JPH11214041A - Lithium ion secondary battery and manufacture thereof - Google Patents

Lithium ion secondary battery and manufacture thereof

Info

Publication number
JPH11214041A
JPH11214041A JP10014472A JP1447298A JPH11214041A JP H11214041 A JPH11214041 A JP H11214041A JP 10014472 A JP10014472 A JP 10014472A JP 1447298 A JP1447298 A JP 1447298A JP H11214041 A JPH11214041 A JP H11214041A
Authority
JP
Japan
Prior art keywords
separator
lithium ion
secondary battery
ion secondary
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10014472A
Other languages
Japanese (ja)
Other versions
JP3994496B2 (en
Inventor
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP01447298A priority Critical patent/JP3994496B2/en
Publication of JPH11214041A publication Critical patent/JPH11214041A/en
Application granted granted Critical
Publication of JP3994496B2 publication Critical patent/JP3994496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having improved charge and discharge cycle life and manufacture thereof. SOLUTION: Polyolefin powder grains 10, having melting point of 200 deg.C or less and consisting of PE(polyethylene) or PP(polypropylene); and polymeric powders 12, such as PVDE-HFP having swelling properties by impregnation of an electrolyte are mixed with each other uniformly, a sheet of 10 to 100 microns in thickness is formed to make a separator. An electrolyte is impregnated in polymeric powders 12 after the separator has been formed. Such a separator is various in passing through direction of a lithium ion and disperses uniformly throughout the separator, and thus the occurrence of a local heavy current can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクル寿
命が向上されたリチウムイオン2次電池及びその製造方
法に関する。
The present invention relates to a lithium ion secondary battery having an improved charge / discharge cycle life and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、各種用途にリチウムイオン2
次電池を使用するために、そのサイクル寿命を向上させ
ることが要望されている。例えば、特開平4−1124
60号公報には、正極と負極との間に電解質を含浸させ
たゲル状電解質を介在させることにより、デンドライト
の析出を防止し、サイクル寿命を向上させる技術が開示
されている。
2. Description of the Related Art Conventionally, lithium ion 2
In order to use a secondary battery, it is required to improve the cycle life. For example, Japanese Unexamined Patent Publication No.
No. 60 discloses a technique of interposing a gel electrolyte impregnated with an electrolyte between a positive electrode and a negative electrode, thereby preventing dendrite precipitation and improving cycle life.

【0003】また、特開平9−22726号公報には、
マイクロポーラスなポリオレフィンシートの両面に、電
解質を保持したポリマーが配された構造が開示されてい
る。これによれば、誤使用の際にポリオレフィンの融解
によりリチウムイオンの透過が妨げられ、電池機能を停
止するので、安全性が確保されるとされている。
[0003] Also, Japanese Patent Application Laid-Open No. 9-22726 discloses that
A structure in which a polymer holding an electrolyte is disposed on both sides of a microporous polyolefin sheet is disclosed. According to this, the melting of the polyolefin hinders the permeation of lithium ions at the time of misuse and stops the battery function, so that safety is ensured.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
のうち、正極と負極との間に電解質を含浸させたゲル状
電解質を介在させたものでは、高温でこのゲル状電解質
が流動化し、正極、負極が短絡してしまうという問題が
あった。
However, among the above-mentioned prior arts, when a gel electrolyte impregnated with an electrolyte is interposed between a positive electrode and a negative electrode, the gel electrolyte fluidizes at a high temperature, and In addition, there is a problem that the negative electrode is short-circuited.

【0005】また、マイクロポーラスなポリオレフィン
シートを使用する場合、ポリオレフィンのポーラス部で
デンドライトの生成の可能性があり、正極、負極が短絡
してしまうという問題があった。
Further, when a microporous polyolefin sheet is used, there is a possibility that dendrites may be generated in the porous portion of the polyolefin, and there is a problem that the positive electrode and the negative electrode are short-circuited.

【0006】従って、いずれの場合にもサイクル寿命を
十分向上させることができなかった。
Therefore, in any case, the cycle life could not be sufficiently improved.

【0007】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、充放電サイクル寿命が向上さ
れたリチウムイオン2次電池及びその製造方法を提供す
ることにある。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a lithium ion secondary battery having an improved charge / discharge cycle life and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、リチウムイオン2次電池であって、融点
200℃以下のポリオレフィンと電解質を保持したポリ
マーとが均一に分散しているセパレータを有することを
特徴とする。
In order to achieve the above object, the present invention relates to a lithium ion secondary battery in which a polyolefin having a melting point of 200 ° C. or less and a polymer holding an electrolyte are uniformly dispersed. It has a separator.

