JPH11211665A - Method and material for detection of no2 gas - Google Patents

Method and material for detection of no2 gas

Info

Publication number
JPH11211665A
JPH11211665A JP1047798A JP1047798A JPH11211665A JP H11211665 A JPH11211665 A JP H11211665A JP 1047798 A JP1047798 A JP 1047798A JP 1047798 A JP1047798 A JP 1047798A JP H11211665 A JPH11211665 A JP H11211665A
Authority
JP
Japan
Prior art keywords
gas
porous body
change
fluorescence
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1047798A
Other languages
Japanese (ja)
Other versions
JP3482118B2 (en
Inventor
Takashi Oyama
孝 大山
Toru Tanaka
融 田中
Takayoshi Hayashi
孝好 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP01047798A priority Critical patent/JP3482118B2/en
Publication of JPH11211665A publication Critical patent/JPH11211665A/en
Application granted granted Critical
Publication of JP3482118B2 publication Critical patent/JP3482118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a detecting material which is small, whose sensitivity is high, whose response speed is fast, which can be used repeatedly and which can detect NO2 gas by measuring a change in a reversible fluorescent intensity due to an interaction between the NO2 gas and the detecting material which is adsorbed into pores in a porous body as a transparent matrix adsorbent. SOLUTION: In NO2 gas detecting method, a transparent porous body having a mean pore size of 200 Å or lower is used as a porous body. In addition, an an NO2 gas detecting material, a metal phthalocyanine-based pigment or a rhodamine-based pigment is used. In addition, a detecting material which displays a fluorescent intensity in a visible UV wavelength region of 200 to 2000 nm due to a change in a reversible fluorescent intensity due to an interaction between the NO2 gas detecting material and NO2 gas is adsorbed into pores in the porous body as a transparent matrix adsorbent. Then, the change in the fluorescent intensity caused by a reversible change due to a physical and and chemical interaction between the NO2 gas and the detecting agent adsorbed into the pores in the porous body as the transparent matrix adsorbent is measured, and the NO2 gas is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気中の有害ガス
であるNO2 ガスを吸着させて、濃度を測定するNO2
ガス検出法およびNO2 ガス検出材料に関するものであ
る。
The present invention relates, in adsorbing the NO 2 gas is harmful gases in the air, NO 2 for measuring the concentration
The present invention relates to a gas detection method and a NO 2 gas detection material.

【0002】[0002]

【従来の技術】現在、大気汚染物質による地球環境への
影響が問題とされている。大気汚染物質には、窒素酸化
物(NOx ;NO,NO2 等)、硫黄酸化物、一酸化炭
素、浮遊粒子状物質、光化学オキシダント等がある。日
本ではこれらの汚染物質について環境基準を設定し、各
種排出規制を中心に各種政策を実施した結果、SO2
COなどは排出が改善され、それらの濃度が減少してい
る。しかし、NO2 濃度の年推移はほとんど変化がなく
改善されていない。特に大都市ではNO2 濃度の環境基
準の達成状況が低い。このため、NO2 濃度の測定に関
しては、ガス濃度の分布調査や地球環境影響評価を制度
よく行うために、多地点での環境監視を行う必要があ
る。そのために、安価、小型、且つ使い方が簡便なガス
センサーの開発が望まれている。
2. Description of the Related Art At present, the effect of air pollutants on the global environment is a problem. The air pollutants, nitrogen oxides (NOx; NO, NO 2, etc.), sulfur oxides, carbon monoxide, suspended particulate matter, there is a photochemical oxidants like. In Japan sets the environmental standards for these pollutants, various emission control result of the various policies mainly, such as SO 2 and CO is improved discharged, their concentration is reduced. However, the annual change of the NO 2 concentration has hardly changed and has not been improved. Especially in large cities low achievement of environmental standards NO 2 concentration. Therefore, regarding the measurement of the NO 2 concentration, it is necessary to monitor the environment at multiple points in order to systematically carry out the distribution survey of the gas concentration and the global environmental impact assessment. Therefore, development of a gas sensor that is inexpensive, small, and easy to use is desired.

