JPH11210525A - Exhaust emission purification device for internal combustion engine - Google Patents

Exhaust emission purification device for internal combustion engine

Info

Publication number
JPH11210525A
JPH11210525A JP10014104A JP1410498A JPH11210525A JP H11210525 A JPH11210525 A JP H11210525A JP 10014104 A JP10014104 A JP 10014104A JP 1410498 A JP1410498 A JP 1410498A JP H11210525 A JPH11210525 A JP H11210525A
Authority
JP
Japan
Prior art keywords
nox
air
fuel ratio
rich
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10014104A
Other languages
Japanese (ja)
Other versions
JP3671647B2 (en
Inventor
Iwao Yoshida
岩雄 吉田
Koji Ishihara
康二 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP01410498A priority Critical patent/JP3671647B2/en
Publication of JPH11210525A publication Critical patent/JPH11210525A/en
Application granted granted Critical
Publication of JP3671647B2 publication Critical patent/JP3671647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To improve fuel consumption while maintaining good NOx purifying efficiency by gradually varying an air-fuel ratio according to a NOx release characteristic in a NOx occlusion catalyst in a rich spike time. SOLUTION: When an internal combustion is operated under layer combustion based on a lean air-fuel ratio, NOx in the exhaust is adsorbed and retained in a NOx occlusion catalyst 7 so as to be prevented from being released to the outside. In this process, an adsorption retaining quantity in the NOx occlusion catalyst 7 is estimated by means of a controller 10 from the integrated value of the NOx discharged quantity, and if it is determined that the adsorption retaining quantity reaches the predetermined value around the limit retaining ability, a fuel increment quantity is corrected, and rich spike control for the air-fuel ratio is carried out. In this way, a reduction environment is obtained, and NOx adsorbed and retained in the catalyst 7 is released and reduced. An initial value of the air-fuel ratio in the rich spike control time is maintained at a fixed value set according to the NOx adsorption retaining quantity and the like, and after a lapse of a predetermined time, fuel increment is controlled so as to be reduced in compliance with reduction of the NOx release quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリーン空燃比による
運転時に排気中のNOxを吸着保持し、ストイキもしく
はリッチ空燃比に切換わったときにNOxを脱離還元す
るNOx吸蔵触媒を備えた内燃機関の排気浄化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine provided with a NOx storage catalyst that adsorbs and holds NOx in exhaust gas during operation at a lean air-fuel ratio and desorbs and reduces NOx when switching to a stoichiometric or rich air-fuel ratio. An exhaust purification device.

【0002】[0002]

【従来の技術】特開平6−10725号公報にもあるよ
うに、リーン空燃比により運転される内燃機関の排気中
に含まれるNOxを低減するために、NOx吸蔵触媒を
排気系に設置することが知られている。
2. Description of the Related Art As disclosed in JP-A-6-10725, a NOx storage catalyst is provided in an exhaust system in order to reduce NOx contained in exhaust gas of an internal combustion engine operated at a lean air-fuel ratio. It has been known.

【0003】NOx吸蔵触媒は、リーン空燃比での運転
中は排気中に含まれるNOxを吸着保持し、空燃比がリ
ッチに切換えられたときに、吸着保持していたNOxを
脱離、還元するもので、従来の三元触媒が理論空燃比の
ときにのみNOxの還元作用を発揮するのと異なり、リ
ーン空燃比であってもNOxの外部への放出が防げると
いう利点がある。
The NOx storage catalyst adsorbs and holds NOx contained in exhaust gas during operation at a lean air-fuel ratio, and desorbs and reduces NOx adsorbed and held when the air-fuel ratio is switched to rich. However, unlike the conventional three-way catalyst which exerts the NOx reducing action only at the stoichiometric air-fuel ratio, there is an advantage that the emission of NOx to the outside can be prevented even at the lean air-fuel ratio.

【0004】NOx吸蔵触媒では、NOxの吸着保持量
が一定の飽和値に達するとそのままNOxが排出されし
まうため、飽和状態の少し前に空燃比を一時的にリッチ
に切換え(これをリッチスパイクという)、保持されて
いるNOxの脱離還元を行い、触媒を再生する必要があ
る。ただし、このリッチスパイクは内燃機関にとっては
空燃比が不必要に濃くなるだけのため、その分の燃費の
悪化は避けられず、したがってNOx吸蔵触媒の再生時
には空燃比を過剰に濃くすることなく、効率のよいリッ
チスパイクを行わないといけない。
In the NOx storage catalyst, when the amount of NOx adsorbed and held reaches a certain saturated value, NOx is directly discharged. Therefore, the air-fuel ratio is temporarily switched to rich immediately before the saturated state (this is called a rich spike). ), It is necessary to carry out desorption reduction of the retained NOx to regenerate the catalyst. However, since the rich spike only unnecessarily increases the air-fuel ratio for the internal combustion engine, deterioration of fuel efficiency is unavoidable.Therefore, when the NOx storage catalyst is regenerated, the air-fuel ratio is not excessively increased. You have to do an efficient rich spike.

【0005】上記した従来例では、NOx吸蔵触媒のN
Oxの脱離反応速度が触媒が高温のときに速く、低温の
ときに遅いことに着目して、触媒温度に対応してリッチ
スパイクの濃度(空燃比)とその維持時間を制御してい
る。
[0005] In the above-mentioned conventional example, the Nx
Focusing on the fact that the rate of Ox desorption reaction is high when the temperature of the catalyst is high and low when the temperature of the catalyst is low, the concentration of the rich spike (air-fuel ratio) and the maintenance time thereof are controlled in accordance with the catalyst temperature.

【0006】[0006]

【発明が解決しようとする課題】ところで、NOx吸蔵
触媒における再生時のNOxの離脱特性をみると、リッ
チスパイクの直後に最大値をとるが、それ以降は徐々に
減少していくことが分かっている。NOxの脱離反応に
は、理論空燃比よりも濃くすることで発生する排気中の
余剰のHC、COなどが用いられる。しかし、反応直後
は供給されたHCのほぼ全量がNOxの脱離に供された
としても、それ以降はNOxの脱離量が減少するのにし
たがい、供給されたHCは余剰となってしまうのであ
り、この場合には、無駄にHCが供給されたことにな
り、その分だけ燃費が悪化することになる。
Looking at the NOx desorption characteristics of the NOx storage catalyst at the time of regeneration, it is found that the maximum value is obtained immediately after the rich spike, but thereafter it gradually decreases. I have. In the NOx desorption reaction, excess HC, CO, and the like in the exhaust gas generated by making the concentration higher than the stoichiometric air-fuel ratio are used. However, immediately after the reaction, even if almost all of the supplied HC is used for the desorption of NOx, thereafter, as the desorption amount of NOx decreases, the supplied HC becomes excessive. In this case, in this case, the HC is supplied in vain, and the fuel efficiency deteriorates accordingly.

