JPH11216445A - Treatment of waste plastics - Google Patents

Treatment of waste plastics

Info

Publication number
JPH11216445A
JPH11216445A JP3038298A JP3038298A JPH11216445A JP H11216445 A JPH11216445 A JP H11216445A JP 3038298 A JP3038298 A JP 3038298A JP 3038298 A JP3038298 A JP 3038298A JP H11216445 A JPH11216445 A JP H11216445A
Authority
JP
Japan
Prior art keywords
gas
metal
hydrochloric acid
plastic
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3038298A
Other languages
Japanese (ja)
Other versions
JP3989608B2 (en
Inventor
Yoshimasa Ikeda
善正 池田
Hitoshi Sanpei
均 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3038298A priority Critical patent/JP3989608B2/en
Publication of JPH11216445A publication Critical patent/JPH11216445A/en
Application granted granted Critical
Publication of JP3989608B2 publication Critical patent/JP3989608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively reutilize waste plastics containing heavy metals and chlorine. SOLUTION: Waste plastic are burned and decomposed with gaseous oxygen at 1300-1600 deg.C and the gas consisting essentially of CO and H2 is recovered and the heavy metals are volatilized as a metallic vapor, after cooled, solidified and recovered with a dust collector. Chlorine is recovered as hydrogen chloride and is effectively utilized. The inorganic matters in the waste plastics are separated from a gasification furnace bottom as a fused product to be effectively utilized a water-granulated slag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素及び重金属を
含有するプラスチックから燃料ガスと重金属、塩酸を回
収するプラスチックの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic processing method for recovering fuel gas, heavy metals and hydrochloric acid from plastics containing chlorine and heavy metals.

【0002】[0002]

【従来の技術】近年資源リサイクルの要望から、廃プラ
スチックのリサイクル利用が進んできているが、まだ廃
棄あるいは焼却処理されているのが多いのが現状であ
る。廃プラスチックの利用方法としては、再生利用の他
に液化による軽油の回収方法が開発されている。プラス
チックの液化は、液体燃料で回収することで石油製品と
して使用できる点は有利であるが、残渣が発生し残渣の
処理が問題になること、また、発生する塩酸が液化触媒
を劣化させる点から事前に分離しておく必要があること
の他に、設備費、運転費が高く回収した軽油のコスト
は、市販の軽油価格より高くなり、経済的に成立しない
のが現状である。また、廃プラスチックを燃料として大
量に使用する方法として、高炉の羽口から微粉炭と同時
に吹き込んで、鉄鉱石の還元剤として活用することで、
微粉炭を減らす方法が最近実行されているが、塩化ビニ
ール等の含塩素プラスチックは、分解して塩酸ガスが発
生し、後段の集塵機、ガス配管を腐食するので事前に除
去する必要がある。
2. Description of the Related Art In recent years, recycling of waste plastics has been promoted due to a demand for resource recycling, but at present, waste plastics are still often discarded or incinerated. As a method of utilizing waste plastic, a method of collecting light oil by liquefaction has been developed in addition to recycling. The liquefaction of plastic is advantageous in that it can be used as petroleum products by recovering it with a liquid fuel, but from the point that residues are generated and disposal of the residues becomes a problem, and the hydrochloric acid generated degrades the liquefaction catalyst. In addition to the necessity of separating them in advance, the cost of recovered light oil, which has high equipment costs and operating costs, is higher than the price of commercially available light oil, and is currently not economically viable. In addition, as a method of using a large amount of waste plastic as fuel, by injecting pulverized coal simultaneously from the tuyere of a blast furnace and using it as a reducing agent for iron ore,
Although a method of reducing pulverized coal has been recently implemented, chlorine-containing plastics such as vinyl chloride decompose to generate hydrochloric acid gas, which corrodes a dust collector and a gas pipe at a later stage, and thus need to be removed in advance.

【0003】塩素を含むプラスチックの代表である塩化
ビニールには、安定剤として亜鉛が添加されており、さ
らに、電線被覆プラスチックの多くには、塩化ビニール
が使用され、鉛が多量に含まれている。これらの重金属
を含む廃プラスチックを液化処理すると、残渣中に重金
属が残り、重金属を含む残渣の処理方法が課題になる。
また、高炉に吹き込む場合、重金属による溶銑の汚染が
発生すると同時に、高炉ダスト中に重金属が混入し高炉
ダスト処理が問題になる。
[0003] Vinyl chloride, which is a representative of plastics containing chlorine, is added with zinc as a stabilizer. Further, many of the plastics for covering electric wires use vinyl chloride and contain a large amount of lead. . When such waste plastics containing heavy metals are liquefied, heavy metals remain in the residues, and a method of treating the residues containing the heavy metals becomes an issue.
In addition, when the blast furnace is blown into the blast furnace, the molten metal is contaminated by the heavy metal, and at the same time, the heavy metal is mixed into the blast furnace dust, and the blast furnace dust treatment becomes a problem.