【0003】現在、大気環境のNOx 濃度を測定してい
る方法には、ザルツマン吸光光度法(文献;B.E.S
altzman,Anal.Chem.,26 194
9−1955(1954))と化学発光法がある(ザル
ツマン吸光光度法と化学発光法の2つはJIS B 7
953に規定)。これらの特徴は、大気中の数〜数10
ppbレベルのNOx 濃度を測定でき、NOx ガスだけ
を選択的に検出できる点である。しかし、問題点として
は装置が大型で価格が高い上にメンテナンスが必要なこ
となどがあげられる。このため現状のNOx 濃度測定装
置では多くの地点で測定することが困難である。
[0003] At present, the method for measuring the NOx concentration in the atmospheric environment includes the Salzman absorption spectrophotometry (reference: BES).
altzman, Anal. Chem. , 26 194
9-1955 (1954)) and a chemiluminescence method (the two methods of the Salzman absorption method and the chemiluminescence method are JIS B7).
953). These features can be attributed to several to several tens of
The point is that the ppb level NOx concentration can be measured and only the NOx gas can be selectively detected. However, the problems are that the device is large, expensive, and requires maintenance. For this reason, it is difficult to measure at many points with the current NOx concentration measuring device.

【0004】一方、実用化されているNOx センサ(文
献;佐竹和子、小林愛、中原毅、竹内隆、化学センサ研
究発表会(1989)、P97−100)はすべて排出
源用のもので、検出限界が大気環境中のNOx 濃度であ
る数10ppbレベルに比べて10ppmと悪く、大気
中のNO2 濃度を測定することは困難である。また、研
究段階のNOx センサでは、酸化物半導体、有機半導体
や固体電解質等を用いて導電率や起電力等で検出する方
法が盛んに研究されている。これらのセンサは検出感度
の面での向上はみられるが、ガス選択性が悪い、あるい
は信頼性に欠けるなどの問題点があり、実用化に至って
いない。
On the other hand, NOx sensors that have been put into practical use (literatures: Kazuko Satake, Ai Kobayashi, Takeshi Nakahara, Takashi Takeuchi, Chemical Sensor Research Conference (1989), P97-100) are all for emission sources, and are used for detection. limit is bad and 10ppm relative to the number 10ppb level is NOx concentration in the air environment, it is difficult to measure the concentration of NO 2 in the atmosphere. As for the NOx sensor in the research stage, a method of detecting with an electric conductivity, an electromotive force or the like using an oxide semiconductor, an organic semiconductor, a solid electrolyte, or the like has been actively studied. Although these sensors have improved detection sensitivity, they have problems such as poor gas selectivity and lack of reliability, and have not been put to practical use.

【0005】以上のことから現在のNOx 濃度測定装置
やNOx センサでは、大気中のサブppmレベルのNO
x 濃度を多くの地点で測定することが難しいのが現状で
ある。
[0005] From the above, the current NOx concentration measuring device and NOx sensor have a sub-ppm level of NO in the atmosphere.
At present, it is difficult to measure x concentration at many points.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、小型で、高感度で、応答速度が
速く、繰り返し使用可能なNO2 ガス検出法およびNO
2 ガス検出材料を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has a small-size, high-sensitivity, high-speed response, and a reusable NO 2 gas detection method and NO.
2. To provide a gas detection material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明のNO2 ガス検出法は、NO2 ガスと透明なマ
トリクス吸着剤である多孔体の孔中に吸着した検知材と
の相互作用による可逆的な蛍光強度の変化を測定するこ
とによりNO2 ガスを検出することを特徴とする。
Means for Solving the Problems To achieve the above object, the method of detecting NO 2 gas according to the present invention is a method of detecting the interaction between NO 2 gas and a sensing material adsorbed in the pores of a porous material which is a transparent matrix adsorbent. NO 2 gas is detected by measuring a reversible change in fluorescence intensity due to the action.