【0007】しかし、従来のリッチスパイク制御による
と、触媒温度が高いときには空燃比を濃く、維持時間を
短く、また触媒温度が低いときは、空燃比を薄く(ただ
し理論空燃比よりは濃い)維持時間を長くしているが、
この期間中の空燃比はそれぞれ一定値に維持しているた
め、反応直後には過不足なくHCを供給できても、その
後、反応が完了するまでの大半の期間はHCが過剰に供
給されることになり、これが燃費を悪化させる原因とな
っている。
However, according to the conventional rich spike control, when the catalyst temperature is high, the air-fuel ratio is high and the maintenance time is short, and when the catalyst temperature is low, the air-fuel ratio is low (but higher than the stoichiometric air-fuel ratio). Although the time is long,
Since the air-fuel ratio during this period is maintained at a constant value, even if HC can be supplied immediately after the reaction without excess or deficiency, HC is excessively supplied for most of the period until the reaction is completed thereafter. As a result, this causes the fuel efficiency to deteriorate.

【0008】本発明はこのような問題を解決するために
提案されたもので、リッチスパイク時にNOx吸蔵触媒
におけるNOx脱離特性に合わせて空燃比を徐々に変化
させることにより、NOxの浄化効率を良好に維持しつ
つ燃費の向上を図ることを目的とする。
The present invention has been proposed in order to solve such a problem, and the purification efficiency of NOx is improved by gradually changing the air-fuel ratio in accordance with the NOx desorption characteristics of the NOx storage catalyst during a rich spike. The aim is to improve fuel economy while maintaining good performance.

【0009】[0009]

【課題を解決するための手段】第1の発明は、リーン空
燃比運転中に排気中のNOxを吸着保持するとともにリ
ッチ空燃比運転中に吸着保持したNOxを脱離、還元す
るNOx吸蔵触媒を備えた内燃機関において、リーン空
燃比運転中にNOx吸蔵触媒でのNOxの吸着保持量を
推定する手段と、この吸着保持量が所定値に達したとき
に空燃比を一時的にリッチ化してNOxを脱離還元させ
るリッチ制御手段とを備え、このリッチ制御手段は、リ
ッチ制御開始から所定の時間はほぼ一定のリッチ空燃比
の初期値を維持し、その後にNOxの脱離特性に応じて
空燃比の濃化度合いを徐々に減らしていくように制御す
る。
A first aspect of the present invention is a NOx storage catalyst that adsorbs and holds NOx in exhaust gas during a lean air-fuel ratio operation and desorbs and reduces NOx adsorbed and held during a rich air-fuel ratio operation. A means for estimating the amount of NOx adsorbed and held by the NOx storage catalyst during the lean air-fuel ratio operation, and temporarily enriching the air-fuel ratio when the adsorbed amount reaches a predetermined value to obtain NOx Rich control means for desorbing and reducing NOx. The rich control means maintains a substantially constant initial value of the rich air-fuel ratio for a predetermined time from the start of the rich control, and thereafter sets the air-fuel ratio according to the NOx desorption characteristics. Control is performed so that the degree of concentration of the fuel ratio is gradually reduced.

【0010】第2の発明は、第1の発明において、前記
リッチ制御手段は前記空燃比の濃化度合いを二次関数的
または指数関数的に徐々に減らしていく。
[0010] In a second aspect based on the first aspect, the rich control means gradually reduces the degree of enrichment of the air-fuel ratio in a quadratic or exponential manner.

【0011】第3の発明は、第1または第2の発明にお
いて、前記リッチ制御手段は前記リッチ空燃比の初期値
をリッチ制御開始時のNOx吸着保持量と吸入空気量に
応じて決定する。
In a third aspect based on the first or second aspect, the rich control means determines the initial value of the rich air-fuel ratio in accordance with the NOx adsorption holding amount and the intake air amount at the start of the rich control.

【0012】第4の発明は、第1〜第3の発明におい
て、前記リッチ制御手段は前記リッチ空燃比の初期値を
リッチ制御開始時のNOx吸蔵触媒の温度を代表する温
度に応じて補正する。
In a fourth aspect based on the first to third aspects, the rich control means corrects an initial value of the rich air-fuel ratio in accordance with a temperature representative of the temperature of the NOx storage catalyst at the start of the rich control. .

【0013】第5の発明は、第1〜第4の発明におい
て、前記リッチ制御手段は前記リッチ空燃比の初期値を
リッチ制御開始時のNOx吸蔵触媒の劣化度合いに応じ
て補正する。
In a fifth aspect based on the first to fourth aspects, the rich control means corrects an initial value of the rich air-fuel ratio in accordance with the degree of deterioration of the NOx storage catalyst at the time of starting rich control.

【0014】第6の発明は、第1〜第5の発明におい
て、前記リッチ制御手段はNOx吸蔵触媒の下流側のN
Ox濃度に応じて前記空燃比の濃化度合いを減少する。
[0014] In a sixth aspect based on the first to fifth aspects, the rich control means is configured to control N on the downstream side of the NOx storage catalyst.
The degree of enrichment of the air-fuel ratio is reduced according to the Ox concentration.

