JPH1121655A - Steel with superfine structure, and its production - Google Patents

Steel with superfine structure, and its production

Info

Publication number
JPH1121655A
JPH1121655A JP20362397A JP20362397A JPH1121655A JP H1121655 A JPH1121655 A JP H1121655A JP 20362397 A JP20362397 A JP 20362397A JP 20362397 A JP20362397 A JP 20362397A JP H1121655 A JPH1121655 A JP H1121655A
Authority
JP
Japan
Prior art keywords
steel
less
ferrite
ultrafine
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20362397A
Other languages
Japanese (ja)
Inventor
Hitoshi Asahi
均 朝日
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20362397A priority Critical patent/JPH1121655A/en
Publication of JPH1121655A publication Critical patent/JPH1121655A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel having a superfine structure and combining high strength with high toughness, and its production. SOLUTION: In this production of the steel with superfine structure, a hypo- eutectoid steel containing >=0.02 wt.% C and having <=40 μm average grain size is heated up to the ferrite-austenite two-phase temp. region where the fraction of austenitic structure becorries 20 to <80%, hot-rolled, and cooled and the above treatment is performed one or more times and then cooling is applied, and this steel has a structure of <=2 μm average grain size. In this steel, the principal structure is composed of a two phase structure of bainite.martensite and worked ferrite. Furthermore, >0.5 wt.% Ni is added to the above. Tempering is carried out at a temp. not higher than the Ac1 transformation point. By this treatment, the steel with superfine structure which cannot possibly be obtained by the conventional methods can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速船の船体、高
圧ガス輸送用の鋼管、圧力容器、産業機械、航空機など
に広く使用できる超微細組織を有する鋼およびその製造
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having an ultrafine structure which can be widely used for a hull of a high-speed ship, a steel pipe for high-pressure gas transport, a pressure vessel, an industrial machine, an aircraft, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】組織の微細化は高強度高靭性鋼等の性質
を得る方法として重要で、従来、制御圧延の適正化やN
i,Mo,Co等の高価な合金元素を大量に添加する方
法が数多く提案されている。
2. Description of the Related Art Refinement of the structure is important as a method for obtaining the properties of high-strength, high-toughness steel and the like.
Many methods have been proposed for adding a large amount of expensive alloy elements such as i, Mo, and Co.

【0003】[0003]

【発明が解決しようとする課題】しかし、Ni,Mo,
Co等の高価な合金元素を大量に添加する方法やオース
フォーミング処理等の特殊熱処理は構造材料として使用
される大量生産型の鋼こは適さない。一方、制御圧延は
大量生産に適しているが、従来の延長上では組織微細化
に限界があり、強度および靭性の向上効果にも限界があ
った。本発明は超微細組織を有する、結果として高強度
・高靭性等の性質を具備した鋼およびこれらを大量に製
造する鋼の製造法を提供する。
However, Ni, Mo,
The mass addition of expensive alloying elements such as Co or special heat treatment such as ausforming is not suitable for mass-produced steel used as a structural material. On the other hand, although the controlled rolling is suitable for mass production, the conventional elongation has a limit to the refinement of the structure and a limit to the effect of improving the strength and toughness. The present invention provides a steel having an ultrafine structure and consequently having properties such as high strength and high toughness, and a method for producing steel in which these are mass-produced.

【0004】[0004]

【課題を解決するための手段】例えば、高強度で且つ高
靭性を両立させる方法としては、組織の微細化が非常に
有効であることが知られている。本発明者らは超微細組
織を得るための鋼材の製造法について鋭意研究を行い、
超微細組織を有する鋼およびその製造法を発明するに至
った。
For example, as a method for achieving both high strength and high toughness, it is known that microstructuring is very effective. The present inventors have conducted intensive research on a method of manufacturing a steel material to obtain an ultrafine structure,
The inventors have invented a steel having an ultrafine structure and a method for producing the same.

【0005】すなわち本発明の要旨とするところは、以
下に示す超微細組織を有する鋼とその製造法である。 (1) Cを0.02重量%以上含有する亜共析鋼で、主
な組織が2相からなり、且つ平均粒径が2μm以下であ
ることを特徴とする超微細組織を有する鋼。 (2) 2相組織がベイナイト・マルテンサイトと加工フ
ェライトであることを特徴とする前記 (1) 項記載の超
微細組織を有する鋼。 (3) 2相組織がフェライト・パーライトと加工フェラ
イトであることを特徴とする前記 (1) 項記載の超微細
組織を有する鋼。 (4) 前記 (1) 乃至 (3) のいずれか1項に記載の鋼
において、さらにNiを0.5重量%以上含有したこと
を特徴とする超微細組織を有する鋼。 (5) 前記 (1) 乃至 (4) のいずれか1項に記載の鋼
をAc1 変態点以下の温度で焼き戻したことを特徴とす
る超微細組織を有する鋼。
That is, the gist of the present invention is a steel having an ultrafine structure described below and a method for producing the same. (1) A hypoeutectoid steel containing 0.02% by weight or more of C and having an ultrafine structure characterized by having a main structure of two phases and an average particle size of 2 μm or less. (2) The steel having an ultrafine structure according to the above (1), wherein the two-phase structure is bainite martensite and processed ferrite. (3) The steel having an ultrafine structure according to the above (1), wherein the two-phase structure is ferrite / pearlite and processed ferrite. (4) The steel according to any one of (1) to (3), further comprising 0.5% by weight or more of Ni, the steel having an ultrafine structure. (5) A steel having an ultrafine structure, wherein the steel according to any one of (1) to (4) is tempered at a temperature equal to or lower than the Ac 1 transformation point.

【0006】(6) Cを0.02重量%以上含有する亜
共析鋼で、平均粒径が40μm以下の鋼を、オーステナ
イト組織分率が20%以上80%未満となるフェライ
ト、オーステナイト2相温度域に加熱し、累積圧下量が
50%以上で熱間圧延した後、空冷より速い冷却速度で
冷却し、主な組織が2相からなり、且つ平均粒径が2μ
m以下の組織とすることを特徴とする超微細組織を有す
る鋼の製造法。 (7) Cを0.02重量%以上含有する亜共析鋼で、平
均粒径が40μm以下の鋼を、オーステナイト組織分率
が20%以上80%未満となるフェライト、オーステナ
イト2相温度域に加熱し、累積圧下量が50%以上で熱
間圧延した後、空冷より速い冷却速度で冷却することを
1回以上行い、主な組織が2相からなり平均粒径が2μ
m以下の組織とすることを特徴とする超微細組織を有す
る鋼の製造法。 (8) 熱間圧延した後の冷却方法が水冷であることを特
徴とする前記 (6) または (7) 項記載の超微細組織を
有する鋼の製造法。 (9) 前記 (6) 乃至 (8) のいずれか1項に記載の鋼
において、鋼成分としてさらにNiを0.5重量%以上
含有することを特徴とする超微細組織を有する鋼の製造
法。 (10) 前記 (6) 乃至 (9) のいずれか1項に記載の製
造法において、鋼をさらにAc1 変態点以下の温度で焼
き戻すことを特徴とする超微細組織を有する鋼の製造
法。
(6) A hypoeutectoid steel containing 0.02% by weight or more of C and having an average grain size of 40 μm or less, a ferrite and austenite two phase having an austenite structure fraction of 20% or more and less than 80%. After heating to a temperature range and hot rolling at a cumulative reduction of 50% or more, it is cooled at a cooling rate faster than air cooling, the main structure is composed of two phases, and the average grain size is 2 μm.
A method for producing steel having an ultrafine structure, characterized in that the structure is not more than m. (7) A hypoeutectoid steel containing 0.02% by weight or more of C and having an average grain size of 40 μm or less is subjected to a two-phase temperature range of ferrite and austenite having an austenite structure fraction of 20% to less than 80%. After heating and hot rolling at a cumulative reduction of 50% or more, cooling at a cooling rate faster than air cooling is performed at least once, and the main structure is composed of two phases and the average grain size is 2 μm.
A method for producing steel having an ultrafine structure, characterized in that the structure is not more than m. (8) The method for producing a steel having an ultrafine structure according to the above (6) or (7), wherein the cooling method after hot rolling is water cooling. (9) The method according to any one of (6) to (8), wherein the steel further comprises 0.5% by weight or more of Ni as a steel component. . (10) The method according to any one of (6) to (9), wherein the steel is further tempered at a temperature equal to or lower than the Ac 1 transformation point. .

【0007】ここで平均粒径の定義は、鋼板の厚さ方向
に引いた直線の長さを結晶粒界との交点の数で除した長
さである。ここで、結晶粒界とは旧オーステナイト、フ
ェライト、加工フェライトの粒界を言う。また、2相域
加熱前の組織がベイナイト・マルテンサイトの場合、フ
ェライトとは2相域加熱温度で焼き戻された高温焼き戻
しベイナイト・高温焼き戻しマルテンサイトのことを言
う。
Here, the definition of the average grain size is a length obtained by dividing the length of a straight line drawn in the thickness direction of the steel sheet by the number of intersections with the crystal grain boundaries. Here, the crystal grain boundaries refer to grain boundaries of old austenite, ferrite, and processed ferrite. When the structure before heating in the two-phase region is bainite-martensite, ferrite means high-temperature tempered bainite / high-temperature-tempered martensite tempered at the two-phase region heating temperature.

【0008】[0008]

【発明の実施の形態】以下、本発明の内容について詳細
に説明する。本発明の特徴は、亜共析鋼を通常の熱間圧
延等により鋳造組織を40μm以下の細粒組織にした
後、Ac1 変態点とAc3 変態点の間に加熱してフェラ
イト(α)十オーステナイト(γ)2相組織とし、これ
を熱間圧延することで微細な加工α,γの混合組織と
し、その後水冷して加工αと加工γから変態した組織の
混合組織とし、実質的に超微細組織にする方法またはそ
の鋼である。ここで、2相域からの冷却速度が速い場合
や鋼の焼き入れ性が高い場合には、ベイナイト・マルテ
ンサイト等の低温変態組織となり、冷却速度が遅い場合
や鋼の焼き入れ性が低い場合には、フェライト・パーラ
イトになる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the contents of the present invention will be described in detail. A feature of the present invention is that the hypoeutectoid steel is cast into a fine grain structure of 40 μm or less by ordinary hot rolling or the like, and then heated between the Ac 1 transformation point and the Ac 3 transformation point to ferrite (α). A 10-austenite (γ) two-phase structure, which is hot-rolled to form a mixed structure of fine processed α and γ, and then water-cooled to form a mixed structure of a structure transformed from processed α and processed γ, substantially Ultrafine structure or steel. Here, when the cooling rate from the two-phase region is high or when the hardenability of steel is high, a low-temperature transformation structure such as bainite martensite is formed, and when the cooling rate is low or the hardenability of steel is low. Becomes ferrite perlite.

【0009】一般に、組織を微細にするためにはマルテ
ンサイト変態前のオーステナイト組織の微細化が必要で
ある。オーステナイト組織の微細化の方法としては、急
速加熱焼き入れがあるが、大型の構造用鋼の製造法とし
ては適していない。一般には、できるだけ細かいオース
テナイト粒から熱間圧延を行い、再結晶させて、その後
未再結晶域圧延により組織の微細化が行われる。この方
法を最も理想的な条件で行っても未再結晶域圧延直前の
オーステナイト粒径は数十μmであり、その後の未再結
晶域圧延によってもせいぜい5〜10μmの平均粒径し
か得られなかった。従って、平均粒径が2μm以下の超
微細粒を従来の制御圧延法で得ることはできない。
Generally, in order to make the structure fine, it is necessary to make the austenite structure fine before the martensitic transformation. As a method for refining the austenite structure, there is rapid heating and quenching, but it is not suitable as a method for producing large structural steel. Generally, hot rolling is performed from the finest austenite grains as much as possible, recrystallization is performed, and then microstructure refinement is performed by rolling in an unrecrystallized region. Even if this method is carried out under the most ideal conditions, the austenite grain size immediately before rolling in the non-recrystallized region is several tens of μm, and even after rolling in the non-recrystallized region, only an average particle size of at most 5 to 10 μm can be obtained. Was. Therefore, it is impossible to obtain ultrafine particles having an average particle size of 2 μm or less by the conventional controlled rolling method.

【0010】しかし、圧延前の組織をγ単相組織から非
常に細かく分散したγとαの2相組織とすることで、圧
延後の組織を超微細にできることがわかった。さらに、
この方法では熱間圧延温度が低いにもかかわらず、熱間
変形抵抗が低いフェライト相を含むために、変形抵抗は
γ単相域での低温圧延と比較して同等以下であり、製造
上の制限が少ない。
However, it has been found that the microstructure after rolling can be made extremely fine by changing the microstructure before rolling to a two-phase microstructure of γ and α dispersed very finely from a γ single-phase microstructure. further,
In this method, despite the low hot rolling temperature, the hot deformation resistance includes a ferrite phase with a low resistance, so the deformation resistance is equal to or lower than that of the low-temperature rolling in the γ single phase region, There are few restrictions.

【0011】以下、本発明の限定理由について述べる。
まず、鋼の平均結晶粒径を2μm以下に限定した理由に
ついて述べる。結晶粒を2μm以下の粒径にすると脆性
破壊進展時に粒界部分の塑性変形の占める割合が多くな
り、いわゆる脆性破面の発生がほぼ抑制されるようにな
ることを見いだした。従って、脆性破面の破面単位を小
さくして、低温靭性を向上させるという従来の技術思想
とは全く異なり、2μm以下にすると脆性破面発生を抑
止することができるようになる。
Hereinafter, the reasons for limitation of the present invention will be described.
First, the reason why the average crystal grain size of steel is limited to 2 μm or less will be described. It has been found that when the crystal grains have a grain size of 2 μm or less, the proportion of plastic deformation in the grain boundary portion during brittle fracture progression increases, and the occurrence of so-called brittle fractures is almost suppressed. Therefore, unlike the conventional technical idea of improving the low-temperature toughness by reducing the unit of the brittle fracture surface to improve the low-temperature toughness, the generation of the brittle fracture surface can be suppressed when the thickness is 2 μm or less.

【0012】ここで、平均粒径は板厚方向の測定値であ
り、最終組織では圧延方向には伸長した組織になってお
り、光学顕微鏡組織上では圧延方向の粒径は大きい場合
もある。しかし、このような場合であってもマルテンサ
イトやベイナイトでは内部がパケット粒に分割されてお
り、この大きさは板厚方向の粒界間隔の減少と共に小さ
くなっている。
Here, the average grain size is a measured value in the sheet thickness direction. In the final structure, the grain structure is elongated in the rolling direction. On the optical microscope structure, the grain size in the rolling direction may be large. However, even in such a case, in martensite or bainite, the inside is divided into packet grains, and this size decreases as the grain boundary spacing in the sheet thickness direction decreases.

【0013】フェライト・パーライトの場合は、もとの
γから多数の結晶粒が発生するので光学顕微鏡組織上も
微細化している。また、このような細粒になると、き裂
の進展経路が結晶粒を横断する確率も増す。このような
理由により、板厚方向の平均結晶粒径が2μm以下の超
微細鋼とした。
In the case of ferrite / pearlite, a large number of crystal grains are generated from the original γ, so that the microstructure of the optical microscope is fine. Further, when such fine grains are formed, the probability that the crack propagation path crosses the crystal grains increases. For this reason, ultrafine steel having an average crystal grain size in the thickness direction of 2 μm or less was used.

【0014】次に、鋼の化学成分の限定理由について述
べる。本発明法ではαとγの2相域から熱間圧延を開始
することが特徴である。亜共析鋼でなければ高温でのこ
のような組織は得られない。亜共析になるC量の上限は
他の合金元素の含有量により異なるが通常0.7〜0.
8重量%である。しかし、C量が0.02重量%未満で
は、α,γ2相になる温度が狭くなり、さらにC量であ
る程度決まるマルテンサイトの硬さが低くなるために高
強度が得られなくなる。従って、Cは0.02重量%以
上である必要がある。特に、製造した鋼に高い低温靭性
を要求する場合には0.05〜0.2重量%の範囲が望
ましい。
Next, the reasons for limiting the chemical composition of steel will be described. The method of the present invention is characterized in that hot rolling is started from a two-phase region of α and γ. Such a structure at a high temperature cannot be obtained unless it is a hypoeutectoid steel. Although the upper limit of the amount of C that becomes hypoeutectoid varies depending on the content of other alloying elements, it is usually 0.7 to 0.1.
8% by weight. However, when the C content is less than 0.02% by weight, the temperature at which the α and γ2 phases are formed becomes narrow, and the hardness of martensite, which is determined to some extent by the C content, becomes low, so that high strength cannot be obtained. Therefore, C needs to be 0.02% by weight or more. In particular, when high low-temperature toughness is required for the manufactured steel, the range of 0.05 to 0.2% by weight is desirable.

【0015】他の合金元素は、微細組織形成のためには
特に必要でないが、高強度化、高靭性化、高耐食比等の
様々な特性を向上させるために添加される。例えば、主
要元素としてはSi<1.0、Mn<3%、Cr<3
%、Mo<1.5%、Cuく1.5%の範囲(%は全て
重量%)、その他V,Nb,Al,Ti等通常の構造用
鋼に使用される元素を含有できる。Mnは焼き入れ性を
高めて高強度化する最も重要な元素であり、Cr,M
o,Cnは高強度化、高靭性化、高耐食化に寄与する。
V,Nb,Ti,Alは高強度化、初期組織の微細化に
役立つ。Si,Al,Tiは脱酸元素としても使用され
る。
Other alloying elements are not particularly necessary for forming a microstructure, but are added to improve various properties such as high strength, high toughness, and high corrosion resistance. For example, as main elements, Si <1.0, Mn <3%, Cr <3
%, Mo <1.5%, Cu and 1.5% (all are% by weight), and other elements used in ordinary structural steels such as V, Nb, Al, and Ti. Mn is the most important element that enhances hardenability and increases strength.
o and Cn contribute to higher strength, higher toughness, and higher corrosion resistance.
V, Nb, Ti and Al are useful for increasing the strength and miniaturizing the initial structure. Si, Al and Ti are also used as deoxidizing elements.

【0016】最終組織を微細にするためには2相域に加
熱した時の組織が微細でなくてはならない。そのために
は2相域加熱前の組織が微細でなくてはならない。2相
域加熱前の組織の平均粒径が40μm以上では微細な2
相組織は得られない。特に、最終的に1μm以下の組織
を得たい場合には、2相域加熱前の組織がマルテンサイ
ト・ベイナイトの場合は20μm以下、フェライト・パ
ーライトの場合には10μm以下の粒径にすることが望
ましい。
In order to make the final structure fine, the structure when heated to the two-phase region must be fine. For this purpose, the structure before heating in the two-phase region must be fine. If the average grain size of the structure before heating in the two-phase region is 40 μm or more, fine 2
No phase structure is obtained. In particular, when it is desired to finally obtain a structure of 1 μm or less, the grain size before heating in the two-phase region should be 20 μm or less when the structure is martensite bainite, and 10 μm or less when the structure is ferrite / pearlite. desirable.

【0017】このような結晶粒径は、通常行われている
熱間圧延などにより容易に達成できる水準である。例え
ば、250mm厚の鋼塊を1150℃に加熱し、1000
℃以上の温度で120mmまで圧延し、その後900〜8
00℃の温度域で25mmまで制御圧延すればよい。
Such a crystal grain size is a level that can be easily achieved by ordinary hot rolling or the like. For example, a 250 mm thick steel ingot is heated to 1150 ° C.
Rolled to 120mm at a temperature of over ℃, then 900-8
What is necessary is just to control-roll to 25 mm in the temperature range of 00 degreeC.

【0018】組織を40μm以下に微細化した鋼をγ分
率が20%以上80%未満となる温度に再加熱する。γ
が20%未満ではαが多すぎて微細化が達成されない。
一方、γが80%以上になるとγ主体の組織となり、微
細な組織でなくなる。従って、γ分率が20%以上80
%未満とした。γ分率と温度の関係は使用する鋼の膨張
曲線をAc3 点以上まで測定することで、簡単に知るこ
とができる。
The steel whose structure is refined to 40 μm or less is reheated to a temperature at which the γ fraction is 20% or more and less than 80%. γ
Is less than 20%, α is too large to achieve fineness.
On the other hand, when γ is 80% or more, the structure becomes mainly γ and is not a fine structure. Therefore, the γ fraction is 20% or more and 80% or more.
%. The relationship between the γ-fraction and the temperature can be easily known by measuring the expansion curve of the steel used up to the Ac 3 point or more.

【0019】2相組織は熱間圧延によりさらに微細化す
るが、圧下量が50%未満では微細化に対する効果は小
さいため、累積圧下量を50%以上とした。圧下量が大
きい方が微細化が進むため圧下量の上限は特には定めな
いが、素材と製品の厚さ比から上限は自ずと決まる。
Although the two-phase structure is further refined by hot rolling, if the rolling reduction is less than 50%, the effect on the refinement is small, so the cumulative rolling reduction is set to 50% or more. The upper limit of the rolling amount is not particularly defined because the larger the rolling amount is, the finer the finer the structure is. However, the upper limit is naturally determined from the thickness ratio of the material and the product.

【0020】熱間圧延中にγ,α共に加工され偏平化す
ると共に転位密度が増す。この状態からさらに冷却する
が、冷却速度が速かったり、鋼の焼き入れ性が高い場合
はγの部分はマルテンサイトやベイナイト、またはこれ
らの混合組織になる。一方、冷却速度が遅かったり、鋼
の焼き入れ性が低い場合はフェライト系の組織になる。
マルテンサイトやベイナイトの方がフェライトより硬い
ので冷却速度を高めることで、すなわち水冷することで
より高強度化できる。加工フェライトの部分は冷却方法
によらず、ほぼ連間圧延中の組織が引き継がれる。
During hot rolling, both γ and α are processed to flatten and increase the dislocation density. From this state, cooling is further performed. When the cooling rate is high or the hardenability of steel is high, the portion of γ becomes martensite, bainite, or a mixed structure of these. On the other hand, when the cooling rate is slow or the hardenability of the steel is low, a ferritic structure is formed.
Since martensite and bainite are harder than ferrite, the strength can be increased by increasing the cooling rate, that is, by cooling with water. The structure of the processed ferrite is substantially inherited during continuous rolling regardless of the cooling method.

【0021】このようにして得られる組織は熱間圧延前
の組織が微細であるほど微細になる。従って、2相域へ
の加熱、熱間圧延、冷却を繰り返すことにより、さらに
微細な組織が得られる。
The structure obtained in this way becomes finer as the structure before hot rolling becomes finer. Therefore, a finer structure can be obtained by repeating heating, hot rolling and cooling to the two-phase region.

【0022】さらに、鋼成分としてNiを0.5重量%
以上含有すると、2相域に加熱するときにγが結晶粒界
だけでなく、結晶粒内からも生成するようになり、微細
化をさらに促進する。この場合、Ac1 変態点までの加
熱速度を遅くすると、より微細にγが生成する。また、
Ni添加は製造した材料の強度、低温靭性の向上にも寄
与する。
Further, 0.5% by weight of Ni as a steel component
When the above content is contained, γ is generated not only at the crystal grain boundaries but also within the crystal grains when heating to the two-phase region, further promoting the miniaturization. In this case, when the heating rate up to the Ac 1 transformation point is reduced, γ is more minutely generated. Also,
Ni addition also contributes to the improvement of the strength and low-temperature toughness of the manufactured material.

【0023】さらに必要に応じて、前記の方法で製造し
た鋼をAc1 変態点以下の温度で焼き戻してもよい。焼
き戻しにより延靭性は適度に回復する。焼き戻し処理は
ミクロ組織分率そのものを変えず、本発明の特色を損な
うものではない。
Further, if necessary, the steel produced by the above method may be tempered at a temperature lower than the Ac 1 transformation point. The temper recovers the ductility moderately by tempering. The tempering treatment does not change the microstructure fraction itself, and does not impair the features of the present invention.

【0024】[0024]

【実施例】表1に化学成分を示す5種の鋼を素材として
用いた。表2に示す様々な条件で圧延した後、場合によ
り焼き戻しを施した。その後、組織観察、常温での引っ
張り試験、7.5mm厚のVノッチシャルピー試験(−1
00℃)を行った。結果は表2に示す。
EXAMPLES Five kinds of steels whose chemical components are shown in Table 1 were used as raw materials. After rolling under various conditions shown in Table 2, tempering was optionally performed. Thereafter, microstructure observation, tensile test at room temperature, V-notch Charpy test of 7.5 mm thickness (-1)
00 ° C.). The results are shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】以上のように、本発明により、特定の化
学組成の鋼を特定の方法で製造した鋼は超微細組織の高
強度鋼になる。
As described above, according to the present invention, a steel obtained by manufacturing a steel having a specific chemical composition by a specific method becomes a high-strength steel having an ultrafine structure.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.02重量%以上含有する亜共析
鋼で、主な組織が2相からなり、且つ平均粒径が2μm
以下であることを特徴とする超微細組織を有する鋼。
1. A hypoeutectoid steel containing C in an amount of 0.02% by weight or more, having a main structure of two phases and an average particle size of 2 μm.
A steel having an ultrafine structure characterized by the following.
【請求項2】 2相組織がベイナイト・マルテンサイト
と加工フェライトであることを特徴とする請求項1記載
の超微細組織を有する鋼。
2. The steel having an ultrafine structure according to claim 1, wherein the two-phase structure is bainite martensite and processed ferrite.
【請求項3】 2相組織がフェライト・パーライトと加
工フェライトであることを特徴とする請求項1記載の超
微細組織を有する鋼。
3. The steel having an ultrafine structure according to claim 1, wherein the two-phase structure is ferrite / pearlite and processed ferrite.
【請求項4】 請求項1乃至3のいずれか1項に記載の
鋼において、さらにNiを0.5重量%以上含有したこ
とを特徴とする超微細組織を有する鋼。
4. The steel according to claim 1, further comprising 0.5% by weight or more of Ni, the steel having an ultrafine structure.
【請求項5】 請求項1乃至4のいずれか1項に記載の
鋼をAc1 変態点以下の温度で焼き戻したことを特徴と
する超微細組織を有する鋼。
5. A steel having an ultrafine structure, wherein the steel according to any one of claims 1 to 4 is tempered at a temperature not higher than the Ac 1 transformation point.
【請求項6】 Cを0.02重量%以上含有する亜共析
鋼で、平均粒径が40μm以下の鋼を、オーステナイト
組織分率が20%以上80%未満となるフェライト、オ
ーステナイト2相温度域に加熱し、累積圧下量が50%
以上で熱間圧延した後、空冷より速い冷却速度で冷却
し、主な組織が2相からなり、且つ平均粒径が2μm以
下の組織とすることを特徴とする超微細組織を有する鋼
の製造法。
6. A hypoeutectoid steel containing 0.02% by weight or more of C and having a mean grain size of 40 μm or less, and a ferrite / austenite two-phase temperature having an austenite structure fraction of 20% or more and less than 80%. Heating area, cumulative reduction amount is 50%