【0008】また本発明は、上記NO2 ガス検出法にお
いて、多孔体として、平均孔径が200オングストロー
ム以下の透明な多孔体を用いることを特徴とする。また
本発明は、上記NO2 ガス検出法において、検知材とし
て、可視UV波長領域に吸収、蛍光をもつ金属フタロシ
アニン系色素もしくはローダミン系色素を用いることを
特徴とする。
Further, the present invention is characterized in that in the above-mentioned NO 2 gas detection method, a transparent porous body having an average pore diameter of 200 Å or less is used as the porous body. Further, the present invention is characterized in that in the NO 2 gas detection method, a metal phthalocyanine dye or a rhodamine dye having absorption and fluorescence in a visible UV wavelength region is used as a detection material.

【0009】また本発明のNO2 ガス検出材料は、透明
なマトリクスである多孔体の孔中にNO2 ガスとの相互
作用による可逆的な蛍光強度の変化に伴い、200〜2
000nmの可視UV波長領域で蛍光変化を示す検知材
が吸着されていることを特徴とするものである。
Further, the NO 2 gas detecting material of the present invention has a structure in which the reversible change in fluorescence intensity due to the interaction with NO 2 gas is caused in the pores of the porous body which is a transparent matrix.
A detection material exhibiting a change in fluorescence in the visible UV wavelength region of 000 nm is adsorbed.

【0010】また本発明は、上記NO2 ガス検出材料に
おいて、多孔体の平均孔径が200オングストローム以
下の透明な多孔体であることを特徴とするものである。
また本発明は、上記NO2 ガス検出材料において、検知
材が200〜2000nmの可視UV波長領域に吸収、
蛍光をもつ金属フタロシアニン系色素もしくはローダミ
ン系色素であることを特徴とするものである。
The present invention is also characterized in that in the NO 2 gas detection material, the porous body is a transparent porous body having an average pore diameter of 200 Å or less.
Further, the present invention provides the NO 2 gas detection material, wherein the detection material absorbs in a visible UV wavelength region of 200 to 2000 nm,
It is a metal phthalocyanine dye or rhodamine dye having fluorescence.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。本発明は、NO2 ガスと透
明なマトリクス吸着剤である多孔体の孔中に吸着した検
知材との物理的、化学的な相互作用によって生ずる可逆
変化に起因する蛍光強度の変化を測定することでNO2
ガスを検出することを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is to measure a change in fluorescence intensity caused by a reversible change caused by a physical or chemical interaction between a NO 2 gas and a sensing material adsorbed in pores of a porous body which is a transparent matrix adsorbent. And NO 2
It is characterized by detecting gas.

【0012】多孔体の平均孔径と可視UV波長領域(2
00〜2000nm)での透過スペクトルを測定した結
果、平均孔径200オングストローム以下ではほとんど
スペクトル変化がなかったが、それ以上の孔径のもので
は可視領域(350〜800nm)で急激な透過率の減
少が観察された。従って、本発明で用いる多孔体の平均
孔径は200オングストローム以下で、200〜200
0nmの可視UV波長領域で透明な多孔体を使用する。
多孔体の比表面積は1g当たり100m2 以上である。
例えば、ガラス多孔体または有機高分子多孔体を用い
る。なお、この明細書における多孔体の形状としては、
薄膜、バルク、ファイバ(コア、及びクラッド)、光導
波路をはじめ透過で蛍光測定が可能な形状のものをすべ
てを含む。
The average pore size of the porous body and the visible UV wavelength region (2
As a result of measuring a transmission spectrum at a wavelength of from 2000 to 2000 nm, there was almost no change in spectrum at an average pore diameter of 200 Å or less, but a sharp decrease in transmittance was observed in a visible region (350 to 800 nm) with an average pore diameter of 200 Å or more. Was done. Therefore, the average pore diameter of the porous material used in the present invention is 200 Å or less, and
A porous body transparent in the visible UV wavelength region of 0 nm is used.
The specific surface area of the porous body is 100 m 2 or more per gram.
For example, a glass porous body or an organic polymer porous body is used. In addition, as the shape of the porous body in this specification,
Including thin films, bulks, fibers (cores and claddings), optical waveguides, and all other shapes that allow fluorescence measurement through transmission.

【0013】検知材として、金属フタロシアニン系色素
およびローダミン系色素を含む多孔体からなることを特
徴とする。検知材を多孔体の孔中で導入する方法とし
て、検知材を単独もしくは他の化合物と混合して溶液と
して多孔体に含浸させて孔中に導入する方法、検知材を
単独でもしくは他の化合物と混合して溶融して孔中に導
入する方法、および検知材を単独でもしくは他の化合物
と混合してゾル−ゲル法により多孔体に作製する際(ス
ピンコート、ディップコート等)に孔中に導入する方法
がある。
[0013] The detection material is characterized by comprising a porous material containing a metal phthalocyanine dye and a rhodamine dye. As a method of introducing the detection material into the pores of the porous material, a method of impregnating the porous material as a solution by mixing the detection material alone or with another compound and introducing the detection material into the pores, the detection material alone or another compound And the method of mixing and melting into a hole and introducing the detecting material alone or mixed with another compound into a porous body by a sol-gel method (spin coating, dip coating, etc.). There is a method to introduce.

【0014】本発明では吸着剤として多孔体を用いるこ
とにより、吸着面積を増大し、感度を増大させることが
できる。それに伴い、小型なNO2 検出用試験片等での
サンプリングが可能となる。
In the present invention, by using a porous material as the adsorbent, the adsorption area can be increased and the sensitivity can be increased. Accordingly, sampling with a small NO 2 detection test piece or the like becomes possible.

【0015】本発明における金属フタロシアニン系色
素、ローダミン系色素を含む多孔体は、NO2 ガスの存
在により、可逆的に蛍光強度が変化する。したがって、
蛍光強度の変化を測定すれば、NO2 ガスを検知し、繰
り返しNO2 濃度を測定することができる。
The porous body containing the metal phthalocyanine dye and the rhodamine dye according to the present invention reversibly changes in fluorescence intensity due to the presence of NO 2 gas. Therefore,
If the change in the fluorescence intensity is measured, the NO 2 gas can be detected, and the NO 2 concentration can be repeatedly measured.

【0016】[0016]

【実施例】以下、本発明の実施例について具体的に説明
する。 [実施例1]平均孔径40オングストローム、サイズ8
mm×8mm×1mmtの多孔質ガラスチップを亜鉛フ
タロシアニン(以下、ZnPcという)の1.5×10
-5mol/l THF溶液に1時間含浸し、窒素気流下
で乾燥させることにより試料を作製した。使用した多孔
質ガラスの可視・UV透過スペクトルを図1(スペクト
ル波長範囲:200〜2000nm)に示す。多孔質ガ
ラスの透過スペクトルは、1350nm付近と1900
nm付近に水の吸収ピークがみられ、この吸収は湿度お
よび放置時間により変化した。また、350nm以下に
ガラス自体の吸収あり、このガラスの有効な測定波長範
囲は350〜1000nmと判断した。
Embodiments of the present invention will be specifically described below. [Example 1] Average pore diameter 40 Å, size 8
mm × 8 mm × 1 mmt porous glass chips were coated with zinc phthalocyanine (hereinafter referred to as ZnPc) at 1.5 × 10
A sample was prepared by impregnating in a -5 mol / l THF solution for 1 hour and drying under a nitrogen stream. The visible / UV transmission spectrum of the used porous glass is shown in FIG. 1 (spectral wavelength range: 200 to 2000 nm). The transmission spectra of the porous glass were around 1350 nm and 1900 nm.
An absorption peak of water was observed around nm, and this absorption changed with humidity and standing time. In addition, the glass itself absorbs at 350 nm or less, and the effective measurement wavelength range of this glass was determined to be 350 to 1000 nm.

【0017】多孔質ガラスにZnPcを導入した試料の
吸収スペクトルを図2に、蛍光スペクトルを図3に示
す。この測定により、試料の最大吸収波長は680n
m、極大蛍光波長は686nmで、可視UV波長領域に
吸収、蛍光をもつことが分かった。
FIG. 2 shows an absorption spectrum of a sample in which ZnPc is introduced into porous glass, and FIG. 3 shows a fluorescence spectrum. By this measurement, the maximum absorption wavelength of the sample was 680 n
m, the maximum fluorescence wavelength was 686 nm, indicating absorption and fluorescence in the visible UV wavelength region.

【0018】この試料に12.3ppmのNO2 ガスを
暴露したときの蛍光強度の時間変化を図4に示す。1
2.3ppm NO2 ガスを試料にさらすと、時間の経
過とともに蛍光強度が減少した。また、NO2 ガスをさ
らすのをやめ、N2 雰囲気中に放置すると蛍光強度が徐
々に増加し、NO2 ガスをさらす前の蛍光強度まで回復
した。このときの応答時間は100秒、回復時間150
0秒であった。NO2 ガス暴露前と回復後のZnPcの
蛍光スペクトルを図5に示す。図中、11はNO2 ガス
暴露前のZnPcの蛍光スペクトル、12はNO2 ガス
暴露後回復させたZnPcの蛍光スペクトルである。図
5の結果から、NO2 ガスに暴露する前と暴露後回復さ
せた試料の蛍光スペクトルは変化がなく、繰り返し測定
が可能であることが明らかになった。
FIG. 4 shows the time change of the fluorescence intensity when this sample was exposed to 12.3 ppm of NO 2 gas. 1
Exposure of the sample to 2.3 ppm NO 2 gas reduced the fluorescence intensity over time. When the exposure to the NO 2 gas was stopped and the substrate was left in an N 2 atmosphere, the fluorescence intensity gradually increased and recovered to the fluorescence intensity before the NO 2 gas was exposed. The response time at this time is 100 seconds, and the recovery time is 150
It was 0 seconds. FIG. 5 shows the fluorescence spectra of ZnPc before the NO 2 gas exposure and after the recovery. In the figure, 11 is the fluorescence spectrum of ZnPc before NO 2 gas exposure, and 12 is the fluorescence spectrum of ZnPc recovered after exposure to NO 2 gas. From the results in FIG. 5, it was clarified that the fluorescence spectra of the samples recovered before and after the exposure to the NO 2 gas did not change, and repeated measurement was possible.

【0019】[実施例2]実施例1と同じ多孔質ガラス
チップにローダミン(Rhodamine)Bを導入し
た例を示す。試料は、ローダミンBの1.5×10-5
ol/lエタノール溶液に含浸して作製した。こうして
得られた試料の吸収スペクトルを図6に、蛍光スペクト
ルを図7に示す。試料の最大吸収波長は560nm、極
大蛍光波長は580nmで、可視UV波長領域に吸収、
蛍光を持つことが分かった。
[Example 2] An example in which Rhodamine B is introduced into the same porous glass chip as in Example 1 will be described. The sample was 1.5 × 10 −5 m of Rhodamine B.
ol / l ethanol solution. FIG. 6 shows the absorption spectrum of the sample thus obtained, and FIG. 7 shows the fluorescence spectrum thereof. The sample has a maximum absorption wavelength of 560 nm and a maximum fluorescence wavelength of 580 nm, and absorbs in the visible UV wavelength range.
It turned out to have fluorescence.

【0020】この試料にNO2 ガスを実施例1のように
暴露すると蛍光強度が減少した。このときの、蛍光強度
の変化量(F0 /F)をNO2 濃度に対してプロットし
た図を図8に示す。ここでF0 は暴露前の蛍光強度、F
は最も強度が減少した時の蛍光強度である。蛍光強度の
変化量とNO2 濃度の関係は、線形性があり、サブpp
mレベルのNO2 濃度が検出可能であることがわかっ
た。
When this sample was exposed to NO 2 gas as in Example 1, the fluorescence intensity decreased. FIG. 8 shows a plot of the change in the fluorescence intensity (F 0 / F) at this time with respect to the NO 2 concentration. Where F 0 is the fluorescence intensity before exposure, F
Is the fluorescence intensity when the intensity decreases most. The relationship between the change in the fluorescence intensity and the NO 2 concentration is linear,
It was found that m-level NO 2 concentration was detectable.

【0021】[0021]

【発明の効果】以上、説明したように、本発明のNO2
ガス検出材料は多孔体の孔中に安定な金属フタロシアニ
ン系色素、ローダミン系色素を導入していることから、
NO2ガスとの相互作用による可逆的な蛍光強度の変化
を利用して、簡単にガス検知を行うことができる。ま
た、この可逆的な蛍光強度の変化を利用して、NO2
スを定量的に検出することができる。
As described above, as described above, the NO 2 of the present invention is used.
Since the gas detection material introduces a stable metal phthalocyanine dye and rhodamine dye into the pores of the porous body,
Gas detection can be easily performed using a reversible change in fluorescence intensity due to interaction with NO 2 gas. Further, the NO 2 gas can be quantitatively detected by utilizing the reversible change in the fluorescence intensity.

【0022】本発明のNO2 ガス検知材料は、光学感
度、安定性、応答速度に優れている。また、製作容易
で、コスト面でも有利であり、非常に広範な応用が可能
である。さらに、光を利用しているため、電気的、磁気
的妨害に対して抵抗性を有している。
The NO 2 gas detecting material of the present invention is excellent in optical sensitivity, stability, and response speed. Further, it is easy to manufacture, is advantageous in terms of cost, and can be used in a very wide range of applications. Furthermore, since light is used, it has resistance to electric and magnetic interference.

【0023】また、本発明において使用する金属フタロ
シアニン系色素は、680nm付近、ローダミン系色素
は560nm付近に吸収を有するため、本発明において
は光源として発光ダイオードを、受光素子としてフォト
ダイオードを利用することができる。したがって、上記
ガス検出材料を用いた本発明のガス検出法は、小型化、
低コスト化の点で有利なものである。
Further, the metal phthalocyanine dye used in the present invention has an absorption near 680 nm and the rhodamine dye has an absorption near 560 nm. Can be. Therefore, the gas detection method of the present invention using the above gas detection material is downsized,
This is advantageous in terms of cost reduction.

【0024】さらに、本発明のNO2 ガス検出法は、ガ
ス種に選択的に反応する検知材の選択を組み合わせるこ
とによっても他のガス種への応用が可能なことは自明で
ある。
Further, it is obvious that the NO 2 gas detection method of the present invention can be applied to other gas types by combining the selection of a detection material which selectively reacts with the gas type.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多孔質ガラスの透過スペクトルの
一例を示す特性図である。
FIG. 1 is a characteristic diagram showing an example of a transmission spectrum of a porous glass according to the present invention.

【図2】本発明に係る多孔質ガラスにZnPcを導入し
た試料の吸収スペクトルの一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of an absorption spectrum of a sample in which ZnPc is introduced into the porous glass according to the present invention.

【図3】本発明に係る多孔質ガラスにZnPcを導入し
た試料の蛍光スペクトルの一例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of a fluorescence spectrum of a sample in which ZnPc is introduced into the porous glass according to the present invention.

【図4】本発明に係る多孔質ガラスにZnPcを導入し
た試料に12.3ppm NO2 ガスをさらしたときの
蛍光強度の時間変化の一例を示す特性図である。
FIG. 4 is a characteristic diagram showing an example of a temporal change in fluorescence intensity when a sample obtained by introducing ZnPc into a porous glass according to the present invention is exposed to 12.3 ppm NO 2 gas.

【図5】本発明に係る多孔質ガラスにZnPcを導入し
た試料に12.3ppm NO2 ガスをさらした前後の
蛍光スペクトルの一例を示す特性図である。
FIG. 5 is a characteristic diagram showing an example of a fluorescence spectrum before and after exposing a sample obtained by introducing ZnPc to the porous glass according to the present invention to 12.3 ppm NO 2 gas.

【図6】本発明に係る多孔質ガラスにローダミン(Rh
odamine)Bを導入した試料の吸収スペクトルの
一例を示す特性図である。
FIG. 6 shows that the porous glass according to the present invention has rhodamine (Rh).
FIG. 4 is a characteristic diagram showing an example of an absorption spectrum of a sample into which (damine) B is introduced.

【図7】本発明に係る多孔質ガラスにローダミン(Rh
odamine)Bを導入した試料の蛍光スペクトルの
一例を示す特性図である。
FIG. 7 shows an example of a porous glass according to the present invention having rhodamine (Rh).
FIG. 4 is a characteristic diagram showing an example of a fluorescence spectrum of a sample into which (damine) B is introduced.

【図8】本発明に係る多孔質ガラスにローダミン(Rh
odamine)Bを導入した試料について、NO2
スを暴露したときの蛍光強度の変化量のNO2 濃度依存
性の一例を示す特性図である。
FIG. 8 shows a method of forming a porous glass according to the present invention on rhodamine (Rh).
FIG. 4 is a characteristic diagram showing an example of the dependence of the amount of change in the fluorescence intensity on the NO 2 concentration when a sample into which Odamine) B is introduced is exposed to NO 2 gas.

【符号の説明】[Explanation of symbols]

11 NO2 ガス暴露前のZnPcの蛍光スペクトル 12 NO2 ガス暴露後回復させたZnPcの蛍光スペ
クトル
11 Fluorescence spectrum of ZnPc before exposure to NO 2 gas 12 Fluorescence spectrum of ZnPc recovered after exposure to NO 2 gas

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 NO2 ガスと透明なマトリクス吸着剤で
ある多孔体の孔中に吸着した検知材との相互作用による
可逆的な蛍光強度の変化を測定することによりNO2
スを検出することを特徴とするNO2 ガス検出法。
1. A detecting an NO 2 gas by measuring a change in the reversible fluorescence intensity due to interaction with the sensing material adsorbed in the pores of the porous body is NO 2 gas and a transparent matrix adsorbent NO 2 gas detection method characterized by the above-mentioned.
【請求項2】 多孔体として、平均孔径が200オング
ストローム以下の透明な多孔体を用いることを特徴とす
る請求項1記載のNO2 ガス検出法。
2. The method for detecting NO 2 gas according to claim 1, wherein a transparent porous body having an average pore diameter of 200 Å or less is used as the porous body.
【請求項3】 検知材として、可視UV波長領域に吸
収、蛍光をもつ金属フタロシアニン系色素もしくはロー
ダミン系色素を用いることを特徴とする請求項1記載の
NO2 ガス検出法。
3. The NO 2 gas detection method according to claim 1, wherein a metal phthalocyanine dye or a rhodamine dye having absorption and fluorescence in a visible UV wavelength region is used as the detection material.
【請求項4】 透明なマトリクスである多孔体の孔中に
NO2 ガスとの相互作用による可逆的な蛍光強度の変化
に伴い、200〜2000nmの可視UV波長領域で蛍
光変化を示す検知材が吸着されていることを特徴とする
NO2 ガス検出材料。
4. A detecting material which exhibits fluorescence change in a visible UV wavelength region of 200 to 2000 nm in accordance with a reversible change in fluorescence intensity due to interaction with NO 2 gas in pores of a porous body which is a transparent matrix. A NO 2 gas detection material which is adsorbed.
【請求項5】 多孔体の平均孔径が200オングストロ
ーム以下の透明な多孔体であることを特徴とする請求項
4記載のNO2 ガス検出材料。
5. The NO 2 gas detection material according to claim 4, wherein the porous body is a transparent porous body having an average pore diameter of 200 Å or less.
【請求項6】 検知材が200〜2000nmの可視U
V波長領域に吸収、蛍光をもつ金属フタロシアニン系色
素もしくはローダミン系色素であることを特徴とする請
求項4記載のNO2 ガス検出材料。
6. The detection material has a visible U of 200 to 2000 nm.
Absorption in V wavelength region, NO 2 gas detection material according to claim 4, wherein is a metal phthalocyanine dye or rhodamine dye having a fluorescence.
JP01047798A 1998-01-22 1998-01-22 NO 2 gas detection method and NO 2 gas detection material Expired - Fee Related JP3482118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01047798A JP3482118B2 (en) 1998-01-22 1998-01-22 NO 2 gas detection method and NO 2 gas detection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01047798A JP3482118B2 (en) 1998-01-22 1998-01-22 NO 2 gas detection method and NO 2 gas detection material