【0015】[0015]

【発明の作用・効果】第1、第2の発明において、NO
x吸蔵触媒がリーン運転中に吸着保持したNOxは空燃
比をリッチ側に切り替えることにより、触媒から脱離
し、還元される。このNOx吸蔵触媒における脱離、還
元反応中は、空燃比のリッチ相当分のHCなどがNOx
の脱離還元に用いられる。NOxの脱離、還元量は、再
生開始時に最大値を取った後、順次減少していく。リッ
チ制御手段は、再生初期に空燃比を所定の状態まで濃化
するが、所定の時間の経過後は、NOxの脱離特性に応
じて、その濃化度合いを徐々に減少させていくため、N
Oxの脱離還元に必要なHC量が過不足なく供給される
ことになり、再生時のNOxの脱離が不完全になった
り、あるいはHCの供給過剰により燃費が悪化したりす
ることなどが、確実に回避できる。
In the first and second aspects of the invention, NO
NOx adsorbed and held by the x storage catalyst during the lean operation is desorbed from the catalyst and reduced by switching the air-fuel ratio to the rich side. During the desorption and reduction reactions of the NOx storage catalyst, HC or the like corresponding to the rich air-fuel ratio becomes NOx.
Used for the elimination reduction of The amount of desorption and reduction of NOx takes the maximum value at the start of the regeneration and then gradually decreases. The rich control means enriches the air-fuel ratio to a predetermined state at the beginning of regeneration, but after a predetermined time has elapsed, the degree of enrichment is gradually reduced according to the NOx desorption characteristics. N
The amount of HC required for the desorption reduction of Ox will be supplied without excess and deficiency, and the desorption of NOx at the time of regeneration will be incomplete, or the fuel consumption will deteriorate due to the excessive supply of HC. Can be avoided reliably.

【0016】第3の発明において、リッチ空燃比の初期
値は、そのときのNOxの保持量に応じて決まるので、
適正量のHCを供給できる。また、空燃比が同じでも吸
入空気量に応じてHCの供給量(絶対量)が変化し、例
えば吸入空気量の大きいときほどHCの供給量が増え
る。したがって、吸入空気量が多くなるほど空燃比の濃
化初期値を下げることにより、最適な再生制御が行え
る。
In the third aspect, the initial value of the rich air-fuel ratio is determined according to the NOx holding amount at that time.
An appropriate amount of HC can be supplied. Further, even if the air-fuel ratio is the same, the supply amount (absolute amount) of HC changes in accordance with the intake air amount. For example, the supply amount of HC increases as the intake air amount increases. Therefore, optimal regeneration control can be performed by lowering the air-fuel ratio enrichment initial value as the intake air amount increases.

【0017】第4の発明において、リッチ空燃比の初期
値はNOx吸蔵触媒の温度に応じて補正される。触媒の
NOx脱離反応に必要な空燃比は温度が高いほど濃く、
また維持時間も短くなる。そこで、このように触媒温度
に応じて空燃比初期値を設定することにより、最適な再
生が行える。
In the fourth aspect, the initial value of the rich air-fuel ratio is corrected according to the temperature of the NOx storage catalyst. The higher the temperature, the denser the air-fuel ratio required for the NOx desorption reaction of the catalyst.
Also, the maintenance time is shortened. Therefore, by setting the initial value of the air-fuel ratio according to the catalyst temperature in this way, optimal regeneration can be performed.

【0018】さらに第5の発明では、リッチ空燃比の初
期値をNOx吸蔵触媒の劣化度合いに応じて補正してい
る。触媒の劣化が進めばそれだけNOxの吸着保持能力
も下がり、再生時に要求される空燃比の濃化度合いも小
さくなる。したがった、このように劣化度合いに応じて
空燃比の初期値を設定することで、触媒の状況に応じて
過不足のなくHCを供給でき、燃費の不要な悪化も回避
できる。
Further, in the fifth invention, the initial value of the rich air-fuel ratio is corrected according to the degree of deterioration of the NOx storage catalyst. The more the catalyst deteriorates, the lower the NOx adsorbing / holding capacity is, and the smaller the air-fuel ratio concentration required during regeneration is. Therefore, by setting the initial value of the air-fuel ratio in accordance with the degree of deterioration in this way, HC can be supplied without excess or deficiency in accordance with the condition of the catalyst, and unnecessary deterioration of fuel efficiency can be avoided.

【0019】第6の発明では、触媒再生時に、NOx吸
蔵触媒の下流側のNOx濃度に応じて空燃比の濃化度合
いを制御している。この場合には、実際のNOxの脱
離、還元状態を検出しながら空燃比を調整することで、
最も効率的にHCの供給を行うことが可能となり、NO
xの浄化、燃費にとって最良の制御が行える。
In the sixth invention, the degree of enrichment of the air-fuel ratio is controlled in accordance with the NOx concentration downstream of the NOx storage catalyst during catalyst regeneration. In this case, by adjusting the air-fuel ratio while detecting the actual state of desorption and reduction of NOx,
It is possible to supply HC most efficiently, and NO
The best control for x purification and fuel efficiency can be performed.

【0020】[0020]

【実施の形態】以下本発明の最良の実施の形態について
図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

【0021】図1において、1は機関本体、2は吸気通
路、3は排気通路であり、燃焼室4には、直接的に燃料
を噴射する燃料インジェクタ5、及びこの噴射燃料を含
む混合気を点火するための点火栓6が備えられる。
In FIG. 1, 1 is an engine main body, 2 is an intake passage, 3 is an exhaust passage, and a combustion chamber 4 is provided with a fuel injector 5 for directly injecting fuel and an air-fuel mixture containing the injected fuel. An ignition plug 6 for igniting is provided.

【0022】燃料インジェクタ5からは、機関の部分負
荷時など圧縮行程の後半に燃料が噴射され、点火栓近傍
に可燃混合気層を形成維持し、全体的には超リーン混合
気であっても、安定した成層燃焼を実現する。なお、機
関の高負荷時など混合気は理論空燃比に切り替えられ、
このときには燃料噴射時期は吸気行程に移り、均質的な
理論空燃比の混合気を形成し、通常の予混合燃焼を行
う。
Fuel is injected from the fuel injector 5 in the latter half of the compression stroke such as when the engine is partially loaded, and a combustible air-fuel mixture layer is formed and maintained near the ignition plug. , Realizes stable stratified combustion. The mixture is switched to the stoichiometric air-fuel ratio, such as when the engine is under heavy load,
At this time, the fuel injection timing shifts to the intake stroke, a homogeneous air-fuel mixture having a stoichiometric air-fuel ratio is formed, and normal premixed combustion is performed.

【0023】排気通路3にはリーン運転時に排気中のN
Oxを吸着保持するNOx吸蔵触媒7が設けられる。こ
のNOx吸蔵触媒7の吸着保持量が所定の状態に達した
ときに、空燃比を一時的にリーンからリッチに切り替
え、つまりリッチスパイクを行い、保持していたNOx
を脱離還元し、触媒を再生するため、燃料インジェクタ
5からの燃料噴射量を制御装置10が切り替え制御す
る。
The exhaust passage 3 contains N in the exhaust during the lean operation.
A NOx storage catalyst 7 that adsorbs and holds Ox is provided. When the adsorption holding amount of the NOx storage catalyst 7 reaches a predetermined state, the air-fuel ratio is temporarily switched from lean to rich, that is, a rich spike is performed and the held NOx is held.
The controller 10 switches and controls the amount of fuel injected from the fuel injector 5 in order to desorb and reduce the fuel and regenerate the catalyst.