【0009】また、上記リチウムイオン2次電池の製造
方法であって、粒径が100μm以下で融点が200℃
以下のポリオレフィン粒子と電解質を保持するポリマー
粒子とを均一に混合する工程と、この混合物を用いて1
0〜100μmの厚さのシートを形成する工程と、この
シートに電解液を含浸する工程と、を有することを特徴
とする。
Further, in the method for producing a lithium ion secondary battery, the particle size is 100 μm or less and the melting point is 200 ° C.
A step of uniformly mixing the following polyolefin particles and polymer particles holding an electrolyte, and 1
It has a step of forming a sheet having a thickness of 0 to 100 μm and a step of impregnating the sheet with an electrolytic solution.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0011】図1には、本発明に係るリチウムイオン2
次電池に使用されるセパレータの例が示される。図1に
おいて、セパレータは、ポリエチレン(PE)又はポリ
プロピレン(PP)のようなポリオレフィン粒子10
が、PVDF−HFPやPAN等、電解液を含有して膨
潤する性質を有するポリマー粒子12とともに均一に混
合された構造となっている。
FIG. 1 shows a lithium ion 2 according to the present invention.
An example of a separator used for a secondary battery is shown. In FIG. 1, a separator is made of polyolefin particles 10 such as polyethylene (PE) or polypropylene (PP).
Has a structure in which it is uniformly mixed with polymer particles 12 such as PVDF-HFP and PAN which have the property of swelling by containing an electrolytic solution.

【0012】ポリオレフィン粒子10は、100μm以
下の粒径を有している。材質としては、融点が200℃
以下であることが望ましく、例えば上述のPEあるいは
PPの粒子が好適である。なお、ポリオレフィン粒子1
0は、図に示されるような粒子状に限らず、繊維状とす
ることも可能である。
The polyolefin particles 10 have a particle size of 100 μm or less. The material has a melting point of 200 ° C
It is desirable that the particle size is as follows, for example, the above-mentioned PE or PP particles are preferable. The polyolefin particles 1
0 is not limited to a particle shape as shown in the figure, but may be a fibrous shape.

【0013】また、ポリマー粒子12としては、PVD
F−HFP等が使用される。これらは、電解液を含浸さ
せると膨潤する樹脂である。
The polymer particles 12 are PVD.
F-HFP or the like is used. These are resins that swell when impregnated with an electrolytic solution.

【0014】これらのポリオレフィン粒子10及びポリ
マー粒子12を混合し、10〜100μmの厚みのシー
トを形成し、セパレータとする。なお、ポリオレフィン
粒子10と、ポリマー粒子12との混合割合は、ポリマ
ー粒子12中に電解液を含浸させた状態で、ポリオレフ
ィン粒子:ポリマー粒子(含電解液)=2:8〜7:3
が好適である。このようなセパレータは、まずポリオレ
フィン粒子10とポリマー粒子12とを均一に混合し、
この混合物から上記厚さのシートを作製し、これに電解
液を含浸することによって製造する。
The polyolefin particles 10 and the polymer particles 12 are mixed to form a sheet having a thickness of 10 to 100 μm, which is used as a separator. The mixing ratio of the polyolefin particles 10 and the polymer particles 12 is such that polyolefin particles: polymer particles (electrolyte-containing solution) = 2: 8 to 7: 3 in a state where the polymer particles 12 are impregnated with the electrolytic solution.
Is preferred. Such a separator first mixes the polyolefin particles 10 and the polymer particles 12 uniformly,
A sheet having the above thickness is prepared from this mixture, and the sheet is impregnated with an electrolytic solution to produce the sheet.

【0015】以上のようにして構成した本発明に係るリ
チウムイオン2次電池のセパレータは、高電流で充放電
を実施しても、デンドライトの生成がなく、これによる
短絡を防止することができる。これは以下の理由による
ものと考えられる。
[0015] The separator of the lithium ion secondary battery according to the present invention configured as described above does not generate dendrites even when charging and discharging are performed at a high current, so that a short circuit due to the dendrites can be prevented. This is considered to be due to the following reasons.

【0016】従来のセパレータは、図2に示されるよう
に、基材14に多数の細孔16が設けられている。リチ
ウムイオンはこの細孔16を通過していく。しかし、図
2に示される従来のセパレータでは、リチウムイオンは
基材14に一定密度で設けられた細孔16のみを通過し
ていく。従って、セパレータの両面側の電位差は、この
細孔16の部分で生じることになる。すなわち、リチウ
ムイオン2次電池に大きな充放電電流を流した場合に
は、この細孔16の部分のみでリチウムイオンが移動
し、この部分に局所的に大きな電流が流れる。このた
め、リチウムイオンが通過する細孔16の出口側での電
位が局所的に大きく低下し、リチウム電位まで低下する
可能性がある。ここの電位がリチウム電位まで低下する
と、リチウムイオンは金属リチウムとなり、これが発達
してデンドライトとなる。このデンドライトによりリチ
ウムイオン2次電池内部でセパレータの短絡が生じる。
In the conventional separator, as shown in FIG. 2, a large number of pores 16 are provided in a substrate 14. Lithium ions pass through the pores 16. However, in the conventional separator shown in FIG. 2, lithium ions pass only through the pores 16 provided at a constant density on the substrate 14. Therefore, a potential difference between both sides of the separator is generated in the portion of the pores 16. That is, when a large charging / discharging current is applied to the lithium ion secondary battery, lithium ions move only in the portion of the pore 16, and a large current flows locally in this portion. For this reason, the potential on the exit side of the pore 16 through which the lithium ions pass may be significantly reduced locally, and may decrease to the lithium potential. When the potential here drops to the lithium potential, lithium ions become metallic lithium, which develops into dendrites. This dendrite causes a short circuit of the separator inside the lithium ion secondary battery.

【0017】これに対して、図1に示された本発明に係
るセパレータでは、ポリオレフィン粒子10の間すなわ
ちポリマー粒子12が充填された部分を、比較的自由に
リチウムイオンが移動することができる。しかもこの移
動方向は、図2に示された例に比べ様々な方向が可能で
ある。従って、大きな充放電電流を流した場合にも、局
所的に大きな電流が流れることを防止できる。すなわ
ち、本発明においては、図2に示された細孔16を、セ
パレータ全体に均一に分散したことになり、このため、
セパレータ中の電流密度の均一化を図ることができ、局
所的に大きな電流が流れることを防止することができて
いる。このため、リチウムイオンが移動する際のセパレ
ータの下流側で、電位がリチウム電位まで低下すること
がなく、デンドライトの発生を防止することができてい
る。
On the other hand, in the separator according to the present invention shown in FIG. 1, lithium ions can relatively freely move between the polyolefin particles 10, that is, the portion filled with the polymer particles 12. In addition, this moving direction can be various directions as compared with the example shown in FIG. Therefore, even when a large charge / discharge current flows, it is possible to prevent a large current from flowing locally. That is, in the present invention, the pores 16 shown in FIG. 2 are uniformly dispersed throughout the separator.
The current density in the separator can be made uniform, and a large current can be prevented from flowing locally. For this reason, the potential does not decrease to the lithium potential downstream of the separator when the lithium ions move, so that the generation of dendrites can be prevented.

【0018】また、図1に示されたセパレータでは、ポ
リオレフィン粒子10として、融点が200℃以下のP
EやPPが使用されているので、仮に、リチウムイオン
2次電池内に局所的な電流密度の上昇が生じ、局所的に
温度が上昇した場合でも、これらのポリオレフィン粒子
10が溶融し、セパレータの目を詰める。この結果、そ
の部分でのリチウムイオンの移動を停止する。これによ
り、局所的な電流密度の上昇を抑制でき、シャットダウ
ン機能を発揮する。
In the separator shown in FIG. 1, the polyolefin particles 10 have a melting point of 200 ° C. or less.
Since E or PP is used, even if the current density locally increases in the lithium ion secondary battery and the temperature locally increases, these polyolefin particles 10 are melted and the separator Close your eyes. As a result, the movement of lithium ions in that portion is stopped. Thereby, a local increase in the current density can be suppressed, and the shutdown function is exhibited.

【0019】以下、本発明に係るリチウムイオン2次電
池のセパレータの具体例を実施例として説明する。
Hereinafter, specific examples of the separator of the lithium ion secondary battery according to the present invention will be described as examples.

