JPH11213935A - Sample cross-section observing method in fib-sem device and fib-sem device - Google Patents

Sample cross-section observing method in fib-sem device and fib-sem device

Info

Publication number
JPH11213935A
JPH11213935A JP1394598A JP1394598A JPH11213935A JP H11213935 A JPH11213935 A JP H11213935A JP 1394598 A JP1394598 A JP 1394598A JP 1394598 A JP1394598 A JP 1394598A JP H11213935 A JPH11213935 A JP H11213935A
Authority
JP
Japan
Prior art keywords
sample
ion beam
section
fib
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1394598A
Other languages
Japanese (ja)
Other versions
JP3457875B2 (en
Inventor
Toru Ishimoto
透 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP01394598A priority Critical patent/JP3457875B2/en
Publication of JPH11213935A publication Critical patent/JPH11213935A/en
Application granted granted Critical
Publication of JP3457875B2 publication Critical patent/JP3457875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a sample cross-section observing method in a FIB(focused ion beam)-SEM(inline-type scanning electron microscope) device and the FIB- SEM device, enabling a sample worked by a FIB to be observed with sufficient contrast with good resolution, and without taking it out of the device, by a scanning electron microscope. SOLUTION: An ion beam is generated from an ion gun 3 in a FIB column 1, and a sample 7 is worked by applying the ion beam to the sample. After an opening is formed by the work, a stage 18 is 180 deg. rotated, and further, the stage 18 is inclined greatly. By the rotation and inclination of the stage 18, a cross-section part D of the opening 20 of the sample 7 can be caused to face the FIB column 1. In this state, the amount of current of the ion beam applied to the sample 7 is reduced. As a result, a cross-section surface layer can be worked longitudinally on the order of nm at the cross-section part to be worked of the sample. After such surface treatment is conducted, a SEM image of the worked cross-section part of the sample is observed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料に集束イオン
ビームを照射して加工し、その加工断面を走査電子顕微
鏡機能で観察するようにしたFIB−SEM装置におけ
る試料断面観察方法およびFIB−SEM装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a sample cross section in a FIB-SEM apparatus and a FIB-SEM apparatus for processing a sample by irradiating it with a focused ion beam and observing the processed cross section with a scanning electron microscope function. Related to the device.

【0002】[0002]

【従来の技術】集束イオンビーム(FIB−Focused Io
n Beam)装置は、イオン源からのイオンビームを細く集
束し、加工試料に照射して試料をエッチング等により加
工する装置である。このFIB装置の応用分野の中で
も、特にFIBによるエッチング技術は、かなりポビュ
ラーなものとなってきている。
2. Description of the Related Art FIB-Focused Io
The n Beam) device is a device that focuses an ion beam from an ion source finely, irradiates the processed sample with light, and processes the sample by etching or the like. Among the application fields of the FIB apparatus, the etching technique using the FIB has become quite popular.

【0003】この技術を用いたFIB装置は、マイクロ
マシン加工はもとより、半導体デバイスの不良解析や透
過電子顕微鏡試料の作成に広く利用されている。特に最
も注目されている半導体デバイスの3次元解析として
は、もはや不可欠の装置となりつつある。また、現在で
は、従来のインライン型走査電子顕微鏡(SEM)装置
にFIB機能を付加したデュアルビーム(Dual Beam −
DB)装置も徐々にではあるが普及しつつある。
[0003] FIB apparatuses using this technique are widely used not only for micromachining, but also for failure analysis of semiconductor devices and preparation of transmission electron microscope samples. In particular, it is becoming an indispensable device for three-dimensional analysis of a semiconductor device that has received the most attention. At present, a dual beam (Dual Beam-) which adds a FIB function to a conventional in-line scanning electron microscope (SEM) device is now available.
DB) devices are also gradually spreading.

【0004】DB装置は、半導体の不良解析装置として
対応すべく、従来までのFIB装置としてエッチング加
工した後、SEM装置へ試料を移して観察するといった
工程を一台で行える複合装置である。
[0004] The DB apparatus is a composite apparatus which can perform a process of etching a conventional FIB apparatus, transferring a sample to an SEM apparatus, and observing the sample, in order to correspond to a semiconductor failure analysis apparatus.

【0005】これは、通常のFIB単能機と同様に、試
料上面にイオンビームを照射して、任意の場所をエッチ
ング加工し、加工終了後、試料の移動なしにすぐにその
エッチング加工された断面をSEM像で観察できるとい
う利点を有している。その結果、不良解析に絶大な威力
とその工程の時間の短縮、それに伴う歩留まり管理とそ
の速度、また、複合装置ゆえの床面積の縮小、価格のダ
ウン等が期待されており、今後ますます普及が進むと予
想される。
[0005] In the same manner as in a normal FIB single function machine, an ion beam is irradiated on the upper surface of a sample to etch an arbitrary place, and after the processing is completed, the etching process is immediately performed without moving the sample. This has the advantage that the cross section can be observed with an SEM image. As a result, tremendous power for failure analysis and shortening of the process time, yield management and speed associated therewith, floor area reduction and price reduction due to complex equipment are expected, etc. Is expected to advance.

【0006】上記したFIB−SEM装置の構成は、大
きく分けてFIB制御部、SEM制御部、試料を載せた
ステージの制御部からなり、それぞれをホストコンピュ
ータにより制御している。この装置では、通常、試料の
垂直方向の上からイオンビームを当ててエッチングし、
その穴の断面に試料面から30°の角度で電子ビームを
当てて、その断面の構造を観察している。イオンビーム
で加工されたサンプルは、試料面に垂直な断面を作り、
その断面は、イオンビームの電流量、プローブ径に依存
するが、ほとんど試料面に垂直に切り出される。
The configuration of the above-mentioned FIB-SEM apparatus is roughly divided into a FIB control section, an SEM control section, and a control section for a stage on which a sample is placed, and each of them is controlled by a host computer. In this device, usually, the sample is etched by applying an ion beam from above the sample in the vertical direction,
An electron beam is applied to the cross section of the hole at an angle of 30 ° from the sample surface, and the structure of the cross section is observed. The sample processed by the ion beam creates a cross section perpendicular to the sample surface,
The cross section depends on the current amount of the ion beam and the probe diameter, but is cut out almost perpendicular to the sample surface.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記したF
IB−SEM装置では、断面像を電子ビームによって観
察したときに、切り出した直後の断面は余りにフラット
であるために、2次電子像では十分なコントラストが得
られず、解像度が悪くなる欠点を有している。また、電
子ビームによる観察では、試料によっては、切り出され
た断面が、走査電子顕微鏡観察によるコンタミネーショ
ン付着等によって汚れ、同様に解像度が低下してしま
う。
However, the above-mentioned F
In the IB-SEM apparatus, when a cross-sectional image is observed with an electron beam, the cross-section immediately after cutting is too flat, so that a sufficient contrast cannot be obtained with a secondary electron image, and the resolution is degraded. doing. In addition, in observation using an electron beam, depending on the sample, the cut-out cross section is contaminated due to contamination or the like by observation using a scanning electron microscope, and the resolution is similarly reduced.

【0008】このため、上記のようなフラットな断面の
像を走査電子顕微鏡において解像度良く観察するための
一般的な手法として、試料を劈壊したり、FIB加工し
た試料に化学処理(ウエットエッチング等)を施し、各
種材料の間に段差を作りだし、そのエッジからの2次電
子放出効率を向上させることにより、化学処理後の走査
電子顕微鏡像のコントラストを向上させることなどが知
られている。
For this reason, as a general technique for observing the image of the flat cross section with a scanning electron microscope at a high resolution as described above, a sample is subjected to chemical treatment (wet etching or the like) by fracturing or FIB processing the sample. It is known that a step is created between various materials to improve the efficiency of secondary electron emission from the edge, thereby improving the contrast of a scanning electron microscope image after the chemical treatment.

【0009】しかしながら、これらの処理を行うために
は、FIB加工後、一度試料を装置の外に取り出すこと
が必要になり、また、このことによって再度試料を装置
に入れたときに、加工場所を突き止めるのに非常に手間
が掛かってしまい、多くの工程と時間を費やすことは歴
然である。更に、目的の試料が8インチウエハ等の大き
なものである場合、その試料を小さなチップに切り出す
必要も生じる。
However, in order to perform these processes, it is necessary to take out the sample once out of the apparatus after the FIB processing, and when this is done, when the sample is put in the apparatus again, the processing place is changed. It takes a lot of trouble to find out, and it is obvious that many steps and time are spent. Further, when the target sample is a large one such as an 8-inch wafer, it is necessary to cut the sample into small chips.

【0010】本発明は、このような点に鑑みてなされた
もので、その目的は、FIB加工した試料を装置の外に
取り出すことなく、十分なコントラストで解像度良く走
査電子顕微鏡により観察することができるFIB−SE
M装置における試料断面観察方法およびFIB−SEM
装置を実現するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to observe an FIB-processed sample with a scanning electron microscope with sufficient contrast and high resolution without taking the sample out of the apparatus. Possible FIB-SE
Sample cross-section observation method and FIB-SEM in M apparatus
The realization of the device.

【0011】[0011]

【課題を解決するための手段】第1の発明に基づくFI
B−SEM装置における試料断面観察方法は、試料に集
束イオンビームを照射する機能と、集束イオンビームに
よって加工された試料断面に電子ビームを照射して走査
電子顕微鏡像を観察することができるSEM機能とを備
えたFIB−SEM装置において、比較的大きな電流量
のイオンビームを試料に照射して試料をエッチングして
加工し、加工後試料を回転と傾斜させて加工断面をイオ
ンビームに対面させ、加工断面に比較的小さな電流量の
イオンビームを照射し、その後試料を回転と傾斜させて
加工断面の走査電子顕微鏡像を観察するようにしたこと
を特徴としている。
An FI based on the first invention is provided.
The method for observing a sample cross section in a B-SEM apparatus has a function of irradiating a sample with a focused ion beam and an SEM function of irradiating an electron beam on a sample cross section processed by the focused ion beam and observing a scanning electron microscope image. In a FIB-SEM apparatus provided with, a sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after processing, the sample is rotated and tilted so that the processed cross section faces the ion beam; It is characterized in that a processed cross section is irradiated with an ion beam having a relatively small current amount, and then the sample is rotated and tilted to observe a scanning electron microscope image of the processed cross section.

【0012】第1の発明では、比較的大きな電流量のイ
オンビームを試料に照射して試料をエッチングして加工
し、加工後試料を回転と傾斜させて加工断面をイオンビ
ームに対面させ、加工断面に比較的小さな電流量のイオ
ンビームを照射し、その後試料を回転と傾斜させて加工
断面の走査電子顕微鏡像を観察する。
In the first invention, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after processing, the sample is rotated and tilted so that the processed cross section faces the ion beam. The section is irradiated with an ion beam having a relatively small current amount, and then the sample is rotated and tilted to observe a scanning electron microscope image of the processed section.

【0013】第2の発明では、第1の発明において、試
料のエッチング加工後の加工断面上でイオンビームを走
査し、この走査に基づいて得られた信号によりSIM像
を観察するようにした。
According to a second aspect, in the first aspect, the ion beam is scanned on the processed cross section of the sample after the etching processing, and a SIM image is observed based on a signal obtained based on the scanning.

【0014】第3の発明では、第1の発明において、加
工断面に比較的小さな電流量のイオンビームを照射する
際、イオンビームを所定領域で走査させ、この走査を所
定領域の上から下、下から上に双方向に走査するように
した。
According to a third aspect of the present invention, in the first aspect, when irradiating an ion beam having a relatively small current amount to the processed cross section, the ion beam is scanned in a predetermined area, and the scanning is performed from top to bottom of the predetermined area. Scanning was performed bidirectionally from bottom to top.

【0015】第4の発明では、第1の発明において、比
較的大きな電流量のイオンビームを試料に照射して試料
をエッチングして加工し、加工後試料を180°回転さ
せ、比較的大きな角度傾斜させて加工断面をイオンビー
ムに対面させるようにした。
In a fourth aspect based on the first aspect, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after the processing, the sample is rotated by 180 ° to obtain a relatively large angle. The processing section was inclined so as to face the ion beam.

【0016】第5の発明に基づくFIB−SEM装置
は、試料に集束イオンビームを照射する機能と、集束イ
オンビームによって加工された試料断面に電子ビームを
照射して走査電子顕微鏡像を観察することができるSE
M機能とを備えたFIB−SEM装置において、集束イ
オンビームの電流量を比較的大きな電流量と比較的小さ
な電流量に切り換える手段と、試料を回転、傾斜させる
手段と、比較的大きな電流量のイオンビームを試料に照
射して試料をエッチングして加工し、加工後試料を回転
と傾斜させて加工断面をイオンビームに対面させ、加工
断面に比較的小さな電流量のイオンビームを照射する機
能とを有したことを特徴としている。
A FIB-SEM apparatus according to a fifth aspect of the present invention has a function of irradiating a sample with a focused ion beam and irradiating an electron beam on a cross section of the sample processed by the focused ion beam to observe a scanning electron microscope image. SE that can do
In a FIB-SEM apparatus having an M function, a means for switching the current amount of the focused ion beam between a relatively large current amount and a relatively small current amount, a unit for rotating and tilting the sample, A function of irradiating the sample with an ion beam, etching the sample, processing the sample, rotating and tilting the sample after processing so that the processed cross section faces the ion beam, and irradiating the processed cross section with an ion beam with a relatively small current amount. It is characterized by having.

【0017】第5の発明では、比較的大きな電流量のイ
オンビームを試料に照射して試料をエッチングして加工
し、加工後試料を回転と傾斜させて加工断面をイオンビ
ームに対面させ、加工断面に比較的小さな電流量のイオ
ンビームを照射し、その後試料を回転と傾斜させて加工
断面の走査電子顕微鏡像を観察する。
In the fifth invention, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after processing, the sample is rotated and tilted so that the processed cross section faces the ion beam. The section is irradiated with an ion beam having a relatively small current amount, and then the sample is rotated and tilted to observe a scanning electron microscope image of the processed section.

【0018】第6の発明では、第5の発明において、試
料の回転と傾斜によってもイオンビームと電子ビームの
照射領域が変化しない機能を備えた。
According to a sixth aspect, in the fifth aspect, a function is provided in which the irradiation area of the ion beam and the electron beam does not change even when the sample is rotated or tilted.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1は、本発明に基づくF
IB−SEM装置を示しており、1はFIBのカラム、
2はSEMのカラムである。FIBカラム1の中には、
イオン銃3と、イオン銃3から発生し加速されたイオン
ビームを集束する集束レンズ4、対物レンズ5、イオン
ビームを2次元的に走査するための偏向器6が設けられ
ている。なお、イオンビーム用の集束レンズ4、対物レ
ンズ5は主に静電レンズが使用される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a diagram of F according to the present invention.
1 shows an IB-SEM apparatus, where 1 is a FIB column,
2 is an SEM column. In FIB column 1,
An ion gun 3, a focusing lens 4 for focusing an accelerated ion beam generated from the ion gun 3, an objective lens 5, and a deflector 6 for two-dimensionally scanning the ion beam are provided. The focusing lens 4 and the objective lens 5 for the ion beam are mainly electrostatic lenses.

【0020】イオン銃3から発生したイオンビームは、
集束レンズ4、対物レンズ5によって試料7上に細く集
束されると共に、試料7に照射されるイオンビームの照
射位置は、偏向器6によって走査できるように構成され
ている。これら集束レンズ4、対物レンズ5、偏向器6
はFIB制御部8によって制御される。
The ion beam generated from the ion gun 3 is
The focusing lens 4 and the objective lens 5 narrowly focus on the sample 7, and the irradiation position of the ion beam irradiated on the sample 7 can be scanned by the deflector 6. These focusing lens 4, objective lens 5, deflector 6
Is controlled by the FIB control unit 8.

【0021】例えば、試料7に照射されるイオンビーム
の電流量を変化させる場合には、FIB制御部8によっ
て集束レンズ4、対物レンズ5を制御し、各レンズの強
度を制御してイオンビームの集束度合いを変化させ、イ
オンビームの光路中に設けられた絞り(図示せず)を通
過するイオンビームの量を制御する。また、イオンビー
ムを試料上で2次元的あるいはライン状に走査する場合
には、FIB制御部8から偏向器6に走査信号が供給さ
れる。
For example, when the current amount of the ion beam irradiated on the sample 7 is changed, the focusing lens 4 and the objective lens 5 are controlled by the FIB control unit 8, and the intensity of each lens is controlled to control the intensity of each lens. The degree of convergence is changed to control the amount of the ion beam passing through a stop (not shown) provided in the optical path of the ion beam. When the ion beam is two-dimensionally or linearly scanned on the sample, a scanning signal is supplied from the FIB control unit 8 to the deflector 6.

【0022】SEMカラム2の中には、電子銃9と、電
子銃9から発生した電子ビームを集束する集束レンズ1
0、対物レンズ11、電子ビームを2次元的に走査する
ための偏向器12が設けられている。なお、電子ビーム
用の集束レンズ10、対物レンズ11は主に電磁レンズ
が使用される。
An electron gun 9 and a focusing lens 1 for focusing an electron beam generated from the electron gun 9 are provided in the SEM column 2.
0, an objective lens 11, and a deflector 12 for two-dimensionally scanning the electron beam. The focusing lens 10 and the objective lens 11 for the electron beam are mainly electromagnetic lenses.

【0023】電子銃9から発生した電子ビームは、集束
レンズ10、対物レンズ11によって試料7上に細く集
束されると共に、試料7に照射される電子ビームの照射
位置は、偏向器12によって走査できるように構成され
ている。これら集束レンズ10、対物レンズ11、偏向
器12はSEM制御部13によって制御される。
The electron beam generated from the electron gun 9 is narrowly focused on the sample 7 by the focusing lens 10 and the objective lens 11, and the irradiation position of the electron beam irradiated on the sample 7 can be scanned by the deflector 12. It is configured as follows. The focusing lens 10, the objective lens 11, and the deflector 12 are controlled by the SEM control unit 13.

【0024】例えば、試料7に照射される電子ビームの
電流量を変化させる場合には、SEM制御部13によっ
て集束レンズ10、対物レンズ11を制御し、各レンズ
の強度を制御して電子ビームの集束度合いを変化させ、
電子ビームの光路中に設けられた絞り(図示せず)を通
過する電子ビームの量を制御する。また、電子ビームを
試料上で2次元的あるいはライン状に走査する場合に
は、SEM制御部13から偏向器12に走査信号が供給
される。なお、SEM制御部13とFIB制御部8は、
ホストコンピュータ14によってコントロールされる。
For example, when the current amount of the electron beam irradiated on the sample 7 is changed, the focusing lens 10 and the objective lens 11 are controlled by the SEM control unit 13, and the intensity of each lens is controlled by controlling the intensity of each lens. Changing the degree of convergence,
The amount of the electron beam passing through a stop (not shown) provided in the optical path of the electron beam is controlled. When scanning the sample with the electron beam two-dimensionally or linearly, a scanning signal is supplied from the SEM control unit 13 to the deflector 12. Note that the SEM control unit 13 and the FIB control unit 8
It is controlled by the host computer 14.

【0025】試料7への電子ビームあるいはイオンビー
ムの照射によって試料から発生した2次電子は、2次電
子検出器15によって検出される。検出器15によって
検出された信号は、増幅器16によって増幅された後、
ホストコンピュータ14を介して陰極線管17に供給さ
れる。
Secondary electrons generated from the sample by irradiating the sample 7 with an electron beam or an ion beam are detected by a secondary electron detector 15. The signal detected by the detector 15 is amplified by the amplifier 16,
It is supplied to the cathode ray tube 17 via the host computer 14.

【0026】試料7はステージ18上に載せられてい
る。ステージ18はステージ制御部19により、水平方
向の2次元移動、回転、傾斜ができるように構成されて
いる。ステージ制御部19は、ホストコンピュータ14
によってコントロールされる。このような構成の動作を
次に説明する。
The sample 7 is placed on a stage 18. The stage 18 is configured to be capable of two-dimensional movement, rotation, and tilt in the horizontal direction by a stage control unit 19. The stage control unit 19 controls the host computer 14
Is controlled by The operation of such a configuration will now be described.

【0027】まず、FIBによる試料7の加工が行われ
る。この試料の加工は、FIBカラム1内のイオン銃3
からイオンビームを発生させ、このイオンビームを集束
レンズ4、対物レンズ5によって試料7上に細く集束す
ると共に、イオンビームを偏向器6によってライン状に
走査する。この際、試料ステージ18をイオンビームの
ライン状の走査の方向と垂直な方向に移動させる。
First, the sample 7 is processed by the FIB. This sample was processed by the ion gun 3 in the FIB column 1.
An ion beam is generated from the laser beam, and the ion beam is narrowly focused on the sample 7 by the focusing lens 4 and the objective lens 5, and the ion beam is linearly scanned by the deflector 6. At this time, the sample stage 18 is moved in a direction perpendicular to the direction of the linear scanning of the ion beam.

【0028】図2はこの様子を示しており、試料7は矢
印Sの逆方向にゆっくりと移動させられ、その間、イオ
ンビームIBは紙面に垂直の方向にライン状に走査され
る。この時、イオンビームIBの電流量は、大きな加工
レートを保つために、例えば、1000pA程度とされ
ている。この結果、試料7には矩形状の開口20が穿た
れる。この開口20の深さは、イオンビームの電流量、
イオンビームの走査速度、試料の移動速度による。
FIG. 2 shows this state. The sample 7 is slowly moved in the direction opposite to the arrow S, while the ion beam IB is scanned in a line in a direction perpendicular to the plane of the drawing. At this time, the current amount of the ion beam IB is, for example, about 1000 pA in order to maintain a large processing rate. As a result, a rectangular opening 20 is formed in the sample 7. The depth of the opening 20 depends on the current amount of the ion beam,
It depends on the scanning speed of the ion beam and the moving speed of the sample.

【0029】通常のFIB−SEM装置においては、試
料7に対する開口20の形成後、断面部分Dに対してS
EMカラム2から電子ビームEBを照射すると共に、断
面部分Dで電子ビームを2次元的に走査する。この走査
に基づいて断面部分Dから発生した2次電子は、2次電
子検出器15によって検出される。この検出信号は、陰
極線管17に供給されることから、陰極線管17には断
面部分Dの走査電子顕微鏡像が得られる。
In the ordinary FIB-SEM apparatus, after the opening 20 for the sample 7 is formed, the S
The electron beam EB is emitted from the EM column 2 and the electron beam is two-dimensionally scanned at the cross section D. Secondary electrons generated from the cross section D based on this scanning are detected by the secondary electron detector 15. Since this detection signal is supplied to the cathode ray tube 17, a scanning electron microscope image of the cross section D is obtained on the cathode ray tube 17.

【0030】さて、このような従来からの通常の動作で
は、断面部分Dはフラットであるために、十分なコント
ラストの解像度の良い2次電子像を得ることはできない
ことは前に述べた。本発明においては、図2で示したよ
うなイオンビームの加工により開口20を形成した後、
ステージ制御部19によりステージ18を制御し、ステ
ージ18を180°回転させ、更にステージ18を大き
く(例えば60°)傾斜させる。
As described above, in such a conventional normal operation, since the cross section D is flat, a secondary electron image with sufficient contrast and high resolution cannot be obtained. In the present invention, after the opening 20 is formed by ion beam processing as shown in FIG.
The stage controller 19 controls the stage 18, rotates the stage 18 by 180 °, and further tilts the stage 18 by a large angle (for example, 60 °).

【0031】この状態を図3に示す。このステージの回
転と傾斜により、試料7の開口20の断面部分DをFI
Bカラム1に対面させることができる。すなわち、加工
断面部分Dに垂直に近い方向からイオンビームを照射す
ることができる。この状態でFIB制御部8からFIB
カラム1を制御し、集束レンズ4と対物レンズ5を制御
して試料7に照射するイオンビームの電流量を減少させ
る。この電流量は、例えば、数pA程度とされる。
FIG. 3 shows this state. By rotating and tilting the stage, the cross section D of the opening 20 of the sample 7 is
It can face B column 1. That is, it is possible to irradiate the ion beam from a direction almost perpendicular to the processing cross section D. In this state, the FIB
The column 1 is controlled, and the focusing lens 4 and the objective lens 5 are controlled to reduce the amount of current of the ion beam irradiating the sample 7. This current amount is, for example, about several pA.

【0032】この状態で偏向器6により試料の断面部分
DでイオンビームIBを2次元的に短時間走査(例えば
テレビジョン走査速度)する。この結果、試料の断面部
分Dでは、nm単位で断面表層の縦方向への加工を行う
ことができる。この場合、断面にある各種の半導体材料
は、その材質により同じ電荷を与えると、その結晶の結
合力の違いにより、エッタングされる速度が異なるた
め、材料の違いによる段差ができることになる。
In this state, the ion beam IB is two-dimensionally scanned in a short time (for example, a television scanning speed) at the cross section D of the sample by the deflector 6. As a result, in the cross section D of the sample, the processing of the cross section surface layer in the vertical direction can be performed in units of nm. In this case, when the same charge is applied to the various semiconductor materials in the cross section when the same charge is applied to the materials, the etching speed is different due to the difference in the bonding force of the crystals, and thus a step due to the difference in the material is formed.

【0033】つまり、加工した試料を装置から取り出し
て、試料断面表層を化学処理を施したと同様の処理を、
試料を装置から取り出すことなく、また、化学薬品等を
使用せず、任意の場所において、短時間に行うことがで
きる。なお、この場合、弱い電流量のイオンビームを試
料に照射しながら、選択性のあるガスを導入すれば、よ
り化学処理したものと同等の断面を得ることができる。
That is, the processed sample is taken out of the apparatus, and the same processing as when the surface layer of the sample cross section is chemically treated is performed.
It can be performed in an arbitrary place in a short time without taking out the sample from the apparatus and without using a chemical agent or the like. In this case, if a gas having selectivity is introduced while irradiating the sample with an ion beam having a weak current amount, a cross section equivalent to that obtained by further chemical treatment can be obtained.

【0034】このようなプロセスにおける試料の観察断
面の深さ方向の制御としては次ぎの3つの方式を適宜実
行することができる。第1の方式は試料面に当てるイオ
ンビーム電流量を一定とし、イオンビームの走査速度を
テレビジョン走査速度とゆっくりとしたスロー速度を選
ぶことにより、微細な深さ方向の加工制御を行う方式で
ある。
As the control in the depth direction of the observation section of the sample in such a process, the following three methods can be appropriately executed. The first method is a method in which the amount of ion beam current applied to the sample surface is kept constant, and the scanning speed of the ion beam is set to a slower scanning speed than the television scanning speed, thereby performing processing control in a fine depth direction. is there.

【0035】テレビジョン走査モードでは、数nmのエ
ッチングにより、試料表面のクリーニングを行う。ま
た、スローモードでは、試料表面を数十〜数百nmを加
工し、画像を観察しながら、断面を垂直に剥がしていく
ことにより、試料深く埋まっているであろう欠陥等を確
実に見つけることができる。
In the television scanning mode, the sample surface is cleaned by etching of several nm. In the slow mode, the sample surface is machined for several tens to several hundreds of nm, and the cross section is peeled off vertically while observing the image, so that defects etc. that may be buried deep in the sample can be reliably found. Can be.

【0036】第2の方式は、試料断面に当てるイオンビ
ーム電流量を数pA〜数十pAと選択することにより、
加工の深さを制御する方式である。第3の方式は、イオ
ンビームを走査する方向を通常の上から下への一方向で
はなく、上から下、下から上への双方向に走査を行うこ
とにより、エッチングされる面の深さが上から下まで一
定になるようにする制御する方式である。
In the second method, the ion beam current applied to the sample section is selected from several pA to several tens pA,
This is a method for controlling the processing depth. In the third method, the depth of the surface to be etched is determined by scanning the ion beam in a bidirectional manner from top to bottom and bottom to top, instead of the normal one direction from top to bottom. Is a method of controlling so as to be constant from top to bottom.

【0037】このようなイオンビームによる2次的な試
料表面処理を行った後、加工断面Dを走査電子顕微鏡カ
ラム2に対面させる。この操作は、試料ステージ18を
回転・傾斜させて行う。この操作により、試料7は、例
えば、図1に示すような位置関係とされ、加工断面Dは
SEMカラム2からの電子ビームEBにより2次元的に
走査されることになる。
After performing such a secondary sample surface treatment with the ion beam, the processing section D is made to face the scanning electron microscope column 2. This operation is performed by rotating and tilting the sample stage 18. By this operation, the sample 7 has, for example, a positional relationship as shown in FIG. 1, and the processed section D is two-dimensionally scanned by the electron beam EB from the SEM column 2.

【0038】この電子ビームの走査により得られた2次
電子に基づいて観察する試料断面の像は、FIB加工直
後に比べ、非常にコントラストの強調された走査電子顕
微鏡画像となる。このような動作により、試料の任意の
場所に、任意の範囲に、任意の深さだけ表面の仕上げを
行うことができ、試料断面の解像度の改善だけではな
く、断面から数nmの深さに埋まっているであろう異物
(不良解析の場合)なども掘り出すことが可能となる。
The image of the cross section of the sample observed based on the secondary electrons obtained by the scanning of the electron beam becomes a scanning electron microscope image in which the contrast is greatly enhanced compared to immediately after the FIB processing. By such an operation, it is possible to finish the surface at an arbitrary place, in an arbitrary range, and at an arbitrary depth on the sample, and not only to improve the resolution of the sample cross section, but also to increase the depth to several nm from the cross section. It is also possible to dig out foreign matter that might be buried (in the case of failure analysis).

【0039】なお、FIBにより試料の加工を行った
後、加工断面Dの微細な深さ方向の加工制御を行う場
合、電流量の極めて弱いイオンビームを加工断面Dにお
いて走査し、その際に発生した2次電子を2次電子検出
器で検出し、加工断面DのSIM像を得、このSIM像
から微細な深さ方向の加工制御を行う領域の指定を行う
ことは有効である。
After processing the sample by the FIB, when performing processing control in the fine depth direction of the processing section D, an ion beam having an extremely weak current amount is scanned on the processing section D and generated at that time. It is effective to detect the secondary electrons thus obtained by a secondary electron detector, obtain a SIM image of the processing section D, and designate a region for performing fine processing control in the depth direction from the SIM image.

【0040】上記したプロセスを「ソフトエッチング機
能」としてFIB−SEM装置に付加した場合、具体的
な動作シーケンスは次の通りとなる。 FIB加工後にSEM像の観察を行い、必要があれ
ば、「ソフトエッチング機能」のボタンを押す。 ステージの回転と傾斜が行われ、SEM像を観察して
いた加工断面DがFIBカラム1に対面し、FIB観察
モードに切り替わる。 弱いイオンビームを走査してSIM像を観察して領域
の設定を行い、ソフトエッチングの開始をホストコンピ
ュータから指示すると、スローまたはテレビジョン走査
の速さでFIBが画面を上から下、下から上と交互に走
査する。 再び、SEM観察モードに戻すボタンを押し、ステー
ジの回転と傾斜を行って、SEM観察モードにして断面
処理後のSEM像を観察する。
When the above-described process is added to the FIB-SEM apparatus as a “soft etching function”, a specific operation sequence is as follows. After the FIB processing, an SEM image is observed, and if necessary, a “soft etching function” button is pressed. The rotation and tilt of the stage are performed, and the processing section D where the SEM image has been observed faces the FIB column 1, and the mode is switched to the FIB observation mode. When a weak ion beam is scanned and the SIM image is observed to set the area and the start of soft etching is instructed from the host computer, the FIB scans the screen from top to bottom and from bottom to top at the speed of slow or television scanning. And scan alternately. Again, the button for returning to the SEM observation mode is pressed, the stage is rotated and tilted, and the SEM image is observed after the cross-section processing in the SEM observation mode.

【0041】なお、FIBで試料を加工して開口を形成
した後、加工断面DをFIBカラム1に対面させる場
合、試料の回転と傾斜によって加工場所Dが観察視野か
ら逃げないように、コンピュータによってステージを制
御するユーセントリック機能を有することは必要であ
る。この機能により、SIMとSEMの観察機能を位置
ずれなしに切り替えることができる。
When the processing section D faces the FIB column 1 after processing the sample with the FIB to form an opening, a computer is used so that the processing place D does not escape from the observation field of view due to the rotation and inclination of the sample. It is necessary to have a eucentric function to control the stage. With this function, the observation function of the SIM and the observation function of the SEM can be switched without displacement.

【0042】また、FIBカラムとSEMカラムの機械
的な軸合わせおよび電気的制御と試料面高さの制御によ
り、イオンビームと電子ビームとが試料の同一観察点を
照射可能とされている。
Further, by mechanically aligning and electrically controlling the FIB column and the SEM column and controlling the height of the sample surface, the ion beam and the electron beam can irradiate the same observation point of the sample.

【0043】以上本発明の実施の形態を詳述したが、本
発明はこの形態に限定されない。例えば、本発明は電子
ビームやイオンビームを試料上で走査した際2次電子を
検出するようにしたが、反射電子や反射イオン等を検出
し、その検出信号に基づいて像の表示を行うようにして
も良い。また、試料の加工断面を小さな電流量のイオン
ビームの走査によって表面処理を行う場合、選択性のあ
るガスをその部分に導入すれば、より化学処理したもの
と同等の断面像を得ることができる。
Although the embodiment of the present invention has been described in detail, the present invention is not limited to this embodiment. For example, in the present invention, secondary electrons are detected when an electron beam or ion beam is scanned on a sample, but reflected electrons or reflected ions are detected, and an image is displayed based on the detection signal. You may do it. In addition, when a processed cross section of a sample is subjected to surface treatment by scanning with an ion beam having a small current amount, if a gas having selectivity is introduced into the portion, a cross-sectional image equivalent to a more chemically processed one can be obtained. .

【0044】[0044]

【発明の効果】以上説明したように、第1の発明では、
比較的大きな電流量のイオンビームを試料に照射して試
料をエッチングして加工し、加工後試料を回転と傾斜さ
せて加工断面をイオンビームに対面させ、加工断面に比
較的小さな電流量のイオンビームを照射し、その後試料
を回転と傾斜させて加工断面の走査電子顕微鏡像を観察
するようにしたので、加工断面の選択的なエッチングを
行うことができ、十分なコントラストの解像度の良い像
を得ることができる。
As described above, in the first invention,
The sample is etched and processed by irradiating the sample with an ion beam with a relatively large current amount, and after processing, the sample is rotated and tilted so that the processed cross section faces the ion beam, and ions with a relatively small current amount are applied to the processed cross section. The sample was irradiated and then the sample was rotated and tilted to observe the scanning electron microscope image of the processed cross section, so that the processed cross section could be selectively etched and an image with sufficient contrast and good resolution could be obtained. Obtainable.

【0045】第2の発明では、第1の発明において、試
料のエッチング加工後の加工断面上でイオンビームを走
査し、この走査に基づいて得られた信号によりSIM像
を観察するようにしたので、加工断面の選択的なエッチ
ングを行う領域を画像を観察しながら行うことができ
る。
According to the second aspect, in the first aspect, the ion beam is scanned on the processed cross section of the sample after the etching processing, and the SIM image is observed based on a signal obtained based on the scanning. In addition, it is possible to perform the selective etching of the processed cross section while observing an image.

【0046】第3の発明では、第1の発明において、加
工断面に比較的小さな電流量のイオンビームを照射する
際、イオンビームを所定領域で走査させ、この走査を所
定領域の上から下、下から上に双方向に走査するように
したので、走査領域の上下のエッチングされる深さを一
定に保つことができる。
According to a third aspect, in the first aspect, when irradiating the ion beam with a relatively small current amount to the processed cross section, the ion beam is scanned in a predetermined area, and the scanning is performed from top to bottom of the predetermined area. Since the scanning is performed bidirectionally from the bottom to the top, the etching depth above and below the scanning region can be kept constant.

【0047】第4の発明では、第1の発明において、比
較的大きな電流量のイオンビームを試料に照射して試料
をエッチングして加工し、加工後試料を180°回転さ
せ、比較的大きな角度傾斜させて加工断面をイオンビー
ムに対面させるようにしたので、大きな電流量のイオン
ビームでエッチング加工した断面を小さなイオンビーム
を用いて微細なエッチングを行うことができる。
According to a fourth aspect of the present invention, in the first aspect, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large amount of current. Since the processing section is inclined so as to face the ion beam, it is possible to perform fine etching using a small ion beam on a cross section etched by an ion beam having a large current amount.

【0048】第5の発明では、比較的大きな電流量のイ
オンビームを試料に照射して試料をエッチングして加工
し、加工後試料を回転と傾斜させて加工断面をイオンビ
ームに対面させ、加工断面に比較的小さな電流量のイオ
ンビームを照射し、その後試料を回転と傾斜させて加工
断面の走査電子顕微鏡像を観察することが可能となるの
で、第1の発明と同様な効果が達成される。
According to the fifth aspect of the present invention, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount. After the processing, the sample is rotated and tilted so that the processed cross section faces the ion beam. Since the cross section is irradiated with an ion beam having a relatively small current amount, and then the sample is rotated and tilted, it becomes possible to observe a scanning electron microscope image of the processed cross section. Therefore, the same effect as that of the first invention is achieved. You.

【0049】第6の発明では、第5の発明において、試
料の回転と傾斜によってもイオンビームと電子ビームの
照射領域が変化しない機能を備えたので、面倒な試料の
位置合わせを行う必要がない。
According to the sixth aspect, in the fifth aspect, a function is provided in which the irradiation area of the ion beam and the electron beam does not change even by rotation and inclination of the sample, so that it is not necessary to perform complicated sample positioning. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づくFIB−SEM装置を示す図で
ある。
FIG. 1 is a diagram showing a FIB-SEM device according to the present invention.

【図2】試料の加工断面を示す図である。FIG. 2 is a view showing a processed cross section of a sample.

【図3】試料の回転と傾斜を行った後の試料とFIBカ
ラム、SEMカラムとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a sample, a FIB column, and a SEM column after the sample is rotated and tilted.

【符号の説明】[Explanation of symbols]

1 FIBカラム 2 SEMカラム 3 イオン銃 4,10 集束レンズ 5,11 対物レンズ 6,12 偏向器 7 試料 8 FIB制御部 9 電子銃 13 SEM制御部 14 ホストコンピュータ 15 2次電子検出器 16 増幅器 17 陰極線管 18 ステージ 19 ステージ制御部 DESCRIPTION OF SYMBOLS 1 FIB column 2 SEM column 3 Ion gun 4,10 Focusing lens 5,11 Objective lens 6,12 Deflector 7 Sample 8 FIB control unit 9 Electron gun 13 SEM control unit 14 Host computer 15 Secondary electron detector 16 Amplifier 17 Cathode ray Tube 18 Stage 19 Stage control unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料に集束イオンビームを照射する機能
と、集束イオンビームによって加工された試料断面に電
子ビームを照射して走査電子顕微鏡像を観察することが
できるSEM機能とを備えたFIB−SEM装置におい
て、比較的大きな電流量のイオンビームを試料に照射し
て試料をエッチングして加工し、加工後試料を回転と傾
斜させて加工断面をイオンビームに対面させ、加工断面
に比較的小さな電流量のイオンビームを照射し、その後
試料を回転と傾斜させて加工断面の走査電子顕微鏡像を
観察するようにしたFIB−SEM装置における試料断
面観察方法。
1. An FIB having a function of irradiating a sample with a focused ion beam and a SEM function of irradiating an electron beam on a cross section of the sample processed by the focused ion beam and observing a scanning electron microscope image. In a SEM apparatus, the sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after processing, the sample is rotated and tilted so that the processed cross section faces the ion beam, and the processed cross section is relatively small. A sample section observation method in a FIB-SEM apparatus in which a current amount of an ion beam is irradiated, and then the sample is rotated and tilted to observe a scanning electron microscope image of a processed section.
【請求項2】 試料のエッチング加工後の加工断面上で
イオンビームを走査し、この走査に基づいて得られた信
号によりSIM像を観察するようにした請求項1記載の
FIB−SEM装置における試料断面観察方法。
2. The sample in the FIB-SEM apparatus according to claim 1, wherein an ion beam is scanned on a cross section of the sample after the etching process, and a SIM image is observed based on a signal obtained based on the scanning. Section observation method.
【請求項3】 加工断面に比較的小さな電流量のイオン
ビームを照射する際、イオンビームを所定領域で走査さ
せ、この走査を所定領域の上から下、下から上に双方向
に走査するようにした請求項1記載のFIB−SEM装
置における試料断面観察方法。
3. When irradiating an ion beam with a relatively small current amount to a processing section, the ion beam is scanned in a predetermined area, and the scanning is performed bidirectionally from top to bottom and from bottom to top in the predetermined area. A method for observing a sample cross section in a FIB-SEM apparatus according to claim 1.
【請求項4】 比較的大きな電流量のイオンビームを試
料に照射して試料をエッチングして加工し、加工後試料
を180°回転させ、比較的大きな角度傾斜させて加工
断面をイオンビームに対面させるようにした請求項1記
載のFIB−SEM装置における試料断面観察方法。
4. A sample is etched and processed by irradiating the sample with an ion beam having a relatively large current amount, and after processing, the sample is rotated by 180 ° and tilted at a relatively large angle to face the processed cross section to the ion beam. 2. The method for observing a cross section of a sample in an FIB-SEM apparatus according to claim 1, wherein:
【請求項5】 試料に集束イオンビームを照射する機能
と、集束イオンビームによって加工された試料断面に電
子ビームを照射して走査電子顕微鏡像を観察することが
できるSEM機能とを備えたFIB−SEM装置におい
て、集束イオンビームの電流量を比較的大きな電流量と
比較的小さな電流量に切り換える手段と、試料を回転、
傾斜させる手段と、比較的大きな電流量のイオンビーム
を試料に照射して試料をエッチングして加工し、加工後
試料を回転と傾斜させて加工断面をイオンビームに対面
させ、加工断面に比較的小さな電流量のイオンビームを
照射する機能とを有したFIB−SEM装置。
5. A FIB having a function of irradiating a sample with a focused ion beam and a SEM function of irradiating an electron beam on a cross section of the sample processed by the focused ion beam and observing a scanning electron microscope image. In the SEM device, means for switching the current amount of the focused ion beam between a relatively large current amount and a relatively small current amount, rotating the sample,
Means for inclining and irradiating the sample with an ion beam having a relatively large current amount to etch and process the sample; after processing, the sample is rotated and tilted so that the processed section faces the ion beam; A FIB-SEM device having a function of irradiating an ion beam with a small current amount.
【請求項6】 試料の回転と傾斜によってもイオンビー
ムと電子ビームの照射領域が変化しない機能を備えた請
求項5記載のFIB−SEM装置。
6. The FIB-SEM apparatus according to claim 5, wherein the irradiation area of the ion beam and the electron beam does not change even when the sample is rotated or tilted.
JP01394598A 1998-01-27 1998-01-27 Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus Expired - Fee Related JP3457875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01394598A JP3457875B2 (en) 1998-01-27 1998-01-27 Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01394598A JP3457875B2 (en) 1998-01-27 1998-01-27 Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus

Publications (2)

Publication Number Publication Date
JPH11213935A true JPH11213935A (en) 1999-08-06
JP3457875B2 JP3457875B2 (en) 2003-10-20

Family

ID=11847353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01394598A Expired - Fee Related JP3457875B2 (en) 1998-01-27 1998-01-27 Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus

Country Status (1)

Country Link
JP (1) JP3457875B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367554A (en) * 2001-06-08 2002-12-20 Seiko Instruments Inc Scanning microscope with function of adjusting proper brightness
JP2004134379A (en) * 2002-07-19 2004-04-30 Leo Elektronenmikroskopie Gmbh Objective lens for electron microscope system, and electron microscope system
JP2005005108A (en) * 2003-06-11 2005-01-06 Hitachi High-Technologies Corp Focused ion beam device
JP2005005125A (en) * 2003-06-11 2005-01-06 Hitachi High-Technologies Corp Charged particle beam device
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
JP2007123289A (en) * 2007-01-31 2007-05-17 Hitachi Ltd Method and apparatus for observing micro sample forming process
JP2007128922A (en) * 2007-02-23 2007-05-24 Hitachi Ltd Minute sample processing observation method and device
JP2007184175A (en) * 2006-01-10 2007-07-19 Hitachi High-Technologies Corp Charged particle beam device, and method of manufacturing/observing sample
JP2007184298A (en) * 2007-04-03 2007-07-19 Hitachi Ltd Method and device of processing/observing minute sample
JP2008124084A (en) * 2006-11-08 2008-05-29 Hitachi High-Technologies Corp Shape monitoring apparatus and shape monitoring method
CN100449722C (en) * 2005-12-08 2009-01-07 中芯国际集成电路制造(上海)有限公司 Method for detecting failure dapth of deep channel
JP2009049021A (en) * 2008-12-01 2009-03-05 Hitachi Ltd Minute sample processing observation method and device
JP2009064790A (en) * 2008-12-22 2009-03-26 Hitachi High-Technologies Corp Focused ion beam device
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
CN102332382A (en) * 2010-06-22 2012-01-25 卡尔蔡司Nts有限责任公司 Method of processing of an object
JP2012073265A (en) * 2011-11-14 2012-04-12 Hitachi Ltd Minute sample processing observation method and device thereof
JP2012129212A (en) * 2004-09-29 2012-07-05 Hitachi High-Technologies Corp Ion beam processing device and processing method
JP2013070083A (en) * 2012-11-28 2013-04-18 Hitachi High-Technologies Corp Defect review device
JP2013084967A (en) * 2012-11-28 2013-05-09 Hitachi High-Technologies Corp Defect review device
WO2013191049A1 (en) 2012-06-21 2013-12-27 日東電工株式会社 Droplet cutting method and droplet cross-section analysis method
CN103499476A (en) * 2013-09-30 2014-01-08 上海华力微电子有限公司 Method for removing layers in chip failure analysis process
CN103797351A (en) * 2011-09-12 2014-05-14 Fei公司 Glancing angle mill
CN112201586A (en) * 2020-09-16 2021-01-08 上海华力集成电路制造有限公司 Wafer defect source online positioning method and positioning system thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667650B2 (en) * 2001-06-08 2011-04-13 エスアイアイ・ナノテクノロジー株式会社 Cross-section observation method and focused ion beam apparatus
JP2002367554A (en) * 2001-06-08 2002-12-20 Seiko Instruments Inc Scanning microscope with function of adjusting proper brightness
JP2004134379A (en) * 2002-07-19 2004-04-30 Leo Elektronenmikroskopie Gmbh Objective lens for electron microscope system, and electron microscope system
JP2011222525A (en) * 2002-07-19 2011-11-04 Carl Zeiss Nts Gmbh Objective lens for electron microscope system and electron microscope system
JP2005005108A (en) * 2003-06-11 2005-01-06 Hitachi High-Technologies Corp Focused ion beam device
JP2005005125A (en) * 2003-06-11 2005-01-06 Hitachi High-Technologies Corp Charged particle beam device
US7009192B2 (en) 2003-06-11 2006-03-07 Hitachi High-Technologies Corporation Charged particle beam application apparatus
JP2012129212A (en) * 2004-09-29 2012-07-05 Hitachi High-Technologies Corp Ion beam processing device and processing method
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
CN100449722C (en) * 2005-12-08 2009-01-07 中芯国际集成电路制造(上海)有限公司 Method for detecting failure dapth of deep channel
JP2007184175A (en) * 2006-01-10 2007-07-19 Hitachi High-Technologies Corp Charged particle beam device, and method of manufacturing/observing sample
JP2008124084A (en) * 2006-11-08 2008-05-29 Hitachi High-Technologies Corp Shape monitoring apparatus and shape monitoring method
JP2007123289A (en) * 2007-01-31 2007-05-17 Hitachi Ltd Method and apparatus for observing micro sample forming process
JP2007128922A (en) * 2007-02-23 2007-05-24 Hitachi Ltd Minute sample processing observation method and device
JP2007184298A (en) * 2007-04-03 2007-07-19 Hitachi Ltd Method and device of processing/observing minute sample
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
JP2014167474A (en) * 2007-12-06 2014-09-11 Fei Co Slice and view with decoration
JP2009049021A (en) * 2008-12-01 2009-03-05 Hitachi Ltd Minute sample processing observation method and device
JP2009064790A (en) * 2008-12-22 2009-03-26 Hitachi High-Technologies Corp Focused ion beam device
CN102332382A (en) * 2010-06-22 2012-01-25 卡尔蔡司Nts有限责任公司 Method of processing of an object
KR20140088074A (en) * 2011-09-12 2014-07-09 에프이아이 컴파니 Glancing angle mill
CN103797351A (en) * 2011-09-12 2014-05-14 Fei公司 Glancing angle mill
JP2014530346A (en) * 2011-09-12 2014-11-17 エフ・イ−・アイ・カンパニー Viewing angle mill
US9941096B2 (en) 2011-09-12 2018-04-10 Fei Company Glancing angle mill
JP2012073265A (en) * 2011-11-14 2012-04-12 Hitachi Ltd Minute sample processing observation method and device thereof
WO2013191049A1 (en) 2012-06-21 2013-12-27 日東電工株式会社 Droplet cutting method and droplet cross-section analysis method
CN104412094A (en) * 2012-06-21 2015-03-11 日东电工株式会社 Droplet cutting method and droplet cross-section analysis method
JP2013084967A (en) * 2012-11-28 2013-05-09 Hitachi High-Technologies Corp Defect review device
JP2013070083A (en) * 2012-11-28 2013-04-18 Hitachi High-Technologies Corp Defect review device
CN103499476A (en) * 2013-09-30 2014-01-08 上海华力微电子有限公司 Method for removing layers in chip failure analysis process
CN112201586A (en) * 2020-09-16 2021-01-08 上海华力集成电路制造有限公司 Wafer defect source online positioning method and positioning system thereof

Also Published As

Publication number Publication date
JP3457875B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
JP3457875B2 (en) Method for observing sample cross section in FIB-SEM apparatus and FIB-SEM apparatus
US10283317B2 (en) High throughput TEM preparation processes and hardware for backside thinning of cross-sectional view lamella
EP1696219B1 (en) Repetitive circumferential milling for sample preparation
KR100253145B1 (en) Sample separating method & analyzing method of separated sample
JP5350605B2 (en) Sample preparation
JPH10223574A (en) Machining observation device
JP4932117B2 (en) Substrate imaging device
JP5222507B2 (en) Ion beam processing apparatus and sample processing method
US20060219914A1 (en) Charged-particle beam instrument
KR20180132546A (en) Face-on, gas-assisted etching for plan-view lamellae preparation
JP2004087174A (en) Ion beam device, and working method of the same
JP4283432B2 (en) Sample preparation equipment
JP2005114578A (en) Sample preparation method device and sample observation device
JP2006313704A (en) Focusing ion beam apparatus
JP3101130B2 (en) Complex charged particle beam device
JP3401426B2 (en) Sample processing method in FIB-SEM device and FIB-SEM device
JPH07230784A (en) Composite charge particle beam device
JP2004132956A (en) Method for measuring undercut by using scanning electron microscope
JPH06231719A (en) Charged beam device for sectional working observation and working method
JP2683951B2 (en) Scanning electron microscope for cross-section observation and cross-section observation method using the same
JPH11260307A (en) Converged ion beam apparatus
JPH11213936A (en) Fib-sem device
US8202440B1 (en) Methods and apparatus for electron beam assisted etching at low temperatures
JP2887407B2 (en) Sample observation method using focused ion beam
JPH0582081A (en) Method and complex device for converged ion beam mass spectrometery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees