JPH11213337A - Method for machining magnetic head - Google Patents

Method for machining magnetic head

Info

Publication number
JPH11213337A
JPH11213337A JP1469398A JP1469398A JPH11213337A JP H11213337 A JPH11213337 A JP H11213337A JP 1469398 A JP1469398 A JP 1469398A JP 1469398 A JP1469398 A JP 1469398A JP H11213337 A JPH11213337 A JP H11213337A
Authority
JP
Japan
Prior art keywords
load
row bar
processing
order polynomial
polynomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1469398A
Other languages
Japanese (ja)
Other versions
JP2981996B2 (en
Inventor
Toshiyuki Baba
敏之 馬場
Kazuo Suzuki
和生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10014693A priority Critical patent/JP2981996B2/en
Publication of JPH11213337A publication Critical patent/JPH11213337A/en
Application granted granted Critical
Publication of JP2981996B2 publication Critical patent/JP2981996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To machine a magnetic head with a high precision by reducing the variation in height of elements with respect to a target value, in a magnetic head machining method where a rover in a state where plural magnetic heads are arranged in a line and measuring and calculating heights of elements of magnetic heads to machine the elements with respect to height. SOLUTION: A relation formula of coefficients in a fourth-order polynomial expressing load and deformation which are caused to act on the attaching part of a rover 15 are preliminarily obtained, and this relation formula is used for a fourth-order polynomial, which is calculated based on plural element heights measured during the processing, to obtain a correction load of the rover 15 so that element heights may be within a prescribed range, thus performing the processing. At this time, the bend shape of the rover 15 is approximated to a quadratic polynomial at least in the center and up to element processing starts in both ends of the rover, and the correction load is obtained from its coefficients.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁変換素子が薄
膜で形成される磁気ヘッドの電磁変換素子の高さを精密
に加工する方法及びこれにより製造した磁気ヘッドに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for precisely processing the height of an electromagnetic transducer of a magnetic head in which the electromagnetic transducer is formed of a thin film, and a magnetic head manufactured by the method.

【0002】[0002]

【従来の技術】電磁変換素子が薄膜で形成される磁気ヘ
ッド、例えばインダクティブ型薄膜ヘッドやMRヘッド
では、前者ではスロートハイト(Throat Height)、後
者ではMR素子高さと呼ばれる電磁変換素子の高さ寸法
を、一定限度の許容公差内に維持することが特性上重要
である。通常それらの寸法出しは磁気ヘッドスライダー
の浮上面(Air Bearing Surface、以下ABS面と称
す)をラップ加工することで行われるが、高い加工精度
が要求される。前記磁気ヘッドは、スライダーとなるセ
ラミック基板上に、電磁変換素子を磁性材や絶縁材の薄
膜を積層することで形成しており、1枚の円盤状の基板
から多数の磁気ヘッドを製造することができる。前述し
た電磁変換素子高さ寸法出しのための加工においては、
生産性を上げるため、前記基板から電磁変換素子が列状
に並んだ状態に切出したローバーと称する細長い基板に
ラップ加工を行なうのが一般的である。しかし、円盤状
の基板からローバーを切り出す時に発生する加工歪み
や、ローバーを治具へ接着する時の加圧むらなどによ
り、ローバーに曲がりが生じ、これによりラップ加工後
の電磁変換素子高さ寸法がばらつく、という問題が生じ
る。
2. Description of the Related Art In a magnetic head in which an electromagnetic transducer is formed of a thin film, for example, an inductive type thin film head or an MR head, the former has a throat height, and the latter has a height dimension of an electromagnetic transducer called an MR element height. It is characteristically important to keep within a certain tolerance limit. Usually, these dimensions are determined by lapping the air bearing surface (hereinafter referred to as ABS surface) of the magnetic head slider, but high processing accuracy is required. In the magnetic head, an electromagnetic transducer is formed by laminating a thin film of a magnetic material or an insulating material on a ceramic substrate serving as a slider, and a large number of magnetic heads are manufactured from one disk-shaped substrate. Can be. In the processing for obtaining the height of the electromagnetic transducer described above,
In order to increase the productivity, lapping is generally performed on an elongated substrate called a row bar, which is cut out of the substrate in a state where the electromagnetic transducers are arranged in a row. However, due to the processing distortion that occurs when cutting the row bar from the disk-shaped substrate and the unevenness in the pressure applied when the row bar is bonded to the jig, the row bar bends. This causes a problem of variation.

【0003】この問題を解決するための従来技術とし
て、特公平7−112672に開示されている研磨制御
装置がある(以下公知例と称す)。これはMRヘッドを
製造するに際し、基板上に電磁変換素子であるMR素子
を成膜すると同時に、研磨ガイドとなるELG(Electr
ical Lapping Guide)と呼ばれる抵抗体をMR素子に
対して一定位置に形成しておき、ローバーのABS面の
ラップを行いながらELGの抵抗値あるいはMR素子自
体の抵抗値を測定し、その結果に基づいた荷重の制御に
よりローバーを保持している治具を変形させ、ローバー
の曲がりを矯正しながら所定のMR素子高さまで加工を
行う装置である。以下、公知例の原理を図7、8により
説明する。なお用語は公知例で用いられたものそのまま
でなく、本発明の説明に使用した用語に言い直してい
る。図7はラップ装置の全体構成略図である。ローバー
15は治具51に接着されており、定盤17上でABS
面18がラップされる。この公知例では加工量の制御に
ローバー15の両端に形成されたELG52、53の抵
抗値と、MR素子54の抵抗値を用いている。ABS面
18がラップされるとELG52、53とMR素子54
の高さが小さくなるため、それらの抵抗値が徐々に高く
なる。すなわちELG52、53とMR素子54の抵抗
値はMR素子高さを表す。そこで制御装置55はラップ
加工中にディジタルオームメータ56でELG52、5
3と複数個のMR素子54の抵抗値を測定し、得られた
抵抗値からローバーの曲がり状態を求め、これに基づい
てアクチュエータ57、58、59が治具51にかける
荷重を制御する。
[0003] As a conventional technique for solving this problem, there is a polishing control apparatus disclosed in Japanese Patent Publication No. 7-112672 (hereinafter referred to as a known example). When manufacturing an MR head, an EL element (electromagnetic transducer) is formed on a substrate, and at the same time, an ELG (Electr
A resistor called an ical lapping guide) is formed at a fixed position with respect to the MR element, and the resistance of the ELG or the resistance of the MR element itself is measured while wrapping the ABS of the row bar, and based on the result. The jig holding the row bar is deformed by controlling the applied load, and processing is performed to a predetermined MR element height while correcting the bending of the row bar. Hereinafter, the principle of the known example will be described with reference to FIGS. The terms used herein are not the same as those used in known examples, but are replaced with the terms used in the description of the present invention. FIG. 7 is a schematic diagram of the entire configuration of the wrapping device. The rover 15 is adhered to the jig 51, and the ABS is
Surface 18 is wrapped. In this known example, the resistance of the ELGs 52 and 53 formed at both ends of the row bar 15 and the resistance of the MR element 54 are used to control the processing amount. When the ABS 18 is wrapped, the ELGs 52 and 53 and the MR element 54 are formed.
, The resistance values thereof gradually increase. That is, the resistance values of the ELGs 52 and 53 and the MR element 54 indicate the height of the MR element. Therefore, the control device 55 uses the digital ohmmeter 56 to control the ELG 52, 5
The resistance values of the MR element 3 and the plurality of MR elements 54 are measured, the bent state of the row bar is obtained from the obtained resistance values, and the loads applied to the jig 51 by the actuators 57, 58, 59 are controlled based on this.

【0004】図8は公知例における治具51の形状であ
る。持具51にはH型スロット61が設けられており、
これにより両端支持の梁材62が形成されている。ロー
バー15は梁材62の下面63に接着されている。さら
にH型スロット61の形状寸法F、G、H、Iは、アク
チュエータ58が押し棒64を介して梁材62の中央部
を押したとき、梁材62のたわみ曲線が2次多項式とな
るように設計されている。アクチュエータ57、58、
59が梁材62にかける荷重はELG52、53とMR
素子54の抵抗値から求められたローバー15の平衡度
と湾曲度に基づいて制御される。アクチュエータ57、
58、59の荷重をそれぞれPL、PC、PRとする
と、平衡度に関してローバー15の図面に向かって右側
の加工量が足りない場合にはPL<PR、左側の加工量
が足りない場合にはPL>PRとなるように制御され
る。また湾曲度に関してローバー15の中央部の加工量
が足りない場合にはPC>PL、PR、両端の加工量が
足りない場合にはPC<PL、PRとなるように制御さ
れる。
FIG. 8 shows the shape of a jig 51 in a known example. The holding tool 51 is provided with an H-shaped slot 61,
As a result, beam members 62 supported at both ends are formed. The row bar 15 is adhered to the lower surface 63 of the beam 62. Further, the shape dimensions F, G, H, and I of the H-shaped slot 61 are such that the deflection curve of the beam 62 becomes a quadratic polynomial when the actuator 58 presses the center of the beam 62 via the push rod 64. Designed for Actuators 57, 58,
The load applied by 59 to beam 62 is ELG 52, 53 and MR
The control is performed based on the degree of balance and the degree of curvature of the row bar 15 obtained from the resistance value of the element 54. Actuator 57,
Assuming that the loads of 58 and 59 are PL, PC and PR, respectively, PL <PR when the processing amount on the right side is insufficient in the drawing of the row bar 15 with respect to the equilibrium degree, and PL when the processing amount on the left side is insufficient. > PR. Further, with respect to the degree of curvature, control is performed such that PC> PL, PR when the processing amount at the center of the row bar 15 is insufficient, and PC <PL, PR when the processing amount at both ends is insufficient.

【0005】[0005]

【発明が解決しようとする課題】前記公知例では、梁材
62のたわみ曲線が2次多項式で近似できるようにH型
スロット形状を設計しておき、ローバー15の平衡度と
湾曲度に基づいて治具51に加える荷重を制御してい
る。しかし治具51へローバー15を接着した後、或い
はローバー15をラップ加工している最中のローバーの
曲がり形状は、図9に示すように必ずしも2次多項式で
表すのが最適ではない。図9(a)及び(b)は、治具
へローバーを接着した後のローバーの曲がりを、両端の
電磁変換素子(以下素子と略す)を基準に各素子の位置
を顕微鏡で測定した結果をプロットして表し、これを2
次近似曲線化したものと4次近似曲線化したものを示し
たものである。明らかに2次近似曲線の方はずれが大き
く、これを基にした荷重制御によって変形させた梁材6
2の形状と実際のローバー15の形状の差が、加工後の
素子高さばらつきを生ずることがわかる。今後さらに厳
しくなる素子高さの許容公差に対して加工合格率を向上
させるには、ローバーの実際の形状にできるだけ忠実な
変形の制御が必要となる。本発明は、素子高さを直接的
又は間接的に測定できる機能を有するラップ装置を用い
て、ローバーの変形を実際の形状に近い次数の多項式で
近似し、変形を矯正するように荷重を与えて加工する磁
気ヘッドの加工方法及びこれにより製造される素子高さ
ばらつきの少ない磁気ヘッドを提供することを目的とし
ている。
In the above-mentioned known example, an H-shaped slot shape is designed so that the deflection curve of the beam member 62 can be approximated by a second-order polynomial, and based on the equilibrium degree and the curvature degree of the row bar 15. The load applied to the jig 51 is controlled. However, the bent shape of the row bar after the row bar 15 is bonded to the jig 51 or while the row bar 15 is being lapped is not always optimally represented by a second-order polynomial as shown in FIG. FIGS. 9A and 9B show the results of measuring the bending of the row bar after bonding the row bar to the jig and measuring the position of each element with a microscope based on the electromagnetic transducers (hereinafter abbreviated as elements) at both ends. Plotted and expressed as 2
It shows the result of a quadratic approximation curve and the result of a quadratic approximation curve. Clearly, the quadratic approximation curve has a larger deviation, and the beam 6 deformed by load control based on this curve
It can be seen that the difference between the shape of No. 2 and the actual shape of the row bar 15 causes variation in the element height after processing. In order to improve the machining pass rate with respect to the tolerable tolerance of the element height which will be stricter in the future, it is necessary to control the deformation as closely as possible to the actual shape of the row bar. The present invention uses a wrap device having a function of directly or indirectly measuring the element height, approximating the deformation of the rover with a polynomial of an order close to the actual shape, and applying a load so as to correct the deformation. It is an object of the present invention to provide a magnetic head processing method for processing by magnetic head and a magnetic head manufactured by the method with less variation in element height.

【0006】[0006]

【課題を解決するための手段】本発明は、複数の磁気ヘ
ッドの電磁変換素子(以下素子と略す)が並んでいるロ
ーバーを治具の梁材に取付け、各素子を所望の高さにす
るようにローバーを加工する磁気ヘッドの加工方法にお
いて、前記梁材に作用させる荷重に対しその変形を4次
多項式で表し、荷重と前記4次多項式中の係数の関係を
行列式で求め、これから梁材の曲がり形状を示す係数に
対する部分行列の逆行列を求めておき、加工中に計測算
出された複数の素子高さをもとにローバーの変形を所定
の次数の多項式で表し、曲がり形状を示す係数を前記逆
行列と掛けることで曲がりを矯正する荷重を算出し、そ
の荷重を梁材に作用させてローバーを加工することを特
徴とする磁気ヘッドの加工方法である。なお、治具は2
点で中間支持され両端部と中央部に荷重作用点を有する
梁材を有する構造のものとすれば、梁材変形は最大4次
多項式で表すことができ、従ってこれに取付けたローバ
ーは4次以下の次数の数式で表すことができる。また、
ここでいう所定の次数の多項式とは、4次の多項式を言
う場合や、当初は2次の多項式で途中から4次の多項式
と切替えるような場合の都度の多項式を言う。2次多項
式を用いる場合の曲がり矯正荷重は、前記逆行列に掛け
る曲がり形状を示す係数のうち2次以外の係数は0とし
て求める。
According to the present invention, a row bar in which a plurality of electromagnetic transducers (hereinafter abbreviated as "elements") of a plurality of magnetic heads are attached to a beam of a jig to make each element a desired height. In the magnetic head processing method for processing a row bar as described above, the deformation applied to the load applied to the beam material is expressed by a fourth-order polynomial, and the relationship between the load and the coefficient in the fourth-order polynomial is obtained by a determinant. The inverse matrix of the sub-matrix for the coefficient indicating the bent shape of the material is obtained in advance, and the deformation of the rover is represented by a polynomial of a predetermined order based on a plurality of element heights measured and calculated during processing, indicating the bent shape A method of processing a magnetic head, comprising calculating a load for correcting bending by multiplying a coefficient by the inverse matrix, and processing the row bar by applying the load to a beam. The jig is 2
If the structure has a beam material that is supported in the middle at points and has a load application point at both ends and the center, the deformation of the beam material can be expressed by a maximum fourth-order polynomial. It can be expressed by the following equation. Also,
Here, the polynomial of a predetermined order refers to a polynomial of the fourth order, or a polynomial that is initially switched to a fourth-order polynomial in the middle of a second-order polynomial. In the case of using the second-order polynomial, the bending correction load is determined assuming that coefficients other than the second-order coefficient among the coefficients indicating the bending shape applied to the inverse matrix are 0.

【0007】前記の2次多項式と4次多項式を組合わせ
た加工においては、ローバーに設けられた素子の中、少
なくとも両端部と中央部にある素子が加工開始されたと
判定されるまでは、ローバーの曲がり形状を2次多項式
で表して曲がり矯正荷重を求め、その荷重を梁材に作用
させてローバーを加工し、前記素子が加工開始されたと
判定された後は、ローバーの曲がり形状を4次多項式で
表して曲がり矯正荷重を求め、その荷重を梁材に作用さ
せてローバーを加工するとよい。なお、前記ローバーの
変形を最終の4次多項式で表すためのタイミングは、ロ
ーバーに形成された全ての素子が加工開始されたと判定
された時とすることもできる。
In the processing in which the second-order polynomial and the fourth-order polynomial are combined, among the elements provided on the row bar, at least the elements at both ends and the central portion are processed until it is determined that the processing is started. The bending shape is expressed by a second-order polynomial to obtain a bending correction load, and the load is applied to the beam material to process the row bar. After it is determined that the element has been processed, the row bar bending shape is changed to the fourth order. It is preferable to calculate the bending correction load by using a polynomial and apply the load to the beam material to process the row bar. Note that the timing for expressing the deformation of the row bar by the final fourth-order polynomial may be the time when it is determined that all the elements formed on the row bar have been processed.

【0008】また本発明は、複数の磁気ヘッドの電磁変
換素子(以下素子と略す)が並んでいるローバーを治具
の梁材に取付け、各素子を所望の高さにするようにロー
バーを加工する磁気ヘッドの加工方法において、前記梁
材に作用させる荷重に対しその変形を4次多項式で表
し、荷重と前記4次多項式中の係数の関係を行列式で求
め、これから梁材の曲がり形状を示す前記係数に対する
部分行列の逆行列を求めておき、加工中に計測算出され
た複数の素子高さをもとにローバーの変形を所定の次数
の多項式で表し、曲がり形状を示す係数を前記逆行列と
掛けることで曲がりを矯正する荷重を算出するととも
に、傾きを示す係数をもとに傾きを矯正する荷重を算出
して、その荷重を治具に作用させて加工する磁気ヘッド
の加工方法である。
According to the present invention, a row bar in which a plurality of electromagnetic transducers (hereinafter abbreviated as elements) of a plurality of magnetic heads are attached to a beam of a jig, and the row bar is processed so that each element has a desired height. In the method of processing a magnetic head, the deformation of the load applied to the beam is expressed by a fourth-order polynomial, and the relationship between the load and the coefficient in the fourth-order polynomial is obtained by a determinant. The inverse matrix of the sub-matrix for the coefficient shown is obtained in advance, and the deformation of the rover is represented by a polynomial of a predetermined order based on a plurality of element heights measured and calculated during processing, and the coefficient indicating the bent shape is calculated by the inverse. By calculating the load to correct the bending by multiplying by the matrix, calculate the load to correct the tilt based on the coefficient indicating the tilt, and apply the load to the jig to process the magnetic head. is there.

【0009】前記の所定の次数の多項式は2次多項式で
あり、ローバーに設けられた素子の中、少なくとも両端
部と中央部にある素子が加工開始されたと判定されるま
では、ローバーの曲がり形状を2次多項式で表して曲が
り矯正荷重と傾き矯正荷重を求め、その荷重を治具に作
用させてローバーを加工し、前記素子が加工開始された
と判定された後は、ローバーの曲がり形状を4次多項式
で表して曲がり矯正荷重と傾き矯正荷重を求め、その荷
重を治具に作用させてローバーを加工するとよい。な
お、前記ローバーの変形を最終の4次多項式で表すため
のタイミングは、ローバーに形成された全ての素子が加
工開始されたと判定された時とすることもできる。
The above-mentioned polynomial of a predetermined order is a quadratic polynomial, and among the elements provided on the row bar, at least the bent shape of the row bar is determined until it is determined that the processing at the both ends and the center is started. Is expressed by a second-order polynomial to obtain a bending correction load and a tilt correction load, and the loads are applied to a jig to process the row bar. After it is determined that the element has been processed, the bent shape of the row bar is changed to 4. It is preferable to calculate the bending correction load and the inclination correction load by the following polynomial, and apply the loads to the jig to process the row bar. Note that the timing for expressing the deformation of the row bar by the final fourth-order polynomial may be the time when it is determined that all the elements formed on the row bar have been processed.

【0010】また本発明の磁気ヘッドは、複数の磁気ヘ
ッドの電磁変換素子(以下素子と略す)が並んでいるロ
ーバーを治具の梁材に取付け、各素子を所望の高さにす
るようにローバーを加工した後分割して成した磁気ヘッ
ドであって、前記梁材に取付けられたローバーの変形を
4次多項式、又は2次多項式から4次多項式へと切換え
て表し、これらの数式で示される変形を矯正するような
ラップ荷重を作用させてローバーをラップ加工して成し
たことを特徴としている。この時の加工方法は、前述し
た方法のいずれかを用いたものである。
Further, in the magnetic head of the present invention, a row bar in which a plurality of electromagnetic transducers (hereinafter abbreviated as elements) of a plurality of magnetic heads are attached to a beam of a jig so that each element has a desired height. A magnetic head formed by processing a row bar and then dividing the row bar, wherein the deformation of the row bar attached to the beam material is represented by switching from a fourth-order polynomial or a second-order polynomial to a fourth-order polynomial, and is represented by these equations. The rover is lap-processed by applying a lap load to correct the deformation. The processing method at this time uses any of the methods described above.

【0011】[0011]

【発明の実施の形態】以下、図1に示すような治具10
を使用した場合を例にして説明する。治具10は、梁材
12が基材11と左右両側の切り欠き13と中央部の長
方形のスロット14を隔てて2点で中間支持された構造
である。梁材12にローバー15が接着され、ローバー
15の浮上面18が定盤17によってラップ加工され
る。ここで、梁材12は、厚さ寸法Aと、切り欠き13
及び長方形スロット14による寸法B、C、D、Eをも
とに、梁材12の両端部及び中央部の3ヶ所に、荷重L
B、CB、RBをかけたときの変形形状が4次多項式で
近似できるように設計されている。治具10には5ヶ所
に荷重をかけることができる。LB、CB、RBは前記
梁材12にかかる荷重であり、ローバー15の曲がり形
状の矯正を行う。またLT、RTは基材11に作用し、
ローバー15全体に対してラップ加工のための荷重を与
えるものであり、また左右の荷重ローバーランスを変え
ることでローバー15の傾きを矯正することができる。
ローバー15には、素子成膜時に各素子に隣接して前述
したと同様なELG16が形成されている。ELG16
は素子に対して一定位置に形成されているため、その抵
抗値を測定することで素子高さを求めることができる。
なお、磁気ヘッドがMRヘッドの場合には、ELG16
を設けず、MR素子自体の抵抗値を測定し、これより素
子高さを求めるようにしてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A jig 10 as shown in FIG.
An example in which is used will be described. The jig 10 has a structure in which a beam member 12 is intermediately supported at two points with a base material 11, cutouts 13 on both left and right sides, and a rectangular slot 14 at the center. The row bar 15 is adhered to the beam member 12, and the floating surface 18 of the row bar 15 is lapped by the surface plate 17. Here, the beam 12 has a thickness A and a notch 13.
Based on the dimensions B, C, D, and E of the rectangular slot 14, the load L
It is designed so that the deformed shape when B, CB, and RB are applied can be approximated by a fourth-order polynomial. A load can be applied to the jig 10 at five places. LB, CB, and RB are loads applied to the beam member 12, and correct the bent shape of the row bar 15. LT and RT act on the base material 11,
A load for lapping is applied to the entire row bar 15, and the inclination of the row bar 15 can be corrected by changing the left and right load row lances.
An ELG 16 similar to that described above is formed on the row bar 15 adjacent to each element at the time of element formation. ELG16
Is formed at a fixed position with respect to the element, the element height can be obtained by measuring the resistance value.
When the magnetic head is an MR head, ELG16
May be provided, and the resistance of the MR element itself may be measured, and the element height may be determined from this.

【0012】図2は本発明を用いたラップ装置の荷重制
御に関する構成図である。定盤17でローバー15のラ
ップ加工を行いながら、制御装置22はマルチチャンネ
ルのディジタルオームメータ21によってELG16の
抵抗値Riを測定する。ここでiは1列に並んだELG
のうちi番目のELGに関するものを意味する添字であ
る。つぎに制御装置は各Riに対応した素子の素子高さ
iを順次算出して、素子高さを連ねた線を4次多項式
h=ax4+bx3+cx2+dx+eで近似する。ここ
でx軸は梁材12にローバー15が接着されている部分
の長手方向の座標である。ローバー15の中の素子高さ
を揃えるためには、この4次多項式の曲がり形状が直線
に矯正される方向に荷重LB、CB、RBをかけて梁材
12を変形させることが重要である。
FIG. 2 is a configuration diagram relating to load control of a lap apparatus using the present invention. While lapping Rover 15 in surface plate 17, the controller 22 by the digital ohmmeter 21 multichannel measuring the resistance value R i of ELG16. Where i is the ELG arranged in a line
Is a subscript meaning the one related to the i-th ELG. Next, the control device sequentially calculates the element heights h i of the elements corresponding to each R i , and approximates a line connecting the element heights with a fourth-order polynomial h = ax 4 + bx 3 + cx 2 + dx + e. Here, the x-axis is a longitudinal coordinate of a portion where the row bar 15 is bonded to the beam member 12. In order to make the element heights in the row bar 15 uniform, it is important to deform the beam 12 by applying loads LB, CB, and RB in a direction in which the bent shape of the fourth-order polynomial is straightened.

【0013】前記算出した4次多項式h=ax4+bx3
+cx2+dx+eを例に、図3と図4をもとに、曲が
り形状を直線形状に矯正するような荷重LB、CB、R
Bを求める方法を説明する。図3は梁材12を4次多項
式の形状で曲げるための荷重を算出する方法を示す図で
ある。まず予め、梁材12に荷重F1、F2、F3をか
けたときの梁材12の変形量yを構造解析の変形シミュ
レーションで求め、その変形を4次多項式y=ax4
bx3+cx2+dx+eで近似して荷重F1、F2、F
3と各次数の係数a、b、c、dの関係を表す行列Kを
求める。ここで、梁材12の曲がり形状を表しているの
は4次、3次、2次の係数であるから、各係数a、b、
cを決定する部分行列の逆行列K’を計算しておく。こ
こで梁材12の変形量を求める手段として、変形シミュ
レーションを使用する代わりに、実物の治具10に既知
の荷重F1、F2、F3をかけて、その時の変形量を電
気マイクロ等で実測する方法も使用可能である。これに
より、ラップ加工中に算出される素子高さの4次近似式
h=ax4+bx3+cx2+dx+eの中の曲がり形状
を表す係数a、b、cに、前記のK’を掛けることで、
梁材12をその形状で変形させるための荷重F1、F
2、F3を求めることができる。
The calculated fourth-order polynomial h = ax 4 + bx 3
+ Cx 2 + dx + e as an example, based on FIGS. 3 and 4, loads LB, CB, and R for correcting a curved shape to a linear shape.
A method for obtaining B will be described. FIG. 3 is a diagram showing a method of calculating a load for bending the beam 12 in a fourth-order polynomial shape. First, the deformation amount y of the beam member 12 when the loads F1, F2, and F3 are applied to the beam member 12 is obtained in advance by the deformation simulation of the structural analysis, and the deformation is determined by the fourth-order polynomial y = ax 4 +
Loads F1, F2, and F are approximated by bx 3 + cx 2 + dx + e.
A matrix K representing the relationship between 3 and the coefficients a, b, c, and d of each order is obtained. Here, since the bent shape of the beam member 12 is represented by the fourth-order, third-order, and second-order coefficients, the coefficients a, b,
The inverse matrix K ′ of the submatrix that determines c is calculated in advance. Here, instead of using the deformation simulation, a known load F1, F2, F3 is applied to the actual jig 10 as a means for obtaining the deformation amount of the beam member 12, and the deformation amount at that time is measured by an electric micro or the like. Methods can also be used. Thereby, the coefficients a, b, and c representing the curved shape in the fourth-order approximation h = ax 4 + bx 3 + cx 2 + dx + e of the element height calculated during the lap processing are multiplied by the aforementioned K ′. ,
Loads F1, F for deforming the beam 12 in the shape
2, F3 can be obtained.

【0014】図4は図3に示した荷重の算出方法を実際
のラップ荷重制御に適用する場合の荷重制御例のブロッ
ク図である。ラップ加工中のローバー15の曲がり形状
の矯正については、全ての素子高さが等しくなる荷重方
向、すなわち素子高さの4次近似式の4次、3次、2次
の係数a、b、cがすべて0になる荷重方向に係数a、
b、cに基づく矯正荷重LB、CB、RBを積分制御す
る。係数a、b、cに上記の逆行列K’を掛けて求めた
荷重F1、F2、F3に適当な定数GBをかけて求めた
矯正荷重LB、CB、RBを徐々に調整していき、4
次、3次、2次の係数a、b、cがすべて0になったと
きには、そのときの荷重LB、CB、RBを保持する。
FIG. 4 is a block diagram of a load control example when the load calculation method shown in FIG. 3 is applied to actual lap load control. Regarding the correction of the bent shape of the row bar 15 during the lapping process, the load direction in which all the element heights are equal, that is, the fourth-order, third-order, and second-order coefficients a, b, and c of the fourth-order approximate expression of the element heights In the load direction where all are zero,
The correction loads LB, CB, and RB based on b and c are integrated and controlled. Coefficients a, b, load is determined by multiplying the inverse matrix K 'to c F1, F2, straightening load LB obtained by multiplying the appropriate constant G B to F3, CB, gradually adjusting the RB, 4
When the third, second, and second order coefficients a, b, and c all become 0, the loads LB, CB, and RB at that time are held.

【0015】ところで、前述したように、加工開始段階
のローバー形状は2次近似式よりも4次近似式で表すこ
とが適切であるが、素子高さをもとに求める前記4次近
似式h=ax4+bx3+cx2+dx+eでは、ローバ
ー15の正確な曲がり形状を表していない場合があり、
適切な曲がり矯正荷重が算出できないことがある。これ
は、ローバー15に形成されたELG16は、加工前の
ローバー15の曲がり形状のために全てが同時に加工開
始されることがないためである。以下、図5及び6を参
照しながら、この問題とその解決策について説明する。
As described above, it is appropriate that the rover shape at the processing start stage is expressed by a fourth-order approximation rather than a second-order approximation. However, the fourth-order approximation h obtained based on the element height is used. in = ax 4 + bx 3 + cx 2 + dx + e, it may not represent an accurate bend shape of the rover 15,
An appropriate bending correction load may not be calculated. This is because all of the ELGs 16 formed on the row bar 15 are not simultaneously processed due to the bent shape of the row bar 15 before processing. Hereinafter, this problem and its solution will be described with reference to FIGS.

【0016】図5は、加工前のローバー15が定盤17
に対して凸の場合を示したものである。図5(a)に示
すように、ローバー15の中央付近から定盤17に当た
り始めるため、加工初期段階ではローバー15の中央付
近のELG16から加工が始まる。このときの素子高さ
状況をプロットしたものと、これを4次多項式h=ax
4+bx3+cx2+dx+eで近似化した曲線を図5
(b)に示す。まだ定盤17と当たっていないローバー
15の両端部では、素子高さは初期の高さH0のままで
あるのに対し、ローバー15の中央付近では初期高さH
0より小さくなっている。ここでx軸はローバー15の
長手方向位置を表し、ローバー15の中央が原点0であ
る。このような状態の素子高さを4次多項式h=ax4
+bx3+cx2+dx+eで近似すると、その係数の符
号は、4次係数a<0であり、2次係数c>0となる。
2次係数c>0は実際のローバー15の曲がり形状と同
じく定盤17に対して凸であることを表しているが、4
次係数a<0は実際のローバー15の曲がり形状とは反
対に定盤17に対して凹であることを表している。従っ
てこの4次係数aから算出される荷重成分は実際のロー
バー15の曲がりを矯正する方向とは逆向きに作用する
ものであり、その結果、前述したように係数a、b、c
をもとに求められる矯正荷重は、ローバー15の曲がり
矯正を行うためには最適なものではなく、時には曲がり
修正に時間がかかり、不十分なままで加工が完了して素
子高さをそろえることができないという状況が発生す
る。
FIG. 5 shows that the row bar 15 before processing is a platen 17.
FIG. As shown in FIG. 5A, since it starts to hit the surface plate 17 near the center of the row bar 15, the processing starts from the ELG 16 near the center of the row bar 15 in the initial stage of processing. A plot of the element height at this time and a fourth-order polynomial h = ax
FIG. 5 shows a curve approximated by 4 + bx 3 + cx 2 + dx + e.
(B). At both ends of the row bar 15 that have not yet come into contact with the surface plate 17, the element height remains at the initial height H0, whereas near the center of the row bar 15, the initial height H is increased.
It is smaller than 0. Here, the x-axis represents the longitudinal position of the row bar 15, and the center of the row bar 15 is the origin 0. The element height in such a state is represented by a fourth-order polynomial h = ax 4
When approximating by + bx 3 + cx 2 + dx + e, the sign of the coefficient is a fourth-order coefficient a <0 and a second-order coefficient c> 0.
The quadratic coefficient c> 0 indicates that it is convex with respect to the surface plate 17 as in the actual curved shape of the row bar 15, but 4
The order coefficient a <0 indicates that the row bar 15 is concave with respect to the surface plate 17 in contrast to the actual bent shape of the row bar 15. Therefore, the load component calculated from the fourth order coefficient a acts in a direction opposite to the direction in which the actual bending of the row bar 15 is corrected. As a result, as described above, the coefficients a, b, c
The straightening load required based on is not optimal for performing the straightening of the bend of the row bar 15, and sometimes it takes time to correct the bend. A situation arises in which it is not possible.

【0017】この不具合を改善するため、加工初期段階
では図5(c)に示すように、素子高さ状況を、ローバ
ー15の曲がり方向を正しく示す係数を有する数式であ
る2次多項式h=cx2+dx+e化して近似する。即
ち、ローバー15の曲がり形状を2次多項式h=cx2
+dx+eで近似すると、2次係数の符号はc>0とな
り、実際のローバー15の曲がり形状と同じく定盤17
に対して凸であることを表す。曲げ矯正荷重は、図3及
び図4における数式において、係数a及び係数bはa=
b=0とし、係数cは前記2次多項式における2次係数
を用いて求める。これより、ローバー15の中央付近の
加工が開始された段階からローバー15の曲がりに対し
て適切な方向へ曲がり矯正が可能となる。このようにし
て、加工初期段階ではローバー15を2次多項式h=c
2+dx+eで近似して、速やかにロー両端部のEL
G16を加工できるような矯正荷重を与え、その後ロー
両端部の所定のELG16の加工が始まった時点から4
次多項式h=ax4+bx3+cx2+dx+eで近似
し、精密な曲がり矯正制御を行なう。
In order to solve this problem, in the initial stage of processing, as shown in FIG. 5 (c), the element height is changed to a quadratic polynomial h = cx, which is a mathematical expression having a coefficient that correctly indicates the bending direction of the row bar 15. 2 + dx + e for approximation. That is, the curved shape of the row bar 15 is represented by a second-order polynomial h = cx 2
+ Dx + e, the sign of the secondary coefficient is c> 0, and the surface plate 17 is the same as the actual curved shape of the row bar 15.
Represents that it is convex. The bending straightening load is obtained by calculating the coefficients a and b in the equations in FIGS.
b = 0, and the coefficient c is obtained using the second order coefficient in the second order polynomial. Thus, it becomes possible to correct the bending of the row bar 15 in an appropriate direction from the stage where the processing near the center of the row bar 15 is started. Thus, at the initial stage of machining, the row bar 15 is converted to a second-order polynomial h = c.
Approximately by x 2 + dx + e, and quickly EL at both ends of row
A straightening load is applied so that the G16 can be processed.
Approximate by the following polynomial h = ax 4 + bx 3 + cx 2 + dx + e to perform precise bending correction control.

【0018】図6は、加工前のローバー15が定盤17
に対して凹の場合を示したものである。図6(a)に示
すように、ローバー15の両端から定盤17に当たり始
めるため、加工初期段階ではロー両端のELG16から
加工が始まる。このときの素子高さをプロットして4次
多項式h=ax4+bx3+cx2+dx+eで近似する
と図6(b)に示すようになる。まだ定盤17と当たっ
ていないローバー15の中央付近では、素子高さは初期
の高さH0のままであるのに対し、ローバー15の両端
部では初期高さH0より小さくなっている。この状態の
素子高さを4次多項式h=ax4+bx3+cx2+dx
+eで近似すると、その係数の符号は、4次係数a<0
であり2次係数c>0となる。4次係数a<0は実際の
ローバー15の曲がり形状と同じく定盤17に対して凹
であることを表しているが、2次係数c>0は、実際の
ローバー15の形状とは反対に定盤17に対して凸であ
ることを表している。従って上述したと同様に、この2
次係数cから算出される荷重成分は実際のローバー15
の曲がりを矯正する方向とは逆向きに作用することにな
り、前記と同様の問題が生ずる。
FIG. 6 shows that the row bar 15 before processing is a platen 17.
This shows a case where it is concave. As shown in FIG. 6 (a), since it starts to hit the surface plate 17 from both ends of the row bar 15, in the initial stage of processing, processing starts from the ELGs 16 at both ends of the row. The element height at this time is plotted and approximated by a fourth-order polynomial h = ax 4 + bx 3 + cx 2 + dx + e, as shown in FIG. 6B. In the vicinity of the center of the row bar 15 that has not yet contacted the surface plate 17, the element height remains at the initial height H0, whereas at both ends of the row bar 15, the element height is smaller than the initial height H0. The element height in this state is represented by a fourth-order polynomial h = ax 4 + bx 3 + cx 2 + dx
+ E, the sign of the coefficient is the fourth-order coefficient a <0
And the secondary coefficient c> 0. The fourth-order coefficient a <0 indicates that it is concave with respect to the platen 17 similarly to the actual curved shape of the row bar 15, but the quadratic coefficient c> 0 is opposite to the actual shape of the row bar 15. It indicates that it is convex with respect to the surface plate 17. Therefore, as described above, this 2
The load component calculated from the next coefficient c is the actual rover 15
Act in a direction opposite to the direction in which the bending is corrected, and the same problem as described above occurs.

【0019】そこで、前記したと同様にこの不具合を改
善するため、加工初期段階で上述したような素子高さ状
態を呈するものに対しては、図6(c)に示すようにロ
ーバー15の曲がり形状を2次多項式h=cx2+dx
+eで近似して前述したと同様にして荷重の制御を行
う。ローバー15の曲がり形状を2次多項式h=cx2
+dx+eで近似すると、2次係数の符号はc<0とな
り実際のローバー15の曲がり形状と同じく定盤17に
対して凹であることを表す。これより、ローバー15の
中央付近の加工が開始された段階からローバー15の曲
がりに対して適切な方向へ曲がり矯正が可能となる。そ
の後ロー中央付近の所定のELG16の加工が始まった
時点から4次多項式h=ax4+bx3+cx2+dx+
eでの近似へと切り替えればよい。このようにして、加
工初期段階ではローバー15を2次多項式h=cx2
dx+eで近似して、速やかにロー中央部のELG16
を加工できるような矯正荷重を与え、その後ロー中央部
の所定のELG16の加工が始まった時点から4次多項
式h=ax4+bx3+cx2+dx+eで近似し、精密
な曲がり矯正制御を行なう。
Therefore, in order to remedy this inconvenience as described above, in the case where the element is in the above-described state at the initial stage of processing, the row bar 15 is bent as shown in FIG. The shape is represented by a quadratic polynomial h = cx 2 + dx
The load is controlled in the same manner as described above by approximating with + e. The curved shape of the rover 15 is represented by a second-order polynomial h = cx 2
When approximation is made by + dx + e, the sign of the secondary coefficient becomes c <0, indicating that it is concave with respect to the surface plate 17 similarly to the actual curved shape of the row bar 15. Thus, it becomes possible to correct the bending of the row bar 15 in an appropriate direction from the stage where the processing near the center of the row bar 15 is started. Thereafter, from the time when the processing of the predetermined ELG 16 near the center of the row starts, the fourth-order polynomial h = ax 4 + bx 3 + cx 2 + dx +
What is necessary is just to switch to the approximation in e. Thus, in the initial stage of machining, the row bar 15 is converted into a second-order polynomial h = cx 2 +
Approximately by dx + e, ELG16 in the center of the row immediately
A straightening load is applied so that the curve can be processed, and after that, the processing of the predetermined ELG 16 at the center of the row is approximated by a fourth-order polynomial h = ax 4 + bx 3 + cx 2 + dx + e, and precise bending correction control is performed.