Publications (2)

Publication Number Publication Date
JPH11211665A true JPH11211665A (en) 1999-08-06
JP3482118B2 JP3482118B2 (en) 2003-12-22

Family

ID=11751244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01047798A Expired - Fee Related JP3482118B2 (en) 1998-01-22 1998-01-22 NO 2 gas detection method and NO 2 gas detection material

Country Status (1)

Country Link
JP (1) JP3482118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175268A (en) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Gas measuring instrument and gas measuring method
JP2010261811A (en) * 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Gas measuring apparatus and method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175268A (en) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Gas measuring instrument and gas measuring method
JP2010261811A (en) * 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Gas measuring apparatus and method for the same

Also Published As

Publication number Publication date
JP3482118B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
US7615192B2 (en) Ozone gas measurement apparatus
US5255067A (en) Substrate and apparatus for surface enhanced Raman spectroscopy
US4772560A (en) Laminated wafer for sensing and monitoring exposure to gases
Helaleh et al. Development of passive sampler technique for ozone monitoring. Estimation of indoor and outdoor ozone concentration
US20040174520A1 (en) Low resolution surface enhanced raman spectroscopy on sol-gel substrates
da Silveira Petruci et al. Analytical methods applied for ozone gas detection: A review
US20130111974A1 (en) Gas sensor and method for producing the same
Kleindienst et al. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants
CN112129723A (en) Method for integrating metamaterial absorber and gas selective adsorption film for gas sensing and sensor
Raimundo Jr Evaluation of Nafion–Crystal Violet films for the construction of an optical relative humidity sensor
Abroskin et al. Thermal lens spectrometry in trace metal analysis
Sazhin et al. Sensor methods of ammonia inspection
Ohira et al. Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity
Sekine et al. Development of highly sensitive passive sampler for nitrogen dioxide using porous polyethylene membrane filter as turbulence limiting diffuser
Fernández-Sánchez et al. Novel optical NO2-selective sensor based on phthalocyaninato-iron (II) incorporated into a nanostructured matrix
Maruo et al. Development and evaluation of ozone detection paper
JPH11211665A (en) Method and material for detection of no2 gas
Baldini et al. Reversible and selective detection of NO2 by means of optical fibres
Fan et al. A new cataluminescence-based gas sensor for simultaneously discriminating benzene and ammonia
JP3700877B2 (en) Nitrogen dioxide gas detection method and detection material
De Santis et al. Development and field evaluation of a new diffusive sampler for hydrogen sulphide in the ambient air
CN108387526B (en) Photoelectrochemical method for detecting nitrogen dioxide with high sensitivity
US5644116A (en) Carbon monoxide sensor and method of detecting carbon monoxide
WO1999058960A1 (en) High-sensitivity luminescence quenching oxygen sensitive material
Yim et al. Badge-type diffusive sampler using 3-methyl-2-benzothiazolinone hydrazone for measuring formaldehyde in indoor air

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071010

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081010

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091010

LAPS Cancellation because of no payment of annual fees