【0020】実施例.平均粒径10μmのPE8.5g
とPVDF−HFP1.5gとTHF20gとを50℃
で1時間混合し、その後室温まで冷却した。次に、ドク
ターブレード法により薄膜を形成し、80℃で乾燥させ
た。これにより30μmの厚さのセパレータを得た。
Embodiment 1 8.5 g of PE having an average particle size of 10 μm
And 1.5 g of PVDF-HFP and 20 g of THF at 50 ° C.
For 1 hour and then cooled to room temperature. Next, a thin film was formed by a doctor blade method and dried at 80 ° C. Thus, a separator having a thickness of 30 μm was obtained.

【0021】正極としてLiMn24、負極として金属
リチウムを使用し、上述のセパレータを介して対向配置
させた。これを、1molLiBF4−EC:DEC=
1:1の電解液に浸漬してリチウムイオン2次電池を作
製した。なお、上記正極は、LiMn24にカーボンブ
ラックを10%添加し、N−メチルピロリドン(NM
P)中で10分攪拌して正極ペーストとし、この正極ペ
ーストから形成したものである。この正極は、カーボン
ブラックが十分分散されていないため、平均100μ
m、最大300μmの凹凸が存在した。この凹凸を有す
る正極を用いて充電電流を増加させ、電気特性を調べ
た。
LiMn 2 O 4 was used as a positive electrode, and metallic lithium was used as a negative electrode. This was converted to 1 mol LiBF 4 -EC: DEC =
The battery was immersed in a 1: 1 electrolyte to prepare a lithium ion secondary battery. The positive electrode was prepared by adding 10% of carbon black to LiMn 2 O 4 and adding N-methylpyrrolidone (NM
The mixture was stirred in P) for 10 minutes to form a positive electrode paste, and was formed from this positive electrode paste. This positive electrode has an average of 100 μm because carbon black is not sufficiently dispersed.
m, irregularities of up to 300 μm were present. The charging current was increased using the positive electrode having the irregularities, and the electrical characteristics were examined.

【0022】なお、比較例として、従来のPE性の多孔
質膜とPVDF−HFPを電解液で膨潤させたポリマー
粒子のみから構成したセパレータとをあわせて評価し
た。
As a comparative example, a conventional PE porous film and a separator composed only of polymer particles obtained by swelling PVDF-HFP with an electrolytic solution were evaluated.

【0023】充電電流を増加させていった場合、PEの
多孔質膜で形成されたセルの場合には、5Cの電流値で
短絡が発生した。また、PVDF−HFPを電解液で膨
潤させたセパレータでは8Cの電流値で短絡が発生し
た。これに対して、上述した本発明に係るセパレータで
は、20Cの電流値でも短絡は発生しなかった。
When the charging current was increased, a short circuit occurred at a current value of 5 C in the case of a cell formed of a porous film of PE. Further, in the separator in which PVDF-HFP was swollen with the electrolytic solution, a short circuit occurred at a current value of 8C. On the other hand, in the separator according to the present invention described above, no short circuit occurred even at a current value of 20C.

【0024】PVDF−HFPを電解液で膨潤させたセ
パレータでは、もともとリチウムイオンを通過させるの
で、シャットダウン機能がないうえ、局所的な電流密度
の上昇により温度が高くなると、ゲルの流動化により、
電極同士の短絡が発生する。このため、本発明に比べて
小さな電流で短絡が発生するものと考えられる。
In a separator in which PVDF-HFP is swollen with an electrolytic solution, lithium ions are originally allowed to pass therethrough, so there is no shutdown function, and when the temperature rises due to a local increase in current density, the gel becomes fluidized due to fluidization.
A short circuit between the electrodes occurs. Therefore, it is considered that a short circuit occurs with a smaller current than in the present invention.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
ポリオレフィン粒子とポリマー粒子とを均一に混合し、
電流密度の均一化を図っているので、局所的な高電流を
防止でき、デンドライトの発生を抑制することができ
る。この結果、充放電サイクル寿命を向上させることが
できた。
As described above, according to the present invention,
Mixing polyolefin particles and polymer particles uniformly,
Since the current density is made uniform, local high current can be prevented, and generation of dendrite can be suppressed. As a result, the charge / discharge cycle life was able to be improved.

【0026】また、局所的に電流密度が上昇した場合に
も、温度の上昇により、ポリオレフィン粒子が溶融し、
リチウムイオンの通過を抑制するシャットダウン機能を
有するので、局所的な大電流による故障を防止すること
ができる。
Further, even when the current density locally increases, the polyolefin particles are melted by the increase in temperature,
Since it has a shutdown function for suppressing passage of lithium ions, it is possible to prevent a failure due to a local large current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るリチウムイオン2次電池に使用
されるセパレータを示す図である。
FIG. 1 is a view showing a separator used in a lithium ion secondary battery according to the present invention.

【図2】 従来における細孔を有するセパレータを示す
図である。
FIG. 2 is a view showing a conventional separator having pores.

【符号の説明】[Explanation of symbols]

10 ポリオレフィン粒子、12 ポリマー粒子、14
基材、16 細孔。
10 polyolefin particles, 12 polymer particles, 14
Substrate, 16 pores.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 融点200℃以下のポリオレフィンと電
解質を保持したポリマーとが均一に分散しているセパレ
ータを有することを特徴とするリチウムイオン2次電
池。
1. A lithium ion secondary battery comprising a separator in which a polyolefin having a melting point of 200 ° C. or lower and a polymer holding an electrolyte are uniformly dispersed.
【請求項2】 粒径が100μm以下で融点が200℃
以下のポリオレフィン粒子と電解質を保持するポリマー
粒子とを均一に混合する工程と、この混合物を用いて1
0〜100μmの厚さのシートを形成する工程と、前記
シートに電解液を含浸する工程と、を有することを特徴
とするリチウムイオン2次電池の製造方法。
2. A particle size of 100 μm or less and a melting point of 200 ° C.
A step of uniformly mixing the following polyolefin particles and polymer particles holding an electrolyte, and 1
A method for producing a lithium ion secondary battery, comprising: a step of forming a sheet having a thickness of 0 to 100 μm; and a step of impregnating the sheet with an electrolytic solution.
JP01447298A 1998-01-27 1998-01-27 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP3994496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01447298A JP3994496B2 (en) 1998-01-27 1998-01-27 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01447298A JP3994496B2 (en) 1998-01-27 1998-01-27 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11214041A true JPH11214041A (en) 1999-08-06
JP3994496B2 JP3994496B2 (en) 2007-10-17

Family

ID=11862013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01447298A Expired - Fee Related JP3994496B2 (en) 1998-01-27 1998-01-27 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3994496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
JP2006173001A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Lithium-ion battery and its manufacturing method
CN105680086A (en) * 2014-12-03 2016-06-15 纳米及先进材料研发院有限公司 Lithium ion battery with thermal sensitive layer
JP2016162487A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Method of manufacturing secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
JP4601114B2 (en) * 2000-02-28 2010-12-22 日東電工株式会社 Thin film electrolyte
JP2006173001A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Lithium-ion battery and its manufacturing method
JP4734912B2 (en) * 2004-12-17 2011-07-27 日産自動車株式会社 Lithium ion battery and manufacturing method thereof
CN105680086A (en) * 2014-12-03 2016-06-15 纳米及先进材料研发院有限公司 Lithium ion battery with thermal sensitive layer
JP2016162487A (en) * 2015-02-26 2016-09-05 トヨタ自動車株式会社 Method of manufacturing secondary battery

Also Published As

Publication number Publication date
JP3994496B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP4933270B2 (en) Separator and non-aqueous electrolyte secondary battery using the same
JP5331627B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
US7326493B2 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
US20090136848A1 (en) Non-aqueous electrolyte battery and method of manufacturing the same
EP1619733A1 (en) Non-aqueous electrolyte battery
KR20080068593A (en) Cathode active material and secondary battery comprising the same
JP2008226605A (en) Nonaqueous electrolyte secondary battery
KR20010110410A (en) Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
US7402360B2 (en) Non-aqueous electrolyte battery
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
JP2023554151A (en) Batteries, electronic devices, and mobile devices
JP2006049114A (en) Non-aqueous electrolytic liquid secondary battery
US20220302436A1 (en) Electrode, energy storage device, and method for manufacturing electrode
US20070122694A1 (en) Non-aqueous electrolyte secondary battery
CN106415913A (en) Rechargeable battery and separator used therein
US20080206645A1 (en) Non-aqueous electrolyte secondary battery and method for producing same
JPH11214041A (en) Lithium ion secondary battery and manufacture thereof
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2003123726A (en) Battery and its manufacturing method
JP2014044826A (en) Method of manufacturing separator for secondary battery, separator for secondary battery, secondary battery, and battery pack
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
Ollinger et al. Laser direct-write of polymer nanocomposites
US11876184B2 (en) Electrolyte medium for lithium secondary battery and lithium secondary battery
JP4016631B2 (en) Method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees