbon dioxide gas" between isocyanate and water without external heating. The polyolefin foam may use polypropylene as its main raw material liquid, and may use any of water, chlorofluorocarbon and butane as the blowing agent. As in the case of the urethane foam, these foams are formed by mixing, stirring and injecting commonly used additives such as a foaming agent, a catalyst and a stabilizer at a predetermined ratio.

【0032】本発明の鋼構造部材の内面は化成処理と電
着塗装が施されているので、これらの塗膜の性能を損な
わないために、樹脂注入後には加熱処理はおこなわな
い。このため、発泡作業に伴う構造部品の寸法形状に何
の変化ももたらさず、発泡作業も簡便で容易に施せる利
点がある。
Since the inner surface of the steel structural member of the present invention has been subjected to chemical conversion treatment and electrodeposition coating, in order not to impair the performance of these coating films, no heat treatment is performed after resin injection. For this reason, there is an advantage that the size and shape of the structural component are not changed at all during the foaming operation, and the foaming operation can be performed easily and easily.

【0033】本発明の鋼構造部材においては、高抗張力
の鋼と上述の樹脂発泡体と組み合わせることにより、部
材の剛性を向上させつつ、さらに薄肉化し軽量化するこ
とができる。また、硬質ポリウレタンフォームのような
樹脂を使用すると、車体廃棄時にはシュレッダダストと
しての回収や再利用が可能であり問題はない。
In the steel structural member of the present invention, by combining high tensile strength steel with the above-mentioned resin foam, the rigidity of the member can be improved, and the thickness and weight can be further reduced. In addition, when a resin such as a rigid polyurethane foam is used, there is no problem since it can be collected and reused as shredder dust when the vehicle body is discarded.

【0034】なお、本発明は、例えば、自動車のピラ
ー、ロッカー、フロントサイドメンバー、あるいは、自
動2輪車のフレームのような構造部材に好適であるが、
ドアやルーフまたはフロアなどのような平面部分が多い
蓋物等の軽量化にも活用することができる。本発明の構
造部材は、乗用車、2輪車のみならず、大型トラックや
バス等の車体構造部材にも適用が可能である。
The present invention is suitable for structural members such as, for example, pillars, lockers, front side members of automobiles, and frames of motorcycles.
It can also be used to reduce the weight of lids having many flat parts such as doors, roofs and floors. The structural member of the present invention is applicable not only to passenger cars and two-wheeled vehicles, but also to vehicle body structural members such as large trucks and buses.

【0035】[0035]

【実施例】図1は、鋼構造部材を模擬する箱型断面の試
験体の外観図である。図1で、部品1は、鋼板を曲げ加
工して作製したもので、底部の幅:60mm、側壁高
さ:85mm、フランジ部幅:20mm、全長500m
mのハット型成形部品であり、1aをその底面と称す
る。部品1、2共に、厚さ1.6mm、引張強さ470
MPaの熱延高張力鋼板を用いたものと、厚さ1.2m
m、引張強さ610MPaの冷延高張力鋼板を用いたも
のとの2種類のものを製作した。このフランジ面に、幅
100mm、長さ500mmの当て板2をスポット溶接
して接合した。スポット溶接条件は、先端の直径が6m
mであるドーム型の電極を使用し、加圧力:400kg
f、通電時間:20サイクル、電流:9000Aとし、
スポット溶接の間隔は50mmにした。その後、両端の
開口部に、引張強さ390MPa、厚さ10mm、幅1
50mm、長さ150mmの端板3をアーク溶接して接
合して組み立てた。端板3aの中央部には、発泡原料の
注入孔として直径40mmの丸穴4を設けた。この鋼構
造体の内面と外面を、常法に従って溶剤を用いて脱脂
し、水洗、化成処理した後、乾燥後の膜厚が20μmに
なるように電着塗装し、170℃で25分焼き付け処理
した。
FIG. 1 is an external view of a box-shaped test specimen simulating a steel structural member. In FIG. 1, a component 1 is manufactured by bending a steel plate, and has a bottom width: 60 mm, a side wall height: 85 mm, a flange width: 20 mm, and a total length of 500 m.
m is a hat-shaped molded part, and 1a is referred to as its bottom surface. Parts 1 and 2 both have a thickness of 1.6 mm and a tensile strength of 470
One that uses a hot-rolled high-strength steel sheet of MPa and a thickness of 1.2 m
m and a type using a cold-rolled high-strength steel plate having a tensile strength of 610 MPa. A patch plate 2 having a width of 100 mm and a length of 500 mm was spot-welded to the flange surface. The spot welding condition is that the tip diameter is 6m
using a dome-shaped electrode with a pressure of 400 kg
f, energization time: 20 cycles, current: 9000 A,
The interval of spot welding was set to 50 mm. Then, tensile strength 390 MPa, thickness 10 mm, width 1
An end plate 3 having a length of 50 mm and a length of 150 mm was assembled by arc welding. At the center of the end plate 3a, a round hole 4 having a diameter of 40 mm was provided as an injection hole for a foaming raw material. The inner and outer surfaces of the steel structure were degreased using a solvent according to a conventional method, washed with water and subjected to a chemical conversion treatment, and then electrodeposited so that the film thickness after drying was 20 μm, and baked at 170 ° C. for 25 minutes. did.

【0036】(実施例1)ポリウレタンフォームを形成
するイソシアネート成分液としてはTDIを用いた。ポ
リオール成分液は、OH基を3以上有するポリエーテル
に、発泡剤としの水、触媒としての有機の第3級アミ
ン、安定剤としてシリコン油などを添加して作製した。
ポリオール100重量部に対して3〜0.15重量部の
範囲で水の混合比を変更してみかけ密度を変化させた。
イシシアネート成分液120重量部に対して上記のポリ
オール成分液が100重量部となるようにそれぞれの成
分液を計量し、これを撹拌混合して上述の模擬構造体の
中空部分に注入し、発泡させて常温で10〜20分間硬
化させ、樹脂発泡体を充填した試験体1〜3を作製し
た。
(Example 1) TDI was used as an isocyanate component liquid for forming a polyurethane foam. The polyol component liquid was prepared by adding water as a foaming agent, an organic tertiary amine as a catalyst, and silicone oil as a stabilizer to a polyether having three or more OH groups.
The apparent density was changed by changing the mixing ratio of water in the range of 3 to 0.15 parts by weight with respect to 100 parts by weight of the polyol.
The respective component liquids were weighed so that the above-mentioned polyol component liquid was 100 parts by weight with respect to 120 parts by weight of the isocyanate component liquid, and these were stirred and mixed, and injected into the hollow portion of the above-mentioned simulated structure, and foamed. The sample was cured at room temperature for 10 to 20 minutes to prepare test samples 1 to 3 filled with a resin foam.

【0037】(実施例2)部品1、2共に、厚さ1.6
mm、引張強さ470MPaの熱延高張力鋼板を使用し
た前述の模擬構造体を用い、発泡剤としてポリオール1
00重量部に対して1.8重量部の代替フロン(R−1
1)を用いた以外は実施例1の試験体1と同様の条件で
試験体4を作製した。
(Embodiment 2) Both parts 1 and 2 have a thickness of 1.6.
mm, using the above-described simulated structure using a hot-rolled high-tensile steel sheet having a tensile strength of 470 MPa, polyol 1 as a foaming agent
1.8 parts by weight of alternative Freon (R-1)
Specimen 4 was produced under the same conditions as in Specimen 1 of Example 1 except that 1) was used.

【0038】(実施例3)部品1、2共に、厚さ1.6
mm、引張強さ470MPaの熱延高張力鋼板を使用し
た前述の模擬構造体を用い、ベンジフェノールを発泡主
原料とし、発泡剤として水を用い、触媒として3級アミ
ンを用いた原液を上述の模擬構造体の中空部分に注入
し、発泡させて常温で硬化させ、フェノールフォームを
充填した試験体5を作製した。
(Embodiment 3) Both parts 1 and 2 have a thickness of 1.6.
mm, using the above-described simulated structure using a hot-rolled high-strength steel sheet having a tensile strength of 470 MPa, using undiluted solution using benzylamine as a foaming main raw material, water as a foaming agent, and a tertiary amine as a catalyst. It was injected into the hollow portion of the simulated structure, foamed and cured at room temperature to prepare a test body 5 filled with phenol foam.

【0039】(実施例4)部品1、2共に、厚さ1.2
mm、引張強さ610MPaの冷延高張力鋼板を使用し
た前述の模擬構造体を用い、ポリプロピレンを発泡主原
料とし、発泡剤として水を用い、触媒として3級アミン
を用いた原液を上述の模擬構造体の中空部分に注入し、
発泡させて常温で硬化させ、ポリオレフィンフォームを
充填した試験体6を作製した。
(Embodiment 4) Both parts 1 and 2 have a thickness of 1.2.
mm, using the above-described simulated structure using a cold-rolled high-tensile steel sheet having a tensile strength of 610 MPa, using a stock solution using polypropylene as a main foaming material, water as a foaming agent, and a tertiary amine as a catalyst as described above. Injected into the hollow part of the structure,
The sample was foamed and cured at room temperature to prepare a test body 6 filled with a polyolefin foam.

【0040】(比較例1)部品1、2共に、厚さ1.6
mm、引張強さ470MPaの熱延高張力鋼板を使用
し、中空部分に化成処理と電着塗装を施さない模擬構造
体を用いた以外は試験体1と同様の条件で比較用の試験
体7を作製した。
Comparative Example 1 Both parts 1 and 2 have a thickness of 1.6.
Specimen 7 for comparison under the same conditions as Specimen 1 except that a hot-rolled high-tensile steel sheet having a tensile strength of 470 MPa and a simulated structure not subjected to chemical conversion treatment and electrodeposition coating was used in the hollow portion. Was prepared.

【0041】(比較例2)部品1、2共に、厚さ1.6
mm、引張強さ470MPaの熱延高張力鋼板を使用
し、中空部分に化成処理と電着塗装を施した模擬構造体
を用い、水の混合比をポリオール100重量部に対して
0.06重量部とした以外は試験体1と同様の条件で比
較用の試験体8を作製した。
(Comparative Example 2) Both parts 1 and 2 have a thickness of 1.6.
mm, a hot rolled high-strength steel sheet having a tensile strength of 470 MPa, a simulated structure having a hollow portion subjected to a chemical conversion treatment and an electrodeposition coating, and a water mixing ratio of 0.06 wt. Specimen 8 for comparison was prepared under the same conditions as Specimen 1 except that the parts were used.

【0042】(従来例1)部品1、2共に、厚さ1.6
mm、引張強さ470MPaの熱延高張力鋼板を使用
し、中空部分にフォームを有しない試験体9を作製し
た。
(Conventional Example 1) Both parts 1 and 2 have a thickness of 1.6.
A hot-rolled high-strength steel sheet having a tensile strength of 470 mm and a tensile strength of 470 mm was used, and a test piece 9 having no foam in the hollow portion was produced.

【0043】作製したこれらの試験体は以下の方法でそ
の性能を評価した。
The performance of these test specimens was evaluated by the following method.

【0044】発泡体のみかけ密度:試験体から発泡体の
サンプルを切り出して得られたサンプルの密度を測定し
た。
Apparent density of foam: The density of a sample obtained by cutting a sample of the foam from the test body was measured.

【0045】発泡体の圧縮強度:試験体から発泡体のサ
ンプルを切り出し、25℃でJIS−K−7220に規
定される方法に従って圧縮試験に供し、圧縮歪が10%
に達した時の荷重を測定して求めた。
Compressive strength of foam: A sample of the foam was cut out from the test piece and subjected to a compression test at 25 ° C. in accordance with the method specified in JIS-K-7220.
Was measured by measuring the load at the time of reaching.

【0046】ねじり剛性:試験体の3a側の端部を固定
壁に固定し、3b側の端部に、試験体の中心軸Cを回転
中心とするねじりトルクを与えるための治具を付設し、
C軸回りのねじりトルクを3b端に作用させて3b端の
捻れ角度を測定し、ねじりトルク−捻れ角度の関係が線
形を示す範囲で以下の式により計算してねじり剛性を測
定した。GJ=T×L/θ、ただし、GJ:ねじり剛
性、T:ねじりモーメント、L:部材長さ、θ:荷重点
のねじれ角であり、剛性値の単位は[×108 kg/m
2 ]で表した。剛性単位のmm2は、鋼板の断面積で
ある。
Torsional rigidity: The end of the test piece on the 3a side is fixed to a fixed wall, and a jig for applying a torsional torque around the center axis C of the test piece is attached to the end of the 3b side. ,
The torsional torque around the C axis was applied to the 3b end to measure the torsional angle at the 3b end, and the torsional rigidity was measured by calculating using the following equation within the range where the relationship between the torsional torque and the torsional angle was linear. GJ = T × L / θ, where GJ: torsional rigidity, T: torsional moment, L: member length, θ: torsional angle at the load point, and the unit of rigidity value is [× 10 8 kg / m
m 2 ]. The stiffness unit mm 2 is the cross-sectional area of the steel sheet.

【0047】試験体を軸方向に衝撃圧縮させた場合の吸
収エネルギー:3a側の端部を下にして試験体を台座の
上に中心軸Cを鉛直にして固定し、上方から端板3bに
重錘を落下させ、試験体を軸方向に圧縮変形させた。重
錘の重量は600kgであり、衝突速度が時速40km
となるように落下開始時の重錘の高さを調整した。レー
ザ変位計を用いて上下の端板間の衝突後の距離を測定
し、重錘内部に設けたロードセルにより試験体に作用し
た荷重を測定し、圧縮変形量−荷重曲線を求めた。
Absorbed energy when the specimen is subjected to impact compression in the axial direction: the specimen is fixed on the pedestal with the center axis C vertical with the end on the 3a side down, and attached to the end plate 3b from above. The weight was dropped, and the specimen was compressed and deformed in the axial direction. The weight is 600 kg and the collision speed is 40 km / h
The height of the weight at the start of the fall was adjusted so that The distance after the collision between the upper and lower end plates was measured using a laser displacement meter, the load applied to the test piece was measured by a load cell provided inside the weight, and a compression deformation-load curve was obtained.

【0048】図2に得られた荷重曲線の一例を示す。変
形量が100mmまでの荷重曲線で囲まれる面積から、
上部端板が100mm圧縮されるまでに吸収されたエネ
ルギーを求めた。
FIG. 2 shows an example of the obtained load curve. From the area surrounded by the load curve up to 100 mm of deformation,
The energy absorbed until the upper end plate was compressed by 100 mm was determined.

【0049】試験体の衝撃曲げ吸収エネルギー:支点の
間隔が400mmである2本の支持台からなる曲げ治具
上に当て板2を下面(ハット型成形部品の1a面を上
面)にして試験体を置き、試験体の長さ方向中央部の1
a面に重量が50kgの重錘を、衝突速度が時速40k
mになる高さから落下させ、衝撃荷重による3点曲げ試
験をおこなった。1a面の変位をレーザー変位計を用い
て測定し、重錘内部に設けたロードセルにより衝撃荷重
を測定し、曲げ変形量−荷重曲線を得た。
Impact bending absorption energy of test specimen: Specimen with the backing plate 2 on the lower surface (the 1a surface of the hat-shaped part is on the upper surface) on a bending jig consisting of two supports with a fulcrum spacing of 400 mm. And place it at the center in the longitudinal direction of the specimen.
A 50-kg weight is applied on the a-side, and the collision speed is 40 kph.
m, and a three-point bending test by an impact load was performed. The displacement of the 1a surface was measured using a laser displacement meter, and the impact load was measured using a load cell provided inside the weight to obtain a bending deformation-load curve.

【0050】図3に得られた曲げ変形量−荷重曲線の一
例を示す。変形量が40mmまでの荷重曲線で囲まれる
面積から、40mm変形するまでに吸収されたエネルギ
ーを算出した。
FIG. 3 shows an example of the obtained bending deformation-load curve. The energy absorbed until the deformation was 40 mm was calculated from the area surrounded by the load curve up to the deformation of 40 mm.

【0051】発泡体の密着性:厚さ10mm、大きさ3
0mm角の鋼板を、模擬構造体を塗装したのと同様の条
件で脱脂、化成処理、電着塗装した。これらの鋼板2枚
を2mm隔てて台座上に平行に配置し、2枚の鋼板間に
形成される空間の側部は、発泡原料が洩れないように側
板を当てて封鎖した。この空間に液状の発泡原料を注
入、混合して発泡させ、鋼板/発泡樹脂/鋼板の構成か
らなるサンドイッチ構造の試験片を作成した。
Adhesion of foam: thickness 10 mm, size 3
A 0-mm square steel sheet was subjected to degreasing, chemical conversion treatment, and electrodeposition coating under the same conditions as those for coating the simulated structure. Two of these steel plates were arranged in parallel on the pedestal at a distance of 2 mm, and the side of the space formed between the two steel plates was closed with a side plate so that the foamed raw material did not leak. A liquid foaming raw material was injected into this space, mixed and foamed to prepare a test piece having a sandwich structure composed of a steel plate / foamed resin / steel plate.

【0052】一部の試験片はそのまま室温で剥離試験を
行って一次密着性を評価した。剥離試験は、インストロ
ン型万能引張試験機を用いて2枚の鋼板を鋼板面に垂直
な方向に剥離させ、最大の剥離荷重を接着面積で除して
剥離荷重を求めた。一部の試験片は、車体の腐食環境を
想定した65℃、相対湿度95%の雰囲気中で30日間
保管した後、上記と同様に剥離試験をおこない二次密着
性を評価した。密着性は、剥離荷重が10MPa以上を
良好(表1では○表示)、10MPa未満、8MPa以
上の場合をやや良好(表1では△表示)、8MPa未満
の場合を不良(表1では×表示)と判断した。
Some test pieces were subjected to a peel test at room temperature to evaluate primary adhesion. In the peeling test, two steel plates were peeled in a direction perpendicular to the steel plate surface using an Instron type universal tensile testing machine, and the maximum peeling load was divided by the bonding area to determine the peeling load. Some test pieces were stored for 30 days in an atmosphere of 65 ° C. and a relative humidity of 95% assuming a corrosive environment of a vehicle body, and then subjected to a peeling test in the same manner as above to evaluate secondary adhesion. The adhesion is good when the peeling load is 10 MPa or more (indicated by ○ in Table 1). When the peeling load is less than 10 MPa or 8 MPa or more, it is slightly good (indicated by Δ in Table 1). Was determined.

【0053】これらの結果は表1にまとめて示した。The results are summarized in Table 1.

【0054】[0054]

【表1】 [Table 1]

【0055】表1からわかるように、試験体1〜6は発
泡体の圧縮強度がいずれも0.5kg/mm2 以上であ
り、密着性も優れている。ねじり剛性はいずれも5×1
8kg/mm2 以上、衝撃吸収エネルギーは軸方向圧
縮変形では5kJ以上、曲げ変形では500J以上あ
り、いずれも従来例の試験体9に比較して極めて優れた
性能を示した。特に、試験体1〜3の結果に示されてい
るように、発泡剤として水を用いたウレタンフォームが
優れた性能を示していた。これに対し、試験体7は鋼板
表面に電着塗装をしていないために密着性が好ましくな
く、ねじり剛性が小さく衝撃エネルギー吸収能力も小さ
かった。試験体8は発泡体の圧縮強度が低いためにねじ
り剛性と吸収エネルギーが低かった。
As can be seen from Table 1, all of the test pieces 1 to 6 have a compressive strength of the foam of 0.5 kg / mm 2 or more and have excellent adhesion. 5 × 1 for torsional rigidity
0 8 kg / mm 2 or more, and the impact absorption energy was 5 kJ or more in the axial compression deformation and 500 J or more in the bending deformation, and all showed extremely excellent performance as compared with the test piece 9 of the conventional example. In particular, as shown in the results of the test pieces 1 to 3, the urethane foam using water as the foaming agent showed excellent performance. On the other hand, the test piece 7 did not have good adhesion because the surface of the steel sheet was not electrodeposited, had low torsional rigidity, and had low impact energy absorbing ability. Specimen 8 had low torsional rigidity and low absorbed energy due to the low compressive strength of the foam.

【0056】[0056]

【発明の効果】本発明の樹脂注入発泡鋼構造部材は、密
着性が良好な硬質の発泡体を鋼構造体の内部に有するの
で、部材大幅な重量増加を伴わないで剛性と高速変形時
の吸収エネルギーを大幅に改善できる。本発明の鋼構造
部材は、自動車などの走行燃料消費率を損なわないで車
体剛性や衝突安全性を改善するのに有用である。
Since the resin-injected foamed steel structural member of the present invention has a hard foam having good adhesion inside the steel structure, the rigidity and the high-speed deformation at the time of high-speed deformation are not accompanied by a significant weight increase of the member. Absorbed energy can be greatly improved. INDUSTRIAL APPLICABILITY The steel structural member of the present invention is useful for improving vehicle body rigidity and collision safety without impairing the running fuel consumption rate of an automobile or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼構造部材を模擬する箱型断面の試験体の概念
図。
FIG. 1 is a conceptual diagram of a box-shaped test body simulating a steel structural member.

【図2】試験体を軸方向に衝撃圧縮変形させた時の変形
量と荷重の関係を示す模式図。
FIG. 2 is a schematic diagram showing a relationship between a deformation amount and a load when a test body is subjected to impact compression deformation in an axial direction.

【図3】試験体を衝撃曲げ変形した時の変形量と荷重の
関係を示す模式図。
FIG. 3 is a schematic view showing a relationship between a deformation amount and a load when a test body is subjected to impact bending deformation.

【図4】発泡体の温度による寸法変化率に対する発泡剤
の影響を示す図。
FIG. 4 is a view showing the influence of a foaming agent on a dimensional change rate of a foam according to temperature.

【符号の説明】[Explanation of symbols]

1・・・ハット型成形部品、1a・・・底面、2・・・
当て板、3・・・端板、4・・・注入孔。
DESCRIPTION OF SYMBOLS 1 ... Hat-shaped molded part, 1a ... Bottom, 2 ...
Patch plate, 3 end plate, 4 injection hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内面が電着塗装された鋼構造体中空部分
に、ポリウレタンフォーム、フェノールフォームまたは
ポリオレフィンフォームのいずれかからなる圧縮強度が
0.5kg/cm2 以上の発泡体が充填されている鋼構
造部材。
1. A hollow portion of a steel structure having an inner surface electrodeposited and coated with a foam made of any of polyurethane foam, phenol foam and polyolefin foam and having a compressive strength of 0.5 kg / cm 2 or more. Steel structural members.
【請求項2】鋼構造体の中空部分の内面を電着塗装した
のち、その中空部分に、発泡剤として水を用いる液状の
発泡性ポリウレタン原料を注入、発泡させて、ポリウレ
タンフォームを充填することを特徴とする請求項1に記
載の鋼構造部材の製造方法。
2. An inner surface of a hollow portion of a steel structure is subjected to electrodeposition coating, and then a liquid foamable polyurethane raw material using water as a foaming agent is injected into the hollow portion, foamed, and filled with a polyurethane foam. The method for producing a steel structural member according to claim 1, wherein:
JP2324898A 1998-02-04 1998-02-04 Steel structure member and its manufacture Pending JPH11216791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324898A JPH11216791A (en) 1998-02-04 1998-02-04 Steel structure member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324898A JPH11216791A (en) 1998-02-04 1998-02-04 Steel structure member and its manufacture

Publications (1)

Publication Number Publication Date
JPH11216791A true JPH11216791A (en) 1999-08-10

Family

ID=12105306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324898A Pending JPH11216791A (en) 1998-02-04 1998-02-04 Steel structure member and its manufacture

Country Status (1)

Country Link
JP (1) JPH11216791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037625A1 (en) * 2001-10-29 2003-05-08 Bridgestone Corporation Shock absorbing material
JP2005231549A (en) * 2004-02-20 2005-09-02 Nissan Motor Co Ltd On-vehicle structure of fuel cell system
JP2017019193A (en) * 2015-07-10 2017-01-26 東京電力ホールディングス株式会社 Steel pipe
JP2020153401A (en) * 2019-03-19 2020-09-24 日本製鉄株式会社 Closed cross-sectional structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037625A1 (en) * 2001-10-29 2003-05-08 Bridgestone Corporation Shock absorbing material
JP2005231549A (en) * 2004-02-20 2005-09-02 Nissan Motor Co Ltd On-vehicle structure of fuel cell system
JP4539110B2 (en) * 2004-02-20 2010-09-08 日産自動車株式会社 In-vehicle structure of fuel cell system
JP2017019193A (en) * 2015-07-10 2017-01-26 東京電力ホールディングス株式会社 Steel pipe
JP2020153401A (en) * 2019-03-19 2020-09-24 日本製鉄株式会社 Closed cross-sectional structure

Similar Documents

Publication Publication Date Title
EP1074457B2 (en) Automobile bodyshell frame structure
JP3525731B2 (en) Body frame structure
US6419305B1 (en) Automotive pillar reinforcement system
EP1153824A2 (en) Composite laminate beam for automotive body construction
US6723175B2 (en) Formed member made of steel sheet and method for producing same
JP3596365B2 (en) Body frame structure
EP0445213A1 (en) Laminates, panels and means for joining them
JPH11216791A (en) Steel structure member and its manufacture
JP3596373B2 (en) Body frame structure
JP2001048055A (en) Frame structure for car body and forming method therefor
JP4356147B2 (en) Body frame structure and method for forming the same
EP2080192B1 (en) Acoustic absorbing member with open and closed pores
JP3528499B2 (en) Foam material for filling structure for vehicle and structure for vehicle filled with foam
Lilley et al. Roof-crush strength improvement using rigid polyurethane foam
JP4620058B2 (en) Method for manufacturing composite element
JP3596366B2 (en) Body frame structure
Lilley et al. Roof-crush strength improvement using rigid polyurethane foam
Borazjani Light-weight design of vehicle roof panel for stiffness and crash analyses
EP1620330A1 (en) Container based on composite elements
JPH11263865A (en) Expandable reinforcement composition and reinforcement of car body
JPH0227165B2 (en)
WO1996005240A1 (en) Structural strengthening
Hollaway et al. Low density rigid foam materials, sandwich construction and design methods
JP2000085618A (en) Rigidity improving method for foam filler and box-type member
Berczeli et al. Development Trend of Adhesive Joining of Aluminium Foams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

RD02 Notification of acceptance of power of attorney

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606