JPH1121174A - Radiation plate - Google Patents

Radiation plate

Info

Publication number
JPH1121174A
JPH1121174A JP9177113A JP17711397A JPH1121174A JP H1121174 A JPH1121174 A JP H1121174A JP 9177113 A JP9177113 A JP 9177113A JP 17711397 A JP17711397 A JP 17711397A JP H1121174 A JPH1121174 A JP H1121174A
Authority
JP
Japan
Prior art keywords
thickness
thermal conductivity
aluminum nitride
sintered body
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9177113A
Other languages
Japanese (ja)
Other versions
JP3575955B2 (en
Inventor
Katsunori Terano
克典 寺野
Yoshiyuki Nakamura
美幸 中村
Yasuto Fushii
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17711397A priority Critical patent/JP3575955B2/en
Publication of JPH1121174A publication Critical patent/JPH1121174A/en
Application granted granted Critical
Publication of JP3575955B2 publication Critical patent/JP3575955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation plate having high thermal conductivity and high reliability by specifying the thermal conductivity, bending rupture strength, average surface roughness and thickness of an Al nitride sintered body obtained from a green sheet formed by an extrusion molding method and the surface of which is not ground more than a specific thickness. SOLUTION: This Al nitride sintered body the surface of which is not ground more than 3 μm has >=120 w/mK thermal conductivity, >=300 MPa bending rupture strength, 0.1-0.8 μm average surface roughness Ra and 1-5 mm thickness. The raw Al nitride powder material is preferred to be <=1.5 wt.% oxygen content, and have <=5 μm average particle size. The sintering auxiliary is preferred to be yttria, and its conent is 3-5 pts.wt. for 100 pts.wt. Al nitride powder. Methyl cellulose, ethyl cellulose, etc., are used as an organic binder and refined glycerin, glycerin trioleate, etc., as a plasticizer and pure water as a solvent. These are mixed, and molded by an extruder, formed to be a specific shape, defatted and then sintered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品のパワー
モジュール等を製造する際の治具ないしは電子機器に組
み込んで使用される窒化アルミニウム焼結体からなる放
熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink made of an aluminum nitride sintered body to be used by being incorporated in a jig or an electronic device for manufacturing a power module or the like of an electronic component.

【0002】[0002]

【従来の技術】近年、ロボット・モーター等の産業機
器、電車・電気自動車等の輸送機器などの大電力モジュ
ールないしはトランジスタ・サイリスタ等の発熱性電子
部品の製造とその使用においては、発生した熱を系外に
放散させ信頼性を高めるために絶縁放熱板が使用されて
おり、その一例をあげれば窒化アルミニウム焼結体、窒
化ホウ素焼結体である。
2. Description of the Related Art In recent years, in the production and use of heat-generating electronic components such as high-power modules such as industrial equipment such as robots and motors, transportation equipment such as electric trains and electric vehicles, and transistors and thyristors, generated heat is used. Insulating heat radiating plates are used to dissipate outside the system and increase reliability, and examples thereof include aluminum nitride sintered bodies and boron nitride sintered bodies.

【0003】特に、大電力モジュールでは、従来のアル
ミナ基板に代わって高熱伝導性の窒化アルミニウム基板
が注目されており、その粉末及び焼結体の製造方法も種
々報告されている。このような窒化アルミニウム基板を
用いた大電力モジュールも、ロボット・工作機械等の産
業用機械から、近年では電車・電気自動車等の信頼性が
重要視される部品への使用が期待されている。
[0003] In particular, in high power modules, aluminum nitride substrates having high thermal conductivity have attracted attention instead of conventional alumina substrates, and various methods for producing powders and sintered bodies thereof have been reported. A large power module using such an aluminum nitride substrate is also expected to be used in industrial machines such as robots and machine tools, and in recent years, in parts where reliability is important such as electric trains and electric vehicles.

【0004】窒化アルミニウムを使用した絶縁放熱板に
おいても、金属板と窒化アルミニウムとの熱膨張率の違
いにより、ヒートサイクルにより金属板が剥がれたり、
窒化アルミニウム基板にクラックが生じ絶縁不良が発生
するという重大な問題がある。
[0004] Even in an insulating radiator plate using aluminum nitride, the metal plate may be peeled off by a heat cycle due to a difference in thermal expansion coefficient between the metal plate and aluminum nitride.
There is a serious problem that cracks occur in the aluminum nitride substrate and insulation failure occurs.