【0004】塩素を含むプラスチックを処理する方法と
しては、特開平6−316562号公報に、250〜6
00℃で熱分解して、発生する塩化水素を除去して、残
った炭素を燃料として利用する方法が提案されている
が、炭素で回収しても利用先が少ない点が問題である。
また、特開平7−233373号公報では、燃料を燃焼
した高温のガスを廃プラスチックに吹き込み溶融熱分解
すると同時に、燃焼排ガスで発生した塩酸ガスを除去す
る方法が提案されているが、燃料を使用して加熱する点
と、液化残渣が発生し処理が課題になる。
[0004] As a method for treating chlorine-containing plastics, Japanese Patent Application Laid-Open No. 6-316562 discloses a method for treating plastics containing 250 to 6 particles.
A method has been proposed in which pyrolysis is performed at 00 ° C. to remove generated hydrogen chloride, and the remaining carbon is used as a fuel.
Also, Japanese Patent Application Laid-Open No. Hei 7-233373 proposes a method in which a high-temperature gas obtained by burning a fuel is blown into waste plastics to melt and thermally decompose, and at the same time, hydrochloric acid gas generated from combustion exhaust gas is removed. And heating, and liquefaction residues are generated, and processing becomes an issue.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上述
の問題点を解決し、廃プラスチックの液化、高炉吹き込
み処理で問題になる、塩素及び重金属を含む廃プラスチ
ックを燃料又は化学原料ガスとして回収すると共に、重
金属を分離して回収し、更に塩素成分を塩酸として回収
して有効に活用すると同時に、廃プラスチックに付着あ
るいは含まれている無機物も重金属を含まない資源とし
て有効に活用することで、廃棄物を出さないで、廃プラ
スチックを有効活用できる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to use waste plastic containing chlorine and heavy metals, which becomes a problem in liquefaction of waste plastic and blast furnace blowing treatment, as a fuel or chemical raw material gas. At the same time as recovering and separating heavy metals and recovering chlorine components as hydrochloric acid, it can be used effectively, and at the same time, inorganic substances attached to or contained in waste plastic can be effectively used as resources free of heavy metals. Another object of the present invention is to provide a method for effectively utilizing waste plastic without producing waste.

【0006】[0006]

【発明を解決するための手段】上記課題を解決するため
の、本発明の手段は以下の通りである。
Means of the present invention for solving the above problems are as follows.

【0007】(1) 塩素及び重金属を含有するプラス
チックを1300〜1600℃で酸素ガスとガス化炉内
で反応させ、CO、H2及びHClガスに分解するとと
もに、重金属を金属蒸気として蒸発させて、重金属をガ
スと同伴させてプラスチックに含まれるスラグと分離し
て、更に前記ガス化炉の後段に設けた冷却炉で、ボイラ
ー又は、水噴霧冷却によりガスを冷却して、重金属を金
属、金属塩化物又は金属酸化物にして、固化して集塵機
で捕集して、分離することを特徴とする廃プラスチック
の処理方法である。
(1) A plastic containing chlorine and heavy metals is reacted with oxygen gas in a gasification furnace at 1300 to 1600 ° C. to decompose them into CO, H 2 and HCl gases, and to evaporate heavy metals as metal vapor. The heavy metal is entrained with the gas to separate it from the slag contained in the plastic, and further cooled by a boiler or water spray cooling in a cooling furnace provided at the subsequent stage of the gasification furnace to convert the heavy metal into a metal or metal. This is a method for treating waste plastic, which comprises converting into chlorides or metal oxides, solidifying, collecting with a dust collector, and separating.

【0008】(2) 前記集塵機の後段に塩酸回収装置
を設け、ガス中の塩酸を回収することを特徴とする
(1)項記載の廃プラスチックの処理方法である。
(2) The method for treating waste plastic according to (1), wherein a hydrochloric acid recovery device is provided downstream of the dust collector to recover hydrochloric acid in the gas.

【0009】(3) 前記ガス化炉の下部にスラグタ
ップを設け、プラスチック中の無機物及び付着した無機
物を溶融させた後、冷却固化して回収することを特徴と
する(1)項記載の廃プラスチックの処理方法である。
(3) The waste according to (1), wherein a slag tap is provided at a lower portion of the gasification furnace to melt the inorganic substance in the plastic and the attached inorganic substance, and then cool and solidify to collect. This is a method for processing plastic.

【0010】本発明においては、ガス化炉で廃プラスチ
ックを酸素ガスで1300〜1600℃の高温で反応さ
せて、プラスチックを主としてCO、H2、HClガス
に分解し、重金属を金属蒸気にして、ガスに同伴させ
る。次に、冷却炉で温度の低下とガス組成が重金属の酸
化条件になることで、金属塩化物又は酸化物の固体に
し、集塵機で重金属を捕集し、その後、塩酸ガスを水に
吸収して塩酸を回収し、未回収の塩酸ガスと塩素ガスは
除害塔で除去した後に燃料ガスあるいは化学原料ガスと
して利用する。廃プラスチックに付着あるいは含まれる
無機物は、ガス化炉で溶融してスラグタップから排出さ
れ水槽で冷却固化して回収することによって、重金属を
含まないスラグを回収するものである。
In the present invention, waste plastic is reacted with oxygen gas at a high temperature of 1300 to 1600 ° C. in a gasification furnace to decompose the plastic into mainly CO, H 2 , and HCl gases, and convert heavy metals into metal vapor. Accompany with gas. Next, the temperature is lowered in the cooling furnace and the gas composition becomes the oxidation condition of the heavy metal, the metal chloride or oxide is solidified, the heavy metal is collected by the dust collector, and then the hydrochloric acid gas is absorbed in the water. Hydrochloric acid is recovered, and unrecovered hydrochloric acid gas and chlorine gas are removed by a detoxification tower and then used as fuel gas or chemical raw material gas. Inorganic substances adhering to or contained in the waste plastic are melted in a gasification furnace, discharged from a slag tap, cooled and solidified in a water tank, and recovered to recover slag containing no heavy metal.

【0011】[0011]

【発明の実施の形態】塩素を含有する廃プラスチック
は、高温で燃焼すれば、塩素を含む有害有機化合物を発
生しないことが知られている。空気で燃焼しても高温燃
焼することは可能であるが、排ガス量が増加して130
0℃以上の高温燃焼では、ほとんど完全燃焼することに
なって、生成ガス中の有用なCO、H2の割合は少な
く、ほとんどがCO2、H2Oになり、さらに、窒素ガス
を50%以上含む低カロリーのガスしか得られない。重
金属は、高温条件で還元雰囲気であれば、金属蒸気にな
ってガス中に存在してスラグと分離することが可能にな
るが、酸化雰囲気では、酸化物として存在して、金属酸
化物はほとんど揮発しないことから、スラグに含まれる
ので分離することが不可能になる。しかし、酸素ガスで
燃焼することで燃焼ガス量を減少することが可能にな
り、燃焼ガス顕熱が大幅に減少してCO、H2ガスを主
成分とする高カロリーガスを得ることが可能になり、重
金属も金属状態になり、鉛、亜鉛等の蒸気圧の高い金属
は、金属蒸気になってガス中に存在して、スラグには含
まれなくなることに着目した。また、生成ガス中の塩酸
ガス濃度も高くなり、ガス量も減少することから、集塵
設備、塩酸回収設備、除害設備の容量も小さくすること
が可能になる。さらに、1300℃以上の高温では、廃
プラスチックに含まれる無機物も溶融するので、ガスと
分離することが容易になり、冷却、固化すれば重金属を
含まないスラグとして土建資材に有効利用できる。無機
物は、成分によっては高融点になるが、このような場
合、添加剤で成分調整することで融点の低下は可能であ
る。ガス化温度は、高温の方が無機物の溶融、塩素を含
む有害有機化合物発生防止の点から望ましいが、ガス化
炉の耐熱性、損失熱の増加を防止する点から1600℃
以下とするものである。
DETAILED DESCRIPTION OF THE INVENTION It is known that chlorine-containing waste plastics do not generate harmful organic compounds containing chlorine when burned at high temperatures. Although high-temperature combustion is possible even with air combustion, the amount of exhaust gas increases to
In the high temperature combustion of 0 ° C. or more, almost complete combustion occurs, and the ratio of useful CO and H 2 in the product gas is small, most of which becomes CO 2 and H 2 O. Further, nitrogen gas is reduced to 50%. Only low-calorie gas containing the above can be obtained. In a reducing atmosphere under high temperature conditions, heavy metals become metal vapor and are present in the gas and can be separated from slag, but in an oxidizing atmosphere, they exist as oxides, and almost all metal oxides are present. Since it does not volatilize, it becomes impossible to separate it because it is contained in the slag. However, by burning with oxygen gas, it becomes possible to reduce the amount of combustion gas, and the sensible heat of combustion gas is greatly reduced, making it possible to obtain high-calorie gas mainly composed of CO and H 2 gas. Attention was paid to the fact that heavy metals are also in a metallic state, and metals having a high vapor pressure, such as lead and zinc, are present in gas as metal vapor and are not included in slag. Further, since the concentration of hydrochloric acid gas in the generated gas increases and the amount of gas decreases, the capacities of the dust collecting facility, the hydrochloric acid collecting facility, and the detoxifying facility can be reduced. Furthermore, at a high temperature of 1300 ° C. or higher, the inorganic substances contained in the waste plastics are also melted, so that they can be easily separated from the gas. The inorganic substance has a high melting point depending on the component. In such a case, the melting point can be lowered by adjusting the component with an additive. The gasification temperature is preferably higher at a higher temperature from the viewpoint of melting inorganic substances and preventing generation of harmful organic compounds including chlorine, but is preferably 1600 ° C from the viewpoint of preventing the heat resistance of the gasification furnace and the increase in heat loss.
The following is assumed.

【0012】次に重金属の挙動について説明する。鉛の
温度と関係した反応の自由エネルギー変化を図2に示
す。自由エネルギー変化は、小さい(−が大きく図2の
グラフの下にある)ほど反応が進行することを示してい
る。鉛と酸素の平衡は、CO、H2の存在下では、C
O、H2と酸素の反応より、図2で示すように各温度範
囲で上にあることから、酸化鉛でなく金属鉛で存在す
る。鉛と塩素との反応では、900℃以上では金属鉛と
して存在し、900℃以下では塩化鉛になることを示し
ている。亜鉛についても同様であるが、亜鉛と酸素の平
衡は、ガス化炉温度1400℃ではCO/(CO+CO
2)=0.05以上で金属亜鉛、冷却温度800℃では
CO/(CO+CO2)=0.95以下で酸化亜鉛にな
ることからCO/(CO+CO2)=0.5のガス組成
では、ガス化炉では金属亜鉛、冷却炉で酸化亜鉛になる
ことが鉛との違いである。この結果、亜鉛、鉛は高温の
ガス化炉で金属蒸気になってスラグと分離でき、温度が
低下した集塵機の前では、金属、金属塩化物又は金属酸
化物になって固化して集塵機で回収できることに着目し
た。金属の蒸気圧は、1400℃で亜鉛が760mmH
g以上、鉛が60mmHg以上あることから、これらの
金属はガス中に存在することになる。一方、冷却炉では
蒸気圧の高い塩化鉛で1.3×10-11mmHgしかな
いので、ほとんどが固体で回収できることを示してい
る。
Next, the behavior of heavy metals will be described. The change in free energy of the reaction as a function of the temperature of lead is shown in FIG. The change in free energy indicates that the smaller the value (the larger-is below the graph in FIG. 2), the more the reaction proceeds. The equilibrium between lead and oxygen is C in the presence of CO and H 2.
As shown in FIG. 2, the temperature is higher than the reaction between O and H 2 and oxygen, and therefore, metal oxide is present instead of lead oxide. In the reaction between lead and chlorine, it is shown that it exists as metal lead at 900 ° C. or higher and becomes lead chloride at 900 ° C. or lower. The same is true for zinc, but the equilibrium between zinc and oxygen is CO / (CO + CO
2) = 0.05 or more zinc metal, in the gas composition CO / (CO + CO 2) = 0.5 from becoming zinc oxide at a cooling temperature of 800 ° C. In CO / (CO + CO 2) = 0.95 or less, the gas The difference from lead is that it becomes metallic zinc in a chemical furnace and zinc oxide in a cooling furnace. As a result, zinc and lead can be separated from slag as metal vapor in a high-temperature gasifier, and solidified as metal, metal chloride or metal oxide before the dust collector where the temperature has dropped, and collected by the dust collector. We focused on what we could do. The vapor pressure of the metal is 1400 ° C and zinc is 760 mmH
g or more and lead is 60 mmHg or more, these metals are present in the gas. On the other hand, in a cooling furnace, lead chloride having a high vapor pressure is only 1.3 × 10 −11 mmHg, which indicates that almost all can be recovered as a solid.

【0013】図1は、本発明の方法を実施する装置の一
実施例である。ガス化炉1、ガス冷却器2、3、集塵機
5、塩酸吸収塔6から実質的に構成されており、サイク
ロン4、除害塔7が付属して設けられている。
FIG. 1 shows an embodiment of an apparatus for implementing the method of the present invention. It is substantially composed of a gasification furnace 1, gas coolers 2, 3, a dust collector 5, and a hydrochloric acid absorption tower 6, and is provided with a cyclone 4 and an abatement tower 7 attached thereto.

【0014】ガス化炉1には、気体で搬送される粉砕後
の廃プラスチックと酸素を燃焼反応するバーナー8が炉
体の側壁に設けられており、底部にはスラグタップ10
が設けられ、さらにその下部に、水槽9が設けられる。
ガス化炉1の構造は、気流層石炭ガス化炉と同様の構造
で、厚さ20〜50mmの耐火物炉壁で構成され、耐火
物と鉄皮の間は、水冷管又はボイラー水管で冷却するこ
とで、炉温が1600℃でも耐火物は、1400℃以下
になり保護できる。冷却は、ガス中の塩酸ガスと接触し
て冷却管が低温腐食するのを防止する点からボイラー水
管で構成して温度を200〜300℃に保持することが
好ましい。図1には示していないが、スラグタップ8と
水槽9の間には、予熱バーナーを設け、ガス化炉を廃プ
ラスチックの着火温度以上に昇温する。運転開始は、ま
ず、予熱バーナーで廃プラスチックの着火温度以上の4
00〜500℃に加熱し、次に、バーナー8に廃プラス
チックと酸素を供給して燃焼させる。燃焼初期は、酸素
量を多く供給して昇温し、所定の温度近くになれば、酸
素量を減少させて目的の温度にする。
The gasification furnace 1 is provided with a burner 8 on the side wall of the furnace body, which burns and reacts with the waste plastic after being pulverized and conveyed by gas and oxygen.
Is provided, and a water tank 9 is further provided thereunder.
The structure of the gasifier 1 is the same as that of a gas-bed coal gasifier, and is composed of a refractory furnace wall having a thickness of 20 to 50 mm, and the space between the refractory and the iron shell is cooled by a water-cooled pipe or a boiler water pipe. Thus, even if the furnace temperature is 1600 ° C., the refractory can be protected at 1400 ° C. or less. The cooling is preferably performed with a boiler water pipe and kept at a temperature of 200 to 300 ° C. in order to prevent the cooling pipe from being corroded at low temperature by contact with hydrochloric acid gas in the gas. Although not shown in FIG. 1, a preheating burner is provided between the slag tap 8 and the water tank 9 to raise the temperature of the gasification furnace to the ignition temperature of the waste plastic or more. Start operation with a preheated burner at a temperature above the ignition temperature of waste plastic.
Then, the waste plastic and oxygen are supplied to the burner 8 and burned. In the initial stage of combustion, a large amount of oxygen is supplied to raise the temperature, and when the temperature approaches a predetermined temperature, the amount of oxygen is reduced to a target temperature.

【0015】ガス化炉1の上部には、ガス冷却炉2が設
けられ、その後段には水噴霧式のガス冷却器3、サイク
ロン4、集塵機5、塩酸吸収塔6、除害塔7が配管で連
結される。ガス冷却炉2は、水噴霧冷却又は、ボイラー
が採用できるが、重金属を金属塩化物又は金属酸化物に
なるガス組成にするための水噴霧と熱回収するためのボ
イラーを併用する方が好ましい。図1では、ガス冷却器
2の下部のガス入口部に、水噴霧ノズル11とボイラー
伝熱管12を配置した、水噴霧冷却とボイラーを併用し
た実施例を示している。ガス冷却器2では、ガスの温度
を200〜300℃まで冷却して蒸気を回収し、ガス冷
却器3で、水噴霧冷却でガス温度を150〜200℃に
冷却して、固化した重金属の塩化物又は酸化物をサイク
ロン4、集塵機5で、飛散したスラグ、未燃の有機物と
ともに回収する。サイクロン4は、省略することも可能
であるが、重金属の金属酸化物、塩化物はガスから固化
した微粉であることから、サイクロン4では捕集しにく
いことから、サイクロンではガスに飛散したスラグをま
ず捕集して、集塵機5で金属を捕集する方が、回収金属
の濃度が高くなって再利用するする点から好ましい。集
塵機5は、バグフィルター等の効率の高い方式が好まし
い。塩酸吸収塔6、除害塔7は、テラレット等を充填し
た吸収塔である。
A gas cooling furnace 2 is provided above the gasification furnace 1, and a water spray type gas cooler 3, a cyclone 4, a dust collector 5, a hydrochloric acid absorption tower 6, and a detoxification tower 7 are provided in the subsequent stage. Are linked by The gas cooling furnace 2 can employ water spray cooling or a boiler, but it is preferable to use both a water spray for converting a heavy metal into a gas composition to be a metal chloride or a metal oxide and a boiler for heat recovery. FIG. 1 shows an embodiment in which a water spray nozzle 11 and a boiler heat transfer tube 12 are arranged at a gas inlet portion below the gas cooler 2, and both water spray cooling and a boiler are used. The gas cooler 2 cools the gas to a temperature of 200 to 300 ° C. to collect steam. The gas cooler 3 cools the gas to a temperature of 150 to 200 ° C. by water spray cooling to solidify heavy metal. The substances or oxides are collected by the cyclone 4 and the dust collector 5 together with the slag scattered and unburned organic substances. The cyclone 4 can be omitted. However, since metal oxides and chlorides of heavy metals are fine powder solidified from the gas, it is difficult to collect the cyclone 4 and the slag scattered in the gas is used in the cyclone 4. It is preferable to collect the metal first and then collect the metal with the dust collector 5 from the viewpoint that the concentration of the collected metal increases and the metal is reused. The dust collector 5 is preferably a highly efficient system such as a bag filter. The hydrochloric acid absorption tower 6 and the abatement tower 7 are absorption towers filled with teralet or the like.

【0016】廃プラスチックは、ガス化炉1にバーナー
7から酸素ガスと共に噴出して主としてCO、H2、H
Clに分解され、重金属は金属蒸気になる。生成したガ
スは、ガス化炉上部の冷却炉2で、水噴霧又はボイラー
の一方あるいは併用して冷却された後、ガス冷却器3で
150〜200℃程度まで冷却され、サイクロン4、集
塵機5で重金属の塩化物又は酸化物とフライアッシュ状
の無機物と未燃の炭素を除去する。次に、塩酸吸収塔6
で塩酸ガスが水に吸収されてほとんどの塩酸ガスが回収
される。残った塩酸ガスと副成する塩素ガスは、除害塔
7で苛性ソーダ等のアルカリ水溶液で除去し、清浄なガ
スを得て、燃料ガス又は化学原料ガスとして使用する。
廃プラスチックに含まれる無機物は、ガス化炉1で溶融
されスラグタップ10から水槽9に落下して水砕状の重
金属を含まないスラグが得られる。
The waste plastic is injected into the gasification furnace 1 together with the oxygen gas from the burner 7 and mainly emits CO, H 2 , H
It is decomposed into Cl, and heavy metals become metal vapor. The generated gas is cooled in a cooling furnace 2 above the gasification furnace using one or both of a water spray and a boiler, and then cooled to about 150 to 200 ° C. in a gas cooler 3, and is cooled in a cyclone 4 and a dust collector 5. Removes heavy metal chlorides or oxides, fly ash-like inorganics and unburned carbon. Next, the hydrochloric acid absorption tower 6
The hydrochloric acid gas is absorbed by the water, and most of the hydrochloric acid gas is recovered. The remaining hydrochloric acid gas and chlorine gas by-produced are removed in an abatement tower 7 with an aqueous alkali solution such as caustic soda to obtain a clean gas, which is used as a fuel gas or a chemical raw material gas.
The inorganic substances contained in the waste plastic are melted in the gasifier 1 and fall from the slag tap 10 to the water tank 9 to obtain granulated slag containing no heavy metal.

【0017】[0017]

【実施例】次に、本発明による塩化ビニール、重金属を
含んだ廃プラスチックを5T/Hで処理した場合の実施
例を説明する。廃プラスチックは、表1に示す組成のも
のを5mm以下に粉砕して窒素ガス400Nm3/Hで
搬送してバーナーに供給した。
EXAMPLE Next, an example in which waste plastic containing vinyl chloride and heavy metal according to the present invention is treated at 5 T / H will be described. The waste plastic having the composition shown in Table 1 was pulverized to 5 mm or less, transported with nitrogen gas at 400 Nm 3 / H, and supplied to the burner.

【0018】[0018]

【表1】 酸素ガス1700Nm3/H、蒸気1600Nm3/Hと
共にバーナーから吹き込み、ガス化炉温度は1430℃
で反応させた。蒸気は、ガス化炉温度の調整に使用し
た。ガスは冷却炉で、冷却水3.2T/Hを噴霧後、ボ
イラーで300℃まで冷却して蒸気4T/Hを得た。次
にガス冷却器で150℃まで水を噴霧して冷却後サイク
ロン、バグフィルターで重金属とスラグを回収し、塩酸
回収塔で18%塩酸14.5T/Hを回収した。回収し
たガス量は、乾ガス量で8930Nm3/Hで、ガス組
成は表2に示す。
[Table 1] Oxygen gas 1700 Nm 3 / H and steam 1600 Nm 3 / H were blown in from a burner, and the gasification furnace temperature was 1430 ° C.
Was reacted. The steam was used to adjust the gasifier temperature. The gas was sprayed with 3.2 T / H of cooling water in a cooling furnace, and then cooled to 300 ° C. with a boiler to obtain 4 T / H of steam. Next, water was sprayed to 150 ° C. with a gas cooler, and after cooling, heavy metals and slag were collected with a cyclone and a bag filter, and 14.5 T / H of 18% hydrochloric acid was collected with a hydrochloric acid recovery tower. The recovered gas amount was 8930 Nm 3 / H in dry gas amount, and the gas composition is shown in Table 2.

【0019】[0019]

【表2】 ガスカロリーは、2015kcal/Nm3で製鉄所で
発生する転炉ガスに近いカロリー、組成のガスが得ら
れ、加熱炉、ボイラー等の燃料として有効に利用でき
る。ガス中の塩化水素ガスは1ppm以下、塩素ガスは
5ppmであり、有機塩素化合物は検出されなかった。
有機塩素化合物は、本実施例のガス化温度が1400℃
と高いことから、ガス化炉内で有機物が完全に分解し
て、ボイラーで発生しなかったものと推定される。スラ
グ、サイクロン、バグフィルターの固形物回収量と亜
鉛、鉛の濃度を表3に示す。
[Table 2] As gas calories, a gas having a calorie and composition close to that of the converter gas generated at an ironworks at 2015 kcal / Nm 3 is obtained, and can be effectively used as a fuel for a heating furnace, a boiler and the like. Hydrogen chloride gas in the gas was 1 ppm or less and chlorine gas was 5 ppm, and no organic chlorine compound was detected.
The organic chlorine compound has a gasification temperature of 1400 ° C. in this embodiment.
Therefore, it is highly probable that the organic matter was completely decomposed in the gasifier and was not generated in the boiler. Table 3 shows the solids recovered from the slag, cyclone and bag filter and the concentrations of zinc and lead.

【0020】[0020]

【表3】 スラグには、重金属以外の無機物の約90%が回収さ
れ、亜鉛、鉛は検出限界以下であった。サイクロン、バ
グフィルターでは、スラグ成分と亜鉛、鉛の混合物を回
収した。サイクロンでは、粒径の大きいスラグ成分の捕
集量が多いが、バグフィルターでは亜鉛、鉛成分の回収
量が多いことから、本実施例では実施していないが、サ
イクロン捕集物は、ガス化炉にリサイクルすることで、
スラグ回収量の増加とバグフィルターでの亜鉛、鉛の回
収量を増加することが可能であることが判る。バグフィ
ルター捕集した重金属は、ほとんどが塩化物で本実施例
では、塩酸が過剰に存在するためで、塩酸が少ない場合
には金属酸化物で回収される。バグフィルター回収物
は、金属を50%以上含まれており、金属精錬工場にリ
サイクルすることで、再利用が可能になる。回収塩酸中
の重金属は、亜鉛、鉛がそれぞれ0.5、0.4ppm
以下であった。
[Table 3] About 90% of inorganic substances other than heavy metals were recovered in the slag, and zinc and lead were below the detection limit. In the cyclone and bag filter, a mixture of slag components, zinc and lead was recovered. In the cyclone, a large amount of slag components having a large particle size was collected, but in the bag filter, the amount of recovered zinc and lead components was large. By recycling to the furnace,
It can be seen that it is possible to increase the amount of slag recovered and the amount of zinc and lead recovered by the bag filter. Most of the heavy metals collected by the bag filter are chlorides, and in this embodiment, there is an excess of hydrochloric acid. When the amount of hydrochloric acid is small, the heavy metals are collected as metal oxides. The bag filter collection contains more than 50% of metal and can be reused by recycling it to a metal smelting plant. The heavy metals in the recovered hydrochloric acid were 0.5 and 0.4 ppm for zinc and lead, respectively.
It was below.

【0021】[0021]

【発明の効果】本発明によれば、重金属及び塩素を含む
プラスチックを高温下で酸素ガスで反応させることで、
燃料又は化学原料ガスとして有効に回収することが可能
になり、更に廃プラスチックに含まれる、重金属は塩化
物又は酸化物として、更に塩素を塩酸として回収するこ
とが可能になり、無機物もスラグとして活用できる。
According to the present invention, a plastic containing a heavy metal and chlorine is reacted with oxygen gas at a high temperature,
It can be effectively recovered as fuel or chemical raw material gas, and heavy metals contained in waste plastic can be recovered as chlorides or oxides, and chlorine can be recovered as hydrochloric acid, and inorganic substances can also be used as slag. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に関わる廃プラスチック処理方
法及び装置の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a waste plastic processing method and apparatus according to an embodiment of the present invention.

【図2】本発明の鉛の挙動を説明する図である。FIG. 2 is a diagram for explaining the behavior of lead of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス化炉 2 ガス冷却器 3 ガス冷却器 4 サイクロン 5 集塵機 6 塩酸吸収塔 7 除害塔 8 バーナー 9 水槽 10 スラグタップ 11 水噴霧ノズル 12 ボイラー DESCRIPTION OF SYMBOLS 1 Gasifier 2 Gas cooler 3 Gas cooler 4 Cyclone 5 Dust collector 6 Hydrochloric acid absorption tower 7 Detoxification tower 8 Burner 9 Water tank 10 Slag tap 11 Water spray nozzle 12 Boiler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩素及び重金属を含有するプラスチック
を1300〜1600℃で酸素ガスとガス化炉内で反応
させ、CO、H2及びHClガスに分解するとともに、
重金属を金属蒸気として蒸発させて、重金属をガスと同
伴させてプラスチックに含まれるスラグと分離して、更
に前記ガス化炉の後段に設けた冷却炉で、ボイラー又
は、水噴霧冷却によりガスを冷却して、重金属を金属、
金属塩化物又は金属酸化物にして、固化して集塵機で捕
集して、分離することを特徴とする廃プラスチックの処
理方法。
1. A plastic containing chlorine and heavy metal is reacted with oxygen gas in a gasification furnace at 1300 to 1600 ° C. to decompose into CO, H 2 and HCl gas,
The heavy metal is evaporated as metal vapor, the heavy metal accompanies the gas, separates it from the slag contained in the plastic, and is further cooled by a boiler or water spray cooling in a cooling furnace provided at the subsequent stage of the gasification furnace. And heavy metal to metal,
A method for treating waste plastics, comprising converting into a metal chloride or metal oxide, solidifying, collecting with a dust collector, and separating.
【請求項2】 前記集塵機の後段に塩酸回収装置を設
け、ガス中の塩酸を回収することを特徴とする請求項1
記載の廃プラスチックの処理方法。
2. The method according to claim 1, wherein a hydrochloric acid recovery device is provided downstream of the dust collector to recover hydrochloric acid in the gas.
The method for treating waste plastic described in the above.
【請求項3】 前記ガス化炉の下部にスラグタップを設
け、プラスチック中の無機物及び付着した無機物を溶融
させた後、冷却固化して回収することを特徴とする請求
項1記載の廃プラスチックの処理方法。
3. The waste plastic according to claim 1, wherein a slag tap is provided at a lower portion of the gasification furnace to melt and then solidify by cooling after melting the inorganic substance and the attached inorganic substance in the plastic. Processing method.
JP3038298A 1998-01-29 1998-01-29 Waste plastic treatment method Expired - Fee Related JP3989608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038298A JP3989608B2 (en) 1998-01-29 1998-01-29 Waste plastic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038298A JP3989608B2 (en) 1998-01-29 1998-01-29 Waste plastic treatment method

Publications (2)

Publication Number Publication Date
JPH11216445A true JPH11216445A (en) 1999-08-10
JP3989608B2 JP3989608B2 (en) 2007-10-10

Family

ID=12302349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038298A Expired - Fee Related JP3989608B2 (en) 1998-01-29 1998-01-29 Waste plastic treatment method

Country Status (1)

Country Link
JP (1) JP3989608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061823A (en) * 2000-08-17 2002-02-28 Taiheiyo Cement Corp Combustion method for plastic
JP2003522020A (en) * 2000-01-31 2003-07-22 テルモゼレクト・アクチェンゲゼルシャフト Two-stage cooling process for synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522020A (en) * 2000-01-31 2003-07-22 テルモゼレクト・アクチェンゲゼルシャフト Two-stage cooling process for synthesis gas
JP2002061823A (en) * 2000-08-17 2002-02-28 Taiheiyo Cement Corp Combustion method for plastic

Also Published As

Publication number Publication date
JP3989608B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JPH11286692A (en) Process for treating waste or biomass
US6021723A (en) Hazardous waste treatment method and apparatus
EP1285210A1 (en) Electric arc gasifier as a waste processor
CN113714246B (en) Waste incineration fly ash treatment system and method
JP2004002587A (en) Ecofriendry method for recycling refuse
JPH11294726A (en) Waste treatment method
JP3989608B2 (en) Waste plastic treatment method
JPH03502128A (en) Waste treatment method using oxy-combustion
JPH10281437A (en) Method and apparatus for treating chlorine-containing plastic
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources
KR100315906B1 (en) Method of treating chlorine-containing plastic wastes
JP2004263952A (en) Heat recovering method and device from exhaust gas
JP2005195228A (en) Waste material melting treatment system
JPH108118A (en) Production of desulfurizing agent for steel making from waste gas of waste incineration
JP4264140B2 (en) Method and apparatus for gasifying combustibles, residues and waste containing carbon and ash
JP3980426B2 (en) Waste plastic gasification method
JP2003117520A (en) Method for treating incineration ash
JPH10103640A (en) Waste thermal decomposition disposal facility
JPH0953129A (en) Method for recovering zinc from iron making dust
JP2007021451A (en) Thermal decomposition method for combustible waste
JP3952578B2 (en) Disposal method for waste containing flammable substances
JP2002130628A (en) Thermal gas decomposition gas rectifying apparatus for thermal decomposition/melting combustion apparatus
JPH0849828A (en) Device and method for treating waste
JP4028934B2 (en) Waste treatment method and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees