JPH11213323A - Magnetic head and its production - Google Patents

Magnetic head and its production

Info

Publication number
JPH11213323A
JPH11213323A JP831998A JP831998A JPH11213323A JP H11213323 A JPH11213323 A JP H11213323A JP 831998 A JP831998 A JP 831998A JP 831998 A JP831998 A JP 831998A JP H11213323 A JPH11213323 A JP H11213323A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic head
alloy thin
thin film
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP831998A
Other languages
Japanese (ja)
Inventor
Tatsutoshi Suenaga
辰敏 末永
Shozo Ninomiya
祥三 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP831998A priority Critical patent/JPH11213323A/en
Publication of JPH11213323A publication Critical patent/JPH11213323A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive magnetic head which easily realizes a high-precision track width and is effective even for an effective track width precision, with respect to a narrow track magnetic head of a MIG head having a structure where a soft magnetic alloy thin film is arranged in the vicinity of a gap of a magnetic crustaceous material. SOLUTION: A winding window 5 is formed in core half bodies 1 and 2 which are paired to form the magnetic head and consist of a magnetic crustaceous material, and the gap surface is subjected to specula finishing into a prescribed roughness or lower, and core half bodies 1 and 2 to which soft magnetic alloy thin films 11 and 12 having a prescribed film thickness and a gap member are sputtered are temporarily sealed. Thereafter, electro-discharge machining is performed by an electrode core having a prescribed size to execute the track control corresponding to a system, and glass for core sealing and track reinforcement is fused in track control grooves 8 and 9 formed by electro- discharge machining, thus making a head chip.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、VHS−VTRや
DVCなどの高密度磁気録再装置に好適な磁気ヘッドの
製造方法に関する。
The present invention relates to a method for manufacturing a magnetic head suitable for a high-density magnetic recording / reproducing apparatus such as a VHS-VTR and a DVC.

【0002】[0002]

【従来の技術】近年の磁気記録技術の動向はビデオヘッ
ドなどにおいては、高周波特性の優れたものが要求さ
れ、最短記録波長が0.5μm程度の記録再生が可能な
システムが要望されている。
2. Description of the Related Art In recent years, magnetic recording technology has been required to have a high frequency characteristic in a video head or the like, and a system capable of recording and reproducing data having a minimum recording wavelength of about 0.5 μm has been required.

【0003】そこで、より高密度記録を達成する媒体と
して、高い保持力を有した純鉄系のメタル媒体(MPテ
−プ)や垂直用媒体が開発され、その一部は8mmVT
RやDVCなどに実用化されている。
Therefore, as a medium for achieving higher density recording, a pure iron-based metal medium (MP tape) and a perpendicular medium having a high coercive force have been developed, some of which are 8 mm VT.
It has been put to practical use in R and DVC.

【0004】一方、磁気ヘッドにおいては従来のVTR
などに使用されているフェライトヘッドでは、上記の媒
体を磁化するのに十分な飽和磁束密度を有していないこ
とが知られており、FeやCoを主成分とする軟磁性合
金薄膜を主磁路とした磁気ヘッドが提案され、従来より
高効率な磁気ヘッドとして実用化されている。
On the other hand, in a magnetic head, a conventional VTR
It is known that the ferrite head used for such a purpose does not have a saturation magnetic flux density sufficient to magnetize the above medium, and a soft magnetic alloy thin film containing Fe or Co as a main component is used as a main magnetic head. A magnetic head having a path has been proposed and has been put to practical use as a magnetic head with higher efficiency than before.

【0005】以下、図面を参照しながら従来の磁気ヘッ
ドおよびその製造方法について説明する。
Hereinafter, a conventional magnetic head and a method for manufacturing the same will be described with reference to the drawings.

【0006】図4は、磁性硬脆材より成る基板の磁気ギ
ャップ近傍に軟磁性合金薄膜を被着する構造の従来のM
IG(Metal in Gap)ヘッドを示した全体図であり、磁気
ギャップ近傍の詳細をB部詳図に示す。
FIG. 4 shows a conventional M of a structure in which a soft magnetic alloy thin film is deposited in the vicinity of a magnetic gap of a substrate made of a magnetic hard and brittle material.
FIG. 1 is an overall view showing an IG (Metal in Gap) head, and details in the vicinity of a magnetic gap are shown in a detailed view of a portion B.

【0007】図4における従来のMIGヘッドは、主基
板となり磁性硬脆材(一般的には、単結晶フェライト)
からなるコア半体40、41に、搭載する磁気記録シス
テムによって規格化された寸法で形成する磁気ギャップ
42とトラック幅(図中にTWで示す)を有し、且つ前
記コア半体を封着しトラックを補強するガラス43と、
少なくとも一方のコア半体に形成する巻線窓44を備え
たものである。
The conventional MIG head shown in FIG. 4 serves as a main substrate and is a magnetic hard brittle material (generally, single crystal ferrite).
Having a magnetic gap 42 and a track width (indicated by TW in the figure) formed in dimensions standardized by the magnetic recording system to be mounted on the core halves 40 and 41, and sealing the core halves. Glass 43 to reinforce the truck,
It has a winding window 44 formed in at least one core half.

【0008】また、磁気ヘッドにおいて構造上の特徴が
顕著となる磁気ギャップ近傍は、B部詳図に示す構造を
有したものであり、その構造は、コア半体45、46の
接合界面に形成した所定形状のトラック47、48に、
主磁路となる軟磁性合金薄膜49、50と磁気ギャップ
部材(図では省略)を被着し高精度で位置決めし対接さ
せガラス51で封着するものであり、トラックエッジに
は軟磁性合金薄膜の膜厚に依存する湾曲部52が成膜時
に形成されることやトラック接合に際してはサブミクロ
ン精度の突き合わせが要求されるものであった。
In the magnetic head, the vicinity of the magnetic gap where structural features are remarkable has a structure shown in a detailed view of a portion B, and the structure is formed at the joint interface between the core halves 45 and 46. The tracks 47 and 48 having the predetermined shapes
Soft magnetic alloy thin films 49 and 50 serving as main magnetic paths and magnetic gap members (omitted in the figure) are applied, positioned with high precision, brought into contact with each other, and sealed with glass 51. The formation of the curved portion 52 depending on the thickness of the thin film at the time of film formation and the sub-micron precision butting at the time of track joining are required.

【0009】図5、6は、従来のMIGヘッドの工程図
であり、図4に示したMIGヘッドのヘッドチップに至
る製造方法を示したものである。
FIGS. 5 and 6 are process diagrams of the conventional MIG head, and show a method of manufacturing the MIG head shown in FIG. 4 up to the head chip.

【0010】図5(a)は、主基板となり磁性硬脆材か
らなるコア半体53、54を示したものであり、後工程
で前記コア半体を対向させ圧着する磁気ギャップ面5
5、56には、少なくとも一方のコア半体に巻線窓57
を形成する溝加工を行うとともに、鏡面に研磨し所定の
面粗さに仕上げる。
FIG. 5 (a) shows core halves 53 and 54 which are made of a magnetic hard and brittle material and serve as a main substrate.
5, 56, at least one core half has a winding window 57
And a mirror surface is polished and finished to a predetermined surface roughness.

【0011】次に図5(b)は、前記コア半体に形成す
るトラックと形状を示した図であり、両コア半体の磁気
ギャップ面にC部詳図(断面図)に示すトラック規制溝
58を所定間隔と深さで複数形成する。
FIG. 5 (b) is a diagram showing tracks and shapes formed on the core halves. The track gap shown in the detailed view (cross-sectional view) of the portion C is shown on the magnetic gap surfaces of both core halves. A plurality of grooves 58 are formed at predetermined intervals and depths.

【0012】次に図5(c)は、主磁路と磁気ギャップ
スペ−サ−を形成する工程の断面図であり、主磁路とな
る軟磁性合金薄膜59と磁気ギャップ部材(図では省
略)を、基板側に軟磁性合金薄膜を被着する構造で連続
的に所定厚スパッタリングする。
Next, FIG. 5C is a cross-sectional view of a step of forming a main magnetic path and a magnetic gap spacer, and shows a soft magnetic alloy thin film 59 to be a main magnetic path and a magnetic gap member (omitted in the figure). ) Is continuously sputtered to a predetermined thickness in a structure in which a soft magnetic alloy thin film is deposited on the substrate side.

【0013】次に図5(d)は、前記コア半体のトラッ
ク突き合わせ状態を示した断面図であり、前記軟磁性合
金薄膜と磁気ギャップ部材を被着したトラックを所定ス
ペックで突き合わせトラックを形成(図中にTWで示
す)した後、治具で保持60、61する。
FIG. 5D is a cross-sectional view showing a state in which the core halves are abutted on a track. The affixed track of the soft magnetic alloy thin film and the magnetic gap member is formed by a predetermined specification. After that (indicated by TW in the figure), the jig is held 60 and 61.

【0014】次に図6(e)は、前記コア半体にガラス
を溶融させた状態を示した図であり、治具で両コア半体
を保持した状態でガラス62を所定温度でトラック規制
溝63に溶融させ、トラック補強とコア半体の封着を行
いコアバ−64となす。
FIG. 6E is a view showing a state in which the glass is melted in the core half, and the glass 62 is track-controlled at a predetermined temperature while holding both core halves with a jig. It is melted in the groove 63, and the track is reinforced and the core half is sealed to form a core bar 64.

【0015】次に図6(f)は、前記コアバ−を磁気ヘ
ッドチップとするための切断方法を示した図であり、磁
気ギャップライン65を基準に搭載するシステムで規定
される角度(図中にAZで示す)と所定サイズの磁気ヘ
ッドチップとする切断幅66、67、68、69、でト
ラックを基準に切断し、図6(g)に示す磁気ヘッドチ
ップ70を得る。
FIG. 6F is a view showing a cutting method for using the core bar as a magnetic head chip. The angle defined in the system mounted with the magnetic gap line 65 as a reference (in the figure). (AZ)) and a cutting width 66, 67, 68, 69, which is a magnetic head chip of a predetermined size, is cut on the basis of the track to obtain a magnetic head chip 70 shown in FIG.

【0016】[0016]

【発明が解決しようとする課題】しかし、従来例のMI
G(Metal in Gap)ヘッドでは磁気記録技術の高密度化要
求から記録パタ−ンのトラック幅が狭くなる傾向にある
磁気ヘッド対応を考えた場合、軟磁性合金薄膜をスパッ
タリングする際にトラックエッヂに生じる、曲率をもっ
た湾曲部は磁気ギャップ近傍での漏れ磁束が顕著に現
れ、結果的に実効トラック幅が拡くなる原因を招き狭ト
ラック化の障害となっていた。
However, the conventional MI
In the case of a G (Metal in Gap) head, when considering a magnetic head in which the track width of a recording pattern tends to be narrow due to a demand for high density of a magnetic recording technology, a track edge is used when sputtering a soft magnetic alloy thin film. The resulting curved portion having a curvature has a remarkable leakage magnetic flux near the magnetic gap, resulting in an increase in the effective track width, which is an obstacle to narrowing the track.

【0017】また、コア半体のトラック突き合せ精度も
厳しく制限され、システムによってはサブミクロン以下
が要求される事から、トラックの突き合わせ精度に依存
する磁気ヘッド工法では精度上の限界ともなっている。
Also, the track matching accuracy of the core half is severely restricted, and a submicron or less is required in some systems. Therefore, the magnetic head method that depends on the track matching accuracy has a limit in accuracy.

【0018】さらに、高精度化に対する一方の流れとし
てヘッドの低価格化は必須の課題であり、より生産効率
の高い工法の導入でコストダウンを図る工夫と、工法に
大きく寄与する構造の最適化が望まれている。
[0018] Furthermore, as one of the trends toward higher precision, lowering the cost of the head is an essential issue, and contriving to reduce costs by introducing a method with higher production efficiency and optimizing a structure that greatly contributes to the method. Is desired.

【0019】本発明は前記課題解決のために有効な磁気
ヘッドとその製造方法を提供することを目的としてい
る。
An object of the present invention is to provide a magnetic head effective for solving the above-mentioned problem and a method of manufacturing the same.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するた
め、本発明の磁気ヘッドおよび製造方法は、MIGヘッ
ドにおいて軟磁性合金薄膜のスパッタリングで発生する
トラックエッヂ湾曲部を、一旦圧着したコアバ−の段階
で主基板と軟磁性合金薄膜を同時に放電加工しトラック
規制するため、軟磁性合金薄膜の湾曲部やトラックズレ
が生じずトラック幅の高精度化に大きな貢献が期待でき
るとともに、圧着後のチップ強度も基板となるフェライ
トとガラスが主たる接着面になるため、軟磁性合金薄膜
上で圧着する従来タイプに比べ付着強度の高いMIGヘ
ッドを提供できる。
In order to achieve the above object, a magnetic head and a manufacturing method according to the present invention provide a magnetic head and a method of manufacturing a MIG head, in which a track edge curved portion generated by sputtering of a soft magnetic alloy thin film is formed on a core bar once compressed. Since the main substrate and the soft magnetic alloy thin film are subjected to electric discharge machining at the stage to regulate the track, the curved portion of the soft magnetic alloy thin film and the track deviation do not occur, which can be expected to contribute greatly to the improvement of the track width and the chip after crimping. Since the ferrite and the glass, which are the substrates, are the main bonding surfaces, the strength of the MIG head can be provided higher than that of the conventional type in which the ferrite and the glass are pressed on a soft magnetic alloy thin film.

【0021】対で磁気ヘッドとなるコア半体を、一旦封
着しコアバ−とした段階で磁気ギャップラインを基準に
主基板と軟磁性合金薄膜および磁気ギャップ部材を同時
に放電加工でトラック規制するため、トラックズレが発
生せず高精度のトラック形成が可能であり、結果的とし
て、高精度の実効トラック規制が行え記録フリンジング
低減に大きな効果が得られる。
At the stage where the core halves to be paired with the magnetic head are once sealed to form a core bar, the main substrate, the soft magnetic alloy thin film and the magnetic gap member are simultaneously track-controlled by electric discharge machining with reference to the magnetic gap line. As a result, it is possible to form tracks with high precision without causing track deviation, and as a result, it is possible to regulate the effective tracks with high precision and to obtain a great effect in reducing recording fringing.