【0024】なお、図中8は排気の一部を吸気中に還流
するための排気還流装置を示す。
In the drawing, reference numeral 8 denotes an exhaust gas recirculation device for recirculating a part of the exhaust gas into the intake air.

【0025】上記制御装置10は運転条件に応じてNO
x吸蔵触媒7のNOxの吸着保持量を予測し、これに基
づいて所定のタイミングでリッチスパイクを行い、かつ
このときの空燃比をNOx還元特性に対応して徐々に変
化させていき、燃費を悪化させることなく、NOxの浄
化効率を最良に制御するようになっている。
The control device 10 determines NO according to operating conditions.
The amount of NOx adsorbed and held by the x-storage catalyst 7 is predicted, and a rich spike is performed at a predetermined timing based on the predicted amount, and the air-fuel ratio at this time is gradually changed in accordance with the NOx reduction characteristics to reduce the fuel consumption. The NOx purification efficiency is controlled optimally without deterioration.

【0026】このため、制御装置10には、吸気通路2
のスロットルバルブ開度を検出するスロットル開度セン
サ11、吸入空気量を測定するエアフロメータ12、ク
ランク角度を検出するクランク角センサ13、冷却水温
を検出する水温センサ14などからの運転状態を代表す
る信号が入力し、さらに、排気通路3のNOx吸蔵触媒
7の上流の排気空燃比を検出するための空燃比センサ1
5と、触媒直前の排気温度を検出する排気温度センサ1
6と、触媒温度を代表する温度を検出する触媒温度セン
サ17、さらには触媒下流のNOx濃度を検出するNO
xセンサ18などからの信号が入力するようになってい
る。
For this reason, the control device 10 includes the intake passage 2
Operating conditions from a throttle opening sensor 11 for detecting a throttle valve opening, an air flow meter 12 for measuring an intake air amount, a crank angle sensor 13 for detecting a crank angle, a water temperature sensor 14 for detecting a cooling water temperature, and the like. An air-fuel ratio sensor 1 for receiving a signal and further detecting an exhaust air-fuel ratio upstream of the NOx storage catalyst 7 in the exhaust passage 3
5 and an exhaust gas temperature sensor 1 for detecting the exhaust gas temperature immediately before the catalyst
6, a catalyst temperature sensor 17 for detecting a temperature representative of the catalyst temperature, and a NO for detecting a NOx concentration downstream of the catalyst.
A signal from the x sensor 18 or the like is input.

【0027】制御装置10において実行される上記した
制御内容について、図2のフローチャートにしたがって
詳しく説明する。
The above-described control executed by the control device 10 will be described in detail with reference to the flowchart of FIG.

【0028】まず、ステップS1でエンジン回転数N
e、吸入空気量Q、排気ガス温度Ta、触媒温度Tc、
冷却水温Tw、NOx濃度などを読み込み、ステップS
2においてリッチスパイクの許可判定を行う。この許可
判定は、リーン運転中にNOx吸蔵触媒のNOxの吸着
保持量が限界能力によりもある程度の余裕のある所定値
に達したかどうかを、リーン運転中の単位時間当たりの
NOx排出量の積算値などにより判断するもので、所定
値に達したと判断されたときにのみステップS3に進
む。
First, at step S1, the engine speed N
e, intake air amount Q, exhaust gas temperature Ta, catalyst temperature Tc,
The cooling water temperature Tw, the NOx concentration, etc. are read, and step S
In step 2, a rich spike permission determination is made. This permission determination is based on the integration of the NOx emission amount per unit time during the lean operation, whether or not the NOx storage amount of the NOx storage catalyst has reached a predetermined value that has some margin even by the limit capacity during the lean operation. The determination is made based on a value or the like. Only when it is determined that the predetermined value has been reached, the process proceeds to step S3.

【0029】ステップS3ではそのときのNOx吸着保
持量Nmasを演算により求め、次いでステップS4で
リッチスパイクのための燃料増量補正係数の初期値K0
を決定する。このK0は図3に示すようなマップを参照
して、そのときの吸入空気量とNOx吸着保持量に基づ
いてK0>1.0の値が算出される。
In step S3, the NOx adsorption holding amount Nmas at that time is obtained by calculation, and then in step S4, the initial value K0 of the fuel increase correction coefficient for the rich spike.
To determine. Referring to a map such as that shown in FIG. 3, a value of K0> 1.0 is calculated based on the intake air amount and the NOx adsorption holding amount at that time.

【0030】この場合、燃料増量補正係数の初期値K0
は、NOxの吸着保持量が多いほど空燃比が濃くなるよ
うに設定され、また、吸入空気量が大きいときは、同一
の空燃比の変化量でもHCの供給量の絶対量が大きくな
るため、吸入空気量が大きくなるほど空燃比の濃化度合
いが小さくなるように設定される。
In this case, the initial value K0 of the fuel increase correction coefficient
Is set so that the air-fuel ratio becomes denser as the adsorption holding amount of NOx increases, and when the intake air amount is large, the absolute amount of the supply amount of HC increases even with the same change amount of the air-fuel ratio. The air-fuel ratio is set so as to decrease as the intake air amount increases.

【0031】さらに、ステップS5ではリッチスパイク
開始時のNOxの脱離反応の応答遅れ時間T0を、例え
ば触媒温度や排気温度に基づいて算出する。
In step S5, a response delay time T0 of the NOx desorption reaction at the start of the rich spike is calculated based on, for example, the catalyst temperature and the exhaust gas temperature.

【0032】ステップS6において燃料噴射パルス幅T
iを次式のように算出する。
In step S6, the fuel injection pulse width T
i is calculated as in the following equation.

【0033】 Ti=Tp*α*K0(T0)+Ts ただし、Tpは吸入空気量と回転数に基づいて算出され
る基本燃料噴射パルス幅、αは空燃比センサの出力に基
づいて決まる空燃比フィードバック補正係数で、リーン
運転時にはα<1.0のある定数、リッチスパイク時に
はα=1.0にクランプされる。またTsは無効燃料パ
ルス幅である。
Ti = Tp * α * K0 (T0) + Ts where Tp is a basic fuel injection pulse width calculated based on the intake air amount and the rotation speed, and α is an air-fuel ratio feedback determined based on the output of the air-fuel ratio sensor. The correction coefficient is clamped to a constant α <1.0 during lean operation and α = 1.0 during rich spike. Ts is an invalid fuel pulse width.

【0034】そして、ステップS7において、この燃料
噴射パルス幅Tiに基づいて燃料の増量噴射、つまりリ
ッチスパイクが開始される。このときの空燃比は理論空
燃比よりも所定値だけ濃い空燃比となり、これによりN
Ox吸収触媒でのNOxの脱離反応が開始される。
Then, in step S7, an increased fuel injection, that is, a rich spike, is started based on the fuel injection pulse width Ti. At this time, the air-fuel ratio becomes an air-fuel ratio which is higher than the stoichiometric air-fuel ratio by a predetermined value, and
The desorption reaction of NOx by the Ox absorption catalyst is started.

【0035】ステップS8ではこの燃料増量補正係数K
0に基づいての増量補正に入ってからの経過時間Tn
を、前記遅れ時間T0と比較し、遅れ時間T0が経過す
るまでの間は、ステップS6に戻り、同一の増量補正値
(空燃比)を維持する。
In step S8, this fuel increase correction coefficient K
Elapsed time Tn from the start of the increase correction based on 0
Is compared with the delay time T0. Until the delay time T0 elapses, the process returns to step S6, and the same increase correction value (air-fuel ratio) is maintained.

【0036】そして、遅れ時間T0を経過するとステッ
プS9に進み、例えば次式のようにして燃料増量補正係
数KnTnを演算する。
When the delay time T0 has elapsed, the process proceeds to step S9, and a fuel increase correction coefficient KnTn is calculated, for example, by the following equation.

【0037】Kn(Tn)=C*[2*K(n−1)2
(T(n−1))−K(n−2)2(T(n−2))]
1/2 ただし、遅れ時間T0の経過時にKn=K0であり、ま
たCは定数、n≧2(整数)である。
Kn (Tn) = C * [2 * K (n-1) 2
(T (n-1))-K (n-2) 2 (T (n-2))]
1/2 , where Kn = K0 when the delay time T0 has elapsed, and C is a constant, n ≧ 2 (integer).

【0038】この燃料増量補正係数Kn(Tn)は触媒
からのNOx脱離特性に応じて、時間の経過とともに緩
やかに二次関数的に減少していくが、この他にも、例え
ば次式のように指数関数的に演算することもできる。
The fuel increase correction coefficient Kn (Tn) gradually and quadratically decreases with the passage of time in accordance with the NOx desorption characteristics from the catalyst. In this way, the calculation can be performed exponentially.

【0039】 Kn(Tn)=K(n−1)(T(n−1))/eA
T(n-1) ただし、Aは定数、n≧1(整数)である。
Kn (Tn) = K (n−1) (T (n−1)) / e A *
T (n-1) where A is a constant and n ≧ 1 (integer).

【0040】このようにして時間の経過とともに変化す
る燃料増量補正増量Kn(Tn)を求めたら、ステップ
S10において、これに基づいて燃料噴射パルス幅Ti
を次式のようして算出する。
Once the fuel increase correction amount Kn (Tn) that changes with the passage of time is obtained in this way, in step S10, the fuel injection pulse width Ti
Is calculated as in the following equation.

【0041】Ti=Tp*α*Kn(Tn)+Ts そして、ステップS11において、このTiによって増
量燃料(空燃比)を補正し、ステップS12でKn(T
n)=1かどうか判断し、Kn(Tn)=1になるまで
の間はステップS9に戻り、徐々に燃料噴射量を減らし
ていく。
Ti = Tp * α * Kn (Tn) + Ts In step S11, the increased fuel (air-fuel ratio) is corrected by this Ti, and in step S12, Kn (T
It is determined whether n) = 1, and the process returns to step S9 until Kn (Tn) = 1, and the fuel injection amount is gradually reduced.

【0042】そして、燃料増量補正係数Kn(Tn)=
1になったら、ステップS13に移り、触媒再生が終了
したものとしてリッチスパイクを終了し、リーン空燃比
に戻す。なお、この状態では、空燃比補正係数αは1.
0以下の定数となり、空燃比は理論空燃比よりも薄くな
る。
Then, the fuel increase correction coefficient Kn (Tn) =
When the value becomes 1, the process proceeds to step S13, in which the rich spike is terminated assuming that the catalyst regeneration has been completed, and the lean air-fuel ratio is returned to the lean air-fuel ratio. In this state, the air-fuel ratio correction coefficient α is 1.
The constant becomes 0 or less, and the air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio.

【0043】次に全体の作用を図4を参照しながら説明
する。
Next, the overall operation will be described with reference to FIG.

【0044】内燃機関をリーン空燃比により成層燃焼し
ている運転中は、排気中のNOxはNOx吸蔵触媒7に
吸着保持されていき、外部への放出が阻止される。運転
条件に応じてのNOx排出量の積算値から、NOx吸蔵
触媒7での吸着保持量が予測され、これが限界保持能力
付近の所定値に達したと判断されると、燃料の増量補正
が行われ、空燃比のリッチスパイク制御が行われる。こ
のリッチスパイクにより排気中のHCが増え、いわゆる
還元雰囲気となり、NOx吸蔵触媒7に吸着保持されて
いたNOxが離脱、還元される。
During operation of the internal combustion engine in which stratified combustion is performed at a lean air-fuel ratio, NOx in the exhaust gas is adsorbed and held by the NOx storage catalyst 7, and emission to the outside is prevented. From the integrated value of the NOx emission amount in accordance with the operating conditions, the adsorption holding amount in the NOx storage catalyst 7 is predicted, and when it is determined that this reaches a predetermined value near the limit holding capacity, the fuel increase correction is performed. Thus, rich spike control of the air-fuel ratio is performed. The HC in the exhaust gas increases due to the rich spike, and a so-called reducing atmosphere is formed, so that NOx adsorbed and held by the NOx storage catalyst 7 is released and reduced.

【0045】リッチスパイク制御時の空燃比の初期値
は、NOxの吸着保持量、そのときの吸入空気量などに
応じて設定される一定値(最大値)となり、この値はN
Ox吸蔵触媒7でのNOxの脱離に必要なHCを供給、
つまり還元雰囲気を形成するのに過不足のない値とな
り、かつ反応開始後、所定の遅れ時間T0の間は、同一
値が維持される。
The initial value of the air-fuel ratio during the rich spike control is a constant value (maximum value) set in accordance with the amount of NOx adsorbed and held, the amount of intake air at that time, and the like.
Supplying HC necessary for desorption of NOx in the Ox storage catalyst 7,
In other words, the value is sufficient to form the reducing atmosphere, and the same value is maintained for a predetermined delay time T0 after the start of the reaction.

【0046】そして、遅れ時間T0が経過すると、それ
以降は、図4のように、NOxの脱離量が減少するのに
対応して、増量燃料が減少していき、脱離が終了した時
点でほぼ増量補正も終了するように制御される。
After the delay time T0 has elapsed, thereafter, as shown in FIG. 4, in response to the decrease in the amount of desorbed NOx, the increased amount of fuel decreases, and the time when the desorption ends. Is controlled to end the increase correction substantially.

【0047】このため、空燃比のリッチ化がNOxの脱
離反応に応じて適切に設定され、従来のように、脱離量
が減少するにもかかわらず空燃比が一定量だけリッチ化
されるのと異なり、過剰にHCが供給されることがな
く、燃費の悪化を最小限に止められる。
For this reason, the enrichment of the air-fuel ratio is appropriately set according to the NOx desorption reaction, and the air-fuel ratio is enriched by a certain amount despite the decrease in the desorption amount as in the conventional case. Unlike this, HC is not supplied excessively, and deterioration of fuel economy can be minimized.

【0048】他の実施の形態を、図5〜図10に示す。Another embodiment is shown in FIGS.

【0049】まず、図5の実施形態は、燃料増量補正係
数の初期値K0を脱離反応開始時の触媒温度に基づいて
補正するようにしたものである。
First, in the embodiment of FIG. 5, the initial value K0 of the fuel increase correction coefficient is corrected based on the catalyst temperature at the start of the desorption reaction.

【0050】NOx吸蔵触媒7の温度により脱離特性は
変化し、一般的に温度が高まるほど脱離要求空燃比は濃
くなる。
The desorption characteristics change depending on the temperature of the NOx storage catalyst 7, and the desorption required air-fuel ratio generally increases as the temperature increases.

【0051】そのため、ステップS4で燃料増量補正係
数の初期値K0を算出したら、ステップS4−1におい
て、NOx吸蔵触媒温度Tcに基づいて、図6に示すよ
うなマップから補正係数C1(触媒温度が高いほど大き
くなる)を算出する。このようにして補正係数C1を算
出したならば、ステップS4−2において、燃料増量補
正係数K0にこの補正係数C1を掛け、つまり、K0=
K0*C1として、これをステップS6で燃料噴射パル
ス幅Tiを演算するときの燃料増量補正係数K0=K0
*C1と置き換える。
For this reason, after calculating the initial value K0 of the fuel increase correction coefficient in step S4, in step S4-1, based on the NOx storage catalyst temperature Tc, a correction coefficient C1 (when the catalyst temperature is The higher the value, the larger the value). After the correction coefficient C1 is calculated in this manner, in step S4-2, the fuel increase correction coefficient K0 is multiplied by the correction coefficient C1, that is, K0 =
As K0 * C1, the fuel increase correction coefficient K0 = K0 when calculating the fuel injection pulse width Ti in step S6.
* Replace with C1.

【0052】この結果、リッチスパイク時の燃料噴射量
の初期値、つまり初期空燃比は触媒温度が高いほど濃く
なり、反対に触媒温度が低くなるほど、濃化の度合いが
少なくなる。
As a result, the initial value of the fuel injection amount at the time of the rich spike, that is, the initial air-fuel ratio becomes higher as the catalyst temperature increases, and conversely, the degree of enrichment decreases as the catalyst temperature decreases.

【0053】したがって、温度に応じて変化するNOx
吸蔵触媒7でのNOx脱離特性に合わせてHCの供給量
が制御され、過剰のHCが供給され、燃費が悪化した
り、NOxの脱離反応が不完全になったりすることが回
避できる。
Therefore, NOx which changes according to the temperature
The supply amount of HC is controlled in accordance with the NOx desorption characteristics of the storage catalyst 7, so that excess HC is supplied, thereby preventing deterioration of fuel efficiency and incomplete reaction of NOx desorption.

【0054】図7の実施形態は、触媒の劣化度合いに応
じて燃料増量補正係数の初期値K0を補正するものであ
る。NOx吸蔵触媒7の劣化度合いに応じてNOxの吸
着保持能力が変化し、かつこれに応じてNOxの脱離反
応に必要な空燃比は変化し、劣化が進むほど空燃比の濃
化要求は少なくなる。
In the embodiment of FIG. 7, the initial value K0 of the fuel increase correction coefficient is corrected according to the degree of deterioration of the catalyst. The NOx adsorption / holding capacity changes according to the degree of deterioration of the NOx storage catalyst 7, and the air-fuel ratio required for the NOx desorption reaction changes accordingly. As the deterioration progresses, the air-fuel ratio enrichment request decreases. Become.

【0055】そこで、この実施形態においては、図7の
ステップS4−1において、エンジン運転状態、例えば
吸入空気量や回転数、あるいは触媒温度の積算値などか
ら、触媒の劣化度合いを算出し、ステップS4−2で、
この劣化度合いに基づいて補正係数C2を、図8に示す
ようなマップから算出する。補正係数C2は触媒の劣化
が進むほど小さくなる。
Therefore, in this embodiment, in step S4-1 in FIG. 7, the degree of deterioration of the catalyst is calculated from the engine operating state, for example, the intake air amount and the number of revolutions, or the integrated value of the catalyst temperature. At S4-2,
The correction coefficient C2 is calculated from a map as shown in FIG. 8 based on the degree of deterioration. The correction coefficient C2 decreases as the deterioration of the catalyst progresses.

【0056】ステップS4−3において、燃料増量補正
係数K0にこの補正係数C2を掛け、つまり、K0=K
0*C2とし、これをステップS6で燃料噴射パルス幅
Tiを演算するときの燃料増量補正係数K0として、K
0*C2を置き換える。
In step S4-3, the fuel increase correction coefficient K0 is multiplied by the correction coefficient C2, that is, K0 = K
0 * C2, which is used as a fuel increase correction coefficient K0 for calculating the fuel injection pulse width Ti in step S6, K
Replace 0 * C2.

【0057】そして、この補正係数C2に含めて、ステ
ップS6で燃料噴射パルス幅Tiを演算することによ
り、触媒の劣化が進むほどリッチスパイク時の空燃比の
濃化の度合いを少なくする。したがってNOx吸蔵触媒
7が劣化していくにしたがって不要なHCの供給量を減
らすことができ、過剰なHCの供給による燃費の悪化を
阻止できる。
By calculating the fuel injection pulse width Ti in step S6 while including the correction coefficient C2 in the correction coefficient C2, the degree of enrichment of the air-fuel ratio during a rich spike decreases as the catalyst deteriorates. Therefore, as the NOx storage catalyst 7 deteriorates, the supply amount of unnecessary HC can be reduced, and deterioration of fuel efficiency due to excessive supply of HC can be prevented.

【0058】図9の実施の形態は、リッチスパイク制御
時にNOx吸蔵触媒7の下流の実際のNOxの濃度を検
出し、NOx濃度の変化度合いに応じて燃料増量補正係
数をさらに補正することで、リッチスパイク空燃比を適
正に制御するようにしたものである。
The embodiment of FIG. 9 detects the actual NOx concentration downstream of the NOx storage catalyst 7 during rich spike control, and further corrects the fuel increase correction coefficient in accordance with the degree of change in the NOx concentration. The rich spike air-fuel ratio is appropriately controlled.

【0059】このため、ステップS9で燃料増量補正係
数Kn(Tn)を算出したら、ステップS9−1で、N
Oxセンサの出力から単位時間当たりのNOx濃度の変
化量ΔNOxを算出する。ステップS9−2では変化量
ΔNOxを所定値と比較し、所定値よりも大きい間は、
ステップS9−3において、この変化量ΔNOxに基づ
いて、図10に示すようなマップにしたがって補正係数
C3を求める。
Therefore, after calculating the fuel increase correction coefficient Kn (Tn) in step S9, in step S9-1, N
The amount of change ΔNOx in NOx concentration per unit time is calculated from the output of the Ox sensor. In step S9-2, the change amount ΔNOx is compared with a predetermined value.
In step S9-3, a correction coefficient C3 is obtained based on the change amount ΔNOx according to a map as shown in FIG.

【0060】そして、ステップS9−4において、この
補正係数C3を用いて、燃料増量補正係数Kn(Tn)
として、Kn(Tn)*C3に置き換えて、ステップS
10でこれに基づいて燃料噴射パルス幅Tiを演算す
る。
Then, in step S9-4, using the correction coefficient C3, the fuel increase correction coefficient Kn (Tn)
Is replaced by Kn (Tn) * C3, and step S
In step 10, the fuel injection pulse width Ti is calculated based on this.

【0061】補正係数C3は単位時間当たりのNOx変
化量ΔNOxが小さいときほど大きくなるように設定さ
れ、これによりNOxの脱離速度が低ければ、空燃比の
濃化度合いを大きくして、脱離反応を促進させるし、脱
離速度が早ければ、濃化度合いを小さくし、過剰なHC
の供給を回避するのである。
The correction coefficient C3 is set so as to increase as the NOx change amount per unit time ΔNOx is smaller. If the desorption speed of NOx is lower, the degree of enrichment of the air-fuel ratio is increased and the desorption is performed. The reaction is promoted, and if the desorption rate is high, the degree of concentration is reduced, and excess HC
Avoid the supply of

【0062】このようにして、NOx脱離反応の最適化
を図り、排気性能の向上と燃費の悪化防止を両立させる
ことができる。
In this manner, the NOx desorption reaction can be optimized, and both improvement of exhaust performance and prevention of deterioration of fuel efficiency can be achieved.

【0063】なお、上記実施の形態において、第2〜第
4の実施の形態の内容のすべてを同時に含むように、リ
ッチスパイクの制御を行うことも勿論可能である。
In the above embodiment, it is of course possible to control the rich spike so as to simultaneously include all the contents of the second to fourth embodiments.

【0064】また、上記実施の形態では、筒内直噴式の
内燃機関によりリーン空燃比運転を行う例を示したが、
これに限定されるわけではなく、その他のリーン燃焼方
式を採用することもできる。
In the above embodiment, an example in which the lean air-fuel ratio operation is performed by the in-cylinder direct injection internal combustion engine has been described.
The present invention is not limited to this, and other lean combustion systems can be employed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の各実施形態に共通な全体構成を示す概
略構成図てある。
FIG. 1 is a schematic configuration diagram showing an overall configuration common to each embodiment of the present invention.

【図2】第1の実施形態におけるリッチスパイク制御を
示すフローチャートである。
FIG. 2 is a flowchart illustrating rich spike control according to the first embodiment.

【図3】燃料増量補正係数の初期値を設定した特性図で
ある。
FIG. 3 is a characteristic diagram in which an initial value of a fuel increase correction coefficient is set.

【図4】リッチスパイク制御中のNOxの脱離特性を示
す説明図である。
FIG. 4 is an explanatory diagram showing NOx desorption characteristics during rich spike control.

【図5】第2の実施形態におけるリッチスパイク制御を
示すフローチャートである。
FIG. 5 is a flowchart illustrating rich spike control according to the second embodiment.

【図6】燃料増量補正係数の特性を設定した特性図であ
る。
FIG. 6 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.

【図7】第3の実施形態におけるリッチスパイク制御を
示すフローチャートである。
FIG. 7 is a flowchart illustrating rich spike control according to a third embodiment.

【図8】燃料増量補正係数の特性を設定した特性図であ
る。
FIG. 8 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.

【図9】第4の実施形態におけるリッチスパイク制御を
示すフローチャートである。
FIG. 9 is a flowchart illustrating rich spike control according to a fourth embodiment.

【図10】燃料増量補正係数の特性を設定した特性図で
ある。
FIG. 10 is a characteristic diagram in which characteristics of a fuel increase correction coefficient are set.

【符号の説明】[Explanation of symbols]

1 機関本体 4 燃焼室 5 燃料インジェクタ 6 点火栓 7 NOx吸蔵触媒 10 制御装置 15 空燃比センサ 17 触媒温度センサ 18 NOxセンサ DESCRIPTION OF SYMBOLS 1 Engine main body 4 Combustion chamber 5 Fuel injector 6 Spark plug 7 NOx storage catalyst 10 Controller 15 Air-fuel ratio sensor 17 Catalyst temperature sensor 18 NOx sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】リーン空燃比運転中に排気中のNOxを吸
着保持するとともにリッチ空燃比運転中に吸着保持した
NOxを脱離、還元するNOx吸蔵触媒を備えた内燃機
関において、 リーン運転中にNOx吸蔵触媒でのNOxの吸着保持量
を推定する手段と、 この吸着保持量が所定値に達したときに空燃比を一時的
にリッチ空燃比に切り換えてNOxを脱離還元するリッ
チ制御手段とを備え、 このリッチ制御手段はリッチ制御開始から所定の時間は
ほぼ一定のリッチ空燃比の初期値を維持し、その後はN
Oxの脱離特性に応じて空燃比の濃化度合いを徐々に減
らしていくことを特徴とする内燃機関の排気浄化装置。
1. An internal combustion engine equipped with a NOx storage catalyst that adsorbs and holds NOx in exhaust gas during a lean air-fuel ratio operation and desorbs and reduces NOx adsorbed and held during a rich air-fuel ratio operation. Means for estimating the amount of NOx adsorbed and held by the NOx storage catalyst; and rich control means for temporarily switching the air-fuel ratio to the rich air-fuel ratio when the amount of adsorbed fuel reaches a predetermined value to desorb and reduce NOx. The rich control means keeps the substantially constant initial value of the rich air-fuel ratio for a predetermined time from the start of the rich control.
An exhaust purification device for an internal combustion engine, characterized in that the degree of enrichment of the air-fuel ratio is gradually reduced in accordance with the desorption characteristics of Ox.
【請求項2】前記リッチ制御手段は前記空燃比の濃化度
合いを二次関数的または指数関数的に徐々に減らしてい
く請求項1に記載の内燃機関の排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said rich control means gradually reduces the degree of enrichment of said air-fuel ratio in a quadratic or exponential manner.
【請求項3】前記リッチ制御手段は前記リッチ空燃比の
初期値をリッチ制御開始時のNOx吸着保持量と吸入空
気量に応じて決定する請求項1または2に記載の内燃機
関の排気浄化装置。
3. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said rich control means determines an initial value of said rich air-fuel ratio in accordance with a NOx adsorption holding amount and an intake air amount at the start of rich control. .
【請求項4】前記リッチ制御手段は前記リッチ空燃比の
初期値をリッチ制御開始時のNOx吸蔵触媒の温度を代
表する温度に応じて補正する請求項1〜3のいずれか一
つに記載の内燃機関の排気浄化装置。
4. The method according to claim 1, wherein said rich control means corrects an initial value of said rich air-fuel ratio in accordance with a temperature representative of a temperature of said NOx storage catalyst at the start of rich control. An exhaust gas purification device for an internal combustion engine.
【請求項5】前記リッチ制御手段は前記リッチ空燃比の
初期値をリッチ制御開始時のNOx吸蔵触媒の劣化度合
いに応じて補正する請求項1〜4のいずれか一つに記載
の内燃機関の排気浄化装置。
5. The internal combustion engine according to claim 1, wherein said rich control means corrects an initial value of said rich air-fuel ratio in accordance with a degree of deterioration of said NOx storage catalyst at the time of starting rich control. Exhaust gas purification device.
【請求項6】前記リッチ制御手段はNOx吸蔵触媒の下
流側のNOx濃度に応じて前記空燃比の濃化度合いを減
少する請求項1〜5のいずれか一つに記載の内燃機関の
排気浄化装置。
6. The exhaust gas purification of an internal combustion engine according to claim 1, wherein said rich control means reduces the degree of enrichment of said air-fuel ratio in accordance with the NOx concentration downstream of the NOx storage catalyst. apparatus.
JP01410498A 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3671647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01410498A JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01410498A JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11210525A true JPH11210525A (en) 1999-08-03
JP3671647B2 JP3671647B2 (en) 2005-07-13

Family

ID=11851822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01410498A Expired - Lifetime JP3671647B2 (en) 1998-01-27 1998-01-27 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3671647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115581A (en) * 2000-10-10 2002-04-19 Denso Corp Air-fuel ratio control device for internal combustion engine
KR100517040B1 (en) * 2001-10-15 2005-09-26 도요다 지도샤 가부시끼가이샤 Exhaust gas purification system for internal combustion engine
WO2006001495A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115581A (en) * 2000-10-10 2002-04-19 Denso Corp Air-fuel ratio control device for internal combustion engine
JP4608758B2 (en) * 2000-10-10 2011-01-12 株式会社デンソー Air-fuel ratio control device for internal combustion engine
KR100517040B1 (en) * 2001-10-15 2005-09-26 도요다 지도샤 가부시끼가이샤 Exhaust gas purification system for internal combustion engine
WO2006001495A1 (en) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
CN100445539C (en) * 2004-06-25 2008-12-24 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
US7716924B2 (en) 2004-06-25 2010-05-18 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust gas of an internal combustion engine

Also Published As

Publication number Publication date
JP3671647B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3680611B2 (en) Exhaust gas purification device for internal combustion engine
US6325041B1 (en) Control apparatus for spark ignition type direct injection engine
JPH10274031A (en) Exhaust emission control device for cylinder injection type internal combustion engine
JPH10317946A (en) Exhaust emission control device
JP3769944B2 (en) Exhaust gas purification device for internal combustion engine
JP2000230447A (en) Engine exhaust emission control system
US6145306A (en) Exhaust gas purifying of lean-burn internal combustion engine
JP3460503B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP3671647B2 (en) Exhaust gas purification device for internal combustion engine
JP3944988B2 (en) Exhaust gas purification device for internal combustion engine
JP3663895B2 (en) Exhaust gas purification device for internal combustion engine
JP4492414B2 (en) Control device for internal combustion engine
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP3937487B2 (en) Exhaust gas purification device for internal combustion engine
JP4231958B2 (en) Engine control device
JP3684929B2 (en) Engine exhaust purification system
JP2002097976A (en) Exhaust emission control device of engine
JPH10266884A (en) Exhaust emission control device of lean-burn internal combustion engine
JP3815023B2 (en) Internal combustion engine
JP4289389B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP4231969B2 (en) In-cylinder internal combustion engine
JP2006183636A (en) Air-fuel ratio control device for engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

EXPY Cancellation because of completion of term