After the hot rolling as described above, the steel is cooled at a cooling rate faster than air cooling to produce a steel having an ultrafine structure characterized in that the main structure is two phases and the average grain size is 2 μm or less. Law.
【請求項7】 Cを0.02重量%以上含有する亜共析
鋼で、平均粒径が40μm以下の鋼を、オーステナイト
組織分率が20%以上80%未満となるフェライト、オ
ーステナイト2相温度域に加熱し、累積圧下量が50%
以上で熱間圧延した後、空冷より速い冷却速度で冷却す
ることを1回以上行い、主な組織が2相からなり平均粒
径が2μm以下の組織とすることを特徴とする超微細組
織を有する鋼の製造法。
7. A hypoeutectoid steel containing 0.02% by weight or more of C and having an average grain size of 40 μm or less, a ferrite and austenite two-phase temperature having an austenite structure fraction of 20% or more and less than 80%. Heating area, cumulative reduction amount is 50%
After the hot rolling as described above, cooling at a cooling rate faster than air cooling is performed once or more, and an ultrafine structure characterized by having a main structure of two phases and a mean grain size of 2 μm or less is obtained. Method of producing steel.
【請求項8】 熱間圧延した後の冷却方法が水冷である
ことを特徴とする請求項6または7記載の超微細組織を
有する鋼の製造法。
8. The method for producing a steel having an ultrafine structure according to claim 6, wherein the cooling method after hot rolling is water cooling.
【請求項9】 請求項6乃至8のいずれか1項に記載の
鋼において、鋼成分としてさらにNiを0.5重量%以
上含有することを特徴とする超微細組織を有する鋼の製
造法。
9. The method for producing a steel having an ultrafine structure according to claim 6, further comprising 0.5% by weight or more of Ni as a steel component.
【請求項10】 請求項6乃至9のいずれか1項に記載
の製造法において、鋼をさらにAc1 変態点以下の温度
で焼き戻すことを特徴とする超微細組織を有する鋼の製
造法。
10. The method of producing a steel having an ultrafine structure according to claim 6, wherein the steel is further tempered at a temperature not higher than the Ac 1 transformation point.
JP20362397A 1997-05-09 1997-07-29 Steel with superfine structure, and its production Withdrawn JPH1121655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20362397A JPH1121655A (en) 1997-05-09 1997-07-29 Steel with superfine structure, and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11993697 1997-05-09
JP9-119936 1997-05-09
JP20362397A JPH1121655A (en) 1997-05-09 1997-07-29 Steel with superfine structure, and its production

Publications (1)

Publication Number Publication Date
JPH1121655A true JPH1121655A (en) 1999-01-26

Family

ID=26457592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20362397A Withdrawn JPH1121655A (en) 1997-05-09 1997-07-29 Steel with superfine structure, and its production

Country Status (1)

Country Link
JP (1) JPH1121655A (en)

Similar Documents

Publication Publication Date Title
EP1862561B9 (en) Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
JP3990725B2 (en) High strength duplex steel sheet with excellent toughness and weldability
JP5733425B2 (en) High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO1995013405A1 (en) High-strength high-ductility two-phase stainless steel and process for producing the same
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP2011052324A (en) Triple-phase nano-composite steel
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2002285278A (en) High strength and high ductility steel sheet with hyperfine crystal grain structure obtainable by subjecting plain low carbon steel to low strain working and annealing and production method therefor
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPS5896818A (en) Production of hot-rolled steel material having high strength and excellent low temperature toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPS585965B2 (en) The first and last day of the year.
US5827379A (en) Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JPH1121655A (en) Steel with superfine structure, and its production
JPH11323481A (en) Steel with fine grained structure, and its production
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005