【0005】一方、トランジスタやサイリスタ等の発熱
性電子部品においては、その熱の除去が重要な課題とな
っており、従来、発熱性電子部品を電気絶縁性の熱伝導
性シートを介して放熱フィンや金属板にとりつけて熱を
除去することが一般的に行われている。その熱伝導性シ
ートとしては、シリコーンゴムに窒化ホウ素粉末の充填
された放熱シートが用いられ、特に高熱伝導性が必要な
部品には窒化ホウ素焼結体からなる放熱板が使用されて
いる。しかし、窒化ホウ素製放熱板は、窒化ホウ素粉が
高価であるためコスト高となり、また耐荷重が低いため
に締め付け時に割れるという問題があった。
On the other hand, in heat-generating electronic components such as transistors and thyristors, removal of heat is an important issue. Conventionally, heat-generating electronic components are radiated through heat-dissipating fins through an electrically insulating heat-conductive sheet. It is common practice to remove heat by attaching it to a metal plate. As the heat conductive sheet, a heat radiating sheet in which boron nitride powder is filled in silicone rubber is used. In particular, a heat radiating plate made of a boron nitride sintered body is used for components requiring high heat conductivity. However, the boron nitride radiator plate has a problem that the boron nitride powder is expensive, so that the cost is high, and the load capacity is low, so that the boron nitride powder is broken at the time of fastening.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、厚みが厚く、高熱伝導性かつ高
信頼性の窒化アルミニウム製放熱板を窒化ホウ素製放熱
板よりも安価に提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and is intended to provide a thin, high-thermal-conductivity, highly-reliable aluminum nitride heat sink at a lower cost than a boron nitride heat sink. It is intended to provide.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、押
し出し成型法で成形されたグリ−ンシートの焼結体であ
って、熱伝導率120W/mK以上、抗折強度300M
Pa以上、触針式粗さ計で測定された平均表面粗さRa
0.1〜0.8μm、厚み1〜5mmの窒化アルミニウ
ム焼結体からなることを特徴とする3μm以上の表面研
磨が施されていない放熱板である。
That is, the present invention relates to a green sheet sintered body formed by an extrusion method, which has a thermal conductivity of 120 W / mK or more and a bending strength of 300 M.
Pa or more, average surface roughness Ra measured with a stylus type roughness meter
A heat radiating plate having a surface of not less than 3 μm, which is made of an aluminum nitride sintered body having a thickness of 0.1 to 0.8 μm and a thickness of 1 to 5 mm.

【0008】[0008]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0009】本発明者は、厚みの厚いシート状窒化アル
ミニウム焼結体を製造するためのシ−ト成型法につき、
ドクターブレード法、押し出し成型法、乾式プレス法、
射出成型法、スリップキャスト法について検討した。
The present inventor has described a sheet forming method for producing a thick sheet-like aluminum nitride sintered body,
Doctor blade method, extrusion molding method, dry pressing method,
The injection molding method and the slip casting method were studied.

【0010】その結果、乾式プレス法と射出成型法で
は、バインダー量が多くなるため焼成時の収縮率が大き
くなり、寸法精度が取れないため、焼結体を研磨加工し
て放熱板とする必要がある。スリップキャスト法は、少
ロットの異形品向きで量産性に劣り、厚みが厚い成型体
では厚みムラが生じやすい。また、スラリー粘度を低く
する必要があるので窒化アルミニウム粉末の加水分解に
より熱伝導性が低下する。
As a result, in the dry press method and the injection molding method, the amount of binder is large, so that the shrinkage ratio during firing is large, and the dimensional accuracy cannot be obtained. There is. The slip casting method is inferior to mass production for small lots of irregularly shaped products, and tends to cause thickness unevenness in a thick molded product. In addition, since it is necessary to lower the viscosity of the slurry, the thermal conductivity is reduced due to hydrolysis of the aluminum nitride powder.

【0011】ドクターブレード法によれば、厚み0.5
〜1mmの成型品は可能であるが、厚みが1mm程度を
越えると厚みムラが大きくなり、特に端部と中心部の厚
み差が40μm以上になることもあり大きな反りを生じ
るようになる。更には、厚みの厚いものは、シ−ト成型
後に有機溶剤を乾燥・除去する際、蒸発する有機溶剤に
よって表面が荒れたりピンホールが発生し、放熱板とし
ては不適となる。
According to the doctor blade method, a thickness of 0.5
Although a molded product having a thickness of about 1 mm is possible, when the thickness exceeds about 1 mm, the thickness unevenness becomes large. In particular, the thickness difference between the end portion and the center portion may be 40 μm or more, causing a large warpage. Furthermore, when the organic solvent is dried and removed after sheet molding, the surface is roughened or pinholes are generated by the evaporating organic solvent, so that the thick one becomes unsuitable as a heat sink.

【0012】これに対し、押し出し成型法によれば、ダ
イスのクリアランスを大きくするだけで容易に厚みの厚
いシートを成型することができ、しかも成型圧力を5〜
10MPaと高くすることができるので成型体密度を上
げることもできる。その結果、焼成時の寸法精度が良好
となるので、グリーンシートの段階で収縮率を考慮した
サイズにプレス又は切り出しておくことによって、焼成
後は3μm以上の表面研磨をすることなく、乾式ホーニ
ング、湿式ホーニング、バフ研磨等による表面処理を行
うだけで、接触式表面粗さ計による平均表面粗さRaが
0.1〜0.8μmである窒化アルミニウム製放熱板を
製造することができる。
On the other hand, according to the extrusion molding method, a thick sheet can be easily molded only by increasing the clearance of the die, and the molding pressure is 5 to 5.
Since the pressure can be as high as 10 MPa, the density of the molded body can be increased. As a result, the dimensional accuracy at the time of firing is improved. Therefore, by pressing or cutting out the green sheet at a size in consideration of the shrinkage ratio, after firing, without polishing the surface of 3 μm or more, dry honing, Only by performing surface treatment by wet honing, buffing, or the like, an aluminum nitride radiator plate having an average surface roughness Ra of 0.1 to 0.8 μm by a contact type surface roughness meter can be manufactured.

【0013】以上のことから、本発明の窒化アルミニウ
ム製放熱板は、押し出し成型法によって製造される。そ
の押し出し成型の諸条件について更に詳しく説明する
と、原料窒化アルミニウム粉末としては、酸素量1.5
重量%以下、平均粒径5μm以下のものを用い、また焼
結助剤としては、イットリウムの酸化物、フッ化物、塩
化物、硝酸塩、硫酸塩等を用いる。中でもイットリアが
好適であり、その割合は窒化アルミニウム粉末100重
量部対し3〜5重量部とする。また、窒化アルミニウム
粉末は、加水分解を防止するためにステアリン酸、オレ
イン酸、リン酸等で表面処理されているものであり、そ
の使用量は窒化アルミニウム粉末100重量部に対し
0.5〜5重量部である。
As described above, the aluminum nitride radiator plate of the present invention is manufactured by the extrusion molding method. The conditions of the extrusion molding will be described in more detail.
% Or less and an average particle size of 5 μm or less, and oxides, fluorides, chlorides, nitrates and sulfates of yttrium are used as sintering aids. Above all, yttria is preferable, and its ratio is 3 to 5 parts by weight with respect to 100 parts by weight of aluminum nitride powder. The aluminum nitride powder is surface-treated with stearic acid, oleic acid, phosphoric acid or the like in order to prevent hydrolysis, and its amount is 0.5 to 5 parts by weight based on 100 parts by weight of the aluminum nitride powder. Parts by weight.

【0014】有機結合剤は、メチルセルロース、エチル
セルロース等の水系のものが使用され、その使用量は窒
化アルミニウム粉末100重量部に対し4〜15重量部
である。可塑剤としては、精製グリセリン、グリセリン
トリオレート、ジエチレングリコール等を、窒化アルミ
ニウム粉末100重量部に対し2〜10重量部使用す
る。更に、必要に応じて分散剤、離型剤が配合される。
溶媒としては純水が使用される。
As the organic binder, an aqueous binder such as methylcellulose or ethylcellulose is used, and its amount is 4 to 15 parts by weight based on 100 parts by weight of the aluminum nitride powder. As the plasticizer, purified glycerin, glycerin triolate, diethylene glycol, or the like is used in an amount of 2 to 10 parts by weight based on 100 parts by weight of the aluminum nitride powder. Further, a dispersant and a release agent are added as required.
Pure water is used as the solvent.

【0015】上記材料は、万能混合機、ライカイ機、ミ
キサー、ロール等を用いて混合し、押し出し成型機でグ
リーンシートを成形する。グリーンシートの厚みの調節
は、成型機吐出口のクリアランスを調整して行われる。
グリーンシートは、プレス装置又は裁断機により所定形
状にし、脱脂後、焼成される。
The above-mentioned materials are mixed using a universal mixer, a raikai machine, a mixer, a roll, or the like, and green sheets are formed by an extrusion molding machine. The adjustment of the thickness of the green sheet is performed by adjusting the clearance of the discharge port of the molding machine.
The green sheet is formed into a predetermined shape by a press device or a cutting machine, degreased, and fired.

【0016】脱脂は、0.1〜10kPaの減圧下でバ
インダーの分解及び水蒸気除去を行った後、450〜5
30℃の温度で乾燥空気を導入して行われる。また、焼
成は、窒素、アルゴン等の非酸化性雰囲気下、温度16
00〜2000℃で行われる。
Degreasing is performed after decomposing the binder and removing water vapor under a reduced pressure of 0.1 to 10 kPa.
This is carried out at a temperature of 30 ° C. by introducing dry air. The firing is performed in a non-oxidizing atmosphere such as nitrogen or argon at a temperature of 16 ° C.
It is performed at 00 to 2000 ° C.

【0017】以上のようにして製造された窒化アルミニ
ウム焼結体は、3μm以上の表面研磨を行わないで、単
なる乾式ホーニング、湿式ホーニング、バフ研磨等の表
面処理だけで、厚み1〜5mm、接触式表面粗さ計によ
る平均表面粗さRaが0.1〜0.8μmの放熱板とな
る。また、密度3.0g/cm3 以上、熱伝導率120
W/mK以上、破壊荷重23N以上、抗折強度300M
Pa以上、絶縁耐圧18kV以上の窒化アルミニウム製
放熱板となる。
The aluminum nitride sintered body manufactured as described above is not subjected to surface polishing of 3 μm or more, but is merely subjected to a surface treatment such as dry honing, wet honing, and buff polishing to obtain a 1-5 mm thick contact. The heat radiating plate has an average surface roughness Ra of 0.1 to 0.8 μm measured by a surface roughness meter. Further, the density is 3.0 g / cm 3 or more, and the thermal conductivity is 120
W / mK or more, breaking load 23N or more, flexural strength 300M
An aluminum nitride heat radiating plate having a pressure of not less than Pa and a withstand voltage of not less than 18 kV is obtained.

【0018】このような窒化アルミニウム製放熱板は新
規である。例えば、乾式プレス法、射出成型法では、研
磨加工を行わないと本発明の特性を有すものは製造する
ことができない。スリップキャスト法では、熱伝導率が
120W/mK未満となり、ドクターブレード法では、
厚み1mm以上の放熱板を製造することができない。ま
た、押し出し成型法であっても、上記条件を逸脱して製
造されたものは熱伝導率が120W/mK未満となる。
Such a heat sink made of aluminum nitride is novel. For example, with the dry pressing method or the injection molding method, a material having the characteristics of the present invention cannot be manufactured without polishing. In the slip casting method, the thermal conductivity is less than 120 W / mK, and in the doctor blade method,
A heat sink with a thickness of 1 mm or more cannot be manufactured. Further, even in the case of the extrusion molding method, those manufactured outside the above conditions have a thermal conductivity of less than 120 W / mK.

【0019】[0019]

【実施例】以下、本発明を実施例と比較例をあげて具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0020】実施例1 酸素量1.2重量%、平均粒径3.5μmの窒化アルミ
ニウム粉末100重量部、イットリア粉末4重量部、ス
テアリン酸2重量部をボールミルで5時間混合し、更に
メチルセルロース7重量部、グリセリン3重量部、蒸留
水13重量部を配合しミキサーで10分間混合した後、
三本ロールに2回通して粘土状混練物を製造した。
Example 1 100 parts by weight of aluminum nitride powder having an oxygen content of 1.2% by weight and an average particle size of 3.5 μm, 4 parts by weight of yttria powder and 2 parts by weight of stearic acid were mixed for 5 hours by a ball mill, and methyl cellulose 7 was further added. Parts by weight, 3 parts by weight of glycerin, and 13 parts by weight of distilled water, and mixed with a mixer for 10 minutes,
The mixture was passed twice through three rolls to produce a clay-like kneaded product.

【0021】これを押し出し成型機で、幅150mm、
厚み1.3mmのシートに成型し、60×40mmに裁
断した後、各シート表面にBN粉を塗布して5枚重ね、
脱脂炉に入れてロータリーポンプで1kPaの減圧に
し、温度480℃×5時間保持後、乾燥空気を5時間流
通して脱脂した。
This was extruded with a 150 mm wide molding machine.
After molding into a 1.3 mm thick sheet and cutting it into 60 × 40 mm, BN powder was applied to each sheet surface and 5 sheets were stacked.
After putting into a degreasing furnace, the pressure was reduced to 1 kPa with a rotary pump, the temperature was kept at 480 ° C. × 5 hours, and then dry air was passed through for 5 hours to degrease.

【0022】次いで、常圧窒素雰囲気中、温度1850
℃で5時間保持した後、温度1700℃までの冷却速度
を1.5℃/分として室温まで冷却し、51×34×
1.0mmの窒化アルミニウム焼結体を製造し、3μm
以上の表面研磨を施さないで放熱板とした。その密度、
熱伝導率、耐荷重、抗折強度及び表面粗さを以下に従い
測定し、表1に示した。
Then, at a temperature of 1850 in a nitrogen atmosphere at normal pressure.
C. for 5 hours, and then cooled to room temperature at a cooling rate of 1.5.degree. C./minute to a temperature of 1700.degree.
Manufacture 1.0mm aluminum nitride sintered body, 3μm
The heat sink was not subjected to the above surface polishing. Its density,
Thermal conductivity, load resistance, bending strength and surface roughness were measured as follows, and are shown in Table 1.

【0023】実施例2〜3 グリーンシート厚みを3.6mm又は6.0mmとした
こと以外は、実施例1と同じ方法で窒化アルミニウム焼
結体を製造した。
Examples 2-3 An aluminum nitride sintered body was manufactured in the same manner as in Example 1 except that the thickness of the green sheet was changed to 3.6 mm or 6.0 mm.

【0024】比較例1 窒化アルミニウム粉末95重量部、酸化イットリウム5
重量部、有機結合剤としてポリビニルブチラールを8重
量部、可塑剤としてグリセリントリオレートを6重量
部、溶媒としてトルエンを30重量部配合し、ボールミ
ルで30時間混合して得られたスラリーを、ドクターブ
レード法にて幅300mm、厚み1.2mmのグリーン
シートを成型し60℃で乾燥した。
Comparative Example 1 95 parts by weight of aluminum nitride powder, yttrium oxide 5
Parts by weight, 8 parts by weight of polyvinyl butyral as an organic binder, 6 parts by weight of glycerin triolate as a plasticizer, and 30 parts by weight of toluene as a solvent, and mixed with a ball mill for 30 hours. A green sheet having a width of 300 mm and a thickness of 1.2 mm was molded by a method and dried at 60 ° C.

【0025】得られたグリーンシートは幅方向で最大8
0μm/100mmの厚みムラが生じ、またシートの表
面状態も直径100μmのピンホールが1cm2 当たり
3個発生し放熱板としては不適切であったので、その後
の焼成は行わなかった。
The obtained green sheet has a maximum of 8 in the width direction.
Thickness unevenness of 0 μm / 100 mm was generated, and the surface state of the sheet was 100 μm in diameter and three pinholes were generated per 1 cm 2 , which was inappropriate as a heat sink. Therefore, subsequent firing was not performed.

【0026】比較例2 窒化アルミニウムグリーンシートの脱脂を減圧下ではな
く、乾燥空気のみで行ったこと以外は、実施例1と同じ
方法で窒化アルミニウム焼結体を製造した。
Comparative Example 2 An aluminum nitride sintered body was manufactured in the same manner as in Example 1, except that degreasing of the aluminum nitride green sheet was performed not with reduced pressure but with only dry air.

