JPH11212128A - Wavelength converting element, production thereof and solid laser device using the same - Google Patents

Wavelength converting element, production thereof and solid laser device using the same

Info

Publication number
JPH11212128A
JPH11212128A JP1089198A JP1089198A JPH11212128A JP H11212128 A JPH11212128 A JP H11212128A JP 1089198 A JP1089198 A JP 1089198A JP 1089198 A JP1089198 A JP 1089198A JP H11212128 A JPH11212128 A JP H11212128A
Authority
JP
Japan
Prior art keywords
crystal
wavelength
film
conversion element
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1089198A
Other languages
Japanese (ja)
Inventor
Ryuichi Komatsu
▲隆▼一 小松
Yasushige Ueoka
康茂 植岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1089198A priority Critical patent/JPH11212128A/en
Publication of JPH11212128A publication Critical patent/JPH11212128A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Abstract

PROBLEM TO BE SOLVED: To convert the wavelength of incident light with high efficiency while generating the phenomenon of QPM through a constant dielectric composed of crystal, which is not a ferroelectric, by forming the crystal, which has a positive polarity in prescribed direction, so as to form polysynthetic twin structure periodically alternating positive polarity and negative polarity for specified width. SOLUTION: A crystal 10 having the positive polarity in the prescribed direction is formed so as to form the polysynthetic twin structure periodically alternating the positive polarity and negative polarity for width (d) expressed by the equality of d=mλ/(n2 ω-nω). Then, laser light, which is amplified on the xy plane of the crystal 10 and made incident vertically to polarity direction, is defined as incident light. In the equality, (m) is a degree, n2 ω is a refractive index at the time the wavelength of λ/2, and nω is a refractive index at the time of the wavelength of λ. When the laser light is amplified on the xy plane of the crystal 10 of the polysynthetic twin structure and made incident to the crystal 10 vertically to the polarity direction, this laser can be emitted while converting its wavelength by half.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水晶双晶からなる
波長変換素子及びその製造方法に関する。更に詳しくは
高出力が可能なYAGレーザ等の赤外の固体レーザと組
合せることにより、この固体レーザの波長を緑色から青
色又は紫外域までの波長に変換する波長変換素子及びそ
の製造方法並びにこれを用いた固体レーザ装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element made of twin crystal quartz and a method for manufacturing the same. More specifically, by combining with a solid-state infrared laser such as a YAG laser capable of high output, a wavelength conversion element for converting the wavelength of the solid-state laser to a wavelength from green to blue or ultraviolet region, a method for manufacturing the same, and a method for manufacturing the same. And a solid-state laser device using the same.

【0002】[0002]

【従来の技術】この種の波長変換素子は非線形光学結晶
からなる。この非線形光学現象は、強いレーザ光の電磁
界と媒体との相互作用によって生じる現象で、強い光に
対して媒体の応答が比例しなくなり、非線形が現われる
ものである。入射光をどのくらいの効率で波長変換する
かは、非線形定数の大きさで見積られる。そのためこの
非線形定数の大きな材料の探索が世界的に広範に行われ
ている。一方、非線形光学結晶の屈折率は波長分散があ
るために、基本波の速度と第2高調波の速度が等しくな
いので、基本波に対して第2高調波には位相差が現われ
る。このために結晶内では、光路に沿って発生する第2
高調波の合成波は周期関数となる。従って、結晶端で発
生した第2高調波と、結晶端からある距離xで発生した
第2高調波との間は、πの位相差を持つ距離xが存在す
る。この距離xの長さをコヒーレント長という。
2. Description of the Related Art A wavelength conversion element of this kind is made of a nonlinear optical crystal. This nonlinear optical phenomenon is a phenomenon caused by the interaction between the electromagnetic field of a strong laser beam and the medium. The response of the medium is not proportional to the strong light, and nonlinearity appears. The efficiency of wavelength conversion of incident light is estimated by the magnitude of the nonlinear constant. For this reason, a search for a material having a large nonlinear constant has been widely performed worldwide. On the other hand, since the refractive index of the nonlinear optical crystal has wavelength dispersion, the speed of the fundamental wave is not equal to the speed of the second harmonic, so that a phase difference appears in the second harmonic with respect to the fundamental wave. For this reason, in the crystal, the second light generated along the optical path
The composite wave of the harmonic becomes a periodic function. Therefore, a distance x having a phase difference of π exists between the second harmonic generated at the crystal end and the second harmonic generated at a certain distance x from the crystal end. The length of the distance x is called a coherent length.

【0003】このコヒーレント長を超えると、合成高調
波の強度は減少し、この周期で増減を繰り返すことにな
る。この現象を利用して、アームストロング(Armstron
g)等は、この周期毎に非線形光学定数の符号を反転さ
せ、第2高調波の位相を反転させれば高効率になること
を提案した。即ち、コヒーレント長で非線形光学定数の
符号が反転するように分極方向が反転する結晶を積層さ
せれば、コヒーレント長からの第2高調波の強度を増大
させることが可能になる。このコヒーレント長の寸法は
10μm程度である。また結晶内にこのような周期で非
線形光学定数の符号が反転するものを作成することは、
実際には不可能と考えられていた。しかしながら、Li
NbO3 、LiTaO3 、KTPなどのような強誘電体
酸化物単結晶の互いに180度結晶のC+の向きが変化
している分極を、この周期で作成できることが明らかに
なってから、活発に研究されるようになってきた。この
ような互いに分極方向を180度回転させた方式の波長
変換を、疑似位相整合(QPM;Quasi-phase Matchin
g)による波長変換と呼ぶ。このQPMの特徴には、
周期長の設定により位相整合波長を自由に設定できるこ
と、複数の周期を作り出すことにより位相整合波長域
を広げること、位相整合に必要な温度許容幅は2倍以
上に大きくなること、バルク状でも光導波路状でも使
用できること、更に非線形光学定数d(33)を用いるこ
となどが挙げられる。
[0003] When the coherent length is exceeded, the intensity of the combined harmonic decreases, and increases and decreases repeatedly in this cycle. Using this phenomenon, Armstrong (Armstron
g) et al. proposed that the efficiency of the second harmonic could be increased by inverting the sign of the nonlinear optical constant in each cycle and inverting the phase of the second harmonic. That is, by stacking crystals whose polarization direction is inverted so that the sign of the nonlinear optical constant is inverted at the coherent length, the intensity of the second harmonic from the coherent length can be increased. The dimension of the coherent length is about 10 μm. In addition, to create a crystal in which the sign of the nonlinear optical constant is inverted at such a period,
It was actually considered impossible. However, Li
After it became clear that it was possible to create polarizations in which the C + directions of 180 ° crystals of ferroelectric oxide single crystals such as NbO 3 , LiTaO 3 , KTP, etc. could be changed at this period, it became active. It is being studied. Such wavelength conversion in which the polarization directions are rotated by 180 degrees is performed by quasi-phase matching (QPM).
This is called wavelength conversion by g). The features of this QPM include:
The phase matching wavelength can be set freely by setting the period length, the phase matching wavelength range can be expanded by creating multiple periods, the temperature tolerance required for phase matching can be more than doubled, It can be used in the form of a wave path, and the use of a non-linear optical constant d (33) .

【0004】従来、本出願人は、この種の波長変換素子
として、常誘導体結晶のC軸方向の螺旋軸の回転の違い
による右手系の結晶と左手系の結晶とが交互に積層して
ある、四ほう酸リチウム単結晶に代表される非線形光学
素子を提案した(特開平9−197455)。
Heretofore, as a wavelength conversion element of this kind, a right-handed crystal and a left-handed crystal are alternately stacked as a wavelength conversion element of this kind due to the difference in the rotation of the helical axis in the C-axis direction of the ordinary derivative crystal. Proposed a nonlinear optical element typified by a lithium tetraborate single crystal (JP-A-9-197455).

【0005】[0005]

【発明が解決しようとする課題】本出願人は、上記特開
平9−197455号公報の中で、この非線形光学素子
として、常誘電体である水晶にも適用し得ることを示唆
したが、水晶においてそのC軸方向の螺旋軸の回転の違
いによる右手系の結晶と左手系の結晶とを交互に積層す
ることが不可能であった。本発明の目的は、強誘電体で
ない水晶からなる常誘電体により、QPMの現象を生じ
させ、入射光の波長を高効率で波長変換することができ
る波長変換素子及びその製造方法並びにこれを用いた固
体レーザ装置を提供することにある。
The applicant of the present invention in Japanese Patent Application Laid-Open No. 9-197455 suggested that this nonlinear optical element can be applied to a paraelectric crystal as well. Thus, it was impossible to alternately stack right-handed crystals and left-handed crystals due to the difference in the rotation of the helical axis in the C-axis direction. SUMMARY OF THE INVENTION It is an object of the present invention to provide a wavelength conversion element capable of efficiently converting the wavelength of incident light by causing a QPM phenomenon by a paraelectric made of quartz that is not a ferroelectric, a method of manufacturing the same, and a method of using the same. To provide a solid-state laser device.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように所定の方向に正の極性を有する水晶1
0が次の式(1)で表される幅dで周期的に正負の極性
が交番する集片双晶構造をなすように形成され、水晶1
0のxy平面で振幅しかつ上記極性方向に対して垂直に
入射するレーザ光を入射光とすることを特徴とする波長
変換素子である。 d = mλ/(n2ω−nω) …………… (1) 但し、mは次数、n2ωはλ/2の波長ときの屈折率、
nωはλの波長のときの屈折率である。上記集片双晶構
造の水晶10に対して、この水晶のxy平面で振幅しか
つ極性方向に対して垂直なレーザ光を入射させると、こ
のレーザ光の波長を半分に変換して出射する。
The invention according to claim 1 is
As shown in FIG. 1, a crystal 1 having a positive polarity in a predetermined direction.
0 has a width d represented by the following formula (1), and is formed so as to form a fragment twin structure in which positive and negative polarities alternate alternately.
A wavelength conversion element characterized in that laser light having an amplitude in the xy plane of 0 and incident perpendicular to the polarity direction is incident light. d = mλ / (n 2 ω−nω) (1) where m is the order, n 2 ω is the refractive index at the wavelength of λ / 2,
nω is the refractive index at the wavelength of λ. When a laser beam having an amplitude in the xy plane of the crystal and perpendicular to the polarity direction is incident on the quartz crystal 10 having the fragment twin structure, the wavelength of the laser beam is converted into half and emitted.