【0022】また、記録フリンジングには軟磁性合金薄
膜をスパッタリングすることによって生じるトラックエ
ッヂの湾曲部も問題になるが本発明の方式によれば軟磁
性合金薄膜を成膜後切断するため湾曲部は発生しない。
In the recording fringing, a curved portion of a track edge generated by sputtering a soft magnetic alloy thin film also poses a problem. However, according to the method of the present invention, a curved portion is formed after the soft magnetic alloy thin film is formed and cut. Does not occur.

【0023】さらに、従来の磁気ヘッド工法では複数の
工程を経て最終的なトラック幅を規制するため、それぞ
れの工程で厳しい加工精度が要求され歩留まり低下の要
因ともなっていたが、本発明の方式では放電加工単独の
工程でトラック規制するためトラック幅精度は飛躍的に
向上する。
Further, in the conventional magnetic head method, since the final track width is regulated through a plurality of steps, strict processing accuracy is required in each step, which causes a decrease in yield. However, in the method of the present invention, Since the track is regulated in the process of the electric discharge machining alone, the track width accuracy is dramatically improved.

【0024】[0024]

【発明の実施の形態】(実施例−1)以下、本発明の一
実施例について図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0025】図1は、本発明の磁気ヘッドを示した全体
図であり、磁気ギャップ近傍の詳細をA部詳図に示す。
FIG. 1 is an overall view showing a magnetic head according to the present invention. FIG.

【0026】図1より、本発明における磁気ヘッドは、
主基板となり磁性硬脆材(本実施例では単結晶フェライ
トを用いた)からなるコア半体1、2に、搭載する磁気
記録システムによって規格化された寸法で形成する磁気
ギャップ3とトラック幅(図中にTWで示す)を有し、
且つ前記コア半体を封着しトラックを補強するガラス4
と、少なくとも一方のコア半体に形成する巻線窓5を備
えたものである。
FIG. 1 shows that the magnetic head of the present invention is
A magnetic gap 3 and a track width (which are formed with dimensions standardized by a magnetic recording system to be mounted on core halves 1 and 2 serving as a main substrate and made of a magnetic hard and brittle material (in this embodiment, single crystal ferrite is used). TW in the figure)
And glass 4 for sealing the core half and reinforcing the truck.
And a winding window 5 formed in at least one core half.

【0027】また、磁気ヘッドにおいて構造上の特徴が
顕著となる磁気ギャップ近傍は、A部詳図に示す構造を
有するものであり、その構造は、単結晶フェライトより
成るコア半体6、7の接合界面で所定幅のトラック(図
中にTWで示す)を規制し放電加工で形成するトラック
規制溝8、9と、前記トラック規制溝に溶融させトラッ
クの補強とコア半体を封着するガラス10から成り、さ
らに、磁気ギャップ接合界面においては主磁路となる軟
磁性合金薄膜11、12(本実施例では、Fe−Ta窒
化膜合金を用いた)と磁気ギャップ部材(図では省略)
を所定厚被着するものであり、システムによって規格化
された角度(図中にAZで示す)で磁気ギャップライン
を傾斜させ所定のチップ幅に切断し磁気ヘッドとしてい
る。
The vicinity of the magnetic gap where the structural features of the magnetic head are remarkable has the structure shown in the detailed view of part A. The structure is similar to that of the core halves 6 and 7 made of single crystal ferrite. Track regulating grooves 8 and 9 formed by electric discharge machining by regulating tracks (shown by TW in the figure) of a predetermined width at the joining interface, and glass for melting the track regulating grooves and reinforcing the tracks and sealing the core half. Further, at the magnetic gap junction interface, soft magnetic alloy thin films 11 and 12 (Fe-Ta nitride film alloy is used in this embodiment) to be main magnetic paths and a magnetic gap member (not shown in the figure)
The magnetic gap line is inclined at an angle standardized by the system (indicated by AZ in the figure) and cut into a predetermined chip width to form a magnetic head.

【0028】(実施例−2)以下、本発明の一実施例に
ついて図面を用いて説明する。
(Embodiment 2) An embodiment of the present invention will be described below with reference to the drawings.

【0029】図2、3は、本発明の磁気ヘッドの工程図
であり、磁気ヘッドチップに至る製造方法を示したもの
である。
FIGS. 2 and 3 are process diagrams of the magnetic head of the present invention, showing a method of manufacturing a magnetic head chip.

【0030】図2(a)は、本発明の磁気ヘッドにおい
て主基板となり磁性硬脆材(本実施例では単結晶フェラ
イトを用いた)からなるコア半体13、14を示したも
のであり、後工程で前記コア半体を対向させ圧着する磁
気ギャップ面15、16には、少なくとも一方のコア半
体に巻線窓17を形成する溝加工とともに、鏡面研磨を
施し所定の面粗さに仕上げる。
FIG. 2 (a) shows core halves 13 and 14 which are used as a main substrate in the magnetic head of the present invention and are made of a magnetic hard and brittle material (in this embodiment, a single crystal ferrite is used). The magnetic gap surfaces 15 and 16 to which the core halves are opposed and crimped in a later step are subjected to mirror finishing and to a predetermined surface roughness together with groove processing for forming a winding window 17 on at least one of the core halves. .

【0031】次に図2(b)は、前記コア半体に主磁路
と磁気ギャップスペ−サ−を形成する工程図であり、主
磁路となる軟磁性合金薄膜18、19(本実施例では、
Fe−Ta窒化膜を用いた)と磁気ギャップスペ−サ−
となるギャップ部材(図では省略)を主基板側に軟磁性
合金薄膜を被着する構造で連続的にスパッタリングす
る。
Next, FIG. 2B is a process diagram for forming a main magnetic path and a magnetic gap spacer in the core half, and shows the soft magnetic alloy thin films 18 and 19 (the present embodiment) to be the main magnetic path. In the example,
Fe-Ta nitride film) and a magnetic gap spacer.
Is continuously sputtered with a structure in which a soft magnetic alloy thin film is applied to the main substrate side.

【0032】次に図2(c)は、前記コア半体の仮封着
状態を示す図でり、磁気ギャップ面20で対向させ治具
で保持21、22した後、所定温度で熱処理し圧着する
ことでコアバ−23となす。
Next, FIG. 2 (c) is a view showing a temporarily sealed state of the core halves. The core halves are opposed to each other on a magnetic gap surface 20, held by jigs 21 and 22, and then heat-treated at a predetermined temperature and pressed. By doing so, the core bar 23 is formed.

【0033】尚、本実施例における封着材には、磁気ギ
ャップ部材に封着温度で溶融する材料を用いて圧着した
が、ガラスを別途設けた溝に溜めて圧着する方法でも同
様の効果が得られるため限定するものではない。
In the present embodiment, the sealing material is press-bonded using a material that melts at the sealing temperature at the magnetic gap member. However, the same effect can be obtained by a method in which glass is stored in a separately provided groove and pressed. It is not limited because it is obtained.

【0034】次に図2(d)は、前記コアバ−にトラッ
ク規制する方法を示すものであり、媒体摺動面側24か
ら巻線窓25のアペックス26方向に、所定サイズ(本
実施例ではφ0.1を用いた)の放電電極芯27で放電
加工を行い、磁気ギャップライン28上が加工軸中心と
する複数の放電穴29を所定間隔で形成し、記録再生ト
ラック(図中にTWで示す)の規制を行う。
FIG. 2 (d) shows a method of controlling the track on the core bar. A predetermined size (in this embodiment, from the medium sliding surface side 24 to the apex 26 of the winding window 25) is shown. Electric discharge machining is performed on the discharge electrode core 27 (using φ0.1), a plurality of discharge holes 29 are formed at predetermined intervals with the magnetic gap line 28 as the center of the machining axis, and a recording / reproducing track (TW in FIG. Shown).

【0035】また、前記放電穴の加工深さはアペックス
以上に巻線窓側に加工するものとし、穴形状は放電電極
芯の動作方法と形状でほぼ決定されるものとする。
The machining depth of the discharge hole is to be machined to the winding window side more than the apex, and the shape of the hole is substantially determined by the operation method and shape of the discharge electrode core.

【0036】次に図3(e)は、前記コアバ−にガラス
を溶融させた状態を示すものであり、トラック規制する
前記放電穴にガラス30を所定温度で溶融させ、トラッ
クの補強とコアバ−の本圧着を行う。
FIG. 3 (e) shows a state in which the glass is melted in the core bar. The glass 30 is melted at a predetermined temperature in the discharge hole for regulating the track, thereby reinforcing the track and strengthening the core bar. Perform the final pressure bonding.

【0037】次に図3(f)は、前記コアバ−を磁気ヘ
ッドチップとするための切断方法を示した図であり、磁
気ギャップライン31を基準に搭載するシステムで規定
される角度(図中にAZで示す)と所定サイズの磁気ヘ
ッドチップとする切断幅32、33、34、35、36
で切断し、図3(g)に示す磁気ヘッドチップ37を得
る。
FIG. 3F is a view showing a cutting method for using the core bar as a magnetic head chip, and shows an angle defined by a system mounted on the basis of the magnetic gap line 31 (in the figure). AZ) and the cutting widths 32, 33, 34, 35, 36 to be magnetic head chips of a predetermined size.
To obtain the magnetic head chip 37 shown in FIG.

【0038】また、磁気ヘッドチップは切断によるチッ
ピング対策として媒体摺動面側38とチップ底面39の
寸法を変えた段加工方式(媒体摺動面側を粒径の小さい
砥粒の砥石で切断することでチッピングを抑制する)で
切断し磁気ヘッドチップとしている。
As a countermeasure against chipping by cutting, the magnetic head chip has a step processing method in which the dimensions of the medium sliding surface side 38 and the chip bottom surface 39 are changed (the medium sliding surface side is cut with a grindstone of small abrasive grains. This suppresses chipping) and cuts into a magnetic head chip.

【0039】尚、前記段加工方式は必須のものではなく
チッピングが許容できる範囲であれば段加工の必要はな
い。
The step processing method is not essential, and step processing is not required as long as chipping can be tolerated.

【0040】その後、図では省略するが金属ベ−スに磁
気ヘッドチップを接着し、媒体摺動面のテ−プ研磨や巻
線などの工程を経て磁気ヘッドとして完成する。
Thereafter, although not shown in the drawing, a magnetic head chip is bonded to a metal base, and a magnetic head is completed through steps such as tape polishing and winding of a medium sliding surface.

【0041】また、実施例1および実施例2において
は、軟磁性合金薄膜としてFe−Ta窒化膜を用いて説
明したが、これに代えて以下の軟磁性合金薄膜を用いて
も同様の効果が得られる。
In the first and second embodiments, the Fe-Ta nitride film is used as the soft magnetic alloy thin film. However, the same effect can be obtained by using the following soft magnetic alloy thin film instead. can get.

【0042】(1)軟磁性合金薄膜がFe、Ni、Co
を主成分とする合金であること。 (2)軟磁性合金薄膜がCoaMbで表され厚み方向に
窒素で組成変調されたものであること。
(1) The soft magnetic alloy thin film is made of Fe, Ni, Co
An alloy whose main component is (2) The soft magnetic alloy thin film is represented by CoaMb and is composition-modulated with nitrogen in the thickness direction.

【0043】ここでMは、Nb、Ta、Zr、Hf、T
i、Mo、Wから選ばれる少なくとも一種以上の元素か
らなり、a、bは原子比を表し次の式を満足するものと
する。
Here, M is Nb, Ta, Zr, Hf, T
It is composed of at least one or more elements selected from i, Mo, and W, and a and b represent atomic ratios and satisfy the following formula.

【0044】0.80≦a≦0.95 0.05≦b≦0.20 a+b=1.0 (3)軟磁性合金薄膜がFeaMbで表され厚み方向に
窒素で組成変調されたものであること。
0.80 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.20 a + b = 1.0 (3) The soft magnetic alloy thin film is represented by FeaMb and is composition-modulated with nitrogen in the thickness direction. thing.

【0045】ここでMは、Nb、Ta、Zr、Hf、T
i、Mo、Wから選ばれる少なくとも一種以上の元素か
らなり、a、bは原子比を表し次の式を満足するものと
する。
Where M is Nb, Ta, Zr, Hf, T
It is composed of at least one or more elements selected from i, Mo, and W, and a and b represent atomic ratios and satisfy the following formula.

【0046】0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.00.70 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.30 a + b = 1.0

【0047】[0047]

【発明の効果】トラック規制をコアバ−の段階で一度に
処理するため、従来工法で問題であった工程ごとの累積
する誤差が発生せず、高精度のトラック規制が容易に実
現できる。
As described above, since the track regulation is processed at the core bar stage at a time, there is no accumulated error for each process, which is a problem in the conventional method, and high-precision track regulation can be easily realized.

【0048】また、構造上実機搭載で問題となる記録フ
リンジングが大幅に低減できるため高精度の実効トラッ
ク幅規制が可能である。
Further, since recording fringing, which is a problem when mounted on an actual machine, can be greatly reduced, it is possible to regulate the effective track width with high precision.

【0049】さらに、精度上煩雑な工程が削減できるた
め高精度化に寄与するとともに、大幅なコストダウンが
達成できる。
Further, since complicated steps can be reduced in accuracy, it contributes to high accuracy and a great cost reduction can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例−1における、磁気ヘッドを示
した図
FIG. 1 is a diagram showing a magnetic head according to a first embodiment of the present invention.

【図2】本発明の実施例−2における、磁気ヘッドの製
造方法を示した図
FIG. 2 is a diagram illustrating a method of manufacturing a magnetic head according to a second embodiment of the present invention.

【図3】本発明の実施例−2における、磁気ヘッドの製
造方法を示した図
FIG. 3 is a diagram illustrating a method of manufacturing a magnetic head according to a second embodiment of the present invention.

【図4】本発明の従来例における、磁気ヘッドを示した
FIG. 4 is a diagram showing a magnetic head in a conventional example of the present invention.

【図5】本発明の従来例における、磁気ヘッドの製造方
法を示した図
FIG. 5 is a diagram showing a method of manufacturing a magnetic head in a conventional example of the present invention.

【図6】本発明の従来例における、磁気ヘッドの製造方
法を示した図
FIG. 6 is a diagram showing a method of manufacturing a magnetic head in a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

1,2 コア半体 3 磁気ギャップ 4 ガラス 5 巻線窓 6,7 コア半体 8,9 トラック規制溝 10 ガラス 11,12 軟磁性合金薄膜 1, 2 core half 3 magnetic gap 4 glass 5 winding window 6, 7 core half 8, 9 track regulating groove 10 glass 11, 12 soft magnetic alloy thin film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 磁性硬脆材からなる一対のコア半体の間
に一対の軟磁性合金薄膜と、その一対の軟磁性合金薄膜
の間に一対の非磁性薄膜と、コア半体を封着するガラス
からなる媒体摺動面を備え、所定幅の記録再生トラック
と磁気ギャップを有する磁気ヘッドであって、磁気記録
システムにより異なり、その寸法が規格化された前記記
録再生トラック形成に関し、コア半体の磁気ギャップ面
を対向させ1次封着した一対のコア半体の磁気ギャップ
ラインを基準に、所定トラック幅寸法とトラック規制溝
幅寸法の和で決定される間隔で所定深さの穴加工を複数
行い、その穴加工は主たる除去作用が放電エネルギ−で
加工され、且つ形状は電極形状をほぼ転写させた構造の
トラック規制溝を有することを特徴とする磁気ヘッド。
1. A pair of soft magnetic alloy thin films between a pair of core halves made of a magnetic hard and brittle material, a pair of non-magnetic thin films between the pair of soft magnetic alloy thin films, and a core half sealed. A magnetic head having a medium sliding surface made of glass having a predetermined width and a recording / reproducing track having a predetermined width and a magnetic gap. A hole having a predetermined depth at an interval determined by the sum of a predetermined track width dimension and a track regulating groove width dimension with reference to a magnetic gap line of a pair of core halves in which a magnetic gap surface of a body is opposed and primary sealed. A magnetic head is characterized in that the main processing of the hole processing is performed by discharge energy, and the hole has a track regulating groove having a structure in which the electrode shape is almost transferred.
【請求項2】 磁性硬脆材からなる一対のコア半体のど
ちらか一方のコア半体に磁気ヘッドにおいてコイルを巻
回する巻線窓を形成する工程と、前記一対のコア半体の
磁気ギャップ面を所定の表面粗さに鏡面研磨する工程
と、前記一対のコア半体に主磁路となる軟磁性合金薄膜
をスパッタリングする工程と、前記一対のコア半体に磁
気ギャップ部材となる非磁性薄膜をスパッタリングする
工程と、前記一対のコア半体を磁気ギャップ面で対向さ
せ所定温度で圧着しコアバ−とする工程と、前記コアバ
−の媒体摺動面側から巻線窓方向に磁気ギャップライン
を基準に所定トラック幅を残す間隔で放電加工し複数の
穴形成を行う工程と、前記コアバ−に軟磁性合金薄膜と
ガラスの反応を防止する膜をスパッタリングする工程
と、前記コアバ−の放電穴にガラスを所定温度で充填す
る工程と、前記コアバ−を所定サイズの磁気ヘッドに切
断することを特徴とする磁気ヘッドの製造方法。
2. A step of forming a winding window for winding a coil in a magnetic head in one of a pair of core halves made of a magnetic hard and brittle material; A step of mirror-polishing the gap surface to a predetermined surface roughness, a step of sputtering a soft magnetic alloy thin film serving as a main magnetic path on the pair of core halves, and a step of forming a magnetic gap member on the pair of core halves. A step of sputtering a magnetic thin film, a step of bringing the pair of core halves to face each other on a magnetic gap surface and pressing the core halves at a predetermined temperature to form a core bar, and a magnetic gap in the direction of the winding window from the medium sliding surface side of the core bar. A step of forming a plurality of holes by electric discharge machining at an interval leaving a predetermined track width based on the line, a step of sputtering a film for preventing a reaction between the soft magnetic alloy thin film and the glass on the core bar, and a step of discharging the core bar A method of filling a hole with glass at a predetermined temperature; and cutting the core bar into a magnetic head of a predetermined size.
【請求項3】 軟磁性合金薄膜としてFe、Co,Ni
を主成分とする合金を用いることを特徴とする請求項1
記載の磁気ヘッド。
3. A soft magnetic alloy thin film comprising Fe, Co, Ni
2. An alloy mainly composed of:
The magnetic head as described.
【請求項4】 軟磁性合金薄膜がCoaMbで表され、
厚み方向に窒素で組成変調された請求項1記載の磁気ヘ
ッド。ここでMは、Nb、Ta、Zr、Hf、Ti、M
o、Wの一種以上の元素からなり、a、bは原子比を表
し次の式を満足するものとする。 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
4. The soft magnetic alloy thin film is represented by CoaMb,
2. The magnetic head according to claim 1, wherein the composition is modulated with nitrogen in the thickness direction. Here, M is Nb, Ta, Zr, Hf, Ti, M
It is composed of one or more elements of o and W, and a and b represent an atomic ratio and satisfy the following expression. 0.70 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.30 a + b = 1.0
【請求項5】 軟磁性合金薄膜がFeaMbで表され、
厚み方向に窒素で組成変調された請求項1記載の磁気ヘ
ッド。ここでMは、Nb、Ta、Zr、Hf、Ti、M
o、Wの一種以上の元素からなり、a、bは原子比を表
し次の式を満足するものとする。 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
5. The soft magnetic alloy thin film is represented by FeaMb,
2. The magnetic head according to claim 1, wherein the composition is modulated with nitrogen in the thickness direction. Here, M is Nb, Ta, Zr, Hf, Ti, M
It is composed of one or more elements of o and W, and a and b represent an atomic ratio and satisfy the following expression. 0.70 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.30 a + b = 1.0
【請求項6】 軟磁性合金薄膜としてFe、Co,Ni
を主成分とする合金を用いることを特徴とする請求項2
記載の磁気ヘッドの製造方法。
6. A soft magnetic alloy thin film comprising Fe, Co, Ni
3. An alloy mainly composed of:
The manufacturing method of the magnetic head described.
【請求項7】 軟磁性合金薄膜がCoaMbで表され、
厚み方向に窒素で組成変調された請求項2記載の磁気ヘ
ッドの製造方法。ここでMは、Nb、Ta、Zr、H
f、Ti、Mo、Wの一種以上の元素からなり、a、b
は原子比を表し次の式を満足するものとする。 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
7. The soft magnetic alloy thin film is represented by CoaMb,
3. The method of manufacturing a magnetic head according to claim 2, wherein the composition is modulated with nitrogen in a thickness direction. Where M is Nb, Ta, Zr, H
f, consisting of one or more elements of Ti, Mo, W, a, b
Represents the atomic ratio and satisfies the following equation. 0.70 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.30 a + b = 1.0
【請求項8】 軟磁性合金薄膜がFeaMbで表され、
厚み方向に窒素で組成変調された請求項2記載の磁気ヘ
ッドの製造方法。ここでMは、Nb、Ta、Zr、H
f、Ti、Mo、Wの一種以上の元素からなり、a、b
は原子比を表し次の式を満足するものとする。 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
8. The soft magnetic alloy thin film is represented by FearMb,
3. The method of manufacturing a magnetic head according to claim 2, wherein the composition is modulated with nitrogen in a thickness direction. Where M is Nb, Ta, Zr, H
f, consisting of one or more elements of Ti, Mo, W, a, b
Represents the atomic ratio and satisfies the following equation. 0.70 ≦ a ≦ 0.95 0.05 ≦ b ≦ 0.30 a + b = 1.0
JP831998A 1998-01-20 1998-01-20 Magnetic head and its production Withdrawn JPH11213323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP831998A JPH11213323A (en) 1998-01-20 1998-01-20 Magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP831998A JPH11213323A (en) 1998-01-20 1998-01-20 Magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH11213323A true JPH11213323A (en) 1999-08-06

Family

ID=11689851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP831998A Withdrawn JPH11213323A (en) 1998-01-20 1998-01-20 Magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH11213323A (en)

Similar Documents

Publication Publication Date Title
US5007158A (en) Method of manufacturing magnetic heads
JPH0719347B2 (en) Manufacturing method of core slider for fixed magnetic disk drive
JPS61129716A (en) Magnetic head
JPH11213323A (en) Magnetic head and its production
JPH04252405A (en) Production of magnetic head
JP3104185B2 (en) Magnetic head
JP3453880B2 (en) Magnetic head
JPH11213321A (en) Production of magnetic head and magnetic head
JPH0546920A (en) Manufacture of magnetic head
JPH05258228A (en) Magnetic head and manufacture therefor
JPH08273116A (en) Magnetic head and manufacture of the same
JPH07225907A (en) Production of magnetic head
JPH0283807A (en) Production of magnetic head
JPH0822602A (en) Magnetic head and its production
JPH06259718A (en) Magnetic head
JPH07192218A (en) Production of magnetic head
JPS63164010A (en) Manufacture of magnetic head
JPH07235011A (en) Magnetic head and its production
JPH10188218A (en) Production of magnetic head
JPH07220217A (en) Production of magnetic head
JP2000173011A (en) Magnetic head and manufacture of the same
JPH08255310A (en) Magnetic head and its production
JPH11185213A (en) Magnetic head and production therefor
JPH11213319A (en) Manufacture of magnetic head
JP2002304707A (en) Magnetic head and its manufacturing method and magnetic recording/reproducing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041104

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20050627

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060605