【0027】(1)窒化アルミニウム粉末の粒度(n=
5):粒度分析計(レーザー回折法、N&L社(英国)
製、商品名「マイクロトラックSPA−7997」)に
よる。 (2)窒化アルミニウム粉末の酸素量(n=5):LE
CO社製「TC−136型」O/N同時分析計による。 (3)密度(n=5):アルキメデス法による。 (4)熱伝導率(n=5):熱伝導率測定装置(真空理
工社製「TC−3000」)による。 (5)耐荷重、抗折強度(n=5):JISR1601
に準じ、4mm幅に加工し、3点曲げ法による。 (6)表面粗さRa(n=5):表面粗さ計(ミツトヨ
社製針触式表面粗さ計「サーフテスト301」)によ
る。 (7)絶縁耐圧(n=5):JISC2110に準拠
し、DC500Vで測定。
(1) Particle size of aluminum nitride powder (n =
5): Particle size analyzer (laser diffraction method, N & L (UK)
Manufactured by Microtrac SPA-7997). (2) Oxygen content of aluminum nitride powder (n = 5): LE
Based on CO / TC-136 type O / N simultaneous analyzer. (3) Density (n = 5): by Archimedes' method. (4) Thermal conductivity (n = 5): Measured by a thermal conductivity measuring device ("TC-3000" manufactured by Vacuum Riko Co., Ltd.). (5) Load resistance, bending strength (n = 5): JISR1601
And processed to a width of 4 mm according to the three-point bending method. (6) Surface roughness Ra (n = 5): Measured by a surface roughness meter (Mitutoyo “Surface Test 301”). (7) Dielectric withstand voltage (n = 5): Measured at 500 V DC according to JISC2110.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明の窒化アルミニウム製放熱板は、
厚みが1〜5mmにして高熱伝導性であり、耐荷重、抗
折強度、絶縁性等の信頼性に優れたものである。
The heat sink made of aluminum nitride according to the present invention has the following features.
The thickness is 1 to 5 mm, high thermal conductivity, and excellent in reliability such as load resistance, bending strength, and insulation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 押し出し成型法で成形されたグリ−ンシ
ートの焼結体であって、熱伝導率120W/mK以上、
抗折強度300MPa以上、触針式粗さ計で測定された
平均表面粗さRa0.1〜0.8μm、厚み1〜5mm
の窒化アルミニウム焼結体からなることを特徴とする3
μm以上の表面研磨が施されていない放熱板。
1. A green sheet sintered body formed by an extrusion method, having a thermal conductivity of 120 W / mK or more.
Flexural strength 300 MPa or more, average surface roughness Ra measured by a stylus type roughness meter Ra 0.1 to 0.8 μm, thickness 1 to 5 mm
Characterized by comprising an aluminum nitride sintered body of
A heat sink that is not polished to a surface of μm or more.
JP17711397A 1997-07-02 1997-07-02 Heat sink Expired - Lifetime JP3575955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17711397A JP3575955B2 (en) 1997-07-02 1997-07-02 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17711397A JP3575955B2 (en) 1997-07-02 1997-07-02 Heat sink

Publications (2)

Publication Number Publication Date
JPH1121174A true JPH1121174A (en) 1999-01-26
JP3575955B2 JP3575955B2 (en) 2004-10-13

Family

ID=16025395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17711397A Expired - Lifetime JP3575955B2 (en) 1997-07-02 1997-07-02 Heat sink

Country Status (1)

Country Link
JP (1) JP3575955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900488A1 (en) * 2005-07-04 2008-03-19 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900488A1 (en) * 2005-07-04 2008-03-19 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
EP1900488A4 (en) * 2005-07-04 2011-05-04 Denki Kagaku Kogyo Kk Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
US8268437B2 (en) 2005-07-04 2012-09-18 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof

Also Published As

Publication number Publication date
JP3575955B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP4804343B2 (en) Manufacturing method of ceramic sheet
JP5042829B2 (en) Manufacturing method of ceramic sheet
JP5339214B2 (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
EP4293713A1 (en) Silicon nitride substrate
WO2011155319A1 (en) Aluminium nitride substrate for circuit board and production method thereof
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
JP3575955B2 (en) Heat sink
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP7339980B2 (en) Manufacturing method of silicon nitride sintered body
JP7201734B2 (en) Silicon nitride sintered body
JP7278325B2 (en) Silicon nitride sintered body
JP3403500B2 (en) Method for producing aluminum nitride powder and aluminum nitride sintered body
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
WO2024084631A1 (en) Silicon nitride sintered body
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP3683067B2 (en) Aluminum nitride sintered body
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
JP2013182983A (en) Silicon nitride circuit board and module using the same
WO2022210518A1 (en) Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
JP2003020282A (en) Aluminum nitride sintered compact, production method therefor and its use
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP4520243B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JPH0969594A (en) Silicon nitride heat sink for compression and compression structure parts using it
JP2000238023A (en) Nitride ceramic green sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term