【0007】また請求項2に係る発明は、図3に示すよ
うに所定の方向に正の極性を有する水晶10の表面を研
磨する工程と、この研磨した水晶10の表面にNiCr
膜又はNi膜11を形成する工程と、この膜の除去部分
11aの幅d1及び膜の残存部分の膜11bの幅d2がそ
れぞれ次の式(2)で表される値を有するように上記N
iCr膜又はNi膜11を上記極性方向に平行な縞状に
パターン化する工程と、この膜をパターン化した水晶1
0をこの水晶の相転移温度未満の温度で熱処理してこの
水晶の集片双晶構造を作り出す工程と、この集片双晶構
造を作り出した水晶10の表面に残存する縞状のNiC
r膜又はNi膜11bを除去する工程とを含む波長変換
素子15の製造方法である。 d1 = d2 = mλ/(n2ω−nω) …… (2) 但し、mは次数、n2ωはλ/2の波長ときの屈折率、
nωはλの波長のときの屈折率である。表面にNiCr
膜又はNi膜11をパターン化した水晶10をこの水晶
の相転移温度未満の温度で熱処理することにより幅
1,d2で周期的に正負の極性が交番するようになり、
容易に本発明の波長変換素子15を作ることができる。
なお、上記式(1)及び(2)の次数のmは奇数(通
常、1である)である。これは幅d(d1、d2も同じ)
が常にλ/(n2ω−nω)の奇数倍になっていれば第
2高調波(SHG)が発生することによる。
The invention according to claim 2 comprises a step of polishing the surface of the crystal 10 having a positive polarity in a predetermined direction as shown in FIG. 3, and a step of polishing the surface of the polished crystal 10 with NiCr.
The step of forming the film or the Ni film 11 is performed so that the width d 1 of the removed portion 11a of the film and the width d 2 of the film 11b of the remaining portion of the film have values represented by the following formula (2). N above
a step of patterning the iCr film or the Ni film 11 in a stripe pattern parallel to the above-mentioned polarity direction;
0 to a temperature lower than the phase transition temperature of the crystal to form a twin crystal structure of the crystal, and a striped NiC remaining on the surface of the crystal 10 having the twin structure of the crystal.
and a step of removing the r film or the Ni film 11b. d 1 = d 2 = mλ / (n 2 ω−nω) (2) where m is the order, n 2 ω is the refractive index at the wavelength of λ / 2,
nω is the refractive index at the wavelength of λ. NiCr on the surface
By heat-treating the crystal 10 having the film or the Ni film 11 patterned at a temperature lower than the phase transition temperature of the crystal, positive and negative polarities alternate periodically with the widths d 1 and d 2 .
The wavelength conversion element 15 of the present invention can be easily manufactured.
Note that m in the order of the above equations (1) and (2) is an odd number (usually 1). This is the width d (same for d 1 and d 2 )
Is always an odd multiple of λ / (n 2 ω−nω), a second harmonic (SHG) is generated.

【0008】更に請求項3に係る発明は、図4及び図5
に示すように請求項1記載の波長変換素子15を用いた
固体レーザ装置である。例えば、請求項1記載の波長変
換素子15と高出力が可能なYAGレーザ等の赤外の固
体レーザ16を組合せることにより、この固体レーザ1
6の波長を緑色から青色又は紫外域までの波長に変換す
ることができる。
Further, the invention according to claim 3 is shown in FIGS.
A solid-state laser device using the wavelength conversion element 15 according to claim 1 as shown in FIG. For example, by combining the wavelength conversion element 15 according to claim 1 with an infrared solid-state laser 16 such as a YAG laser capable of high output,
6 can be converted to wavelengths from green to blue or ultraviolet.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。本発明の波長変換素子に用いられる
水晶は、強誘導体でない常誘導体であるが、圧電性を有
するため、非線形性が現れる。また水晶は四ほう酸リチ
ウム単結晶等と比べて、緑色から青色又は紫外域までの
広い範囲で波長変換できる上、耐湿性に優れる。更に水
晶は緑色から青色又は紫外域までの波長の光に対して透
明であり、光損傷に強く、高品質な結晶も容易に育成で
きる特長がある。この波長変換素子を製造するには、所
定の方向に正の極性を有する水晶を用意する。水晶はそ
のz軸に対するカット方向により図2に示すATカット
水晶(φ=+35゜18')、BTカット水晶(φ=−
49゜8')、CTカット水晶(φ=+37゜40')、
DTカット水晶(φ=−52゜30')、ETカット水
晶(φ=+66゜)等があり、またカット面がxy平面
に平行な図1に示すZカット水晶や、カット面がxz平
面に平行なYカット水晶があるが、いずれの水晶でもよ
い。この水晶は、フォトリソグラフィ法又はエレクトロ
ンビーム法を用いて前述した式(1)で表される幅d
(=d1=d2)で周期的に極性軸の正負の方向が交番す
る集片双晶構造をなすように形成される。
Embodiments of the present invention will now be described with reference to the drawings. Quartz used for the wavelength conversion element of the present invention is an ordinary derivative that is not a strong derivative, but has nonlinearity due to its piezoelectricity. Quartz crystal can perform wavelength conversion in a wide range from green to blue or ultraviolet region and is excellent in moisture resistance as compared with lithium tetraborate single crystal or the like. Further, quartz is transparent to light having a wavelength from green to blue or ultraviolet, is resistant to optical damage, and has the characteristics that a high-quality crystal can be easily grown. To manufacture this wavelength conversion element, a crystal having a positive polarity in a predetermined direction is prepared. The crystal is an AT cut crystal (φ = + 35 ゜ 18 ′) and a BT cut crystal (φ = −) shown in FIG.
49 ゜ 8 '), CT cut quartz (φ = + 37 ゜ 40'),
There are DT cut quartz (φ = −52 ゜ 30 ′), ET cut quartz (φ = + 66 ゜), etc., and the Z cut quartz shown in FIG. 1 whose cut plane is parallel to the xy plane, and the cut plane is in the xz plane. Although there is a parallel Y-cut crystal, any crystal may be used. This crystal has a width d expressed by the above-described formula (1) using a photolithography method or an electron beam method.
At (= d 1 = d 2 ), it is formed so as to form a piece twin structure in which the positive and negative directions of the polar axis alternate.

【0010】次に、フォトリソグラフィ法による集片双
晶構造を有する水晶の製造方法について述べる。図3に
示すように、水晶10の表面を研磨した後、この表面に
厚さ0.1μm〜1μm程度のNiCr膜又はNi膜1
1を蒸着等により形成する(図3(a))。この膜の上
に感光性樹脂を塗布してフォトレジスト膜12を形成す
る。次に転写したいパターンを焼付けたフォトマスク1
3をこの水晶上に合わせる。このパターンは幅d1の感
光したい部分と幅d2のマスキングしたい部分とが交互
になるように縞状をなし、この縞が水晶10のもつ極性
方向に平行になるように位置合わせする。ここでd1
2は相等しい。d1とd2は前述した式(2)から導き
出される幅である。次いでマスク13の上から紫外線1
4を照射する(同(b))。紫外線14の照射によりマ
スクの白い部分の下のレジスト膜12のみが感光する。
エタノール等の溶剤により感光したレジスト膜部分を除
去し、それ以外の部分12aを残存させる(同
(c))。次いでHCl等の酸性水溶液又はNaOH等
のアルカリ性水溶液でエッチングしてレジスト膜で覆わ
れていないNiCr膜又はNi膜11を除去し、更に残
存していたレジスト膜12aも除去する。これにより幅
1を有する膜の除去部分11aと、幅d2の膜の残存部
分11bとが交互に形成された縞状のパターンが水晶1
0の表面に形成される(同(d))。更に続いて、水晶
の相転移温度未満の500〜580℃の温度で10分間
程度熱処理する。この熱処理により膜の残存部分11b
の直下の水晶はその極性が正(x+)から負(x-)に変
化する。この極性の変化は膜の熱膨張係数と水晶の熱膨
張係数の違いにより起ると考えられている(同
(e))。最後に膜の残存部分11bを除去して本発明
の波長変換素子15を得る。
Next, a method of manufacturing a quartz crystal having a piece twin structure by photolithography will be described. As shown in FIG. 3, after polishing the surface of the quartz crystal 10, a NiCr film or Ni film 1 having a thickness of about 0.1 μm to 1 μm is formed on the surface.
1 is formed by vapor deposition or the like (FIG. 3A). A photoresist resin is applied on this film to form a photoresist film 12. Next, a photomask 1 on which the pattern to be transferred is baked
Set 3 on this crystal. This pattern is formed in a stripe shape such that a portion to be exposed having a width d 1 and a portion to be masked having a width d 2 are alternately arranged. Here, d 1 and d 2 are equal. d 1 and d 2 are widths derived from the above-described equation (2). Next, ultraviolet light 1 is applied from above the mask 13.
Irradiation No. 4 ((b)). Only the resist film 12 under the white portion of the mask is exposed by the irradiation of the ultraviolet rays 14.
The resist film portion exposed with a solvent such as ethanol is removed, and the other portion 12a is left (FIG. (C)). Then, the NiCr film or Ni film 11 not covered with the resist film is removed by etching with an acidic aqueous solution such as HCl or an alkaline aqueous solution such as NaOH, and the remaining resist film 12a is also removed. As a result, the striped pattern in which the removed portions 11a of the film having the width d 1 and the remaining portions 11b of the film having the width d 2 are alternately formed is a crystal 1
0 (see (d)). Subsequently, heat treatment is performed at a temperature of 500 to 580 ° C. lower than the phase transition temperature of the quartz for about 10 minutes. By this heat treatment, the remaining portion 11b of the film is formed.
The crystal immediately below the polarity from positive (x +) negative - changes (x). It is considered that this change in polarity occurs due to the difference between the coefficient of thermal expansion of the film and the coefficient of thermal expansion of quartz (FIG. (E)). Finally, the remaining portion 11b of the film is removed to obtain the wavelength conversion element 15 of the present invention.

【0011】図1はx軸方向に極性を有するZカット水
晶10の例を示し、この水晶10を正負の極性が交番す
る集片双晶構造にすることにより波長変換素子15が作
られる。この波長変換素子の入射光は水晶10のxy平
面で振幅しかつx軸に垂直に入射するようになってい
る。図2はx軸に垂直な方向に極性を有するATカット
水晶10の例を示し、この水晶10を正負の極性が交番
する集片双晶構造にすることにより波長変換素子15が
作られる。この波長変換素子15の入射光は水晶10の
xy平面で振幅しかつx軸に平行に入射するようになっ
ている。こうした集片双晶構造の水晶10からなる波長
変換素子15に対して、この水晶のxy平面で振幅しか
つ極性方向に対して垂直なレーザ光を入射させると、前
述したQPMの現象が起こり、このレーザ光の波長を半
分に変換して出射することができる。
FIG. 1 shows an example of a Z-cut quartz crystal 10 having a polarity in the x-axis direction. A wavelength conversion element 15 is made by making the quartz crystal 10 a fragment twin structure having alternating positive and negative polarities. The incident light of this wavelength conversion element has amplitude on the xy plane of the crystal 10 and is incident perpendicularly to the x-axis. FIG. 2 shows an example of an AT-cut quartz crystal 10 having a polarity in a direction perpendicular to the x-axis. The wavelength conversion element 15 is made by forming the quartz crystal 10 into a fragment twin structure having alternating positive and negative polarities. The incident light of the wavelength conversion element 15 has an amplitude on the xy plane of the crystal 10 and is incident parallel to the x-axis. When a laser beam having an amplitude in the xy plane of the quartz crystal and perpendicular to the polarity direction is incident on the wavelength conversion element 15 formed of the quartz crystal 10 having the fragment twin structure, the above-described QPM phenomenon occurs. The wavelength of the laser light can be converted into half and emitted.

【0012】本発明の波長変換素子と組合わせるレーザ
としては、Nd:YAGレーザ、dye(色素)レー
ザ、Ti−サファイヤレーザ等の1064nm〜300
nmの波長のレーザが挙げられる。図4に示すように、
Nd:YAGレーザ16の後段に2つの波長変換素子1
5,15を配置することにより、Nd:YAGレーザの
波長1064nmの1/4である、コヒーレンスの高い
4倍波(266nm)の波長の光を作り出すことができ
る。また図5に示すように、Nd:YAGレーザ16の
後段に3倍波発生ユニット17及び1個の波長変換素子
15をこの順で配置することにより、Nd:YAGレー
ザの波長1064nmの1/6である、コヒーレンスの
高い6倍波(177nm)の波長の光を作り出すことが
できる。これらの4倍波(266nm)及び6倍波(1
77nm)の波長の光は、KrFエキシマレーザ(24
8nm)よりも短波長である。
The laser used in combination with the wavelength conversion element of the present invention is 1064 nm to 300 nm such as a Nd: YAG laser, a dye (dye) laser, a Ti-sapphire laser, or the like.
nm wavelength lasers. As shown in FIG.
Two wavelength conversion elements 1 after Nd: YAG laser 16
By arranging 5 and 15, light having a wavelength of a fourth harmonic (266 nm) having high coherence, which is 1/4 of the wavelength of 1064 nm of the Nd: YAG laser, can be generated. As shown in FIG. 5, by disposing the third harmonic generation unit 17 and one wavelength conversion element 15 in this order at the subsequent stage of the Nd: YAG laser 16, 1/6 of the wavelength of the Nd: YAG laser of 1064 nm is provided. That is, light having a wavelength of the sixth harmonic (177 nm) having high coherence can be generated. These fourth harmonics (266 nm) and sixth harmonics (1
The light having a wavelength of 77 nm is emitted from a KrF excimer laser (24
8 nm).

【0013】[0013]

【実施例】次に本発明の実施例について説明する。 <実施例1>Nd:YAGレーザと組合せて、このレー
ザ光(波長1064nm)を入射光とする波長変換素子
を作製した。先ず水晶として3mm×3mm×0.5m
mのx軸に垂直な方向に極性を有する、図2に示すAT
カット水晶を用いた。図3に示すフォトリソグラフィ法
によりNiCr膜11を極性方向に平行な縞状にパター
ン化した後、550℃で10分間熱処理することによ
り、幅dで周期的に正負の極性が交番する集片双晶構造
の水晶10を作製し、残存するNiCr膜11bを除去
して波長変換素子15を得た。この波長変換素子15の
幅dは、m=1、λ=1064nm、屈折率nω=1.
5305、及び屈折率n2ω=1.5468を前述した
式(1)に代入することにより、d=約65.3μmと
して得られた。Nd:YAGレーザの後段に1個の上記
波長変換素子を配置して、Nd:YAGレーザから発せ
られたレーザ光を水晶のxy平面で振幅しかつx軸に平
行になるように調整してこの波長変換素子に入射させ
た。レーザ光の周波数が10Hz、パワーが100mJ
であるとき、波長変換素子から波長532nmの緑色光
が5mJのパワーで得られた。
Next, an embodiment of the present invention will be described. <Example 1> A wavelength conversion element using this laser light (wavelength: 1064 nm) as incident light was manufactured in combination with an Nd: YAG laser. First, 3mm x 3mm x 0.5m as crystal
AT with polarity in the direction perpendicular to the x-axis of m shown in FIG.
Cut quartz was used. The NiCr film 11 is patterned into stripes parallel to the polarity direction by the photolithography method shown in FIG. 3, and then heat-treated at 550 ° C. for 10 minutes, so that the positive and negative polarities alternate periodically with a width d. A crystal 10 having a crystal structure was produced, and the remaining NiCr film 11b was removed to obtain a wavelength conversion element 15. The width d of the wavelength conversion element 15 is m = 1, λ = 1066 nm, and the refractive index nω = 1.
By substituting 5305 and the refractive index n 2 ω = 1.5468 into the above-mentioned equation (1), d = about 65.3 μm was obtained. One wavelength conversion element is arranged at the subsequent stage of the Nd: YAG laser, and the laser light emitted from the Nd: YAG laser is adjusted so as to oscillate in the xy plane of the crystal and become parallel to the x-axis. The light was incident on the wavelength conversion element. Laser light frequency 10Hz, power 100mJ
When, green light having a wavelength of 532 nm was obtained from the wavelength conversion element with a power of 5 mJ.

【0014】<実施例2>図5に示す固体レーザ装置に
適する波長変換素子15を作製した。この波長変換素子
15の幅dは、m=1、λ=355nm、屈折率nω=
1.567、及び屈折率n2ω=1.68を前述した式
(1)に代入することにより、d=約3.14μmとし
て得られた。この幅dの値以外は、実施例1と同様にし
て波長変換素子を得た。Nd:YAGレーザ16の後段
に3倍波発生ユニット17及び1個の上記波長変換素子
15をこの順で配置した後、波長変換素子15に周波数
が10Hz、パワーが500mJのレーザ光を入射させ
ると、この波長変換素子15から波長177.5nmの
紫外レーザ光が1mJのパワーで得られた。
Embodiment 2 A wavelength conversion element 15 suitable for the solid-state laser device shown in FIG. 5 was manufactured. The width d of the wavelength conversion element 15 is m = 1, λ = 355 nm, and the refractive index nω =
By substituting 1.567 and the refractive index n 2 ω = 1.68 into the above equation (1), d = about 3.14 μm was obtained. Except for the value of the width d, a wavelength conversion element was obtained in the same manner as in Example 1. After arranging the third harmonic generation unit 17 and one wavelength conversion element 15 in this order at the subsequent stage of the Nd: YAG laser 16, a laser beam having a frequency of 10 Hz and a power of 500 mJ is incident on the wavelength conversion element 15. An ultraviolet laser beam having a wavelength of 177.5 nm was obtained from the wavelength conversion element 15 with a power of 1 mJ.

【0015】[0015]

【発明の効果】以上述べたように、従来、波長変換が不
可能と考えられていた水晶を、本発明の集片双晶構造に
することにより、この水晶でQPMの現象を生じさせ、
入射光の波長を高効率で波長変換することができる。例
えば入射光をNd:YAGレーザの波長1064nmの
レーザ光とすれば、本発明の波長変換素子でこのレーザ
光を4倍波(266nm)及び6倍波(177nm)の
波長に変換できる。これらの変換した波長は、KrFエ
キシマレーザ(248nm)よりも短波長となる。
As described above, the crystal which has conventionally been considered impossible to convert the wavelength is made into a twin twin structure of the present invention.
The wavelength of the incident light can be converted with high efficiency. For example, if the incident light is a laser beam having a wavelength of 1064 nm of an Nd: YAG laser, the laser beam can be converted into the wavelengths of the fourth harmonic (266 nm) and the sixth harmonic (177 nm) by the wavelength conversion element of the present invention. These converted wavelengths are shorter than the KrF excimer laser (248 nm).

【0016】従って、既に大出力の装置が開発されてい
る赤外レーザのレーザ光を本発明の波長変換素子に入射
して、この波長変換素子から4倍波ないし6倍波の波長
の光を作り出すことができれば、紫外線領域又はそれに
近い領域のレーザ光を容易に得られる。このレーザ光
を、マーキング、リソグラフィ、各種半導体プロセス、
医療などの多様な分野への応用が期待できる。
Accordingly, a laser beam of an infrared laser, for which a high-power device has already been developed, is incident on the wavelength conversion element of the present invention, and light of a fourth or sixth harmonic wavelength is emitted from this wavelength conversion element. If it can be produced, laser light in the ultraviolet region or a region close thereto can be easily obtained. This laser light is used for marking, lithography, various semiconductor processes,
It can be expected to be applied to various fields such as medicine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の波長変換素子の構成図。FIG. 1 is a configuration diagram of a wavelength conversion element of the present invention.

【図2】本発明の別の波長変換素子の構成図。FIG. 2 is a configuration diagram of another wavelength conversion element of the present invention.

【図3】その波長変換素子の製造工程を示す図。FIG. 3 is a diagram showing a manufacturing process of the wavelength conversion element.

【図4】その波長変換素子を用いた固体レーザ装置の構
成図。
FIG. 4 is a configuration diagram of a solid-state laser device using the wavelength conversion element.

【図5】その波長変換素子を用いた別の固体レーザ装置
の構成図。
FIG. 5 is a configuration diagram of another solid-state laser device using the wavelength conversion element.

【符号の説明】[Explanation of symbols]

10 水晶 11 NiCr膜又はNi膜 11a 膜の除去部分 11b 膜の残存部分 15 波長変換素子 DESCRIPTION OF SYMBOLS 10 Quartz 11 NiCr film or Ni film 11a Removal part of film 11b Remaining part of film 15 Wavelength conversion element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の方向に正の極性を有する水晶(10)
が次の式(1)で表される幅(d)で周期的に正負の極性
が交番する集片双晶構造をなすように形成され、前記水
晶(10)のxy平面で振幅しかつ前記極性方向に対して垂
直に入射するレーザ光を入射光とすることを特徴とする
波長変換素子。 d = mλ/(n2ω−nω) …………… (1) 但し、mは次数、n2ωはλ/2の波長ときの屈折率、
nωはλの波長のときの屈折率である。
A quartz crystal having a positive polarity in a predetermined direction.
Is formed so as to form a fragment twin structure in which positive and negative polarities alternate periodically with a width (d) represented by the following formula (1), and oscillates in the xy plane of the crystal (10). A wavelength conversion element, wherein a laser beam incident perpendicularly to a polarity direction is used as incident light. d = mλ / (n 2 ω−nω) (1) where m is the order, n 2 ω is the refractive index at the wavelength of λ / 2,
nω is the refractive index at the wavelength of λ.
【請求項2】 所定の方向に極性を有する水晶(10)の表
面を研磨する工程と、 前記研磨した水晶(10)の表面にNiCr膜又はNi膜(1
1)を形成する工程と、 前記膜の除去部分(11a)の幅(d1)及び膜の残存部分(11b)
の膜の幅(d2)がそれぞれ次の式(2)で表される値を有
するように前記NiCr膜又はNi膜(11)を前記極性方
向に平行な縞状にパターン化する工程と、 前記膜をパターン化した水晶(10)をこの水晶の相転移温
度未満の温度で熱処理することによりこの水晶の集片双
晶構造を作り出す工程と、 前記集片双晶構造を作り出した水晶(10)の表面に残存す
る縞状のNiCr膜又はNi膜(11b)を除去する工程と
を含む波長変換素子の製造方法。 d1 = d2 = mλ/(n2ω−nω) …… (2) 但し、mは次数、n2ωはλ/2の波長ときの屈折率、
nωはλの波長のときの屈折率である。
2. A step of polishing a surface of a crystal (10) having a polarity in a predetermined direction; and a step of polishing a NiCr film or a Ni film (1) on the surface of the polished crystal (10).
Forming a 1), the width (d 1 ) of the removed portion (11a) of the film and the remaining portion (11b) of the film
Patterning the NiCr film or Ni film (11) into stripes parallel to the polarity direction such that the width (d 2 ) of the film has a value represented by the following equation (2): Heat-treating the crystal-patterned crystal (10) at a temperature lower than the phase transition temperature of the crystal to create a fragment twin structure of the crystal, and a crystal (10 And b) removing the striped NiCr film or Ni film (11b) remaining on the surface of the wavelength conversion element. d 1 = d 2 = mλ / (n 2 ω−nω) (2) where m is the order, n 2 ω is the refractive index at the wavelength of λ / 2,
nω is the refractive index at the wavelength of λ.
【請求項3】 請求項1記載の波長変換素子(15)を用い
た固体レーザ装置。
3. A solid-state laser device using the wavelength conversion element (15) according to claim 1.
JP1089198A 1998-01-23 1998-01-23 Wavelength converting element, production thereof and solid laser device using the same Withdrawn JPH11212128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089198A JPH11212128A (en) 1998-01-23 1998-01-23 Wavelength converting element, production thereof and solid laser device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089198A JPH11212128A (en) 1998-01-23 1998-01-23 Wavelength converting element, production thereof and solid laser device using the same

Publications (1)

Publication Number Publication Date
JPH11212128A true JPH11212128A (en) 1999-08-06

Family

ID=11762952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089198A Withdrawn JPH11212128A (en) 1998-01-23 1998-01-23 Wavelength converting element, production thereof and solid laser device using the same

Country Status (1)

Country Link
JP (1) JPH11212128A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071143A1 (en) * 2001-03-02 2002-09-12 Nikon Corporation Light source device, light illuminating device and exposure device, and device producing method
JP2003075876A (en) * 2001-08-30 2003-03-12 Nidek Co Ltd Cornea operation device
WO2004027510A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Method of producing quasi phase-matching crystal and quasi phase-matching crystal
WO2004027511A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Optical communication-use wavelength conversion device
WO2004027512A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Wavelength conversion element
JP2004279613A (en) * 2003-03-14 2004-10-07 Nidek Co Ltd Wavelength conversion element for pseudo-phase matching, manufacturing method therefor, and medical laser device using the element
CN100410798C (en) * 2004-03-24 2008-08-13 松下电器产业株式会社 Optical device and method for forming polarization-reversed region
JP2008186034A (en) * 2008-04-28 2008-08-14 National Institute For Materials Science Manufacturing method of quasi phase-matched quartz, and the quasi phase-mathched quartz
JP2018028633A (en) * 2016-08-19 2018-02-22 大学共同利用機関法人自然科学研究機構 Pulse light generator
JP2020201340A (en) * 2019-06-07 2020-12-17 パナソニックIpマネジメント株式会社 Wavelength conversion apparatus
EP4027194A4 (en) * 2019-09-03 2023-09-13 Inter-University Research Institute Corporation National Institutes of Natural Sciences Crystal element, method for manufacturing same, and optical oscillation device including crystal element
US11967932B2 (en) 2019-09-03 2024-04-23 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Crystal element, method for manufacturing same, and optical oscillation device including crystal element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071143A1 (en) * 2001-03-02 2002-09-12 Nikon Corporation Light source device, light illuminating device and exposure device, and device producing method
JP2003075876A (en) * 2001-08-30 2003-03-12 Nidek Co Ltd Cornea operation device
US7261778B2 (en) 2002-09-20 2007-08-28 National Institute For Materials Science Method of producing quasi phase-matching crystal and quasi phase-matching crystal
WO2004027512A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Wavelength conversion element
US7177070B2 (en) 2002-09-20 2007-02-13 National Institute For Materials Science Wavelength conversion element
US7206122B2 (en) 2002-09-20 2007-04-17 National Institute For Materials Science Optical communication-use wavelength conversion device
WO2004027510A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Method of producing quasi phase-matching crystal and quasi phase-matching crystal
WO2004027511A1 (en) * 2002-09-20 2004-04-01 National Institute For Materials Science Optical communication-use wavelength conversion device
JP4739655B2 (en) * 2003-03-14 2011-08-03 株式会社ニデック Pseudo phase matching wavelength conversion element, method for manufacturing the same, and medical laser apparatus using the same
JP2004279613A (en) * 2003-03-14 2004-10-07 Nidek Co Ltd Wavelength conversion element for pseudo-phase matching, manufacturing method therefor, and medical laser device using the element
CN100410798C (en) * 2004-03-24 2008-08-13 松下电器产业株式会社 Optical device and method for forming polarization-reversed region
JP2008186034A (en) * 2008-04-28 2008-08-14 National Institute For Materials Science Manufacturing method of quasi phase-matched quartz, and the quasi phase-mathched quartz
JP2018028633A (en) * 2016-08-19 2018-02-22 大学共同利用機関法人自然科学研究機構 Pulse light generator
JP2020201340A (en) * 2019-06-07 2020-12-17 パナソニックIpマネジメント株式会社 Wavelength conversion apparatus
EP4027194A4 (en) * 2019-09-03 2023-09-13 Inter-University Research Institute Corporation National Institutes of Natural Sciences Crystal element, method for manufacturing same, and optical oscillation device including crystal element
US11967932B2 (en) 2019-09-03 2024-04-23 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Crystal element, method for manufacturing same, and optical oscillation device including crystal element

Similar Documents

Publication Publication Date Title
JPH07507882A (en) Intracavity harmonic subresonator with wide phase matching area
JP5235994B2 (en) Ferroelectric domain inversion method
JPH11212128A (en) Wavelength converting element, production thereof and solid laser device using the same
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
CN113196163B (en) Method for manufacturing patterned SrB4BO7 and PbB4O7 crystals
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH06110095A (en) Method and device for generating millimeter wave and submillimeter wave
US6800238B1 (en) Method for domain patterning in low coercive field ferroelectrics
JP2718259B2 (en) Short wavelength laser light source
JP2502818B2 (en) Optical wavelength conversion element
JPH0566440A (en) Laser light source
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP3049986B2 (en) Optical wavelength conversion element
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP2643735B2 (en) Wavelength conversion element
JPH09292637A (en) Second harmonic generating element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JPH06265951A (en) Optical wavelength converter
JP2660217B2 (en) Manufacturing method of wavelength conversion element
JP2004029348A (en) Method for forming low resistive part on substrate for optical component, substrate for optical component and optical component
JP3447078B2 (en) Optical wavelength conversion element
JP3076802U (en) Quasi-phase-matched nonlinear optical single crystal and solid-state laser generator using the same
JPH05241216A (en) Second harmonic wave generating element
JPH10301154A (en) Optical second harmonic generating element and optical device using the same
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405