【0020】本発明では、加工初期段階においてローバ
ー15の中央部及び両端部にある素子が加工開始された
と判定されるまで、即ち中央部及び両端部にある予め設
定したELG又はMR素子の加工が開始されるまでは、
ローバー15の曲がり形状をその係数の符号がローバー
15の大きな曲がり方向と一致する2次近似式h=cx
2+dx+eで表して曲がり矯正荷重LB、CB、RB
を求め、速やかに前記ELG又はMR素子が加工開始さ
れるようにし、前記ローバー15の中央部及び両端部に
ある素子が加工開始されたと判定された後、ローバー1
5の形状を4次近似式h=ax4+bx3+cx2+dx
+eで表し、4次多項式の全ての曲がり形状を示す係数
を使って曲がり矯正荷重LB、CB、RBを求め、精度
良く加工するのである。なお、前記4次近似式への切り
替えを、ローバー15の中央部及び両端部にある素子が
加工開始されたと判定した時に行なう代わりに、ローバ
ー上の全ての素子が加工開始されたと判定した時に行な
うようにしてもよい。この場合、複雑な曲がり形状のロ
ーバーに対しては、より信頼性高く適応できる。
In the present invention, the processing of the ELG or MR elements at the center and both ends is determined until it is determined in the initial stage of processing that the elements at the center and both ends of the row bar 15 have been started. Until it starts,
The bend shape of the rover 15 is represented by a quadratic approximation h = cx whose sign of the coefficient coincides with the large bend direction of the rover 15.
Bending straightening load LB, CB, RB expressed as 2 + dx + e
And processing of the ELG or MR element is started immediately. After it is determined that the processing of the elements at the center and both ends of the row bar 15 is started, the row bar 1 is processed.
The shape of 5 is converted to a fourth-order approximation h = ax 4 + bx 3 + cx 2 + dx
The bending correction loads LB, CB, and RB are obtained by using the coefficients representing all the bending shapes of the fourth-order polynomial represented by + e, and are processed with high accuracy. The switching to the fourth-order approximation formula is performed when it is determined that all the elements on the row bar have been processed, instead of when it is determined that the elements at the center and both ends of the row bar 15 have been processed. You may do so. In this case, it is possible to more reliably adapt to a rover having a complicated bent shape.

【0021】以上、ローバー15の曲がり形状の矯正方
法について説明したが、ラップ加工のための荷重に、ロ
ーバー15の傾きを考慮した荷重を補正することによ
り、より効率的に、かつ精度よくローバー15の中の素
子高さを揃えることができる。即ち、ローバーの曲がり
形状が直線に矯正される方向に荷重LB、CB、RBを
かけて梁材12を変形させるとともに、ローバーの傾き
が0になるようにラップ加工のための荷重LT、RTを
制御する。荷重LT、RTは、図4に示すように、ラッ
プ荷重FLにローバー15の傾き矯正荷重FTを補正して
求める。ここで、FLはローバー15の加工に適した所
定の荷重を用いるが、FTは素子高さの4次近似式h=
ax4+bx3+cx2+dx+eの3次と1次の係数
b、dによる比例制御により求める。即ち、3次の項h
=bx3が示す曲線を最小自乗法で直線近似し、1次の
係数b’を求め、このb’と1次項の係数dとの和に適
当な比例定数GTをかけてFTを算出する。なお、前述し
た加工初期段階において、2次近似式を用いる場合は、
1次の係数dのみを用いて上記FTを算出する。ただ
し、この時でも4次近似式を用いる場合と同様に、4次
近似式を算出して係数bとdを用いて算出することもで
きる。
Although the method of correcting the bent shape of the row bar 15 has been described above, the load for the lapping process is corrected more efficiently and accurately by correcting the load in consideration of the inclination of the row bar 15. Can be made equal in element height. That is, while applying the loads LB, CB, and RB in the direction in which the bent shape of the rover is straightened, the beam 12 is deformed, and the loads LT, RT for lapping are set so that the inclination of the rover becomes zero. Control. Load LT, RT, as shown in FIG. 4, obtained by correcting the inclination correcting load F T rover 15 to wrap the load F L. Here, F L is used a predetermined load suitable for processing of the row bar 15 but, F T is the element height of quartic approximate expression h =
It is obtained by proportional control using the third and first order coefficients b and d of ax 4 + bx 3 + cx 2 + dx + e. That is, the third-order term h
= Linear approximation bx 3 the curve indicated by the least squares method, first-order 'seek, the b' coefficient b calculated F T over an appropriate proportionality constant G T to the sum of the coefficients d of the first-order I do. In the case of using the second-order approximation formula in the above-mentioned initial stage of processing,
The above F T is calculated using only the first-order coefficient d. However, at this time, similarly to the case where the fourth-order approximation formula is used, the fourth-order approximation formula can be calculated and calculated using the coefficients b and d.

【0022】以上、最終加工時におけるローバーの変形
を4次近似で表したもので説明したが、3次でも近似す
ることができることは言うまでもない。また、表すこと
のできる最大次数は治具の構造、即ち梁材の支持状態及
び梁材を変形させるための荷重点位置から決定されるも
のであり、治具の梁材を例えば3点で支持し、荷重点を
4点とすると、6次多項式で表すことができる。ローバ
ーの変形近似次数は、対象のローバーの必要加工精度又
は長さや厚さ等の性状に応じてを設定し、これにあわせ
て治具形状や荷重点を決定し、本発明の思想をもとに合
理的な曲がり矯正荷重を求めるとよい。一般に、次数を
上げるほど細かい変形状態まで表すことができるので、
加工精度がより要求されるものや、長いローバーに対し
ては有効である。
As mentioned above, the deformation of the row bar at the time of the final processing has been described using the fourth-order approximation. However, it is needless to say that the third-order approximation can be used. The maximum order that can be represented is determined from the structure of the jig, that is, the supporting state of the beam and the position of the load point for deforming the beam, and the beam of the jig is supported at, for example, three points. However, if the number of load points is four, it can be represented by a sixth-order polynomial. The approximate order of deformation of the row bar is set according to the required processing accuracy or the properties of the target row bar, such as length and thickness, and the jig shape and the load point are determined in accordance with this, and based on the idea of the present invention, It is advisable to find a reasonable bending correction load. In general, the higher the degree, the more detailed deformation can be expressed.
It is effective for those requiring higher processing accuracy and long bar.

【0023】以上、本発明の磁気ヘッドの加工方法を説
明したが、従来技術で加工して製造した磁気ヘッドと、
本発明で加工して製造した磁気ヘッドの素子高さのばら
つきを調べた結果を図10に示す。どちらも、治具は2
点で中間支持され、両端部と中央部に荷重作用点を有す
る梁材を備えた同一構造のものを用い、この梁材にロー
バーを取付けた。従来技術の加工方法としてローバーの
曲がりを2次多項式だけで表して荷重制御したのに対
し、本発明の加工方法としては、ローバーに設けられた
素子の中、少なくとも両端部と中央部にある素子が加工
開始されたと判定されるまでは、ローバーの曲がり形状
を2次多項式で表し、前記素子が加工開始されたと判定
された後は、ローバーの曲がり形状を4次多項式で表し
て曲がり矯正荷重を求めた。従来方法による素子高さば
らつきが標準偏差(σ)で0.16μmであるのに対
し、本発明によるものは0.07μmと小さいことがわ
かる。
The method of processing a magnetic head according to the present invention has been described above.
FIG. 10 shows the result of examining variations in element height of a magnetic head manufactured by processing according to the present invention. In both cases, the jig is 2
A beam having the same structure, which was supported at points in the middle and provided with beams having load application points at both ends and a center, was used, and a row bar was attached to this beam. While the load control is performed by expressing the bending of the row bar only by a second-order polynomial as a conventional processing method, the processing method according to the present invention includes at least the elements at both ends and the center portion among the elements provided on the row bar. Until it is determined that processing has been started, the bent shape of the row bar is represented by a second-order polynomial, and after it is determined that the element has been processed, the bent shape of the row bar is represented by a fourth-order polynomial and the bending correction load is expressed. I asked. It can be seen that the device height variation according to the conventional method is 0.16 μm in standard deviation (σ), whereas that according to the present invention is as small as 0.07 μm.

【0024】[0024]

【発明の効果】以上説明したように本発明は次の効果を
有している。 1)素子高さの連なりを実際のローバーの曲がり形状に
近い4次多項式で表し、これを矯正するような荷重をか
けて加工するので、素子高さばらつきを小さく加工する
ことができる。 2)初期加工段階にはローバーの未加工部を速やかにな
くすように矯正荷重を与えて加工し、素子高さの連なり
が実際のローバーの曲がり形状を示すようになってから
4次多項式化することにより、効率よくかつ精度良く素
子を加工できる。 3)実際のローバーの形状に近似した4次多項式の中、
傾きを示す3次と1次の係数をもとに傾きを矯正荷重を
求めて曲げ矯正荷重に付与することにより、素子高さば
らつきを小さくすることができる。 4)素子高さばらつきが、標準偏差で0.1μm以下で
ある磁気ヘッドを得ることができる。
As described above, the present invention has the following effects. 1) A series of element heights is represented by a fourth-order polynomial that is close to the actual curved shape of the row bar, and processing is performed by applying a load that corrects this, so that variations in element height can be reduced. 2) In the initial processing stage, the raw bar is processed by applying a corrective load so as to quickly eliminate the unprocessed portion, and after the succession of element heights shows the actual bent shape of the row bar, a fourth-order polynomial is formed. Thereby, the element can be processed efficiently and accurately. 3) In the fourth-order polynomial approximating the shape of the actual rover,
By obtaining the correction load based on the third and first order coefficients indicating the tilt and applying the correction to the bending correction load, the variation in element height can be reduced. 4) A magnetic head having a variation in element height of 0.1 μm or less in standard deviation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するための治具にローバーが接着
された状態を表す図
FIG. 1 is a view showing a state in which a row bar is adhered to a jig for explaining the present invention.

【図2】本発明を説明するためのラップ装置の荷重制御
に関する構成図
FIG. 2 is a configuration diagram relating to load control of a lap device for explaining the present invention.

【図3】本発明を説明するための4次多項式から矯正荷
重を求める方法を示す図
FIG. 3 is a diagram showing a method of obtaining a correction load from a fourth-order polynomial for explaining the present invention.

【図4】本発明を説明するための荷重制御を示すブロッ
ク図
FIG. 4 is a block diagram showing load control for explaining the present invention;

【図5】加工前のローバーの曲がりが定盤に対して凸の
場合の素子高さを示す図
FIG. 5 is a diagram showing an element height when a bend of a row bar before processing is convex with respect to a surface plate.

【図6】加工前のローバーの曲がりが定盤に対して凹の
場合の素子高さを示す図
FIG. 6 is a diagram showing the element height when the bending of the row bar before processing is concave with respect to the surface plate.

【図7】従来例のローバーの曲がりを修正する機能を有
するラップ装置の概念図
FIG. 7 is a conceptual diagram of a conventional lapping device having a function of correcting a bending of a rover.

【図8】上記従来例で使用されるローバーの保治具の形
状図
FIG. 8 is a shape diagram of a jig for a row bar used in the above conventional example.

【図9】加工前のローバーの曲がりを2次曲線と4次曲
線で表して比較した図
FIG. 9 is a diagram in which the bending of the row bar before processing is represented by a quadratic curve and a quadratic curve and compared.

【図10】従来技術と本発明技術で製造した磁気ヘッド
の素子高さのばらつきを示す図
FIG. 10 is a diagram showing variations in element heights of magnetic heads manufactured by the conventional technology and the technology of the present invention.

【符号の説明】[Explanation of symbols]

10 治具 11 基材 12 梁材 13 切り欠き 14 スロット 15 ローバー 16 ELG 17 定盤 18 ABS面 51 従来技術の治具 DESCRIPTION OF SYMBOLS 10 Jig 11 Base material 12 Beam material 13 Notch 14 Slot 15 Rover 16 ELG 17 Surface plate 18 ABS surface 51 Conventional jig

【手続補正書】[Procedure amendment]

【提出日】平成11年3月3日[Submission date] March 3, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 磁気ヘッドの加工方法Patent application title: Method for processing a magnetic head

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】従って、前述した加工方法を用いて得られ
磁気ヘッドは、複数の磁気ヘッドの電磁変換素子(以
下素子と略す)が並んでいるローバーを治具の梁材に取
付け、各素子を所望の高さにするようにローバーを加工
した後分割して成した磁気ヘッドであって、前記梁材に
取付けられたローバーの変形を4次多項式、又は2次多
項式から4次多項式へと切換えて表し、これらの数式で
示される変形を矯正するようなラップ荷重を作用させて
ローバーをラップ加工した後分割したものである。
[0010] Therefore, it is possible to obtain using the processing method described above.
In a magnetic head, a row bar in which a plurality of electromagnetic transducers (hereinafter, abbreviated as elements) of a plurality of magnetic heads are arranged is attached to a beam of a jig, the row bar is processed so that each element has a desired height, and then divided. A deformation of a row bar attached to the beam material is represented by switching from a fourth-order polynomial or a second-order polynomial to a fourth-order polynomial, and the deformation represented by these equations is corrected. A row bar is wrapped by applying a large wrap load and then divided.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の磁気ヘッドの電磁変換素子(以下
素子と略す)が並んでいるローバーを治具の梁材に取付
け、各素子を所望の高さにするようにローバーを加工す
る磁気ヘッドの加工方法において、 前記梁材に作用させる荷重に対しその変形を4次多項式
で表し、荷重と前記4次多項式中の係数の関係を行列式
で求め、これから梁材の曲がり形状を示す前記係数に対
する部分行列の逆行列を求めておき、加工中に計測算出
された複数の素子高さをもとにローバーの変形を所定の
次数の多項式で表し、曲がり形状を示す係数を前記逆行
列と掛けることで曲がりを矯正する荷重を算出し、その
荷重を梁材に作用させてローバーを加工することを特徴
とする磁気ヘッドの加工方法。
A magnetic head for processing a row bar so that a plurality of electromagnetic conversion elements (hereinafter abbreviated as elements) of a plurality of magnetic heads are arranged on a beam of a jig and each element is set to a desired height. In the processing method, the deformation of the load applied to the beam is expressed by a fourth-order polynomial, and the relationship between the load and the coefficient in the fourth-order polynomial is obtained by a determinant. From this, the coefficient indicating the bending shape of the beam is obtained. The inverse matrix of the sub-matrix is obtained in advance, and the deformation of the rover is represented by a polynomial of a predetermined order based on a plurality of element heights measured and calculated during processing, and a coefficient indicating a bent shape is multiplied by the inverse matrix. A method for processing a magnetic head, comprising: calculating a load for correcting a bend, and applying the load to a beam to process a row bar.
【請求項2】 前記所定の次数の多項式は2次多項式で
あり、ローバーに設けられた素子の中、少なくとも両端
部と中央部にある素子が加工開始されたと判定されるま
では、ローバーの曲がり形状を前記2次多項式で表して
曲がり矯正荷重を求め、その荷重を梁材に作用させてロ
ーバーを加工し、前記素子が加工開始されたと判定され
た後は、ローバーの曲がり形状を4次多項式で表して曲
がり矯正荷重を求め、その荷重を梁材に作用させてロー
バーを加工することを特徴とする請求項1に記載の磁気
ヘッドの加工方法。
2. The predetermined degree polynomial is a second-order polynomial, and among the elements provided in the row bar, the bending of the row bar is determined until it is determined that the processing at least at both ends and the center is started. The shape is expressed by the second-order polynomial to determine the bending correction load, the load is applied to the beam material to process the row bar, and after it is determined that the element has been processed, the bent shape of the row bar is changed to a fourth-order polynomial. 2. The method for processing a magnetic head according to claim 1, wherein a bending correction load is obtained by the following formula, and the load is applied to the beam material to process the row bar.
【請求項3】 複数の磁気ヘッドの電磁変換素子(以下
素子と略す)が並んでいるローバーを治具の梁材に取付
け、各素子を所望の高さにするようにローバーを加工す
る磁気ヘッドの加工方法において、 前記梁材に作用させる荷重に対しその変形を4次多項式
で表し、荷重と前記4次多項式中の係数の関係を行列式
で求め、これから梁材の曲がり形状を示す前記係数に対
する部分行列の逆行列を求めておき、加工中に計測算出
された複数の素子高さをもとにローバーの変形を所定の
次数の多項式で表し、曲がり形状を示す係数を前記逆行
列と掛けることで曲がりを矯正する荷重を算出するとと
もに、傾きを示す係数をもとに傾きを矯正する荷重を算
出して、その荷重を治具に作用させて加工することを特
徴とする磁気ヘッドの加工方法。
3. A magnetic head for mounting a row bar on which a plurality of electromagnetic transducers (hereinafter abbreviated as elements) of a plurality of magnetic heads are arranged on a beam of a jig, and processing the row bar so that each element has a desired height. In the processing method, the deformation of the load applied to the beam is expressed by a fourth-order polynomial, and the relationship between the load and the coefficient in the fourth-order polynomial is obtained by a determinant. From this, the coefficient indicating the bending shape of the beam is obtained. The inverse matrix of the sub-matrix is obtained in advance, and the deformation of the rover is represented by a polynomial of a predetermined order based on a plurality of element heights measured and calculated during processing, and a coefficient indicating a bent shape is multiplied by the inverse matrix. A magnetic head processing characterized by calculating a load for correcting a bend by calculating a load for correcting a tilt based on a coefficient indicating the tilt, and applying the load to a jig for processing. Method.
【請求項4】 前記所定の次数の多項式は2次多項式で
あり、ローバーに設けられた素子の中、少なくとも両端
部と中央部にある素子が加工開始されたと判定されるま
では、ローバーの曲がり形状を2次多項式で表して曲が
り矯正荷重と傾き矯正荷重を求め、その荷重を治具に作
用させてローバーを加工し、前記素子が加工開始された
と判定された後は、ローバーの曲がり形状を4次多項式
で表して曲がり矯正荷重と傾き矯正荷重を求め、その荷
重を治具に作用させてローバーを加工することを特徴と
する請求項3に記載の磁気ヘッドの加工方法。
4. The polynomial of the predetermined order is a second-order polynomial, and among the elements provided on the row bar, the bending of the row bar is determined until it is determined that the processing at least at both ends and the center is started. The shape is represented by a quadratic polynomial to determine the bending correction load and the inclination correction load, the load is applied to a jig to process the row bar, and after it is determined that the element has been processed, the bending shape of the row bar is determined. 4. The magnetic head processing method according to claim 3, wherein a bending correction load and a tilt correction load are obtained by a fourth-order polynomial, and the loads are applied to a jig to process the row bar.
【請求項5】 ローバーは、2点で中間支持され、両端
部と中央部に荷重作用点を有する梁材に取り付けられ、
その変形が最大4次多項式で表すことができる請求項1
乃至4のいずれかに記載の磁気ヘッドの加工方法。
5. The rover is attached to a beam member which is supported at two points in the middle and has load application points at both ends and a center part.
2. The method according to claim 1, wherein the deformation can be represented by a maximum fourth-order polynomial.
5. The method for processing a magnetic head according to any one of claims 1 to 4.
【請求項6】 複数の磁気ヘッドの電磁変換素子(以下
素子と略す)が並んでいるローバーを治具の梁材に取付
け、各素子を所望の高さにするようにローバーを加工し
た後分割して成した磁気ヘッドであって、 前記梁材に取付けられたローバーの変形を4次多項式、
又は2次多項式から4次多項式へと切換えて表し、これ
らの数式で示される変形を矯正するようなラップ荷重を
作用させてローバーをラップ加工して成したことを特徴
とする磁気ヘッド。
6. A row bar in which a plurality of electromagnetic transducers (hereinafter abbreviated as elements) of a plurality of magnetic heads are attached to a beam of a jig, and the row bar is processed so that each element has a desired height, and then divided. A magnetic head formed by performing a fourth-order polynomial on the deformation of the row bar attached to the beam material;
Alternatively, a magnetic head is formed by switching from a second-order polynomial to a fourth-order polynomial, and lapping a row bar by applying a lap load for correcting the deformation represented by these equations.
JP10014693A 1998-01-27 1998-01-27 Processing method of magnetic head Expired - Fee Related JP2981996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10014693A JP2981996B2 (en) 1998-01-27 1998-01-27 Processing method of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10014693A JP2981996B2 (en) 1998-01-27 1998-01-27 Processing method of magnetic head

Publications (2)

Publication Number Publication Date
JPH11213337A true JPH11213337A (en) 1999-08-06
JP2981996B2 JP2981996B2 (en) 1999-11-22

Family

ID=11868280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10014693A Expired - Fee Related JP2981996B2 (en) 1998-01-27 1998-01-27 Processing method of magnetic head

Country Status (1)

Country Link
JP (1) JP2981996B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015145A1 (en) * 1999-08-25 2001-03-01 Hitachi, Ltd. Production method for thin film magnetic head
US6347975B2 (en) 2000-01-13 2002-02-19 Tdk Corporation Apparatus and method for processing thin-film magnetic head material
US6409575B2 (en) 2000-01-13 2002-06-25 Tdk Corporation Processing apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015145A1 (en) * 1999-08-25 2001-03-01 Hitachi, Ltd. Production method for thin film magnetic head
US6347975B2 (en) 2000-01-13 2002-02-19 Tdk Corporation Apparatus and method for processing thin-film magnetic head material
US6409575B2 (en) 2000-01-13 2002-06-25 Tdk Corporation Processing apparatus and method

Also Published As

Publication number Publication date
JP2981996B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
USRE38340E1 (en) Multi-point bending of bars during fabrication of magnetic recording heads
US5951371A (en) Multi-point bending of bars during fabrication of magnetic recording heads
US6599170B2 (en) Method and apparatus for polishing, and lapping jig
GB2127724A (en) Workpiece carrier
JPH11863A (en) Method for controlling machining of magnetic head
JP2002059216A (en) Method and apparatus for straightening plane body
JP2000011315A (en) Working jig
CN101377625A (en) Apparatus and method for mounting pellicle
JPH10166059A (en) Plate bending method
JP2981996B2 (en) Processing method of magnetic head
JP3119178B2 (en) Processing control method of magnetic head
JP2000301448A (en) Lapping machine, low tool and lapping method
US5967878A (en) Lapping method and system for compensating for substrate bow
JP2001030157A (en) Machining method and machining device for magnetic head, and machining jig
JP3219496B2 (en) Sheet material bending method
JP3268163B2 (en) Plate bending method
JP2001293655A (en) Machining jig of magnetic head
US6315633B1 (en) Processing jig
KR100415043B1 (en) Magnetic head polishing device and method thereof
JP3537282B2 (en) Inspection method and inspection device for head unit
JP4024789B2 (en) Lapping machine and lapping method
JP2004132742A (en) Method for regulating temperature compensating resistor for output voltage of strain sensor, and regulator for temperature compensating resistor used for it
JP2571324B2 (en) Magnetic head support structure and method of manufacturing the same
JP2559798B2 (en) Electronic balance manufacturing method
US6594902B1 (en) Active spring rate adjust

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees